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a b s t r a c t 

Accumulating experimental and clinical evidence suggest that the immune response to cancer is not ex- 

clusively anti -tumor. Indeed, the pro -tumor roles of the immune system — as suppliers of growth and 

pro-angiogenic factors or defenses against cytotoxic immune attacks, for example — have been long 

appreciated, but relatively few theoretical works have considered their effects. Inspired by the recently 

proposed “immune-mediated” theory of metastasis, we develop a mathematical model for tumor-immune 

interactions at two anatomically distant sites, which includes both anti - and pro -tumor immune effects, 

and the experimentally observed tumor-induced phenotypic plasticity of immune cells (tumor “educa- 

tion” of the immune cells). Upon confrontation of our model to experimental data, we use it to evaluate 

the implications of the immune-mediated theory of metastasis. We find that tumor education of immune 

cells may explain the relatively poor performance of immunotherapies, and that many metastatic phe- 

nomena, including metastatic blow-up, dormancy, and metastasis to sites of injury, can be explained by 

the immune-mediated theory of metastasis. Our results suggest that further work is warranted to fully 

elucidate the pro-tumor effects of the immune system in metastatic cancer. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Although metastasis is implicated in over 90% of all cancer

elated deaths ( Gupta and Massague, 2006; Liu and Cao, 2016;

alastyan and Weinberg, 2011 ), a full understanding of the pro-

ess remains elusive. Accumulating evidence, including the obser-

ation that patients who received peritoneovenous shunts that in-

dvertently released large numbers of cancer cells directly into

he patients’ blood stream saw no increased rate of metasta-

is ( Tarin et al., 1984 ), and the immune-mediated preparation

f the pre-metastatic niche (PMN) by Kaplan and collaborators

 Kaplan et al., 2005 ), has brought into question the prevailing view

f metastasis as a passive, random process. Of particular interest

s the recent hypothesis that the immune system — in addition

o its well-known anti -tumor role — plays an active pro -tumor

ole in metastatic disease ( Cohen et al., 2015; de Mingo Pulido

nd Ruffell, 2016; Shahriyari, 2016 ). Well supported by experimen-

al and clinical observations, this hypothesis and its consequences

as yet to be fully investigated. The goal of the present work is

o begin this investigation through the development and analy-

is of a mathematical model for the immune-mediated theory of

etastatic cancer. In the following section, we briefly highlight
∗ Corresponding author. 
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he biological evidence for this theory to justify our mathematical

odel, which is introduced in Section 2 . We also include a short

iscussion of previous mathematical models of metastasis in order

o contrast them against our approach. 

.1. The immune-mediated theory of metastasis 

A link between the immune system and cancer has been

oted for a long time ( Balkwill and Coussens, 2004; Walter et al.,

011 ), with investigators referring to tumors as “wounds that do

ot heal” ( Dvorak, 1986; 2015 ) or suggesting that they are the

esult of an uncontrolled healing process ( Meng et al., 2012 ).

ecently, “avoiding immune destruction” and “tumor-promoting 

nflammation” were identified as an emerging hallmark and

n enabling characteristic of cancer, respectively ( Hanahan and

einberg, 2011 ). More specifically, a number of authors have syn-

hesized the accumulating evidence implicating the immune sys-

em in metastasis to formulate the immune-mediated theory of

etastasis ( Cohen et al., 2015; Shahriyari, 2016 ). In this section

e present a brief summary of the relevant evidence to support

his theory organized using the “metastatic cascade” framework.

ithin the well-used metastatic cascade framework, metastasis is

een as a sequence of biological processes beginning with the de-

elopment, growth, and local invasion of a primary tumor, and fol-

owed by the preparation of a pre-metastatic niche, entrance into,

ravel through, and exit from the vascular system, and conclud-

ng with the growth and development of a secondary, metastatic

https://doi.org/10.1016/j.jtbi.2019.109999
http://www.ScienceDirect.com
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Fig. 1. Cartoon model of the immune-mediated model of metastasis. Based on figure from Chaffer and Weinberg (2011) . 
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tumor. The metastatic cascade is depicted in Fig. 1 , with special at-

tention paid to the immune effects at each step. We now highlight

the specific immune cells involved at each step of the metastatic

cascade and outline their roles. 

Step (1): Primary tumor growth and local invasion: Be-

fore cancer can spread throughout the body, an initial primary

tumor must first develop (see Fig. 1 , (1)). Immune involve-

ment in this stage of metastasis has long been acknowledged

( Dvorak, 1986; Hanahan and Weinberg, 2011 ). A large amount

of research suggests that the role of the immune system in

tumor progression is hardly straightforward ( de Mingo Pulido

and Ruffell, 2016; Erdman and Poutahidis, 2010 ). Indeed, while

the anti -tumor roles of the immune system are well known

— the cytotoxic effects of natural killer (NK) cells, “classi-

cally activated” M1 macrophages, and CD8 + T cells, for exam-

ple ( Joyce and Pollard, 2009 ) — many immune cells have also

been shown to play pro -tumor roles in primary tumor develop-

ment ( de Mingo Pulido and Ruffell, 2016; Joyce and Pollard, 2009 ).

For example, regulatory T cells (T regs ), T helper type 2 (Th 2 ) cells,

neutrophils, and “alternatively” activated (M2) macrophages can

all promote growth through inhibition of cytotoxic immune re-

sponses ( Joyce and Pollard, 2009 ) or promotion of angiogenesis

( de Mingo Pulido and Ruffell, 2016 ). For extensive reviews of the

specific roles played by different immune cells, please see the

reviews by de Mingo Pulido and Ruffell (2016) and Joyce and

Pollard (2009) . 

In addition to the contradictory anti- and pro-tumor roles

played by immune cells, there is evidence suggesting that tu-

mors can “convert” or “educate” anti -tumor cytotoxic (CT) im-

mune cells into pro -tumor immune cells ( Oleinika et al., 2013 ).

Shahriyari (2016) has proposed that, at sites of chronic inflamma-

tion, the local immune cells become adapted to the wound heal-

ing process, resulting in increased proliferative signaling and de-

creased cytotoxic activity. Liu et al. (2007) have demonstrated that

tumor-derived transforming growth factor (TGF) β , derived from

the murine prostate tumor TRAMP-C2 and renal cell carcinoma

RENCA, can induce the transition of anti -tumor CD4 + CD25 − T cells

into pro -tumor CD4 + CD25 + T regs . Such results allow for the no-

tion of “tumor educated” (TE) immune cells ( Liu and Cao, 2016 ); a
erm that will be used throughout this paper. This experimentally-

alidated notion of phenotypic plasticity amongst sub popula-

ions of immune cells is not entirely new, and has been consid-

red for some time in the context of macrophages, with a con-

inuum between anti -tumor M1 macrophages and pro -tumor M2

acrophages being proposed ( Balkwill and Coussens, 2004; den

reems and Eftimie, 2016 ). 

Step (2): Preparation of the pre-metastatic niche: Often,

etastatic dissemination is viewed as a passive process in which

ancer cells shed from the primary tumor establish metastatic

umors at sites “downstream” of the primary tumor, in loca-

ions that the circulating tumor cells (CTCs) become stuck in

mall vessels ( Chaffer et al., 2011; Hiratsuka et al., 2006 ). It has

een shown, however, that this model of metastasis can only ac-

ount for approximately 66% of all observed patterns of metastasis

 Chambers et al., 2002 ), suggesting that there are additional fac-

ors to consider. In an update of Paget’s classic “seed and soil” hy-

othesis ( Paget, 1989 ), the concept of a pre-metastatic niche (PMN)

as been developed by several investigators. While the precise def-

nition of a PMN is still being debated ( Qian and Pollard, 2010 ),

he key concept is that the PMN is a supportive setting in which

etastatic tumors can more efficiently establish themselves, and

hich may ( Dos Anjos Pultz et al., 2017 ) or may not be influenced

y the primary tumor itself. 

Of particular interest is the implication of the immune system

n the development of the PMN. Numerous cells, proteins, and fac-

ors have been implicated in the preparation of the PMN, ranging

rom (primary tumor associated) vascular endothelial growth fac-

or (VEGF)-A, tumor necrosis factor (TNF) α and TGF β ( Liu and

ao, 2016 ), to immuno-attractant S100 proteins ( Joyce and Pollard,

009; Kitamura et al., 2015; Qian and Pollard, 2010 ) and matrix-

egrading MMPs ( Kitamura et al., 2015 ), to bone marrow de-

ived cells (BMDCs) ( Coughlin and Murray, 2010; Joyce and Pollard,

0 09; Kaplan et al., 20 05 ) and platelets ( Joyce and Pollard, 2009;

hahriyari, 2016 ) (which can produce their own pro -tumor factors).

he work of Kaplan and collaborators ( Kaplan et al., 2005 ) showed

hat, not only did BMDCs arrive at the site of future metastasis

rior to the arrival of any cancer cells, but once cancer cells did ar-

ive, they localized to regions of high BMDC density, suggesting a
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upportive role for immune cells in metastatic establishment. Fur-

her implication of the immune system in metastatic establishment

omes from Shahriyari (2016) , who has suggested that wound

ealing sites, which are naturally populated with immune cells

roducing growth promoting and CT immune inhibiting factors,

ay act as a metastasis-supporting PMN, thereby providing a pos-

ible explanation for observations of metastasis to sites of injury

 Kumar and Manjunatha, 2013 ). 

