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Poor hive thermoregulation produces an Allee effect

and leads to colony collapse
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Abstract

In recent years the honey bee industry has been experiencing increased loss of

hives. The accumulation of multiple stressors on a hive potentially drives hive

loss in various ways, including winter loss and colony collapse disorder. One

of these stressors is the breakdown of thermoregulation inside the hive. For

pupae to develop correctly into healthy adult bees, the temperature within the

hive must be regulated by the hive bees to within a narrow range that ensures

optimal development. Suboptimal development in adults affects their brain and

flight muscles so bees becomes inefficient foragers with shorter life spans. We

model the effect of thermoregulation on hive health using a system of delay

differential equations that show that thermoregulatory stress has the capacity

to drive colony loss in the model via a saddle-node bifurcation with an associated

Allee effect.
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1. Introduction

There are increasing pressures on honey bees in today’s industrialised world.

The loss of honey bees has a profound effect, not only on natural systems but also

on food production. TheWestern honey bee, Apis mellifera, is the most common

commercial pollinator [4]. Pollinators are particularly vital in agriculture to

grow commercial quantities of many crops, particularly fruit, vegetables and

nuts.

In recent years honey bee colonies have been failing at alarming rates and

countries have begun monitoring their honey bee stocks [19]. One conceptually

important mode of colony loss is colony collapse disorder (CCD). Colony collapse

disorder is characterised by a vacant hive with dead brood and stored food

present, but few to no adult bees, which suggests a rapid depopulation [1]. In

some cases a colony will fail so rapidly that within the space of a few weeks an

apparently healthy hive becomes emptied of adult bees [1, 2, 3].

Mathematical models that represent the dynamics of a honey bee colony are

a useful tool to examine causes of hive loss with a focus on CCD. Khoury et al.

[5, 17] produced two foundational models. The first of these, models populations

of adult hive bees and foragers. The second also includes the brood population

and stored food. These models have been extended in several different ways

to include seasonality [9], disease and infection [9], stressors [7, 8], and age-

dependent foraging [6].

It is now thought that CCD is caused by the accumulation of stressors on

the hive, rather than having one single cause. Booton et al. [8] and Bryden

et al. [7] both model the effects of stress on a hive, but neither model has an

explicit stressor. Booton et al. use a per capita death rate due to a generalised,

unspecified stressor. Bryden et al. split the adult population into a healthy and

impaired class based on a constant impairment rate.

Honey bee colonies have been very well studied over time and so many of the

stressors that a hive experiences are well known and their effects, increasingly,

are being quantified [21, 22]. Consequently, specific known hive stressors can be
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included directly in models, and, we would argue, that this approach will result

in more useful models than a generic stress whose source is unknown. In this

paper we will model, explicitly, one of these known stressors, the breakdown of

thermoregulation, and explore its effects on the hive.

1.1. Understanding Thermoregulation and its Effect

Figure 1: Life cycle of model honey bee. We see where thermoregulation acts. Hive bees
thermoregulate to maintain an optimal temperature to allow the capped brood to develop
properly. The solid lines indicate the flow from one state variable to another, the dashed lines
indicate demographic feedback loops and the dotted line indicates a stress feedback loop.

Honey bees maintain precise environmental conditions inside the hive includ-

ing, humidity, temperature and carbon dioxide levels [12]. Thermoregulation has

a significant impact at particular points in the honey bee life cycle. The queen

bee lays eggs which hatch into larvae (usually referred to as uncapped brood).
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The larvae then pupate. The brood cell containing the larvae is sealed by hive

bees. Hence this pupal stage is referred to as capped brood. After 12 days

an adult bee emerges from the capped cell. The newly emerged adult bee will

initially work within the hive and later is recruited to foraging duties. The first

flight a forager makes is to acquire information. She will determine where the

pollen/nectar sources are and gather information on the nest’s location relative

to other landmarks in the environment [11]. It is during this transition phase

that a honeybee has an increased risk of mortality and so the transition from

hive bee to forager is not guaranteed.

Hive thermoregulation by workers in general, allows the hive to survive colder

temperatures. However, a more specific role is to provide the optimal temper-

ature for capped brood to develop into adult bees. For optimal development,

capped brood must be maintained between 34 ◦C and 36 ◦C [10]. The process of

thermoregulation requires more food consumption as the hive bees’ metabolic

rate increases [10, 13] to meet the energetic requirements of hive thermoregula-

tion.

A breakdown in thermoregulation has deleterious effects on the adult bees

which emerge from the capped brood cells. Adult bees that have not developed

at optimum temperatures show decreased cognitive ability, reduced foraging

capability and higher susceptibility to parasites [12, 14, 15]. Capped brood that

develop at lower than ideal temperatures will be inferior foragers later in life,

collect less food per forager and have a shorter lifespan than their optimally

developed counterparts. Jones et al. [12] conducted a study on the short-term

and long-term memory of adult worker bees who experienced temperatures of

31, 32, 33, 34, 35, 36 and 37 ◦C±0.5 ◦C, respectively, during their time as capped

brood. The results showed that there was no significant difference in long-term

memory, but that there was a significant difference between the short-term

memory of brood reared at 32 ◦C, 33 ◦C and 36 ◦C, with the latter having the

best short-term memory of the three cohorts.

