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a b s t r a c t 

Three-dimensional cultures of cells are gaining popularity as an in vitro improvement over 2D Petri 

dishes. In many such experiments, cells have been found to organize in aggregates. We present new re- 

sults of three-dimensional in vitro cultures of breast cancer cells exhibiting patterns. Understanding their 

formation is of particular interest in the context of cancer since metastases have been shown to be cre- 

ated by cells moving in clusters. In this paper, we propose that the main mechanism which leads to the 

emergence of patterns is chemotaxis, i.e. , oriented movement of cells towards high concentration zones 

of a signal emitted by the cells themselves. Studying a Keller–Segel PDE system to model chemotacti- 

cal auto-organization of cells, we prove that it admits Turing unstable solutions under a time-dependent 

condition. This result is illustrated by two-dimensional simulations of the model showing spheroidal pat- 

terns. They are qualitatively compared to the biological results and their variability is discussed both 

theoretically and numerically. 

© 2019 Elsevier Ltd. All rights reserved. 
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In breast cancer, the majority of deaths are not due to the pri-

ary tumor itself but are the result of the ability of cancer cells

o migrate and colonize other organs in the body, i.e. , to form

etastases ( Nguyen et al., 2009 ). Even when they are few, highly

otile tumor cells are able to move and spread throughout the

ntire body, but it is now well established that cancer cells cre-

ting metastases typically move in clusters and not alone ( Aceto

t al., 2014; Hong et al., 2016 ). Moreover, organs most usually af-

ected by breast cancer metastases, such as lungs, bones and liver,

roduce proteins which attract chemokine receptors in cancerous

ells ( Müller et al., 2001 ). The migrative properties of cells and

heir chemotactic abilities, i.e , their directing movement towards

ones of high concentration of certain chemical stimuli, are thus

ey when it comes to understanding the development of metas-

ases in breast cancer. Over the past decades, the in vitro investi-
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ation of how cells move and organize in the extracellular matrix

ECM) has developed thanks to the design of 3D structures mim-

cking the ECM, see ( Haycock, 2011 ) for a review of the different

ngineering techniques. The typical behavior of cells cultured in-

ide these is aggregation ( Lee et al., 2008 ), creating patterns whose

haracteristics depend on the cell line ( Kenny et al., 2007; Singh

t al., 2016 ). Cells aggregated into clusters might have a selective

dvantage over single cells thanks to their ability to escape the im-

une response, facilitating the extravasation, while it might pre-

ent anoikis (the programmed death of cells detached from the

CM), see ( Friedl and Wolf, 2003; Jurasz et al., 2004; Zhao et al.,

010 ). In this paper, we are interested in determining the main bi-

logical phenomenon responsible for the formation of cellular ag-

regates through mathematical modeling. Models for the aggrega-

ive behavior of cells in the ECM are well developed and belong

o two main classes: discrete (or agent-based) models, where each

ell is represented individually ( Drasdo and Höhme, 2005; Schlüter

t al., 2012; Zhou et al., 2006 ), or continuous models typically

ased on ordinary differential equations (ODEs) or partial differ-

ntial equations (PDEs) ( Anderson, 2005; Painter et al., 2010 ). The

atter can be either phenomenological or derived from physical or

hemical laws as outlined in ( Painter, 2009 ), where patterning is
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Fig. 1. 2D image of spheroids in the hydrogel, formed by MCF7 cells (upper panel) 

and by cells from MCF7-sh-wisp2 (lower panel), in both cases for 75 0 0 0 seeded 

cells and after 4 days of culture. 
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obtained but requires anisotropy assumptions on the ECM. Pat-

terns are also reported in 2D Petri dishes in various cases such as

buds created by glioblastoma cells. In ( Agosti et al., 2019 ), such ex-

perimental results are presented together with a PDE mechanical

model which is shown to numerically reproduce aggregates. To the

best of our knowledge, however, works on the formation of pat-

terns by cells in the ECM or in artificial 3D structures do not incor-

porate chemical environmental cues inducing chemotaxis. In a de-

terministic setting, the latter phenomenon is commonly modeled

thanks to the Keller–Segel system ( Keller and Segel, 1970 ) or one of

its numerous generalizations ( Hillen and Painter, 2009 ). Originally

employed to model spatial patterns in bacteria populations, this

model has been shown to be a rich tool for the modeling of self-

organization phenomena ( Painter, 2018 ). This work provides new

experimental results of spheroidal aggregates created by cancerous

cells in a 3D hydrogel. It proposes a chemotaxis-based explanation

of patterns through theoretical and numerical analysis of Turing

instabilities exhibited by a Keller–Segel-type PDE model. 