Taken together, such results suggest a supportive role for the

mmune system in metastatic establishment, wherein the immune

ells may aid in successful establishment of newly arrived can-

er cell(s) by supplying growth factors (ex: platelets secreting pro-

rowth and angiogenic factors such as stromal-derived factor (SDF)

 de Mingo Pulido and Ruffell, 2016 ) and protection from CT im-

une cells (ex: T regs or adapted immune cells Shahriyari, 2016 )

 Fig. 1 (2)). 

Step (3): Intravasation: In order to establish a secondary tu-

or at an anatomically distant location from the primary tumor,

ancer cells must travel from the primary site to the secondary

ite. Although cancer cells can be found in lymph nodes, it is be-

ieved that the major method of distant dissemination is through

he vascular system rather than the lymphatic system ( Chambers

t al., 2002; Joyce and Pollard, 2009 ). In order to gain access to

he vascular system, cancer cells, or small clusters of cancer cells

 Friedl and Mayor, 2017 ), must leave the parenchyma and enter

 blood vessel in a process called intravasation . While the pre-

ise mechanism underlying intravasation remains obscure, tumor-

ssociated macrophages (TAMs) have been implicated in the pro-

ess. In fact, specific studies have reported that intravasation oc-

urred only where perivascular TAMs were located (see Joyce and

ollard, 2009; Liu and Cao, 2016 and references therein) (see

ig. 1 (3)). 

Step (4): Circulation: Upon entrance into the blood vessel, the

ancer cells are subject to a litany of new dangers, including shear

orces and immune defenses (see Fig. 1 (4)). It is believed that

latelets play a critical role in the protection of the cancer cell

lusters while in circulation. Not only can they protect from the

ffects of shear force by forming clumps with the cancer cells,

hey may also act as shields against cytotoxic immune attack from

K cells ( Joyce and Pollard, 2009; Kitamura et al., 2015 ). While

he precise role of platelets is still debated ( Coupland et al., 2012;

hahriyari, 2016 ), it has been shown that treatments with anti-

oagulant and non-steroidal anti-inflammatory drugs (NSAIDs) can

ignificantly decrease the rates of metastasis ( Joyce and Pollard,

009; Marx, 2004 ). 

Step (5): Extravasation: It has been estimated that a primary

umor can shed tens of thousands of cells into the vasculature

very day ( Weiss, 1990 ). Experimental models of metastasis sug-

est that upwards of 80% of all those cells shed will successfully

xit from the blood vessel (extravasate) at a distant secondary

ite ( Cameron, 20 0 0; Luzzi, 1998 ). As is the case with intrava-

ation, macrophages have been implicated in the reverse process

f extravasation ( Kitamura et al., 2015; Liu and Cao, 2016; Qian

nd Pollard, 2010 ). In addition to the survival and growth fac-

ors (ex: TGF β , CCL2, VEGF-A) supplied by metastasis-associated

acrophages (MAMs) as the tumor cells work to exit the ves-

el and enter the surrounding parenchyma (see Fig. 1 (5)), tumor-

AM contact has also been shown to aid in cancer cell movement

hrough the vessel wall. Platelets have also been shown to play a

ro-tumor role in this setting ( Kitamura et al., 2015; Shahriyari,

016 ), however they are not necessary for successful extravasation

 Coupland et al., 2012 ). Another immune cell type that has been

mplicated in metastatic disease are neutrophils ( Demers et al.,

012; Park et al., 2016 ) through the use of neutrophil extracellu-

ar traps (NETs) which can trap circulating tumor cells at a dis-

ant, hospitable site, or even increase local vascular permeability,
llowing for easier extravasation of cancer cells into the surround-

ng parenchyma. 

Step (6): Metastatic establishment: Even though a large ma-

ority of cells shed from the primary tumor will successfully ex-

ravasate at a secondary site, less than 0.01% of them will suc-

essfully colonize a macroscopic metastatic tumor ( Cameron, 20 0 0;

uzzi, 1998 ) (see Fig. 1 (6)). The experimental results of Cameron

nd colleagues ( Cameron, 20 0 0; Luzzi, 1998 ) suggest that this pre-

ipitous drop in survival occurs after the cells transition from qui-

scent to proliferative states, whereby they become more vulner-

ble to local defenses. While this transition can occur relatively

oon after initial metastatic seeding of the secondary site, it is of-

en the case that the newly arrived cancer cells lay dormant for

n extended period of time before entering a proliferative phase

 Hanahan and Weinberg, 2011 ). A possible explanation for the low

fficiency of establishment observed may be found in an effec-

ive CT immune response ( Eikenberry et al., 2009 ). However, the

mmune system plays contradictory roles in this step of metasta-

is, with a pro -tumor response mediated by BMDCs ( Hanahan and

einberg, 2011; Joyce and Pollard, 2009 ) or MAMs ( Kitamura et al.,

015 ), which provide survival and proliferation signals, or inflam-

atory stromal cells ( Joyce and Pollard, 2009 ), which provide pro-

ection from the cytotoxic effects of NK cells. Additionally, immune

reparation of the PMN (see previous section) may also support

etastatic development, and similar pro -tumor immune effects on

rowth and development may be common between primary and

econdary sites. 

.2. Previous mathematical models of metastasis 

Metastasis, with its multi-step complexity and apparent

tochasticity, is relatively difficult to study experimentally. Conse-

uently, there is a great deal of uncertainty concerning the under-

ying dynamics of the process. Theoretical and mathematical mod-

ls of the process are therefore of significant interest as they allow

or detailed theoretical investigations of the underlying processes

n order to test hypotheses and guide future biological research.

n this section, we present a brief summary of the most relevant

athematical descriptions of metastasis that have been previously

nvestigated. 

Focusing on the supposed stochasticity of the process, many

uthors have developed stochastic models for cancer metastasis.

rom a stochastic modeling framework, Liotta et al. (1977) derived

n expression for the probability of being metastasis-free as a func-

ion of time from primary tumor implantation. The Michor lab

as spent significant effort investigating stochastic models for the

mergence of the metastatic phenotype ( Haeno and Michor, 2010;

ichor et al., 2006 ). The natural history of cancer — that is, de-

ermining dates of disease initiation, first metastasis inception, etc.

rom clinical data — is the focus of the stochastic models emerg-

ng from the Hanin group ( Hanin et al., 2006; Hanin and Rose,

018 ). Recently, Frei et al. (2019) introduced a spatial model for

ancer metastasis that takes the form of a branching stochastic

rocess with settlement, providing one of the first models which

xplicitly accounts for travel between metastatic sites. 

Based on their ease of analysis in comparison to stochastic

odels, many investigators have chosen to analyze deterministic

odels of metastasis. Saidel et al. (1976) introduced one of the

arliest models of metastasis in the 1970s, using a simple com-

artmental ordinary differential equation (ODE) model that took

nto account the different steps in the metastatic cascade. More re-

ently, Iwata et al. (20 0 0) introduced a partial differential equation

PDE) model describing the colony size distribution of metastases

hat takes the form of a transport equation subject to a non-local

oundary condition. The Iwata model has since been adapted, an-

lyzed, and confronted to data by several investigators — notably
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Fig. 2. Cartoon model of the 8 ODE model of metastasis — Eqs (1)–(8) . Arrows in- 

dicate positive effects, and flat ends indicate inhibitory effects. Solid lines represent 

direct effects and dashed lines denote indirect influence. See text for details. Color 

figure available online. 
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Baratchart et al. (2015) , Benzekry (2011) , Benzekry et al. (2014) and

Benzekry et al. (2017) — and has provided important insights

into, among others, the effects of primary resection on metastatic

tumor growth. To investigate the role of immune cell trafficking

between metastatic sites and the so-called abscopal effect — in

which cytotoxic treatment at one tumor site elicits an effect at

a secondary site — the Enderling group has developed a model

for tumor-immune interactions at multiple sites ( Poleszczuk et al.,

2016; 2017; Walker et al., 2018; 2017 ). While these works pro-

vide insight regarding tumor-immune dynamics in the metastatic

setting, they are unable to provide details of the metastatic pro-

cess itself. Franßen et al. (2018) , on the other hand, have devel-

oped a multi-site model with spatially explicit dynamics at each

of the sites that successfully captures the steps of the metastatic

cascade. 