When foragers that are seeking new sources of pollen and nectar for the

hive, find a suitable source they return to the hive and perform a dance to
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communicate what they have found. If successful, the forager will recruit other

foragers to forage the new source of pollen and nectar. Tautz et al. [15] examined

the effect of different rearing temperatures on brood and their ability, as foragers,

to effectively communicate via dance. The authors showed that foragers who

were raised at 32 ◦C had approximately 60% probability of performing a dance

after visiting a feeder as opposed to the two other cohorts (one reared at 36 ◦C

and the other reared under natural conditions) who displayed a 90% probability

of performing a dance. Further, there were significantly smaller mean numbers

of dance circuits by bees reared at 32 ◦C compared to those reared at 36 ◦C.

This suggests that information about food sources will not spread as well in

hives whose thermoregulation is sub-optimal.

The prevalence of a parasitic infection may also be attributed to poor ther-

moregulation. McMullan et al. [14] showed that a change in brood temperatures

from 34 ◦C to 30 ◦C saw an increase in the prevalence of tracheal mites (20% to

41%, respectively).

It is evident from these studies that poor thermoregulation of capped brood

impacts hive dynamics, including food collection, when these pupae become

adults. Further it is clear that poor thermoregulation puts the hive under stress

in particular and known ways.

There have been many mathematical models that capture the dynamics of

a hive. Khoury et al. [5, 17] presented two models which modelled population

dynamics with and without food in the hive. Both models made claims about the

viability of a hive as a function of forager mortality. Perry et al. [6] extended the

models proposed by Khoury et al. by including, explicitly, the role of worker

age at onset of foraging. This was done by introducing three age-dependent

functions. The idea of average mortality, which gives a lifespan of 1
mortality , was

used to define age at onset of foraging. If we consider the rate of recruitment of

hive bees to become foragers (effectively the ”mortality” of hive bees), then it

follows that the average time that a bee spent as a hive bee is the average age

at onset of foraging.

In this paper we will incorporate these known outcomes of thermoregulatory
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stress into a mathematical model. We aim to extend the work presented in

previous models [5, 6, 17] by introducing the effects of a breakdown of ther-

moregulation within the hive. We use the model presented by Perry et al. [6]

as a foundation and incorporate thermorelatory stress explicitly.

2. Methods

We will use the model of Perry et al. [6] as a foundation for our model.

This model has four dependent variables: food stored in the hive, number of

uncapped brood, hive bees and foragers (denoted by the variables f , B, H and

F , respectively). The model explicitly includes the age at onset of foraging of

hive bees. This was derived using the average rate, R(H,F, f), that hive bees

leave that class. This is the rate of recruitment to foraging,

R(H,F, f) = αmin + αmax
b2

b2 + f2
− σ

F

F +H
. (1)

The first and second term, respectively, represent the standard rate of recruit-

ment and the accelerated rate when there is a low amount of stored food in

the hive. The last term represents the effect of social inhibition on forager

recruitment. Therefore the age at onset of foraging is defined as,

a =
1

R(H,F, f)
. (2)

The equation for the rate of change of stored food is,

df

dt
= cTN(a)F − γA(F +H)− γBB. (3)

The first term on the right hand side models the rate of food collection, where

cT is the amount of food collected per forager per trip and N(a) is the number

of trips a forager makes per day as a function of age. The last two terms on

the right hand side are the rate of food consumption where, γA and γB is the

amount of food consumed per day per adult bee and brood, respectively.

The equation for the rate of change of the uncapped brood population is

defined as,

dB

dt
= L

f2

f2 + b2
H

H + ν
− φB, (4)
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where first term represents the number of eggs laid per day, L. This is dependent

on the availability of food and hive bees in the hive. The second term represents

the rate that uncapped brood progress to capped brood at a pupation rate φ.

The brood which pupate do not immediately join the hive bee class because

capped brood require approximately 12 days to mature into adult bees. The

equation for the rate of change of the hive bee population is,

dH

dt
= φB(t− τ)−R(H,F, f)H. (5)

The first term on the right hand side represents the rate that uncapped brood

entered pupation τ = 12 days ago and hence the rate that hive bees are currently

emerging from pupation. The second term is the rate the hive bees progress to

foraging duties at the recruitment rate R(H,F, f).

Finally the equation for the rate of change in the population of foragers is,

dF

dt
= T (a)R(H,F, f)H −mrM(a)F. (6)

The first term on the right hand side is the rate that hive bees are recruited to

foraging duties following their orientation flights. The function T (a) represents

the transitional survival rate as a function of age of onset of foraging, a. The

last term represents the death rate of foragers, whereM(a) is the mortality rate

as a function of a and mr is the ratio of the death rate of a stressed hive to the

death rate of a healthy hive. We now identify where thermoregulatory stress

acts in the model and construct our stress function.

2.1. Incorporating Stress

We aim to extend the model presented by Perry et al. by introducing a

function which models the effects of a breakdown in thermoregulation. We can

identify three components of the model which are affected by thermoregulatory

stress. Let us denote three stress functions S1, S2 and S3. We will specify each

of these functions in detail later.

Studies have shown that poor thermoregulation leads to inferior foragers with

lower cognitive ability [12, 15]. These inferior foragers may choose poorer pollen
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and nectar sources and not be able to forage as efficiently as their optimally

developed coutnerparts. Hence, we assume that the food collection term in (3)

is inversely proportional to the stress function S1,

1

S1
cTN(a)F, (7)

so that when the impact of thermoregulatory stress is high, the inferior foragers

will collect less food per forager.