The outline of the paper is as follows. In Section 1 , we present

the experimental results and the main features of their PDE-based

counterpart. In Section 2 , we introduce the full model, whose lin-

ear stability analysis is performed in Section 3 . Numerical simu-

lations of the model are given in Section 4 , and we conclude by

discussing the results and possible improvements in Section 5 . 

1. From experimental to modeling results 

In this Section, we report new results of experiments exhibiting

spheroidal patterns, specifically for breast cancer cells growing in a

3D cylindrical hydrogel, of radius 2.5 mm and height 2 mm. Cells

are put at the top of the structure and, after spreading uniformly,

have typically formed spheroids no later than the day 4 (D4) of

culture. This is true both for an epithelial cell line (MCF7) and a

more mesenchymal and invasive one (MCF7-sh-wisp2), although

patterns appear to be more regular in the first cell line and exhibit

more elongated shapes with geometric variability in the second,

see Fig. 1 . 

A typical spheroid has a radius of around 100 μm, and thus can

be estimated to contain about 5 0 0 0 cells. As reported on Fig. 2 , at

D4 spheroids have appeared for both cell lines and for most num-

ber of seeded cells, which varies from 10 0 0 0 to 10 0 0 0 0. Interest-

ingly, almost no spheroids are observed at low initial number of

cells in the MCF7-sh-wisp2 case. We also note that the number of

spheroids is about the same for 50 0 0 0 or 75 0 0 0 seeded cells. Fi-

nally, very few spheroids are observed at 10 0 0 0 0 initial cells. This

last observation should be handled with care since it is essentially

the effect of cells tending to escape and pack outside the hydrogel.

Thus, 10 0 0 0 0 might be a too high initial number of cells for the

experiment to run properly. 

Building on these experiments, we propose that chemo-

taxis (along with diffusion and growth) is the driving force

behind the emergence of these patterns. In our case, well-

documented chemoattractants are the chemokines CXCL12 and

CXCL8, mostly expressed by MCF7 cells and MCF7-sh-wisp2 cells

respectively ( Sabbah et al., 2011 ). To support our claim, we provide

a minimally-parametrized variant of the Keller–Segel system with

prevention of overcrowding. Even if for the initial number of cells

we consider in the biological experiments (from about 10 4 to 10 5 )

an agent-based version of the Keller–Segel model could still be fea-

sible and possibly more accurate, we will study here the PDE-based

version. This choice not only enables deeper analysis of the pat-

terning mechanism but also becomes more and more appropriate

as cells grow, since their number doubles every day. 

In agreement with the biological observation that cells have

quickly spread uniformly, we consider a homogeneous initial con-

dition, starting from which the system has an exponentially grow-
ng homogeneous time-dependent solution, driven by the growth

f cells. 

We investigate Turing instabilities for this model around the

ime-dependent spatially-homogeneous solution. Assuming that

he time-scale of growth is long compared to that of kinetics, we

rove that such instabilities exist under a time-dependent neces-

ary and sufficient condition, which we call IC ( t ). The instability

ondition provides us with a dynamical explanation of patterns: 

• as long as IC ( t ) is not satisfied, the solution evolves close to the

homogeneous solution, 
• when IC ( t ) starts being fulfilled, patterns arise on the quick

time scale of kinetics. 

We discuss in detail and compare to experiments the depen-

ence of IC ( t ) on the initial number of cells and on the parameter

or the invasiveness of cells. Most experimental results are shown

o be coherent with the theoretical predictions, and they justify

he nonlinearity chosen in the Keller–Segel system. Remaining mis-

atches are also analyzed and put in perspective with the mini-

ality of our model. 