Our model builds on Kuznetsov’s tumor-immune model

( Kuznetsov et al., 1994 ) which has been the starting point for sev-

eral investigators ( Kuznetsov and Knott, 2001; Poleszczuk et al.,

2016; Walker et al., 2018 ). Whereas modeling of tumor-immune

dynamics has been a popular topic for some time (see the re-

views in Eftimie et al., 2011; Eftimie et al., 2016 ), the number

of such models that include pro -tumor immune effects are lim-

ited. den Breems and Eftimie (2016) incorporated M1 and M2

type macrophages in a 6-dimensional ODE model of tumor im-

mune dynamics which included phenotypic switching between

anti -tumor M1 macrophages and pro -tumor M2 macrophages. A

more refined model of macrophage phenotypic plasticity was in-

cluded in a more recent paper ( Eftimie and Eftimie, 2018 ) con-

cerning tumor-immune dynamics in the presence of an oncolytic

virotherapy. Wilkie and Hahnfeldt (2017) have also developed a

model of tumor-immune interactions that includes pro -tumor im-

mune effects by including an immune-dependent carrying capac-

ity for the tumor population. While a few models include the pro-

tumor effect of the immune response, this effect has not yet been

included in a mathematical model for metastasis, as we do here. 

1.3. Paper outline 

Section 2 is devoted to the development and basic analysis of

the two-site model of tumor-educated immune mediated metas-

tasis, including a subsection on parameter estimation and con-

frontation of the model to experimental data ( Section 2.3 ). Once

the model has been introduced and parameterized, we use it in

Section 3 to perform three numerical experiments: simulations

of primary resection, immunotherapy, and injury at a secondary
ite are shown. Model simulations demonstrate that tumor “edu-

ation” of immune cells can significantly impair the effectiveness

f immunotherapies and provide a potential explanation for rapid

etastatic growth at the sites of injuries. We conclude with a dis-

ussion of our results and conclusions in Section 4 . 

. Two site model of immune-mediated metastasis 

In this section, we describe our model for tumor-immune in-

eractions at two anatomically distant sites. The modeling assump-

ions and the model itself are described in Section 2.1 . We present

he steady states of the model, including results concerning stabil-

ty, in Section 2.2 , and Section 2.3 introduces the functional coef-

cients and the parameter values used in the simulations that are

he focus of Section 3 . The section concludes with a comparison of

ur parameterized model predictions with experimental data from

aplan et al. (2005) . 

.1. The model 

Let us assume that there are two tumor sites of interest: the

rimary site, where the initial tumor develops, and a secondary

ite where a metastatic tumor will establish and grow. At both the

rimary and secondary sites (subscripts i = 1 , 2 , respectively) we

odel the time dynamics of four local cell populations: Tumori-

enic tumor cells, u i ( t ), necrotic cells, v i ( t ), cytotoxic (CT) immune

ells, x i ( t ), and tumor-educated (TE) immune cells, y i ( t ). As we are

odeling metastatic spread, the tumor cells of interest are those

hat are highly tumorigenic, also known as cancer stem cells (CSCs)

r tumor cells with a metastatic phenotype. For simplicity, we as-

ume that a fixed fraction, θ−1 
i 

, of the total tumor population is ca-

able of metastasizing. As a result, the total tumor burden at site i

s given by the product θ i u i . The full model is depicted graphically

n Fig. 2 and in Eqs. (1)–(8) . The time-evolution of the eight quan-

ities of interest in our model is governed by the following system

f equations: 

du 1 

dt 
= γ1 (y 1 ) g 1 (u 1 ) u 1 − σ1 (x 1 , y 1 ) u 1 − s 1 u 1 , (1)

dv 1 
dt 

= θ1 u 1 σ1 (x 1 , y 1 ) − μ1 v 1 , (2)

dx 1 
dt 

= α1 + λ1 ( θ1 u 1 , v 1 ) x 1 − ρ1 θ1 u 1 x 1 − ω 1 x 1 − ed 1 ( θ1 u 1 ) x 1 , (3)

dy 1 
dt 

= ed 1 ( θ1 u 1 ) x 1 − τ1 y 1 − ˜ s 1 y 1 + f 1 ( θ1 u 1 ) y 1 , (4)

du 2 

dt 
= γ2 (y 2 ) g 2 (u 2 ) u 2 − σ2 (x 2 , y 2 ) u 2 + est(v 2 , x 2 , y 2 ) s 1 u 1 , (5)

dv 2 
dt 

= θ2 u 2 σ2 (x 2 , y 2 ) − μ2 v 2 , (6)

dx 2 
dt 

= α2 + λ2 ( θ2 u 2 , v 2 ) x 2 − ρ2 θ2 u 2 x 2 − ω 2 x 2 − ed 2 ( θ2 u 2 ) x 2 , (7)

dy 2 
dt 

= ed 2 ( θ2 u 2 ) x 2 − τ2 y 2 + p ̃  s 1 y 1 + f 2 ( θ2 u 2 ) y 2 . (8)

he equations above incorporate the following biological assump-

ions (for details and references, please see Sections 1 and 2.3 ): 

• In the absence of any immune cells, both tumor cell pop-

ulations, u i ( i = 1 , 2 ), proliferate according to the density-

dependent growth rates, g i ( u i ), and perish at some non-negative

rate σ i ( x i , y i ), thereby giving rise to necrotic cells, v i . CT im-

mune cells, x , can increase this tumor cell death rate, while TE
i 
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Fig. 3. Solutions of the model (1)–(8) illustrating the three qualitatively different steady states. Left column: dynamics at the primary site. Right column: dynamics at the 

secondary site. Black dashed lines denote tumor cells ( u i ), red dash-dotted lines denote necrotic cells ( v i ), blue dotted lines denote CT immune cells ( x i ), and solid green 

lines denote TE immune cells ( y i ) at both the primary and secondary sites ( i = 1 , 2 ), respectively. Convergence to A : disease-free steady state. B : metastatic-only steady state. 

C : full disease steady state. Parameters from Table 1 used in C , and appropriately modified parameters used in A and B according to the conditions in Proposition 2.1 . Color 

figure available online. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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in Table 1 this requirement is satisfied. 
immune cells, y i , can inhibit this CT immune response. Hence

σ i ( x i , y i ) is decreasing in TE immune population, y i , and increas-

ing in CT immune population, x i . In addition to their ability to

suppress CT immune activity, TE immune cells can also stimu-

late tumor growth according to the increasing, bounded func-

tions γ i ( y i ). 
• Tumorigenic tumor cells are shed from the primary tumor

into the surrounding vasculature proportionally to the primary

tumor size with rate s 1 . A fraction, est ( v 2 , x 2 , y 2 ), of these

cells will successfully navigate the blood stream, arrive at the

secondary location, and contribute to the development of a

metastatic tumor. The fraction of such cells depends on the lo-

cal immune populations at the secondary site, x 2 and y 2 , in ad-

dition to the necrotic cells populating the secondary site, v 2 .

The fraction of successful cells, est ( v 2 , x 2 , y 2 ), is increasing in the

TE immune cells, y 2 , and necrotic cell populations, v 2 , and de-

creasing in the local CT immune cell population, x 2 . We assume

that establishment is more likely in the presence of necrotic

cells ( Shahriyari, 2016 ), but not impossible in their absence. 
• At both sites ( i = 1 , 2 ) necrotic cells arise as a consequence

of tumor cell death, and are lysed at rate μi . Assuming

that the u i describe only a fraction, θ−1 
i 

, of the total tu-

mor burden — specifically, the tumorigenic cells — we

include necrotic cells arising from the total tumor burden,

θ i u i . 
• In addition to natural CT immune cell influx rates, α1,2 , both lo-

cal tumor cells and necrotic cells induce CT immune responses,

described by the functions λi ( θ i u i , v i ), which are increasing in

both arguments. CT immune cells perish at rates ω i , and are

killed in interactions with tumor cells with rates ρi . For sim-

plicity, we define, ρi = ρi θi so that our killing term depends

on a single parameter. Finally, the local tumor population can

induce a phenotypic transition of anti -tumor CT immune cells

into pro -tumor TE immune cells. This “education” of immune

cells is described by the increasing functions ed i ( θ i u i ), i = 1 , 2 . 
• In the absence of a tumor population at the primary site, there

will be no TE immune cells. However, once a tumor is estab-

lished at the primary site, TE immune cells can accumulate at

the primary site in two ways: (1) by means of a tumor-induced

phenotypic transition between CT and TE immune cell popu-

lations, and (2) by direct tumor recruitment of pro -tumor im-

mune cells governed by the function f i ( θ i u i ), i = 1 , 2 . The TE

immune population at the primary site can decrease through

natural death at rate τ 1 , or through loss into the circulatory

system at rate ˜ s 1 . 
• We assume that immune recruitment, killing, and education

depend on the total tumor burden, θ i u i , at each site. 
• A fraction, p , of those TE immune cells shed from the primary

site arrive at the secondary site to supplement the previously

described methods of TE immune cell accumulation — namely

tumor “education” of CT immune cells and tumor-mediated re-

cruitment. TE immune cells at the secondary site perish at rate

τ 2 . 
• We have assumed that the only significant shedding events oc-

cur from the primary site, a choice justified by previous the-

oretical work showing that shedding from the secondary site

had negligible effects on the observed dynamics ( Hartung et al.,

2014 ). 