For the hive to rear properly developed brood it must be maintained at

temperatures that require active thermoregulation. This creates a need to ac-

tively warm the hive and so hive bees will regulate the hive temperature by

metabolising sugars rapidly to generate heat with their flight muscles. This

leads to an increase in the caloric needs of the hive bees and higher food con-

sumption. Assuming that there is a linear relationship between the change in

hive temperature and the food consumption of hive bees, we multiply the food

consumption of hive bees by the stress function S2,

γAS2H. (8)

Finally, we assume that the foragers that have pupated under a regime of

poor thermoregulation have a reduced lifespan, and so we multiply their mor-

tality term by the stress function S3,

mrM(a)S3F. (9)

We have outlined the components of the Perry et al. model where we know

that thermoregulatory stress acts, and how we should model this. However, we

need to identify in detail how the effect of this stress should be modelled. In

particular, we will need two functions. One which models the effect of stress due

to the behaviour of the current hive bee population and one which is dependent

on historical hive bee populations.

2.2. Breakdown in Thermoregulation

As the number of hive bees within a hive diminishes, the efficacy of ther-

moregulation also diminishes. This causes an increase in the effects of stress
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on the hive. We assume that there are bounds on the maximum and minimum

effects of stress. We aim to model stress using an inverse sigmoid function of

the form,

H2 + ψβ2

H2 + β2
.

As identified earlier, the three areas of impact of thermoregulatory stress in

the model are food collection, food consumption and forager mortality. These

three areas are not all affected by stress in the same way. If we assume a

hive is experiencing a breakdown in thermoregulation then the current hive

bee population will be actively regulating temperature. The current forager

population may also have experienced some form of stunted development as

a result of a prior hive bee cohort. So the current hive bee population will

have an increased food consumption as a result of thermoregulating and the

current forager cohort may be sub-optimally developed and inefficient foragers.

Therefore, we seek to derive two different stress functions, one dependent on

the current hive bee population, and the other dependent on historical hive bee

populations.

We first look at how past thermoregulation history affects current adult bee

populations. In particular, to capture the effects of poor thermoregulation on

foragers, we need to have information about the hive bee population that was

present when the current foragers were capped brood.

Figure 2: We track the hive bee population at the time the current forager cohort were capped
brood. The youngest of the current foragers were brood entering pupation t − τy days ago,
and the oldest of the current foragers were brood entering pupation t− τo days ago.

Figure 2 shows this relationship. We will use τ exclusively to represent delays.
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Let τy and τo (respectively) denote the amount of time since the youngest and

oldest of the current foragers entered pupation. In order to represent the hive

bee population when foragers were capped brood we use distributed delays.

The first distribution in delay arises because the forager cohort contains bees

of different ages. The second distributed delay is generated by the duration of

pupation for each age group of current foragers.

To formulate the first of these distributed delays we look at the case of

the youngest and oldest foragers. The youngest foragers entered pupation τy

days ago, and so there were H(t − τy) hive bees present when they entered

pupation. Letting dp denote the duration of pupation, then there would have

been H(t − (τy − dp)) hive bees present when the youngest current foragers

finished pupation. So the average number of hive bees present for the entire

duration of pupation of the youngest foragers is,

1

dp

∫ τy

τy−dp

H(t− τ)dτ. (10)

Likewise, for the oldest current foragers, the average number of hive bees present

for the entire duration of pupation of the oldest current foragers is,

1

dp

∫ τo

τo−dp

H(t− τ)dt. (11)

The age of any forager can be written in terms of the age of the youngest

foragers. If we assume that the youngest foragers are aged y, then the age of

any other forager can be written as y + s, where 0 ≤ s ≤ τo − τy. Hence, a

forager aged y+s entered pupation τy+s days ago and the time that has elapsed

since this forager left pupation is τy + s − dp (since a = τy + s − dp). Hence,

for each age group of current foragers we have that the average number of hive

bees present during their entire pupation is,

1

dp

∫ τy+s

τy+s−dp

H(t− τ)dτ. (12)

Finally, the average of the average hive bee populations over all forager ages is,

Hτd :=
1

τo − τy

∫ τo−τy

0

1

dp

∫ τy+s

τy+s−dp

H(t− τ)dτds. (13)
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We use Hτd to track the average hive bee population present when the cur-

rent foragers were capped brood and use Hτd in the stress function. This func-

tion must have a maximum and a minimum value. The maximum corresponds

to Hτd = 0 and the minimum occurs as Hτd → ∞. For large numbers of hive

bees, where Hτd → ∞, the hive has a sufficient number of hive bees to ther-

moregulate adequately and there should be no effect from stress. In this scenario

the scaled components (of the model) should take their original values and so the

minimum value of the stress function should be 1. Conversely, Hτd → 0 implies

the hive has an insufficient number of hive bees to thermoregulate adequately

and so the maximum effect of stress is felt. Let us denote this maximum effect

of stress as ψ. We define the first stress function, which represents the impact

of poor thermoregulation on current foragers, as,

S(Hτd) :=
H2

τd
+ ψβ2

H2
τd

+ β2
, (14)

where β is the half saturation value, which is the number of hive bees required

to experience half of the maximum effect of stress.

Figure 3: Stress functions S(Hτd
) with ψ = 3 and β = 2000. The green dashed line indicates

the maximum effect of stress.

The second stress function can be derived directly from S(Hτd). We noted
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earlier that the current hive bee population will have an increased food con-

sumption rate as a result of actively thermoregulating, and so the second stress

function is dependent on the current hive bee population. By replacing Hτd and

β by H and ρ, respectively, in S(Hτd) we define the current time stress function,

Sc(H) :=
H2 + ψρ2

H2 + ρ2
, (15)

where ρ > β so that the curve saturates faster than S(Hτd). This assumption on

ρ is due to a hives’ reaction to a need for thermoregulation. Initially, in colder

temperatures, a hive will begin to experience a decrease in temperature and hive

bees will begin to thermoregulate and so consume higher amounts of food. It is

not till after the hive bees attempt to thermoregulate the hive that development

of capped brood will be hindered as a result of poor thermoregulation. So, Sc

saturates faster than S.