Finally, we provide 2D simulations for the equations in a disk,

hich both confirm our theoretical claims and show a qualita-

ive match with experimental data. We investigate the relevance

f these 2D simulations when it comes to patterning, by prov-

ng that patterns in the 2D disk provide a good approximation for

heir three-dimensional counterpart in a cylinder, when the cylin-

er height is relatively small compared to its radius. Since the hy-

rogel we used in the experiments does not satisfy this smallness

ssumption, we detail this result in the Appendix because of its

ndependent interest. 

.1. Materials and methods 

A schematic view of the experimental process is given in Fig. 3 .

t consists in the 3D culture of specific breast cancer cell lines us-

ng hydrogel 96-low binding microwell arrays (Biomimesys) de-
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Fig. 2. Statistics of spheroids formed in the hydrogel by MCF7 and MCF7-sh-wisp2 cells after 4 days of culture: number of spheres (A), mean and standard deviation of sizes 

of spheroids (B) and (C), both as a function of the number of seeded cells. Statistics obtained by averaging the results of 5 randomly chosen images in a given hydrogel. 

Fig. 3. Experimental process of micro-tumor formation: cells are suspended on the 

top center of the hydrogel 96-well-plates in a humidified atmosphere containing 

5% CO 2 , at 37 ◦C. After 1 h of incubation, 150 μl of medium is added in the space 

between the well and the hydrogel. 
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eloped by Celenys. Cells counted and suspended in 50 μl of

edium were seeded at different densities, from 10 0 0 0 to 10 0 0 0 0

ells/well. Medium was changed every 2 days during the whole

xperiment, and when the spheres became too big, the hydrogels

containing spheres) were placed in 24-well-plates to keep supply-

ng nutrients to the cells. 

Two breast cell lines were used for this study: MCF7 (hu-

an breast cell line, epithelial phenotype) and MCF7-sh-WISP2

MCF7 cells invalidated for WISP2 by sh-RNA plasmid, mesenchy-

al phenotype, ( Ferrand et al., 2014; Fritah et al., 2008 )). Cells

ere routinely maintained in Dulbecco’s modified Eagle medium

upplemented with 10% fetal bovine serum (FBS), L-Glutamine,

nd antibiotics. Live-cell microscopy imaging of spheroids was ob-

ained by using EVOS microscope (EVOS Cell Imaging System, Ther-

ofisher). Images were collected with either × 4 or × 10 objec-

ives depending on the sizes of spheroids after 4 days of culture.

mage analysis was carried out using the freely available ImageJ

oftware. Spheroids were analyzed by using either defined (round

r oval selection) or freehand selections. 

. Mathematical model 

The Keller–Segel system describes the biased random motion

f cells towards a chemical stimulus, called chemoattractant. We

onsider two variants which take into account volume effects. The

quation is posed on a domain � ⊂ R 

d with d = 2 or d = 3 . We

hall consider the case of a cylinder in R 

3 to match the hydro-

el geometry and for the simulations we consider a disk in R 

2 .

e are interested in the Keller–Segel system of parabolic reaction-

iffusion equations that writes 

∂n 
∂t 

− D 1 �n + χ∇ · ( ϕ(n ) ∇c ) = r n, 

∂c − D 2 �c = αn − βc, 
(1) 
∂t m
here n ( t, x ) is the density of the population of cancer cells

nd c ( t, x ) is the concentration of the chemoattractant, for x ∈ �

nd t > 0. 

We impose no-flux boundary conditions at the boundary ∂�

( D 1 ∇n − χϕ(n ) ∇c ) · n = 0 , 

D 2 ∇c · n = 0 , 

here n is the outward unit normal at the boundary. With this

hoice, cells and chemoattractant neither leave nor enter the do-

ain. We complete this system with nonnegative initial conditions

 (0 , x ) = n 0 (x ) and c(0 , x ) = c 0 (x ) and we define the average ini-

ial mass 

 := 

1 

| �| 
∫ 
�

n 

0 (x ) dx. 

.1. Model description 

The second equation in (1) describes the dynamics of the con-

entration of the chemoattractant c ( t, x ): it diffuses at rate D 2 > 0,

s produced by the cells themselves at rate α > 0 and is naturally

egraded at rate β > 0. Cells diffuse at a constant rate D 1 > 0 and

row according to a linear law with intrinsic rate r . Not only does

his choice ease computations, but we argue it is an appropriate

escription of the phase before the emergence of patterns, since

ells have much space to grow and nutrients are brought to them

onstantly. 