2.2. Steady states 

We quickly summarize the steady states of model (1)–

(8) and their stability, without presenting the details of the anal-

ysis. Three different steady state expressions characterize the

model: 
1. A disease-free steady state, given by 

(u 1 , v 1 , x 1 , y 1 , u 2 , v 2 , x 2 , y 2 ) = 

(
0 , 0 , 

α1 

ω 1 
, 0 , 0 , 0 , 

α2 

ω 2 
, 0 

)
. (9)

2. A metastatic-only steady state, given by 

(u 1 , v 1 , x 1 , y 1 , u 2 , v 2 , x 2 , y 2 ) = 

(
0 , 0 , 

α1 

ω 1 

, 0 , u 2 , v 2 , x 2 , y 2 
)
, 

(10)

where the barred values (when they exist) are defined by the

following equations: 

g 2 ( u 2 ) = 

σ2 ( x 2 , y 2 ) 

γ2 ( y 2 ) 
, v 2 = 

θ2 

μ2 

σ2 ( x 2 , y 2 ) u 2 , 

y 2 = 

ed 2 ( θ2 u 2 ) x 2 
τ2 − f 2 ( θ2 u 2 ) 

, 

x 2 = 

−α2 

λ2 ( θ2 u 2 , v 2 ) − ρ2 u 2 − ω 2 − ed 2 ( θ2 u 2 ) 
. (11)

3. And a full-disease steady state expression, given by 

(u 1 , v 1 , x 1 , y 1 , u 2 , v 2 , x 2 , y 2 ) = ( ̃  u 1 , ̃  v 1 , ̃  x 1 , ̃  y 1 , ˜ u 2 , ̃  v 2 , ̃  x 2 , ̃  y 2 ) 

(12)

where the values on the RHS (when they exist) are defined by

the following equations, 

g 1 ( ̃  u 1 ) = 

σ1 ( ̃  x 1 , ̃  y 1 ) + s 1 
γ1 ( ̃  y 1 ) 

, ˜ v 1 = 

θ1 

μ1 

σ1 ( ̃  x 1 , ̃  y 1 ) ̃  u 1 , 

˜ x 1 = 

−α1 

λ1 ( θ1 ̃  u 1 , ̃  v 1 ) − ρ1 ̃  u 1 − ω 1 − ed 1 ( θ1 ̃  u 1 ) 
, 

˜ y 1 = 

ed 1 ( θ1 ̃  u 1 ) ̃  x 1 
τ1 + 

˜ s 1 − f 1 ( θ1 ̃  u 1 ) 

˜ u 2 = 

est( ̃ v 2 , ̃  y 2 , ̃  x 2 ) s ̃  u 1 

σ2 ( ̃  x 2 , ̃  y 2 ) − γ2 ( ̃  y 2 ) g 2 ( ̃  u 2 ) 
˜ v 2 = 

θ2 

μ2 

σ2 ( ̃  x 2 , ̃  y 2 ) ̃  u 2 , 

˜ x 2 = 

−α2 

λ2 ( θ2 ̃  u 2 , ̃  v 2 ) − ρ2 ̃  u 2 − ω 2 − ed 2 ( θ2 ̃  u 2 ) 
, 

˜ y 2 = 

ed 2 ( θ2 ̃  u 2 ) ̃  x 2 + p ̃  s 1 ̃  y 1 
τ2 − f 2 ( θ2 ̃  u 2 ) 

. (13)

Representative solutions of the model illustrating the three dif-

erent steady states are shown in Fig. 3 . Explicit conditions to en-

ure the stability of the disease-free and metastatic-only steady

tates are obtained, and presented in the following proposition. 

roposition 2.1. If 

 1 (0) < s 1 + σ1 

(
α1 

ω 1 

, 0 

)
, 

hen extinction of the primary tumor is stable. Further, the disease-

ree steady state is stable if and only if both 

 1 (0) < s 1 + σ1 

(
α1 

ω 1 

, 0 

)
nd 

 2 (0) < σ2 

(
α2 

ω 2 

, 0 

)
re satisfied. 

emark 2.2. Note that the expressions for many of the non-trivial

teady states have denominators which could potentially change

igns. In order for these values to be biologically relevant, we insist

n non-negativity of all the steady state expressions. In particular,

he denominators cannot be allowed to change signs in our do-

ains of interest. Using the literature-derived parameter estimates
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Table 1 

Model Parameters and the values used in presented simulations. 

Parameter Description Value Units References 

r 1,2 tumor growth rate 0.38 1/day Poleszczuk et al. (2016) 

K 1,2 tumor carrying capacity 5.3196 × 10 8 cells Poleszczuk et al. (2016) 

θ 1,2 CSC scaling constant 65.67 — Enderling (2015) ; 

Rhodes and Hillen (2016) 

μ1,2 dead cell lysis rate 0.01, 0.05 1/day Eikenberry et al. (2009) ; 

Robertson-Tessi et al. (2015) 

α1,2 CT immune influx rate 1 × 10 6 1/day Eikenberry et al. (2009) 

ρ1,2 fatal immune-tumor 

interaction rate 

0.001,0.01 1/day Eikenberry et al. (2009) 

ω 1,2 CT decay rate 0.59 1/day Poleszczuk et al. (2016) 

χ 1,2 immune education rate 5 × 10 −5 1/day den Breems and 

Eftimie (2016) ; 

Kim et al. (2017) 

τ 1,2 TE decay rate 0.05 1/day Eikenberry et al. (2009) 

s 1 tumor shedding rate 0.01 1/day Gupta and Massague (2006) ; 

Joyce and Pollard (2009) 

˜ s 1 TE shedding rate 0.05 1/day Eikenberry et al. (2009) 

p proportion successful TE 1 × 10 −4 — —

max 1,2 max (increase) TE growth 0.5 — —

low 1, 2 growth activation 25424 cells —

up 1,2 growth saturation 110169 cells —

lowD 1, 2 death activation: TE 25424 cells —

upD 1,2 death saturation: TE 110169 cells —

minC 1,2 min death rate 0.2 1/day Orlando et al. (2013) ; 

Saidel et al. (1976) 

maxC 1,2 max increase death 0.1 1/day —

lowC 1, 2 death activation: CT 254237 cells —

upC 1,2 death saturation: CT 1101695 cells —

a 11,12 CT expansion: tumor 0.524 1/day Kuznetsov and Knott (2001) 

a 21,22 CT expansion: dead 0.786 1/day —

b 11,12,21,22 immune damping 

(dead;tumor) 

1.61 × 10 5 cells Kuznetsov and Knott (2001) 

a 31,32 TE expansion rate 0.04 1/day Kuznetsov and Knott (2001) ; 

Poleszczuk et al. (2016) 

b 31,32 TE expansion damping 1.6 × 10 5 cells Kuznetsov and Knott (2001) ; 

Poleszczuk et al. (2016) 

max CT max (increase) establish rate 100 — Gorelik (1983) 

lowEst CT, TE activation level: establish 254237,25424 cells —

upEst CT,TE saturation level: establish 1101695,110169 cells —

minEst TE min establish rate 0.001 1/day Cameron (2000) ; 

Chambers et al. (2002) ; 

Joyce and Pollard (2009) ; 

Mehlen and Puisieux (2006) 

maxEst TE max establish rate (increase) 0.002 1/day —

low V activation: dead cells 2.66 × 10 7 cells —

up V saturation: dead cells 2.93 × 10 8 cells —

min V min establish rate 0.001 1/day —

max V max establish rate (increase) 0.999 1/day —
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.3. Parameter estimation 

Numerical exploration of the model necessitates that certain

hoices are made for the general functional coefficients in the

odel (1)–(8) . In this section, we make our choices and pa-

ameterize the resulting model. As a simplifying generalization,

e have assumed, as have others ( Poleszczuk et al., 2016 ), that

any of the model parameter values are shared between primary

nd secondary sites. This assumption is almost certainly incorrect

 Hanin and Rose, 2018 ), but as a first approximation we contend

t suffices. Table 1 summarizes the parameter values used in this

aper together with appropriate references (where applicable). 