Now that we have constructed two stress functions S(Hτd) and Sc(H) we can

define the appropriate stress function for S1, S2 and S3. Since S1 and S3 model

the impact of poor thermoregulation on foragers, due to suboptimal development

as capped brood, we set S1 = S3 = S(Hτd). The function S2 models the

increased food consumption of hive bees due to the need for thermoregulation.

So we set S2 = Sc(H). For the remainder of this paper we continue with the

notation S(Hτd) and Sc(H).

2.3. Model with Thermoregulatory Stress

We have identified where in the Perry et al. model the effects of stress act

and developed a function, S(Hτd), which represents the amount of stress as a

result of poor thermoregulation during forager development. The three terms

where thermoregulatory stress acts are; food collection rate,

1

S(Hτd)
cTN(a)F, (16)

forager mortality rate,

mrM(a)S(Hτd)F, (17)
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and the rate of hive bee food consumption,

γASc(H)H. (18)

We incorporate these functions into the model of Perry et al. so that it

becomes:

df

dt
=

1

S(Hτd)
cTN(a)F − γA(F + Sc(H)H)− γBB, (19)

dB

dt
= L

f2

f2 + b2
H + F

H + F + ν
− φB, (20)

dH

dt
= φB(t− τ1)−R(H,F, f)H, (21)

dF

dt
= T (a)R(H,F, f)H −mrM(a)S(Hτd)F, (22)

where τ1 is the total time spent in pupation. We change the dependence of

egg survival to depend on the entire adult bee population. This choice is made

to avoid making approximations when not needed, and to maintain accuracy

of the model. The function N(a), T (a) and M(a) have been replaced with

smooth well defined functions. The functions are constructed so that they are

consistent with the behaviour of the previous definitions of these functions in

[6]. The need to change them so that they are smooth is so that there are no

errors in computations with blow up of solutions. The auxiliary functions are

defined as,

R(H,F, f) = αmin + αmax
b2

b2 + f2
− σ

F

F +H
, (23)

a =
1

R(H,F, f)
, (24)

N(a) = −0.01a2 + 0.36a+ 0.3, (25)

T (a) = 0.55 + 0.45 tanh(0.16(a− 6)), (26)

M(a) = 4e−0.2(a+14) + 0.14 + 0.01e0.4(a−30), (27)

with a ∈ [2, 30]. We approximate the integral Hτd with a Reimann sum in

numerical calculations,

Hτd ≈
1

τo − τy

τo−τy−
1

2∑
s= 1

2

1

dp

τy+s− 1

2∑
τ=τy+s−dp+

1

2

H(t− τ)∆τ∆s, (28)
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where ∆τ = ∆s = 1.

2.3.1. Model Parameters

Many of the model parameters are taken from existing literature, particularly

from [6]. We only need to determine parameter values for the new parameters

introduced in the stress functions, S(Hτd) and Sc(H).

The parameters which require values are τy, τo, β, ρ, ψ and dp. The delays

τy and τo will change as the age of onset of foraging changes. However, for ease

of calculation we will specify average values and use these in numerical solutions

to (19)–(22). It was shown in [6] that worker bees are most efficient at foraging

if they have reached 14 days of age as adults before starting to forage. We also

know worker bees spend 12 days as capped brood. These two values suggest

that approximately 26 days prior to t, the youngest foragers were brood entering

pupation. So we set τy = 26 and dp = 12. In order to determine τo we need to

identify the average lifespan of a forager. That is the time from when an adult

bee begins foraging till its death. This requires us to know the mortality of the

current forager cohort. However we see later that this value itself is dependent

on the delay, which creates a recursion. Hence, we approximate the average

lifespan of a forager. Using results in [5, 6, 17] we conclude that a typical

average mortality rate of a forager is 0.1 and so the average forager lifespan is

10 days. So we set τo = 36. Then

Hτd :=
1

10

∫ 10

0

1

12

∫ 14+s

26+s

H(t− τ)dτds (29)

Finally we require values for ψ, β and τ . Perry et al. [6] suggested that the

median rate of mortality for foragers in their model triples when the deleterious

effects of precocious onset of foraging is included. We assume that the impact

of sub-optimally developed bees is similar to that of precocious foraging and

so we set ψ = 3. To determine β we identify the required number of hive

bees to adequately thermoregulate the brood comb of a hive. Studies that

count the number of hives bees distributed over the brood comb show that a

ratio of one hive bee to approximately two capped brood cells is required for
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adequate thermoregulation [16]. Assuming that the average number of capped

brood in a healthy hive is 16000, then the hive requires more than 8000 hive

bees for adequate brood thermoregulation as hive bees cannot focus solely on

thermoregulation. So, at approximately 8000 hive bees the hive will begin to

experience thermoregulatory stress. We need a value of β so that the function

S(Hτ ) approaches 1, for large Hτ , slowly enough so that the effect of stress at

Hτ = 8000 is slightly discernable. Hence, we choose β = 2000 (Figure 3 shows

this behaviour). This choice of β leads us to setting ρ = 3000 in Sc in order

to maintain the qualitative structure of the curve in Figure 3 but with faster

saturation for Sc(H) than for S(Hτd).