Finally, the random diffusive movement is complemented with

 transport term in the direction of the gradient of chemoat-

ractant c . The constant χ > 0 measures the strength of motion

nd ϕ( n ), called “chemotactical sensitivity function”, is a nonlin-

ar function describing the way cells aggregate when following the

hemical signal. We shall consider either 

(n ) = n 

(
1 − n 

n max 

)
+ 

or ϕ(n ) = n e −
n 

n max , 

here x + stands for the positive part of a given real number

 and n max plays the role of a critical density above which the

hemotactical movement respectively vanishes or becomes negli-

ible with respect to diffusion. Density-dependent sensitivity func-

ions have been considered in various works such as ( Hillen and

ainter, 20 01; 20 02 ). Note that one could also think of a flux-

imited Keller–Segel where the gradient is premultiplied by a non-

inear function of its norm as in ( Perthame et al., 2018 ), but we

tick to the simpler model above. We will show that a nonlinear

hoice of the sensitivity function is necessary for a correct agree-

ent between theoretical predictions and experimental results. 
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Remark 2.1. Because of the linear growth for the cellular popula-

tion, the critical density n max will eventually be exceeded, in which

case a nonlinearity ϕ(n ) = n (1 − n 
n max 

) would not make sense since

cells would go in the direction given by −∇c. This explains our

choice with the positive part which completely shuts down any

chemotactic movement above the maximal density n max . 

As observations show, cells quickly spread uniformly in the 3D

structure and we start after this spreading phase: we assume 

n 

0 (x ) ≡ M, c 0 (x ) ≡ α

β
M, 

where M is defined above and represents (up to the scaling factor
1 

| �| ) the initial number of cells seeded in the 3D structure. 

2.2. Dimensionless model 

Upon changes of time and space variables ˜ t = β D 1 
D 2 

t, ˜ x = 

√ 

β
D 2 

x

and appropriate scalings for n and c , namely 

n (t, x ) = 

˜ n 

( 

β
D 1 

D 2 

t, 

√ 

β

D 2 

x 

) 

, 

c(t, x ) = 

α

β
˜ c 

( 

β
D 1 

D 2 

t, 

√ 

β

D 2 

x 

) 

, (2)

and writing again n for ˜ n , c for ˜ c we find a minimally parametrized

version: {
∂n 
∂t 

− �n + A ∇ · ( ϕ(n ) ∇c ) = r 0 n, 

ε ∂c 
∂t 

− �c = n − c. 
(3)

Only three parameters A , ε and r 0 now remain, given by 

A = 

αχ

βD 1 

, ε = 

D 1 

D 2 

, r 0 = 

r 

βε 
. 

We expect A to be larger for MCF7-sh-wisp2 cells than for MCF7

cells, the former being more prone to chemotactic movement than

the latter ( Fritah et al., 2008; Sabbah et al., 2011 ). 

Small Parameters: Because the chemoattractant diffuses much

faster than cells, ε is typically small, while A depends on the ra-

tio χ
D 1 

, which measures the relative importance of diffusion and

attraction. 

We also assume that the time scale of growth (driven by r ) is

much bigger than the time scale of kinetics (driven by α, β). Thus,

r 0 is much smaller than 

1 
ε . The MCF7 cells indeed have a popula-

tion doubling time of around 1 day ( Sutherland et al., 1983 ), which

yields r ≈ 4 . 10 −6 s −1 , while some data can be found in the litera-

ture on the degradation rate of the chemokine CXCL8, of the order

of β ≈ 1 . 10 −4 s −1 ( Shi et al., 1995 ). Summing up, we assume both

ε 	 1 , r 0 ε = 

r 

β
	 1 . (4)

Note that r 0 ε = 

r 
β

≈ 4 . 10 −2 is arguably not very small, but we will

see later on that our results actually hold up to O((r 0 ε) 2 ) errors,

see Remark 3.1 , and (r 0 ε) 2 ≈ 2 . 10 −3 . 