• Tumor cell growth rates, g i ( u i ), i = 1 , 2 , are chosen to be of lo-

gistic type, 

g i (u i ) = max 

{ 

r i 

(
1 − u i 

K i 

)
, 0 

} 

, 

where r i and K i are growth rates and carrying capacities at

sites i = 1 , 2 , respectively. Whereas we recognize that logis-

tic growth is not the ideal choice for modeling tumor growth
dynamics in the metastatic setting ( Hartung et al., 2014 ), we

have chosen to assume logistic growth to mirror the choices

of other investigators ( den Breems and Eftimie, 2016; Eftimie

and Eftimie, 2018; Kuznetsov et al., 1994; Poleszczuk and En-

derling, 2016 ). In the simulations presented below, we have

used tumor growth rates and carrying capacities determined in

Kuznetsov and Knott (2001) by fitting experimental data, and

which were used again in more recent work in the setting of

abscopal effects ( Poleszczuk et al., 2016 ). 
• Tumor cell death rates, σ i ( x i , y i ), are chosen to be a prod-

uct of “switch-like” hyperbolic tangent functions as used by

Olobatuyi et al. (2017) (see Remark (2.3) for further discussion

of this choice). We include both an increasing version: 

ν(x ; m, M, A, S) = 

M 

2 

[
tanh 

(
6 

S − A 

(
x − S + A 

2 

))

− tanh 

(
−3(S + A ) 

S − A 

)]
+ m, (14) 
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Fig. 4. Example of the hyperbolic tangent threshold function and the establishment rate function. Parameters are as in Table 1 . ( A ) Plot of the function γ 2 ( y 2 ) as specified 

in the text. ( B ) Plot of est ( v 2 , x 2 , y 2 ) as a function of x 2 and y 2 , with v 2 = 10 4 fixed. The black curve is the solution trajectory in metastatic immune space between times 

t = 193 and t = 237 (indicated in the bottom plots by vertical dashed lines). A single arrow indicates slow movement and a double arrow indicates fast movement. ( C ) The 

establishment rate as a function of time using our baseline solution. ( D ) Baseline solution dynamics at the secondary site. Quantities as denoted. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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which increases from m at x = 0 to m + M as x → ∞ (see panel

(A) in Fig. 4 ), and a decreasing version: 

ξ (x ; m, M, A, S) = 

M 

(
1 − tanh 

(
6 

S−A 

(
x − S+ A 

2 

))
+ m 

(
tanh 

(
6 

S−A 

(
x −

1 − tanh 

(−3(S+ A ) 
S−A 

)
which decreases from m + M at x = 0 to m as x → ∞ . Both of

these “switch-like” functions can be specifically tuned using

four parameters: activation ( A ) and saturation ( S ) thresholds to-

gether with lower ( m ) and upper ( m + M) bounds on the do-

main [0, ∞ ). The tumor cell death rates are then chosen as the

product 

σi (x i , y i ) = ν(x i ; minC i , maxC i , upC i , lowC i ) ξ (y i ; 0 , 1 , upD i , lowD i ) ,

which increases in the CT immune cell populations, x i , and de-

creases in the TE immune cell populations, y i , i = 1 , 2 . The only

parameter in this function that we were able to estimate from

the literature is the minimum death rates, minC i , with the esti-

mate coming from previous theoretical investigations ( Orlando

et al., 2013; Saidel et al., 1976 ). All remaining parameters were
)
− tanh 

(−3(S+ A ) 
S−A 

)))
, (15)

estimated conservatively, for example, CT immune cell thresh-

olds ( lowC 1, 2 , upC 1, 2 , lowEst CT , and upEst CT ) were chosen to

be 15% (activation) and 65% (saturation), respectively, of the

disease-free steady state value of CT immune cells ( 
αi 
ω i 

, i = 1 , 2 ,

which was chosen to be of the order 10 6 cells by tuning the pa-

rameters αi ( den Breems and Eftimie, 2016; Negus et al., 1997;

Steidl et al., 2010 )), and TE immune cell thresholds ( low 1, 2 ,

up 1, 2 , lowD 1, 2 , upD 1, 2 , lowEst TE , and upEst TE ) were then chosen

to be an order of magnitude lower than those for CT immune

cells. 
• To model tumor and necrotic cell mediated immune cell ex-

pansion, we use the successful Michaelis–Menten type function

which is a popular choice in tumor-immune models ( Eftimie

et al., 2011; 2016; Kuznetsov et al., 1994; Poleszczuk et al.,
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2016 ). As a consequence of their ubiquity, estimates have been

made by several authors for the associated CT immune cell pa-

rameters. We have assumed that CT immune cell recruitment

by tumor cells and necrotic cells is additive , i.e. 

λi ( θi u i , v i ) = 

(
a 1 i θi u i 

b 1 i + θi u i 

)
+ 

(
a 2 i v i 

b 2 i + v i 

)
= 

(
a 1 i u i 

b 1 i + u i 

)
+ 

(
a 2 i v i 

b 2 i + v i 

)
, 

where b 1 i = 

b 1 i 
θi 

. We have also included tumor-mediated recruit-

ment of TE immune cells using the standard Michaelis-Menten

type functions, 

f i (u i ) = 

a 3 i u i 

b 3 i + u i 

, 

where the dependence on θ i is absorbed into the half-

saturation constant b 3 i as above. Whereas CT immune cell re-

lated parameters were easily found in the literature, no such es-

timates exist (to the authors’ knowledge) for TE immune cells.

As a consequence, we have estimated the TE immune param-

eters by scaling the corresponding CT immune cell parameters

by up to an order of magnitude. 
• Due to its relatively recent experimental discovery, there has

been little work done attempting to elucidate the precise mech-

anisms underlying the tumor-mediated phenotypic plasticity, or

“education”, of CT immune cells. As a result, the only relevant

literature from which we can inform our model is the theo-

retical work of den Breems and Eftimie (2016) , in which the

authors use mass-action kinetics to describe the tumor “edu-

cation” of CT immune cells. Following this approach allows us

to choose 

ed i (θi u i ) = χi θi u i = χi u i 

for some non-negative rate constants χi = χi θi , i = 1 , 2 . In the

absence of additional evidence, we have chosen to use den

Breem and Eftimie’s “polarization” rate as our “education” rate

( den Breems and Eftimie, 2016; Kim et al., 2017 ). For further

discussion, see Section 4 . 
• To model the TE immune cell enhancement of tumor growth,

we have used the increasing hyperbolic tangent functions (14) 

γi (y i ) = ν(y i ; 1 , max i , low i , up i ) . 

Thresholds were chosen as discussed previously, and we have

assumed that TE immune cells could increase the tumor cell

growth rate by at most 50%. This function is illustrated in

Fig. 4 (A) with parameters in Table 1 . 
• Finally, we choose a model for the establishment of circulating

tumor cells at the secondary site. Based on the evidence dis-

cussed in Section 1 we use 

est(v 2 , x 2 , y 2 ) = ν(v 2 ; min V , max V , low V , up V ) 

×ξ (x 2 ; 0 , max CT , lowEst CT , upEst CT ) 

×ν(y 2 ; minEst T E , maxEst T E , lowEst T E , upEst T E ) . 

Immune cell thresholds were chosen as above, while the

necrotic cell thresholds ( low V and up V ) were chosen to be 5%

and 55% of the tumor carrying capacities K i , respectively. Esti-

mates of the rates involved have been informed by both pre-

vious experimental evidence ( Cameron, 20 0 0; Chambers et al.,

2002; Gorelik, 1983; Joyce and Pollard, 2009; Mehlen and

Puisieux, 2006 ) and the authors’ estimates. Fig. 4 illustrates our

choice of establishment function. Panel (B) shows the estab-

lishment rate as a function of TE and CT immune cells for a

fixed value of v 2 . Increasing the value of v 2 scales the values of

the presented plot, but the qualitative shape remains the same.

Baseline time dynamics of the establishment rate in metastatic
immune space are illustrated as the black curve, which starts at

the bottom right corner of the plot, and moves to the top left

as time increases. The trace of this curve in time is shown in

panel (C) between the two vertical dashed lines. For reference,

the baseline dynamics at the secondary site are presented in

panel (D). 