We also note that while the numerics of our model presented later (particu-

larly Figure 16(a)) support the case that in a model hive foragers are recruited

at younger ages than 14 days, we have explicitly chosen to model S(Hτd) with

the minimum age as 14 due to the results presented in [6]. As can be seen in

Figure 4 it was observed that under normal conditions the proportion of foragers

which began foraging at less than 14 days old was lower than those that began

at above 14 days old. Whereas in the single-cohort colonies (SCC) the majority

of foragers began their foraging duties at 14 days or less. The stress function

we have constructed uses the AAOF of 14 days as a threshold for complete sat-

uration of our stress curve, in which case a hive will reach the maximum effect

of stress if the foragers are being recruited at 14 days old or less [6]. So if we

expect a crash shortly after the majority of the foraging force is less than 14

days old, we would expect the colony to be experiencing the maximum effect

of stress just before this and so we make the choice of 14 days as the minimum

AAOF when constructing S(Hτd). The stress function could be modelled more

accurately in the setting of an age-based model however for the purposes of a

compartmental model we feel that this simplification is sufficient to describe the

dynamics observed in experimental hives.
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Figure 4: Distribution of age at onset of foraging for (E) single-cohort colonies (SCC) and
(F) normal-worker demography colonies (NDC). Single-cohort colonies are colonies where,
initially, all worker bees were 1 day old adults. Normal-worker demography colonies began
with the usual distribution of ages amongst worker adult bees. It was observed that foraging
performance for both SCC and NDC colonies varied with AAOF however more adults became
foragers at less than 14 days in the single-cohort colonies as opposed to the NDC [6].
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Parameter Meaning (Units) Value
L Queen’s laying rate (eggs/day) 2000

ν

Number of workers required in order
for the number of new hive bees

entering the hive from emersion to
be at half the rate of L (bees)

27000

αmax,
αmin

Rate at which hive bees become
foragers (bees/day)

0.25

σ

Rate at which foragers revert to hive
bees due to social inhibition

(bees/day)
0.75

ψ

Maximum effect on the death term
from the effects of thermoregulatory

stress (dimensionless)
2

β

Number of hive bees needed for the
hive to experience half of the

maximum effects of
thermoregulatory stress (bees)

2000

mr

Ratio of forager mortality of an
unhealthy hive to a healthy hive

(dimensionless)
0.5-2

b
Half the amount of food needed for

optimal egg survival (grams)
500

cT
Amount of food collected per forager

per trip (grams)
0.033

φ
Rate at which brood enter pupation

(bees/day)
1/9

γA, γB
Food consumption per adult/brood

respectively (grams/bee)
0.007,
0.018

τ1
Time required for capped brood to

emerge from pupation (days)
12

Table 1: Parameter definitions and associated values for (19)–(22).

3. Analysis and Results

To identify the existence of an Allee effect we must show the existence of a

region of bistability in the system (19)–(22). The following analysis will show

the existence of an Allee effect as well as showing that the existence is due to

the inclusion of thermoregulatory stress in the model.

The system (19)–(22), is a set of closely coupled and nonlinear delay equa-

tions, and so analysis is difficult. In order to determine the qualitative behaviour
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of the system we generate a numerical bifurcation diagram (Figure 5). This di-

agram gives an indication of the stable equilibria for varying mr. By running

simulations up to t = 6000 we are able to capture, numerically, the long time

behaviour of the system. Figure 5 presents the bifurcation as the final value

of the simulations, at t = 6000, when the system is assumed to have reached

steady state, for different values of mr.

Figure 5: Numerical bifurcation diagram of the age-dependent system (19)–(22) with respect
to parameter mr (ratio of forager mortality of an unhealthy hive to a healthy hive). All curves
shown are stable equilibria. The black arrow indicates limit points in B, H and F .

We first analyse a reduced system by removing all terms in the system de-

pendent on a. We then show that the analysis of this reduced system is a good

approximation to the age-dependent system (19)–(22).
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3.1. Analysis

Removing all age-dependent terms from (19)–(22) we obtain the following

age-independent system,

df

dt
=

1

S(Hτd)
cF − γA(F + Sc(H)H)− γBB, (30)

dB

dt
= L

f2

f2 + b2
H + F

H + F + ν
− φB, (31)

dH

dt
= φB(t− τ1)−R(H,F, f)H, (32)

dF

dt
= R(H,F, f)H −mS(Hτd)F. (33)

As well as removing the age-dependent functions we also change cT to c and

mr to m as the former of both terms are ratios to scale food collection and

mortality when expressed as a function of age. Here c is the amount of food

collected per forager per day, and m is the forager mortality. Setting the LHS

of equation (30) to zero gives,

1

S(H)
cF − γA(F + Sc(H)H)− γBB = 0. (34)

Rearranging (34) for F gives us an equation describing a surface,illustrated in

Figure 6. This figure shows the values of B, H and F which satisfy (34) and

hence give df
dt

= 0. A trivial equilibrium solution occurs when B∗ = H∗ = F ∗ =

0. We can show, numerically, that in fact the only equilibrium of (30)–(33),

which satisfies (34), is B∗ = H∗ = F ∗ = 0.
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Figure 6: Surface in R
3 which satisfies (34) for the state variables B (brood), H (hive bees)

and F (foragers).

We let the LHS of (31) and (32) be zero and rearrange for f . We denote by

g(B,H, F ) the function derived from rearranging (31) and k(B,H, F ) the func-

tion derived from rearranging (32) for f . We can show, numerically, that for each

non-zero (in the sense that each element is non-zero) point (Bs, Hs, Fs), where

·s denotes a point on the surface (34), the value of g(B,H, F ) 6= k(B,H,F ) for

any (Bs, Hs, Fs). Hence, the only coordinate of (34) that gives an equilibrium

solution for (30)–(33) is (Bs, Hs, Fs) = (0, 0, 0). However, f need not be zero.