For the homogeneous initial condition n 0 = M, c 0 = 

α
β

M, this

system has a homogeneous (in space) solution, given by 

n̄ (t) : = Me r 0 t , 

c̄ (t) : = 

M 

1 + εr 0 

(
α(1 + εr 0 ) − β

β
e −

t 
ε + e r 0 t 

)
, 

the (linear) stability of which we now investigate in detail. 
. Linear stability analysis 

Around the homogeneous solution ( ̄n (t) , ̄c (t)) , the linearized

ystem reads 

∂n 
∂t 

− �n + Aϕ( ̄n (t))�c = r 0 n, 

ε ∂c 
∂t 

− �c = n − c. 
(5)

e denote ( ψ k ) k ≥ 1 the orthonormal basis of L 2 ( �) made of the

igenfunctions of the Neumann Laplace operator associated with

igenvalues ( λk ) k ≥ 1 , namely 

−�ψ k = λk ψ k , x ∈ �

∇ψ k · n = 0 , x ∈ ∂�. 

Since biological experiments have been performed in 3D cylin-

ers, we explicitly compute the modes of Neumann Laplace

n Appendix A for this geometry, where we also remark that per-

urbations along the z−axis will typically not be observed if the

eight of the cylinder were to be negligible with respect to its ra-

ius. 

Projecting the linearized Eq. (5) on the orthonormal basis

 ψ k ) k ≥ 1 through 

 (t, ·) = 

∑ 

a k (t) ψ k , c(t, ·) = 

∑ 

b k (t) ψ k , 

e find 

a ′ 
k 
(t) = −λk a k (t) + Aϕ( ̄n (t)) λk b k (t) + r 0 a k (t) , 

εb ′ 
k 
(t) = −λk b k (t) + a k (t) − b k (t) . 

The previous equation writes in matrix form as X ′ 
k 
(t) =

 k (t) X k (t) with 

 k (t) = 

(
a k (t) 
b k (t) 

)
, A k (t) = 

(
−λk + r 0 Aϕ( ̄n (t)) λk 

1 
ε − 1 

ε (λk + 1) 

)
. 

We now assume that the perturbation is initiated at time t 0 > 0

nd we focus on an interval of the form (t 0 , t 0 + �t) whose size

t is of the order of the kinetics time-scale ε. As such, it is small

hen compared to the growth time-scale 1 
r 0 

. Note that in the origi-

al time variable, this amounts to considering a time interval of or-

er 1 
β

(small when compared to 1 
r ). In particular, neglecting terms

f order O((r 0 ε)) , we can approximate all functions of time by

heir value at t 0 . 

Looking for exponentially increasing solutions in time, we insert

 solution of the form 

(a k (t) , b k (t)) = e μ(t−t 0 ) (a 0 k , b 
0 
k ) , 

ith μ of real part � ( μ) > 0, which imposes that μ is an eigen-

alue of A k ( t ). Let us denote μ+ 
k 
(t) to be either the largest real

igenvalue of A k ( t ) or the real part of its complex conjugate eigen-

alues. 

We now look for sufficient and necessary conditions ensuring

hat μ+ 
k 
(t) > 0 . 

For a given time t > 0, we compute 

r (A k (t)) = −λk + r 0 − 1 

ε 
(λk + 1) ≤ r 0 − 1 

ε 
< 0 . 

t is thus easy to check that A k ( t ) has an eigenvalue with positive

eal part if and only if det (A k (t)) < 0 , which is equivalent to 

λ2 
k + ( Aϕ( ̄n (t)) + r 0 − 1 ) λk + r 0 > 0 . 

Since we are interested in perturbations other than those in the

irection of the first homogeneous eigenfunction ψ 1 (and since the

bove polynomial is positive at 0), a necessary and sufficient con-

ition to have μ+ 
k 
(t) > 0 is for λk > 0 to satisfy 

< λ̄(t) 
k 
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here 

¯ (t) := 

r 0 + Aϕ( ̄n (t)) −1+ 
√ 

(r 0 + Aϕ( ̄n (t)) −1) 2 +4 r 0 
2 

. 

In other words, looking for perturbations in a direction other

han that of the eigenfunction ψ 1 which is homogeneous, a per-

urbation at time t 0 will yield Turing instability if and only if 

2 < λ̄(t 0 ) , (6) 

eglecting small terms in O((r 0 ε)) . As in the Introduction, we call

his condition IC ( t 0 ). 

emark 3.1. If one replaces λ̄(t 0 ) by λ̄(t 0 + 

�t 
2 ) in the previous

ondition, the instability condition can be proved to be accurate

ot only at order 0 but even at order 1 in r 0 ε, i.e. , neglecting

((r 0 ε) 2 ) corrections, see ( Madzvamuse et al., 2010 ). 