The above discussion is summarized in Table 1 , where the pa-

ameter values used in Section 3 are summarized with references

where applicable). 

emark 2.3. Note that while the full model (1)–(8) has dependen-

ies on the total tumor volumes, θ i u i . The above demonstrates that

he constant fraction of tumorigenic cells, θ i , can be absorbed into

ther model parameters. This choice is made in Section 4 , when a

eneralization of the model is introduced. 

emark 2.4. While a number of our choices for functional coeffi-

ients are standard choices (logistic growth and Michaelis-Menten

inetics, for example), the use of hyperbolic tangent switching

unctions ( ν and ξ ) is not as common, but have been used

o model switch-like behavior in models for radiation therapy

 Olobatuyi et al., 2017 ). The reasons that we made this choice in

he present work are straightforward: the chosen functions are

mooth , and they include the lower and upper thresholds as ex-

licit parameters. The latter point is particularly relevant to aid in

he clear interpretation of our model results in light of the large

umber of model parameters. We will also note that the switch-

ike behavior that we have chosen to include is an assumption of

he model. 

The initial conditions for all presented results were chosen to

e 

( u 1 (0) , v 1 (0) , x 1 (0) , y 1 (0) , u 2 (0) , v 2 (0) , x 2 (0) , y 2 (0) ) 

= 

(
1 , 0 , 

α1 

ω 1 

, 0 , 0 , 0 , 
α2 

ω 2 

, 0 

)
, 

epresenting a slight perturbation of the disease-free steady state

n which a single tumor cell has developed at the primary site.

his choice allows for the inclusion of a time-dependent source of

irculating tumor cells coming from the growing primary tumor —

ynamics that are often neglected in injection ( Cameron, 20 0 0 ) or

imulation ( Eikenberry et al., 2009; Walker et al., 2018 ) studies. 

As an initial validation of both the model and the chosen pa-

ameter values, we compare the calibrated model’s predicted dy-

amics at the secondary site with those observed experimentally

y Kaplan et al. (2005) . Following intradermal injection of 2 × 10 6 

ewis lung carcinoma (LLC) cells into murine flanks, Kaplan and

olleagues measured the proportions of pro -tumor BMDCs and tu-

or cells at the metastatic site (lungs) at several time points

Fig. 5, A (Fig. 1 c in Kaplan et al. (2005) )). As can be seen in Fig. 5

 A ) pro-tumor BMDCs arrived at the site of future metastasis well

efore the arrival of any tumor cells. Our model successfully cap-

ures this phenomenon, as seen in Fig. 5 ( B ), with pro-tumor TE

mmune cells arriving at the future metastatic site in advance of

ny significant tumor colonization. Furthermore, our model accu-

ately captures the approximate scales of this colonization, both

n terms of magnitude (peaks of approximately 30% and 10% for

MDCs and tumor cells, respectively) and timing (approximately 2

eeks from initial colonization to tumor cell takeover). 

There are, however, two shortcomings of this comparison. First,

n our simulation, the primary tumor reaches a size of approxi-

ately 2 × 10 6 cells (matching the size of the injection used by

aplan et al. (2005) ) after 84 days, meaning that the delay to the

ynamics presented in Fig. 5 is approximately 120 days. While this

hortcoming may appear problematic, it may simply be a conse-

uence of the differences between the details of the experiment

nd the simulation. Second, the shape of the pro-tumor immune
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Fig. 5. Comparison of experimental data from Kaplan et al. (2005) ( A ) to the model predicted dynamics at the secondary site ( B ). Time in the top plot is measured from the 

time of injection of 2 × 10 6 LLC cancer cells, whereas time in the bottom plot is measured from the beginning of the simulation (primary tumor inception). In both cases, 

green corresponds to pro -tumor immune cells (BMDCs at top, and TE immune cells, y 2 , at bottom) and red corresponds to tumor cells ( u 2 ). Color figure available online. A 

adapted from Kaplan et al. (2005) , Fig. 1 c. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

t  

n  

c  

o  

t  

t  

d  

t  

H  

F  

o  

t  

A  

c  

t  

t

 

i

a  

t  

m  

a  

f  

(  

t  

e  

t  

s  

m

curve in the experimental data — and the location of the peak, in

particular — is not well approximated by our simulation results,

with the simulated peak occurring much earlier than the experi-

mentally observed peak. Although these are both important short-

comings, we note that the data from Kaplan et al. (2005) was not

used in the calibration of our model. Consequently, some incon-

sistencies may be reasonably expected, and we contend that the

successes described previously — those of order of arrival and

general scales being well approximated — are sufficient to claim

that the parameters in Table 1 are biologically feasible and that the

qualitative results of the calibrated model reflect the true biology. 

Finally, the parameter values reported in Table 1 are prelimi-

nary estimates only and caution should be taken when interpreting

the reported values. In light of the large number of model param-

eters and without an obvious quantity to measure local parameter

sensitivity, a full parameter sensitivity analysis has been omitted

from the present work. We do, however, perform a local sensitiv-

ity analysis on a reduced version of the model in a forthcoming

paper ( Rhodes and Hillen, 2019 ). 

3. Model simulations 

Now that we have used experimental evidence and previous

literature-derived estimates to specify the model parameters, and

we have confirmed that these parameters can accurately repro-

duce experimental results ( Fig. 5 ), we perform three clinically rele-

vant numerical simulations of the model in order to further inves-

tigate the implications of the immune-mediated theory of metas-

tasis. This section investigates the effects of primary resection, im-

mune therapies, and injury at the secondary site on disease pro-

gression. 
.1. Primary resection 

When possible, surgical removal (resection) of a tumor can be

he preferred method of treatment. Unfortunately, this treatment is

ot always effective and may only offer tem porary relief, with lo-

al recurrence or metastatic disease appearing after a short period

f apparent health. Our model framework allows us to interrogate

he effect of primary resection on the dynamics of the secondary

umor. We study two cases. In the first case , we assume that the

isease free equilibrium is locally unstable. In this case, each resec-

ion of less than 100% efficiency leads to recurrence of the tumors.

ere we are interested in the time delay before re-growth occurs.

ig. 6 shows the tumor cell dynamics at the primary (left) and sec-

ndary (right) sites using the parameters from Table 1 . The un-

reated dynamics at both sites are represented by the black curves.

 primary tumor develops relatively quickly and reaches the local

arrying capacity after approximately 100 days, with the secondary

umor only fully developing approximately 150 days later (notice

he different time intervals shown on the horizontal-axis). 

Note that the saturation observed at both sites can be explained

n terms of CSCs. Indeed, we have assumed that the quantities u 1 
nd u 2 represent tumorigenic cells within the tumor populations at

he primary and secondary sites, respectively. Therefore, saturation

ay correspond to the homeostatically stable population of CSCs,

nd may not necessarily represent the end of tumor growth. As the

raction of CSCs within a tumor population is a hotly debated topic

 Enderling, 2015 ), with a number of theoretical results suggesting

hat pure CSC tumors are possible ( Rhodes and Hillen, 2016 ), this

xplanation is not unfounded. Alternatively, the rapid saturation at

he primary site may suggest that, in this case, the subject would

uccumb to the primary tumor before the advent of any significant

etastatic disease. 
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n

i  

f

3  

A  

c  
We have simulated primary resection by removing a specified

raction — the resection efficiency — of all populations at the pri-

ary site at time t = 90 days (vertical dashed line in left plot

f Fig. 6 ) ( Eikenberry et al., 2009 ). The resection time was cho-

en such that the primary tumor grew sufficiently large so that

t could be detected by clinicians (order 10 7 cells Friberg and

attson, 1997; Eftimie and Eftimie, 2018 ). Resection efficiencies in

ig. 6 range from 99.99% (blue) to 100% (red). As expected, increas-

ng the resection efficiency increases the delay in both local recur-

ence and metastasis. Using the parameters in Table 1 , no resection

fficiencies below 100% can prevent local recurrence, and no resec-

ion efficiencies can prevent metastasis. 

In a second case we assume that tumor extinction at the sec-

ndary site is stable by reducing the tumor growth rate r 2 (see

roposition 2.1 ). Then the model exhibits more realistic bi-stable

ehavior at the expense of much slower metastatic growth. The

econdary tumor dynamics in response to 100% efficient primary

esection are presented in Fig. 7 for varying times of primary re-

ection. As a control, we present the secondary tumor dynamics

n the absence of any primary intervention as the black curve. A

onsequence of primary resection is that the secondary site loses

 source of tumor cells. If this primary intervention occurs suffi-

iently early, the secondary tumor is too small to support itself,

esulting in metastatic extinction (green curves in Fig. 7 ). 

On the other hand, if enough time has passed with the primary

umor present to ensure that the metastatic tumor is large enough

o that it can maintain growth even in the absence of the source

f cells from the primary tumor, then we observe rapid metastatic

rowth, possibly following a period of dormancy (red curves in

ig. 7 ). Two important observations should be made in this case.

irst, the final metastatic tumor density is smaller when compared

o the control case, and second, primary resection can trigger an

xtended period of dormancy at the secondary site. 