From (30)–(33), we see that for any non-zero f , all four equations will have zero

as their RHS (as long as B = H = F = 0). This is consistent with the numerical

bifurcation diagram, Figure 5, for the region to the right of limit point indicated

in the diagram.

To determine what occurs in the system to the left of these limit points

(indicated by the black arrow in Figure 5) we look at the limiting case in f . As

suggested by the numerical bifurcation diagram, stored food tends to infinity as

we approach the limit points from the right. This limiting approach was also

used by Khoury et al. [17] to show stability of equilibria in their system. We

take the limit f → ∞ in equations (31)–(33). This limiting case reduces the
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dimension of the system as equation (30) becomes decoupled from the system.

It also reduces the complexity in the system as some terms simplify. In the limit

as f → ∞, the system becomes,

dB

dt
= L

H + F

H + F + ν
− φB, (35)

dH

dt
= φBτ1 −R(H,F )H, , (36)

dF

dt
= R(H,F )H −mS(Hτd)F, , (37)

where R(H,F ) = αmin − σ F
F+H

. Equations (35)–(37) have up to three equilib-

ria which can be found numerically. We use the infinitesimal generator numer-

ical method [18] to find the largest eigenvalue of each steady state of system

(35)–(37) for varying m. Figure 7 shows the largest eigenvalue (all of which

are real) for each equilibrium of the system with varying forager mortality in

the range m ∈ [0.1, 0.22]. Figure 7 shows the existence of three equilibria for

0.12 / m / 0.2. For m = 0.1 there is only one equilibrium. As m increases in

the diagram, we see the creation of two additional equilibria via a saddle node

bifurcation. One of these new equilibria eventually collides with the first equi-

librium via another saddle node bifurcation at m ≈ 0.205 and we are left with

one equilibrium once more. Figure 7 shows the value of the largest eigenvalue

for each equilibrium, λmax.
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Figure 7: Largest eigenvalue of the infinitesimal generator for equilibria of system (35)–(37) as
a function of m (forager mortality). When the largest eigenvalue is positive, the correspond-
ing equilibrium is unstable, and when the largest eigenvalue is negative the corresponding
equilibrium is stable. There are three equilibria when 0.12 / m / 0.2.

In order to determine stability of the origin we first remove the singularity

generated by the F
F+H

term in R(H,F ). To do this we transform (35)–(37)

to polar coordinates and use the infinitesimal generator approach to find the

largest eigenvalue for the system in these coordinates. This calculation is laid

out in detail in [20]. Figure 8 shows that the steady state at the origin changes

stability at m ≈ 0.12.
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Figure 8: Largest eigenvalues, λ1 and λ2, of the infinitesimal generator for the origin of system
(35)–(37) as a function of m (forager mortality).

We used the value of the largest eigenvalue of non-zero equilibria and the

origin, as well as solving equations (35)–(37) numerically, to generate bifurcation

diagrams for each variable. The bifurcation diagrams for each variable display

the same qualitative behaviour so we choose H∗ as the measure of the solution.

Figure 9 shows this diagram. There is a region of bistability between m ≈ 0.118

and m ≈ 0.205. Within this region the origin is a stable equilibrium and there

is a second positive stable equilibrium. These are both separated by a third

unstable equilibrium. Figure 9 shows that for any fixed m within this region

there is an Allee effect and hence a sensitivity to initial conditions.
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Figure 9: Bifurcation diagram for H∗, with parameter values as in Table 1, as a function of
m (forager mortality). Dashed lines indicate unstable branches and solid lines indicate stable
branches.

Figure 10: Changing bifurcation curve (as a function of m – forager mortality) for varying
values of ψ (maximum effect of thermoregulatory stress).

We can go further and show evidence that the source of this Allee effect in

the age-independent model is due to the inclusion of thermoregulatory stress.

By removing all age-dependent terms from (19)–(22) we recover the 4D model

formulated by Khoury et al. [5], with the addition of stress due to poor ther-
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moregulation. We have also made brood survival a function of H + F rather

than H only as in [5]. Using the three population model (35)–(37) in the limit

f → ∞, if we vary the values of ψ we recover the bifurcation diagram presented

in [17] which corresponds to ψ = 1. For ψ = 1 this gives S(Hτd) = 1 = Sc(H)

and so reflects that there is no effect on the hive from any thermoregulatory

stress. In Figure 10 we see that at ψ = 1 the bifurcation in H∗ is qualitatively

similar to that of the two population model presented in [17], with a transcritical

bifurcation at the origin for m ≈ 0.35. When we set ψ > 1 the bifurcation curve

has two folds and produces the bifurcation curve we see in Figure 9. This allows

us to conclude that the source of the Allee effect in (30)–(33) is the inclusion of

thermoregulatory stress.