The perturbations happen along the modes ψ k which for

imple geometries as in our case can be explicitly computed,

ee Appendix A . 

.1. On the condition for Turing instability 

In condition (6) , the right-hand side λ̄(t) has the same mono-

onicity as ϕ as a function of n̄ (t 0 ) = Me r 0 t 0 . Recall that the

unction ϕ increases and then decreases in both cases ϕ(n ) =
 

(
1 − n 

n max 

)
+ and ϕ(n ) = ne 

− n 
n max . 

.1.1. Dependence on time 

Assume that M is fixed such that initially, ϕ( ̄n (t)) increases

ith time ( i.e. , ϕ′ ( M ) > 0). Consequently, the condition IC ( t )

n (6) might not initially be satisfied but it is more likely to be

s time increases. The typical dynamics expected from this condi-

ion is thus an increase of n ( t , · ), c ( t , · ) very close to n̄ (t) , c̄ (t) ,

p until the Turing instability condition becomes satisfied. Patterns

hen form very quickly (on the time scale of ε). 

.1.2. Dependence on the initial mass 

For a small initial mass M , the right-hand side in condition IC ( t )

n (6) is small, meaning that Turing instabilities are expected only
ig. 4. Patterning evolution . Evolution of the density of cells from a small perturbation o

nd r 0 = 0 . 1 . 
t a large time t . This provides an explanation for the fact that pat-

erns are not initially observed. In the limit when M is very small,

ne should wait for a very long time before IC ( t ) starts being sat-

sfied. 

As M increases, Turing instability is more likely to occur before

4, until the cell density reaches the region in which ϕ decreases.

hen M is too large, IC ( t ) is not satisfied initially and will never be

ater on: no patterns should be obtained. This in accordance with

xperimental observations, and explains why we choose a nonlin-

ar sensitivity function instead of the more classical linear one. A

inear choice would indeed predict Turing instabilities for high val-

es of M . 

.1.3. Dependence on the parameter A 

We note that the dependence of IC ( t ) in (6) as a function of A

s such that if IC ( t ) is satisfied at some time t for a given A , then

t should be for a larger A as well. In other words, if MCF7 cells

ave created patterns at day D4, then so should have the MCF7-

h-wisp2 (all other parameters being equal). This is not in agree-

ent with the experimental findings with M = 10 0 0 0 , value for

hich MCF7 cells have created spheroids, but not MCF7-sh-wisp2.

e however stress that predictions of our continuum PDE model

hould be taken with care when dealing with the lowest possible

ensities and first days of experiment. 

. Numerical simulations 

In this section, we complete the theoretical analysis with nu-

erical simulations of system (3) showing how the patterning be-

avior of solution changes depending only on few parameters, as

ommented in the previous sections. All simulations have been

erformed with the software Freefem ++ , which is based on fi-

ite element methods ( Hecht, 2012 ). They have been carried out

n a circular domain of radius R = 20 , discretized with at least 500

oints mesh. 
f the initial uniform state n 0 = 0 . 1 ( t = 0 ). Here, ϕ(n ) = n (1 − n ) + , A = 70 , ε = 0 . 01 
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Fig. 5. Patterns appear around time t = 7 . 5 when n 0 = 0 . 05 , A = 70 , ε = 0 . 01 and 

r 0 = 0 . 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Evolution of the density of cells from a small perturbation of the initial uni- 

form state n 0 = 0 . 1 , with ϕ(n ) = n (1 − n ) + , A = 200 , ε = 0 . 01 and r 0 = 0 . 1 . 
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4.1. Typical behavior 

When the parameters are such that they are near the insta-

bility region (6) , the typical behavior of the solutions is the one

showed in Fig. 4 , where we set A = 70 , ε = 0 . 01 , r 0 = 0 . 1 and used

the logistic chemotactical sensitivity function with n max = 1 , i.e. ,

ϕ(n ) = n ( 1 − n ) + . Starting from a small perturbation of the con-

stant initial distribution n 0 = 0 . 1 , in few time steps the density

grows uniformly in the domain until IC ( t ) in (6) is satisfied, in

this case around t ≈ 2.5. Pattern formation then occurs very quickly,

compared to the growth dynamics. When patterns are formed, the

solution evolves very slowly and the most visible phenomenon is

the merging of the spheroidal aggregates. Eventually, they become

less regular, round structures, as at t = 17 . 5 . 