.2. Immune therapy 

While there is a significant diversity of immunotherapeutic

echniques in cancer treatment, they all share the same goal: in-

rease the number or effectiveness of CT immune cells in order

o elicit a strong anti-tumor response. The promise of harnessing

he power of the immune system to treat tumors has inspired sig-
ificant experimental and theoretical investigation. Unfortunately, 

n many cases, the promises of immunotherapy have not come to

ruition, with relatively low response rates for both single ( 10% −
0% ) and combination therapies ( 50% − 60% ) ( Emens et al., 2017 ).

 potential explanation for this shortcoming may be found in the

ontradictory roles of the immune system in cancer progression
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( Section 1 ), but this possibility has remained largely unexplored. In

this section, we consider the implications of immune phenotypic

plasticity on the effectiveness of immunotherapies. 

In the following, “immunotherapy” will be simplified to any in-

tervention that results in an increased influx of CT immune cells.

Therefore, increasing the CT immune cell influx rates, α1 and α2 ,

by some scaling factor will serve as a simplified model of im-

munotherapy. As was the case for primary resection, therapeutic

interventions can only be undertaken in the case that a primary

tumor has been identified clinically, so we begin therapy at time

 = 90 days and maintain the therapy until the end of the simula-

tion. Under these conditions, the model predicts little effect on the

dynamics at the primary site — not an unexpected result based on

the low response rates of many immunotherapies — so we present

only the dynamics at the secondary site; thereby shedding light

onto the effects of immunotherapy on small, clinically undetectable

metastatic tumors, which is particularly relevant to the clinical set-

ting. 

The model predicted results of immotherapy are presented in

Fig. 8 . Fig. 8 (left) shows the dynamics of the secondary tumor cell

population for various scaling factors of the CT immune cell in-

flux rates α1 and α2 , with the scaling factor increasing from blue

to red. Fig. 8 (right) shows the time to half the carrying capac-

ity ( 1 2 K 2 — horizontal dashed line in left plot) as a function of the

scaling factor; in other words, the right plot shows the intersection

times of the solution curves and the dashed line in the left plot. Of

note is the non-monotonicity of the rightmost plot. For small in-

creases to the immune influx rates we see significant improvement

in tumor delay. However, there is an optimal increase factor, above

which the effects of the immunotherapy are actually detrimental

relative to the optimal and, if increased by a sufficiently large fac-

tor, we can have detrimental effects even compared to the control

case (results not shown). 

In order to determine the mechanism responsible for the non-

monotone dynamics in Fig. 8 , we simulate a modified version of

the previous immunotherapy. In addition to the increased CT im-

mune cell influx rate, we assume that our simulated immunother-

l  
py is capable of preventing tumor education of CT immune cells

i.e. the education rates vanish: χ1 , 2 = 0 ). The model predicted ef-

ects of such an intervention are presented in Fig. 9 . As in the pre-

ious figure, the left plot shows the tumor cell dynamics at the

econdary site for varying strengths of immunotherapy (increasing

rom blue to red) and the right plot shows the times our solutions

each the endpoint as a function of immunotherapy strength. Note

hat by preventing tumor education of CT immune cells, the result-

ng steady state tumor density at the secondary site is significantly

iminished, so we use 1 
4 K 2 as our endpoint instead of the previ-

usly used 

1 
2 K 2 . 

In contrast to the previous case, the rightmost plot in Fig. 9 is

onotonically increasing. Although there is a significant slowing of

rowth in the right plot, the time to endpoint continues to increase

or all CT influx rate scalings tested. Noting, in addition, that the

bility of the secondary tumor to directly recruit pro -tumor im-

une cells to the secondary site was not affected by our simu-

ated therapy, it follows that the tumor-induced phenotypic plastic-

ty between CT and TE immune cells is key in the non-monotonic

ynamics of Fig. 8 . 

.3. Metastasis to sites of injury 

Our modeling framework provides us the opportunity to inves-

igate whether or not this theory of immune-mediated metasta-

is is sufficient to explain the observations of metastatic spread

o sites of injury. We simulate an injury at the secondary site at

ime t by pausing the simulation at time t , adding 10 7 cells to

he necrotic compartment, and restarting the simulation with this

djusted initial condition. Evaluation of this injury’s effect on the

econdary tumor dynamics is done by reporting the time when

he secondary tumor reaches a population of 1 
2 K 2 cells (referred

o hereafter as the “endpoint”). 

Fig. 10 shows the time to endpoint as a function of the time

hat an injury at the secondary site is incurred. Control results are

resented as the horizontal dashed line, so that times above this

ine are beneficial to patient survival (green), and those below the
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α1 and α2 , and prevention of immune education, χ1 , 2 = 0 . Therapy administered beginning from time t = 90 days, and maintained over the course of the simulation. Values 

are increasing from blue to red (in direction of arrow). Leftmost (black dotted) curve represents control dynamics. Dash line represents one quarter the carrying capacity, 
1 
4 

K 2 . Right: Time secondary tumor reaches a quarter its carrying capacity as a function of the factor the CT immune cell influx rate increased. Color figure available online. 
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ine are detrimental (red). The model predicts a clear distinction

etween early and late injuries. Injuries incurred earlier in the pro-

ression of the metastatic tumor are actually beneficial to the pa-

ient — delaying metastatic growth by up to nearly 4 months —

hereas those that occur in the later stages of disease progression

re detrimental to the patient, reducing the time to endpoint by

p to two months. 
A glimpse into the mechanisms underlying the biphasic dynam-

cs of Fig. 10 are presented in Fig. 11 , where the dynamics of all

ell populations at the secondary site are presented for three sit-

ations: control dynamics (black dotted curves), an early injury

green curves) and a late injury (red curves). Early and late injury

imes were chosen to be the times corresponding to the maximum

nd minimum times to endpoint from Fig. 10 , respectively (indi-

ated by the colored arrows in Fig. 11 ). Note that the early injury

ccurs slightly before clinical detectability of the primary tumor

which we have taken to be 90 days), while the late injury occurs

lightly after . 

The dynamics in response to the early injury closely follow the

raditional view of both injury response and tumor-immune dy-

amics: there is a robust, transient CT immune response to the

njury (panel (C), green), which inhibits the phase of rapid tu-

or growth observed in the control dynamics beginning at ap-

roximately t = 75 days (panel (A), black). As a consequence of

his slowed tumor growth, the TE immune population suffers an

xtended period of stagnation (panel (D), green), thereby slowing

ubsequent tumor growth and resulting in a significant delay in

umor progression at the secondary site. It should be noted that,

espite the significant increase to the population of necrotic cells

t the metastatic site caused by the simulated injury, the boost in

he establishment rate is not only shortly lived, but the net effect

f the injury is a marked decrease in the establishment rate. The

eason for these dynamics are the injury-induced influx of CT im-

une cells (green curve in Fig. 11 , C) and the sharp threshold be-

avior of the establishment rate in the CT immune cell population

 Fig. 4 , panel B). 

In contrast, the dynamics in response to the late injury

re remarkably different, and instead of delayed tumor growth,

etastatic “blow-up” — rapid metastatic growth in response to an

xternal stimulus — is predicted. Although the late injury induces

 similar CT immune response — and, consequently, a similar de-

rease in metastatic establishment rate after a short necrotic cell-

nduced spike — it is significantly foreshortened in comparison to

he early injury case (panel (C)). Moreover, the TE immune pop-
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Fig. 11. Dynamics of the tumor cells ( A ), necrotic cells ( B ), CT immune cells ( C ), and TE immune cells ( D ) at the secondary tumor site upon the simulation of an injury. Two 

injury times are presented (arrows): an early injury at t = 74 . 1 days (green) and a late injury at t = 102 . 5 days (red). Injury was 1 × 10 7 necrotic cells. Dashed line in (A) 
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references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ulation undergoes a period of rapid growth coinciding with the

CT immune response (panel (D), red). Taken together, and noting

that the tumor population has undergone a period of significant

growth between the two injury times (panel (A), control), we con-

clude that the larger secondary tumor present at the time of the

late injury more effectively corrupts, or educates, the CT immune

response to the local injury. In fact, in simulations where the edu-

cation rate was decreased , the injury no longer elicited a pro -tumor

response (results not shown), demonstrating that tumor education
f the CT immune response is vital to the dynamics reported in

igs. 10 and 11 . 