Finally, to determine how well the age-independent system (30)–(33) approx-

imates the qualitative behaviours of the age-dependent system (19)–(22) we take

the steady state values from Figure 5 and take the difference of each popula-

tions steady state values with the respective populations steady state values in

(30)–(33). This difference is then normalised by dividing by the population size

for each cohort in an average hive, for this we choose 15000 for brood, 45000 for

hive bees and 15000 for foragers. Figure 11 shows that the normalised difference

between the steady states of the two systems is always less that 10% and so we

assume that the age-independent system (30)–(33) is a good approximation to

the qualitative behaviour of the age-dependent system (19)–(22).
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Figure 11: Normalised difference of approximation for bifurcation (absolute value of the dif-
ference of the numerical steady state values divided by the appropriate population value)
diagrams between system (19)–(22) and system (30)–(33) as functions of mr (ratio of forager
mortality of an unhealthy hive to a healthy hive) and m (forager mortality), respectively. We
take the range [0.1, 0.22] for m and [0.7, 1.29] for mr. We use the values of 15000 brood, 45000
hive bees and 15000 foragers to normalise the error.

3.2. Simulations

The analysis of the age-independent system (30)–(33) suggests that the age-

dependent system will display a sensitivity to initial conditions via an Allee ef-

fect. We can show the existence of this Allee effect by solving the age-dependent

system numerically and exploring the way that outcomes of the model depend on

the initial hive population. Figure 12 shows that for two different initial sets of

hive populations, with fixed mr, the hive either survives or collapses depending

on the initial condition. This confirms the existence of an Allee effect.

Another outcome of the analysis of system (30)–(33) was that the final pop-

ulations in the hive is independent on the amount of food stored in the hive. We

use simulations to provide evidence of the independence of the final state of the

system from the amount of stored food. In Figure 13 we manipulate the amount

of food at t = 150 days by halving the amount of food in the surviving hive and

doubling the amount of food in the collapsing hive from simulations in Figure

12. Figure 13 shows that this has no effect on the outcome for either hive. The

26



surviving hive continues to prosper and the collapsing hive ultimately collapses.

This also shows that the collapse is not driven by stored food availability.

(a) (b)

Figure 12: Numerical solutions for hive populations as a function of time that demon-
strates an Allee effect for initial condition (a) (f0, B0, H0, F0) = (1000, 0, 16000, 8000) and
(b) (f0, B0, H0, F0) = (1000, 0, 10000, 5000). In both simulations mr = 1.2 and parameter
values used are as in Table 1.

(a) (b)

Figure 13: Numerical solutions for initial condition (a) (f0, B0, H0, F0) =
(1000, 0, 16000, 8000) and (b) (f0, B0, H0, F0) = (1000, 0, 10000, 5000) with mr = 1.2
and parameter values as in Table 1 in both simulations. The amount of food is halved and
doubled in (a) and (b) respectively. The variation in the amount of food in each simulation
does not alter the outcome of the hive.

The choice in the amount of change in stored food for simulations in Figure

13 is arbitrary. We chose an amount which would be significant in a real world

setting. There is an upper limit to the amount of food that can be removed from

a hive, in our simulations, for which the outcome of the hive does not change.

Comparing the simulations in Figure 13(a) and Figure 14(a), the ratio of food

removed to stored food prior to removal is larger in the latter yet there is no
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change in the qualitative outcome of the hive. So this upper limit on the amount

of food that can be removed is so large that we can assume that it is irrelevant

for practical purposes. Likewise, by choosing an arbitrarily large increase in the

amount of food (Figure 14(b)) the hive will continue to collapse. Therefore, we

can assume that in a real world scenario increasing or decreasing the amount of

food for a collapsing or sustained hive, respectively, will have no outcome on the

qualitative health of the hive long term if thermoregulatory stress is present.

(a) (b)

Figure 14: Numerical solutions for initial condition (a) (f0, B0, H0, F0) =
(1000, 0, 16000, 8000) and (b) (f0, B0, H0, F0) = (1000, 0, 10000, 5000) with mr = 1.2
and parameter values as in Table 1 in both simulations. The amount of food is reduced by
95% in (a) and increased by 200 times its amount in (b).

The model with thermoregulatory stress predicts that the inclusion of stress

generates an Allee effect. We also see that while manipulating the amount of

stored food in a hive does not have any major impact on the qualitative health

of the hive, it does extend the time to collapse in an already collapsing hive.

4. Discussion

We have developed a model that specifically represents the stress due to a

breakdown in thermoregulation. This new model is based on the model in [6]

but is focused on the effects of temperature stress. By analysing the equations

we showed that in this model thermoregulatory stress produces an Allee effect

(Figure 10). Two saddle-node bifurcations are created as the model changes

from the case where there is no stress (ψ = 1) to where thermoregulatory stress
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acts on the hive (ψ > 1). This Allee effect can be observed in simulations (Figure

12) where there are different outcomes for two different initial conditions applied

to the same model with the same parameter set.

The use of age in (19)–(22) is an approximation. We did not use an age struc-

tured model as the aim of this work was to show the existence of an Allee effect

as a result of a breakdown in the thermoregulatory mechanism of a hive. As was

shown in the analysis earlier, we already had many difficulties in analysing (19)–

(22) due to the inclusion of our delays. The inclusion of more state variables in

an age structured model would present more difficulty in analysis. It must be

stated that an age structured model would present more accurate simulations

than what is shown here, however, due to the nature of equilibria the quali-

tative behaviour of (19)–22) can be extrapolated to that of an age structured

model by assigning each population variable as the average of the respective

age structured model’s variables. That is, for each age group of foragers in an

age structured model, setting F in (19)–(22) to be the average of all forager

age groups, we would expect that the steady state of F would correspond to

the average steady state value of all forager age groups in an age structured

model, and hence display similar qualitative behaviour as what was shown in

this paper.