4.2. Dependence on the initial mass 

If the initial mass is too small, the initial phase of growth

takes much longer and the patterns arise later. For example in

Fig. 5 , where the solution of the model with the initial distribu-

tion value n 0 = 0 . 05 (leaving all the other parameters unchanged)

is displayed, the first patterns appear only around t ≈ 7.5. 

4.3. Dependence on the parameter A 

In Fig. 6 , we show how the kind of patterns observed strongly

depends on the value of the quantity χ / D 1 . In these simulations,

we chose A = 200 and the other parameters as in Fig. 4 . In this

case the diffusivity of cells is not as strong as the chemotactical

attraction, which dominates the dynamics leading to smaller but

more numerous spheroids. Moreover, in the first phases of dynam-

ics, slightly more non-spheroidal and of variable geometry patterns

arise. 

4.4. Choice of the function ϕ

Finally, Fig. 7 shows solutions of the system (3) with ϕ(n ) =
ne −n . For this chemotactical sensitivity function, we find again

spheroidal aggregates, but with less variable structures: in this

case, variability lies in the maximums of the solution (higher than

the ones in the logistic case), but only very round aggregates can

be observed. 
While the exponential function is usually advocated for because

t does not impose an a priori maximal density, we here highlight

 drawback of this choice: since the packing can continue even at

igh density, this fixes the size of patterns as new cells do not go

t the periphery but instead concentrate at higher and higher den-

ity at the middle. Thus, this choice of function offers less variabil-

ty for the size of spheroids in two dimensions. 

Note that the numerical schemes do not preserve desirable

roperties, such as positivity of the solution. In fact, negative val-

es in the densities can be seen mostly at the interfaces between

ones of high densities (the spheroids), and zones of low densi-

ies (the rest). We were able to take fine enough grids to limit

hese numerical artifacts but we point out that some positivity-

reserving numerical schemes have been designed to solve sys-

ems of the type of (1) , see for example ( Almeida et al., 2019 ) and

 Liu et al., 2018 ). 

. Discussion and conclusions 

In order to understand the experimental observation of

pheroidal aggregates in cultures of breast cancer cells, we have

roposed a mathematical model which includes a chemotactic ef-
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Fig. 7. Alternative model . Evolution of the density of cells from the initial state 

n 0 = 0 . 1 in the case where ϕ(n ) = ne −n . All parameters have been chosen as in 

Fig. 4 . 
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ect and its modulation at high cell densities. We have analyzed

heoretically the conditions which lead to instability and pattern

ormation. The numerical solutions confirm the theoretical analy-

is and qualitatively reproduce the observed patterns, in spite of

ts relatively low parametrization. Contrarily to other modeling ap-

roaches, the salient feature is not cell-scaffold adhesion, which

e reduce to a constant diffusion term, but instead chemotaxis.

e thus hypothesize that it is a key phenomenon responsible for

hese aggregates. 

The numerical simulations of the model do not only show qual-

tative accordance with the experimental results. Indeed, the sys-

em (1) has spatially inhomogeneous solutions with spheroidal

atterns, and it also describes how different kinds of patterns can

rise: few, elongated structures for a small diffusion value or nu-

erous, mainly round, small aggregates for a stronger chemotactic

ensitivity. 

The simplicity of the model induces two main limitations: 

• it does not seem to offer a satisfying flexibility for the size of

patterns, essentially fixed by the geometry of �. 
• it is not suitable to explain the post-aggregation phase, and in

particular the increase in the number of spheres as observed

experimentally 10 days after initial pattern formation. 

In fact, the distributions (in size) of spheroids for the biological

mages and the numerical simulations do not match well: while

he standard deviation is of the order of the average size for ex-

eriments as evidenced by Fig. 2 in the Introduction, we find that

tandard deviation is about one third of the mean size in simula-

ions. 