The result of this education is a robust population of pro-

umor TE immune cells which stimulates rapid tumor growth

uch earlier than in the control case — that is to say that

etastatic “blow-up” is observed. Therefore, our model predicts

hat rapid metastatic growth at the site of injury necessitates the

resence of a sufficiently large local tumor population in order

o adequately corrupt/educate the injury-induced CT immune re-
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ponse; otherwise, the immune response to injury is anti-tumor,

s traditionally expected. Moreover, our results refine those of

ikenberry et al. (2009) , whose mathematical model of metastatic

elanoma suggested “blow-up” was the result of a depleted CT

mmune population. Indeed, “blow-up” in our model was a result

f a decrease in the CT immune population and a corresponding

ncrease in the TE immune population as a consequence of tumor

education.”

. Discussion 

There is a growing body of evidence implicating pro-tumor ef-

ects of the immune system in cancer development and metastatic

pread (see the extended list of references in Section 1 ). Inspired

y Shahriyari’s synthesis of this evidence ( Shahriyari, 2016 ) to for-

ulate a theory of metastasis in which the immune system plays a

ajor role — which we have called the “immune-mediated” theory

f metastasis ( Cohen et al., 2015 ) — we have developed a mathe-

atical model of tumor-immune interactions at two anatomically

istant sites to interrogate the validity and the implications of this

ypothesis. 

Validation of our modeling approach and our literature-derived

arameter estimates was done by confronting the model to exper-

mental data from Kaplan et al. (2005) . We found that the model

orrectly predicted the preparation of the PMN by pro-tumor TE

mmune cells prior to the arrival of any tumor cells in addition

o accurately reproducing the relative magnitude and timing of this

MN preparation (see Fig. 5 ). It is important to note that these re-

ults were in the absence of any explicit fitting to the Kaplan data,

nd that the Kaplan data was not used to calibrate the model. Con-

equently, the discrepancies between data and model predictions

re not particularly concerning. 

Once validated, the model was used to numerically explore the

mplications of the immune-mediated theory of metastasis. We

imulated primary resection surgeries, immunotherapeutic inter-

entions, and injuries at the secondary site. Metastasis is relatively

obust in the face of primary resection, with metastatic extinc-

ion only possible in certain parameter regimes, and only if the

rimary tumor is completely removed sufficiently early ( Fig. 7 ).

n response to the loss of cells arriving from the primary tumor,

etastatic dormancy could be observed. A second set of numeri-

al experiments concerned the effects of tumor-education on the

fficacy of immunotherapies. We found that tumor-induced phe-

otypic plasticity between anti- and pro-tumor immune cells pro-

ides a potential explanation for the relatively poor performance of

any immunotherapies ( Emens et al., 2017 ). Moreover, our model

redicts that the most successful approach to improving the effi-

acy of immunotherapies is to inhibit tumor-induced phenotypic

lasticity thereby allowing the CT immune cells to play their anti-

umor roles. This result has been recently demonstrated experi-

entally by Park et al. (2018) , lending further credibility to the

esults presented herein. 

We asked whether or not the immune-mediated theory of

etastasis could provide an explanation for metastasis to sites of

njury by simulating an injury at the secondary site. We found that

he CT immune response elicited by an injury was anti -tumor in

he absence of a significant metastatic tumor cell population at the

econdary site, and pro -tumor if this population was sufficiently

arge to corrupt the incoming CT immune cells, forcing them to

lay a pro-tumor role ( Fig. 11 ). Not only do these findings sup-

ort the suggestion of Kumar and Manjunatha (2013) that a popu-

ation of tumor cells is required at the injury site prior to the injury

o see metastasis establish at that site, but they also suggest that

umor-induced phenotypic plasticity plays a crucial role in such es-

ablishment. 
In the work above, we considered a secondary site , but the

econdary tumor dynamics could also be interpreted as the total

etastatic burden by appropriate choice of growth functions. Fur-

hermore, we considered only one secondary site, but this could

asily be extended to include N sites with anatomically motivated

onnection network as in ( Poleszczuk et al., 2016; Franßen et al.,

018 ). We provide a brief sketch of such a model now. Let u i ,

 i , x i , and y i denote the number of cancer, necrotic, CT, and TE

ells at tumor site i , where i = 1 , 2 , . . . N. Let φi,j , ψ i,j , and ζ i,j de-

ote the number of tumor cells, TE immune cells, and CT immune

ells respectively, leaving site j and arriving at site i . We assume

hat necrotic cells do not travel between sites. Under the above

ssumptions, we arrive at the following N site model for tumor-

mmune interactions including both pro- and anti-tumor immune

ffects: 

du i 

dt 
= γi (y i ) g i (u i ) u i −σi (x i , y i ) u i − s i u i + est i (v i , x i , y i ) 

( 

N ∑ 

j=1 

φi, j 

) 

, 

dv i 
dt 

= θi σi (x i , y i ) u i − μi v i , 

dx i 
dt 

= αi − ρi u i x i − ω i x i − ed i (u i ) x i + 

( 

N ∑ 

j=1 

ζi, j λ j (u j , v j ) x j 

) 

, 

dy i 
dt 

= ed i (u i ) x i − τi y i − ˜ s i y i + 

( 

N ∑ 

j=1 

ψ i, j f j (u j ) y j 

) 

. (16) 

Note that the above model (16) is in fact a generalization of the

odel (1)–(8) investigated here. By Remark 2.3 and by choosing

 = 2 , φ2 , 1 = s 1 u 1 , φ1 , 2 = φ1 , 1 = φ2 , 2 = 0 , s 2 = 0 , ξ1 , 2 = ξ2 , 1 = 0 ,

1 , 1 = ξ2 , 2 = 1 , ψ 2 , 1 f 1 = p ̃  s 1 , ψ 2 , 2 = ψ 1 , 1 = 1 , ψ 1 , 2 = 0 , we recover

he original two site model (1)–(8) . 

In this generalization, we have borrowed the immune traffick-

ng terms from Poleszczuk et al.( Poleszczuk et al., 2016 ), which

lso account for travel of CT immune cells from the tumor sites

o tumor draining lymph nodes, and then throughout the body to

istant organs. For more details on these terms in our extended

odel, as well as a discussion of the difficulty in modeling the

onnection terms, φi,j , ψ i,j , and ζ i,j , we refer the readers to the

riginal works of Poleszczuk et al. (2016) and Walker et al. (2018,

017) . As is highlighted in these referenced works, the problem of

eaningfully parameterizing a multi-site model is by no means

rivial, and requires careful attention and ample experimental or

linical data. Although we could rather simply simulate the ex-

ended model, we suggest that such simulations would be more

seful if a careful, data-driven parameterization were undertaken,

hich is beyond the scope of the current work. We therefore leave

he parameterization and simulation of the extended model as fu-

ure work. 

Instead of complicating the present model further, it may also

e of interest to simplify it in order to perform more rigorous

athematical analysis with the aim of discovering the mecha-

isms underlying the dynamics described in Section 3 . Such sim-

lification is the focus of a current study, with results forthcoming

 Rhodes and Hillen, 2019 ). 

As the explicit inclusion of pro-tumor immune cells in mathe-

atical models for tumor-immune dynamics is relatively new, the

odel for phenotypic plasticity between immune types was cho-

en to follow simple mass-action kinetics which are most likely

oo simplistic. den Breems and Eftimie (2016) , in their model

f M1/M2 macrophages, also modeled the transition using mass-

ction kinetics. However, Eftimie and Eftimie (2018) have recently

roposed a more sophisticated transition function. Based on the

mportant effect that these phenotypic transitions appear to have
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on the overall dynamics (above, and in ( den Breems and Eftimie,

2016; Eftimie and Eftimie, 2018 )), research looking to uncover the

underlying dynamics of this phenotypic plasticity is warranted. 

The model developed here includes a significant number of

parameters, with many of them not previously estimated. Conse-

quently, the results we have presented above should be taken with

some degree of caution. We do note that some of the TE immune

related parameters — recruitment rate by the tumor, for example

— may be underestimated ( Oleinika et al., 2013 ), meaning that the

observed effects may be conservative. Further experimental and

theoretical work must be done in order to validate the predictions

made herein before specific therapeutic recommendations can be

made. Specializing the model to focus on specific immune cells

in a particular cancer may provide more clinically relevant results,

and is the focus of a current study. 

Overall, our modeling approach showcases the importance of

including pro-tumor effects — and tumor-induced phenotypic plas-

ticity in particular — in models of tumor-immune interactions. By

confronting our mathematical model to experimental data, we per-

formed meaningful simulations of complex biological phenomena,

which provided important insight into the underlying dynamics;

insight that may be obscured in traditional biological experimen-

tation. We believe that our research can help inform the design of

future experiments and clinical investigations focused on elucidat-

ing the precise nature of the pro-tumor role of the immune system

in cancer progression and metastasis. 
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