There are several models which include stress in a hive [8, 7]. These models

incorporate stress by using per capita death rates or simply adding a death term

to a population equation. Honey bees have been well studied and documented

for many years. This allows us to explicitly model sources of stress. A break-

down in thermoregulation occurs as a result of low hive bee population, and is

known to negatively impact hive health and dynamics. Poor thermoregulation

of capped brood leads to under-developed workers which are not as capable at

foraging as their optimally developed counterparts [12, 14, 15]. For hive bees to

be able to keep the hive at optimal temperature, particularly in cold weather,

they require more food as the task increases the bees’ energy requirements and

outputs. To model these biological processes we created a model which includes

the effects of poor thermoregulation on forager mortality and on food stores.
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This is achieved by identifying how past behaviour of hive bees affects the cur-

rent population of foragers in the hive and, in particular, how the hive’s ability

to thermoregulate in the past, when the current forager were capped brood, de-

termines the efficacy of the current foragers. We also modelled the current time

food consumption of hive bees as they increase their metabolism in order to

regulate the internal temperature of the hive. The inclusion of models for these

specific stresses produces a faster decline in populations than for the model with

no thermoregulatory stress.

By modelling stress explicitly in (19)–(22), we can make connections be-

tween simulations of model hives and data recorded from real hives experienc-

ing thermoregulatory stress. This provides an immediate and clear advantage

over models that include stress by adding generic terms, such as those in [7, 8].

We also observe that modelling stress explicity in our model produces an Allee

effect similar to that seen in [8]. This is evident in Figure 15. The comparison

of the saddle-node bifurcations shows that the qualitative behaviour observed

is similar between both models. In [8] however, the authors show this via a

generic stress function as opposed to our thermoregulatory stress function. We

can potentially use our model, not only to determine how a hive currently expe-

riencing thermoregulatory stress may behave in the future, but also to examine

what actions can be taken to rescue a hive, that is failing due to a breakdown

in thermoregulation. The explicit inclusion of stress means the model can be

analysed to examine how different castes in a hive are affected by the stress and

how the stress may be reduced or amplified by bees’ behaviour.
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(a)

(b)

Figure 15: Comparison of saddle-node bifurcations found in (a) [8] and (b) from the model
(35)–(37). We see the same structure in bifurcations however one is derived by the inclusion
of an generic stress function and that of (35)–(37) is derived from a thermoregulatory stress
function derived from observed behaviours of honey bees.

The analysis of (19)–(22) showed that the model hives’ dependence on food

is less crucial than the effect of population demography. Figure 6 shows, nu-

merically, that the only steady state of the system is when B∗ = H∗ = F ∗ = 0.

However, when f → ∞ then B, H and F all reach a steady state value. This

suggests a multiple time scale dynamic [20] and that food limitation does not

drive population numbers, at least in this model. This independence of survival

from food is observed, for example, in rental hives used in pollinating crops

[20, 24]. These small hives (1.4-2.7Kg [24]) which are placed in multiple loca-

tions through plantations to pollinate crops suffer significant losses. Even when

apiarists supply large amounts of pollen and sucrose solutions to the hives be-

fore they are deployed, the hive still suffers significant losses of their adult bee

populations albeit not as severe as without the additional pollen and sucrose

solution. This is similar to the final outcome of simulations in Figure 12(b) and

13(b) where initial colonies are both the same, and the addition of food 150 days

into the simulations in Figure 13(b) merely serves to delay the same outcome

of hive loss.
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(a) (b)

Figure 16: Steady state value of (a) age at onset of foraging and (b) thermoregulatory stress
for varying mr (ratio of forager mortality of an unhealthy hive to a healthy hive). Initial
condition uses is (f0, B0, H0, F0) = (1000, 0, 16000, 8000) with parameter values as in Table
1. In both plots, simulations were allowed to run for 600 days.

The lack of food availability drives the rapid decline in hive populations in

the models of [5, 6]. The explicit inclusion of stress in our model shows that

food is no longer the major driver of collapse, although, we see much of the same

symptoms associated with collapse in both models. The rapid decline in age at

onset of foraging (AAOF) in [6] is also observed in our results. Figure 16(a)

shows the change in AAOF with varying mr. We see, as expected, that the

decline in AAOF in Figure 16(a) occurs for the same value of mr as the increase

in the amount of stress seen in Figure 16(b). In [6] the authors examined the

median AAOF as a function of mr. The authors show that there is a significant

crash in the median AAOF for mr ≈ 1.9 where AAOF rapidly declines from

approximately 9 days to the minimum value of 2 days. Equations (19)–(22)

include the effects of thermoregulatory stress where we know this acts in a hive.

By examining AAOF in (19)–(22) we notice a sharp decline at mr ≈ 1.25 where

AAOF rapidly declines from 14 days to 6 days. While the system presented

in this paper exhibits a similar declining behaviour as that in [6] the range of

AAOF where the decline occurs is slightly greater here than that in [6] and the

decline of AAOF in our model occurs much earlier.

The model presented in this paper is a first step in explicitly modelling stres-

sors on a honey bee hive. We showed that the inclusion of thermoregulatory

stress produces an Allee effect. The model also predicts that ultimately the
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demography of a hive outweighs other factors in a hives’ ability to survive, al-

though there are other factors which may temporally prolong a hive’s survival,

including food availability inside the hive. The idea of this paper can be ex-

tended by including other known stressors which reduce the efficacy of bees. If

worker bees cannot perform their tasks well, the hive as a whole suffers which

eventually leads to significant losses, if not a collapse. The inclusion of ther-

moregulatory stress, explicitly, gives us new insight into what may be happening

inside the hives themselves. The explicit inclusion of thermoregulation allows

us to identify where and why collapses occur in model hives which gives direct

insight into what may occur in real hives.
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