In the Keller–Segel model, the variability is essentially captured

nly by the Laplacian eigenfunctions which themselves are com-

letely characterized by the domain geometry. A natural direction

f research for a better matching is to model cell-scaffold adhesion

ore finely than with a diffusion term, incorporating anisotropies

such as in Painter, 2009 ), or even randomness, in the extracellular

atrix density. 

As for the second point, statistical estimates obtained from im-

ges taken later during the experiment (not shown here) indeed

vidence a growth in both the size and number of spheroids.

his is not reproduced by numerical simulations. In fact, the pat-

erns that formed then typically continue to merge, probably until

he cells are all packed in very few aggregates. This phenomenon

or this type of model is explained in detail in ( Potapov and

illen, 2005 ). 

We insist that a minimally-parametrized model such as ours is

ore amenable to mathematical analysis and also paves the way

or works aiming at a more quantitative prediction of the typ-

cal size and number of spheroids. To go further in this direc-

ion, one should look for the actual modes along which instabil-

ties will be observed in a time-dependent setting, in the spirit

f Madzvamuse et al. (2010) . 

cknowledgment 

The authors acknowledge partial funding from the ANR blanche

roject Kibord ANR-13-BS01-0 0 04 funded by the French Ministry

f Research. B.P. has received funding from the European Research

ouncil (ERC) under the European Union’s Horizon 2020 research

nd innovation program ( grant agreement No 740623 ). F.B. has re-

eived funding for international mobility from Universit Franco-

talienne. 

ppendix A. Explicit computation of the modes 

Since � has a particular shape, eigenvalues and eigenfunctions

an actually be explicitly computed. We first consider the case of

he 2D simulations, namely when � is a disk of radius a . It is then

tandard that all eigenfunctions can be obtained after separation

f variables in polar coordinates ψ(x, y ) = f (r) g(θ ) , the equation

�ψ = λψ with Neumann boundary conditions is equivalent to 

(θ ) = A cos (mθ ) + B sin (mθ ) 

or some m ∈ Z and ρ �→ f ( ρ√ 

λ
) must solve the Bessel equation 

2 y ′′ (ρ) + ρy ′ (ρ) + (ρ2 − m 

2 ) y (ρ) = 0 

ith y ′ (0) = y ′ ( 
√ 

λa ) = 0 . This yields, up to a constant, to the re-

ult f (r) = J m 

( 
√ 

λr) where J m 

is the first kind Bessel function of or-

er m . The boundary conditions impose m � = ± 1 (because J ′ m 

(0) =
 for all m except 1 and −1 ), while, denoting γ m,p the p th zero of

he derivative of J m 

, we find λ = 

( γm,p 

a 

)2 
. 

Summing up, we obtain 

λm,p = 

(
γm,p 

a 

)2 

, 

 m,p (r, θ ) = J m 

(
γm,p 

a 
r 

)
(A cos (mθ ) + B sin (mθ )) , 

https://doi.org/10.13039/501100007601
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a family indexed by m ∈ Z \ {±1 } , p ∈ N 

� . Apart from m = 0

for which the eigenfunction is unique after normalisation, the

eigenspace associated to λm,p is of dimension 2. 

Similar computations for the case of a cylinder of height h and

radius a lead to the result 

λm,p,l = 

(
γm,p 

a 

)2 

+ 

(
lπ

h 

)2 

, 

ψ m,p,l (r, θ, z) = ψ m,p (r, θ ) cos 

(
lπz 

h 

)
, 

a family indexed by m ∈ Z \ {±1 } , p ∈ N 

� , l ∈ N . The multiplicity of

eigenfunctions is the same as in the previous case (1 if m = 0 and

2 if not). 

If h is small compared to a , the contribution of the ( lπ
h 

) 2 term

is too big and we will thus typically not see the eigenvalues such

that l > 0 in the z variable, an approximation precise up to O(( a 
h 
) 2 )

errors. As a consequence, only the corresponding modes for l = 0

will be observed, and we note that these are exactly the 2D modes.

Under this smallness assumption, it is interesting to note that

from the point of view of Turing instabilities, it is a good approxi-

mation to neglect the z variable and focus on � ⊂ R 

2 as a disk. 
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