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ABSTRACT

Repeated games are useful models to analyze long term interactions of living species and complex social
phenomena. Zero-determinant (ZD) strategies in repeated games discovered by Press and Dyson in 2012
enforce a linear payoff relationship between a focal player and the opponent. This linear relationship can
be set arbitrarily by a ZD player. Hence, a subclass of ZD strategies can fix the opponent’s expected payoff
and another subclass of the strategies can exceed the opponent for the expected payoff. Since this discov-
ery, theories for ZD strategies are extended to cope with various natural situations. It is especially impor-
tant to consider the theory of ZD strategies for repeated games with a discount factor and observation
errors because it allows the theory to be applicable in the real world. Recent studies revealed their exis-
tence of ZD strategies even in repeated games with both factors. However, the conditions for the exis-
tence has not been sufficiently analyzed. Here, we mathematically analyzed the conditions in repeated
games with both factors. First, we derived the thresholds of a discount factor and observation errors
which ensure the existence of Equalizer and positively correlated ZD (pcZD) strategies, which are well-
known subclasses of ZD strategies. We found that ZD strategies exist only when a discount factor remains
high as the error rates increase. Next, we derived the conditions for the expected payoff of the opponent
enforced by Equalizer as well as the conditions for the slope and base line payoff of linear lines enforced
by pcZD. As a result, we found that, as error rates increase or a discount factor decreases, the conditions

for the linear line that Equalizer or pcZD can enforce become strict.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Mutual cooperation, competition, and exploitation are often
observed in human societies and interactions of biological organ-
isms. Cooperation gives benefits to others while exploitation (de-
fection) obtains the benefits without paying costs. The Repeated
Prisoner’s Dilemma (RPD) game is a theoretical framework to study
strategic behaviors in social dilemmas (Mailath and Samuelson,
2006). The rule is simple: First, each player selects Cooperation
(C) or Defection (D), respectively. Then, depending on the combina-
tion, the payoff is allocated to each player. Mutual cooperation
yields higher benefits than mutual defection. However, from the
individual point of view, cooperation is always exploited by defec-
tion. Thus, in the one-shot prisoner’s dilemma, defection is the
unique Nash equilibrium, resulting in mutual defection between
self-interested players. The situation changes when the game is
repeated. In the RPD, cooperation becomes a possible choice
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because future payoffs are important. This is called direct reciproc-
ity (Trivers, 1971; Nowak, 2006; Sigmund, 2010). Cooperative
behaviors in the RPD games have been studied in game theory
and evolutionary games.

In 2012, the discovery of Zero-determinant (ZD) strategies by
Press and Dyson changed the way of studying direct reciprocity
(Press and Dyson, 2012). In contrast to the approach used in evolu-
tionary games where a population of individuals is considered,
they studied a one-to-one interaction in the RPD and showed that
one of the two players can unilaterally enforce a linear relationship
to the opponent. Recently, the general properties of ZD strategies
and broader classes of strategies including ZD have been studied
and these properties have gradually been unraveled (Hilbe et al.,
2018; Murase and Baek, 2018, 2020; Chen and Zinger, 2014;
Ueda and Tanaka, 2020; Ueda, 2021).

Due to the linear payoff relationship, a subclass of ZD called
Equalizer can fix the opponent’s payoff. Another subclass of ZD
called Extortion can obtain a larger or at least equal payoff than
the opponent. The slope of the line between Extortion and the
opponent is positive, which means that if the opponent adapts
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his strategy to improve his own payoff, he improves the payoff of
Extortion even more. Another subclass of ZD called Generous also
enforces a positive relation between two players’ payoffs, but now
the opponent’s payoff is higher than the payoff of Generous
(Stewart and Plotkin, 2013). In this case, as the opponent adapts
to improve his own payoff, both players move toward mutual
cooperation (Stewart and Plotkin, 2013; Hilbe et al., 2018). Thus,
facing ZD strategies with the positive slope of the line, when the
opponent adjusts his own strategy to increase his payoff, he
increases the ZD player’s payoff even more. Moreover, when he
achieves his own maximum payoff, the ZD player’s payoff is also
maximized. These strategies are called positively correlated ZD
(pcZD) strategies (Chen and Zinger, 2014). These characteristics
have attracted much attention from researchers in evolutionary
games. Thus, ZD strategies have been studied in the context of evo-
lutionary games (Akin, 2016; Adami and Hintze, 2013; Hilbe et al.,
2013a,b, 2015a; Chen and Zinger, 2014; Szolnoki and Perc, 2014a,
b; Wu and Rong, 2014; Liu et al., 2015; Xu et al., 2017, 2019; Wang
and Guo, 2019; Stewart and Plotkin, 2013; Mao et al., 2018).
Besides evolutionary games, ZD strategies have been studied from
various directions. Examples are games with a discount factor
(Hilbe et al., 2015b; McAvoy and Hauert, 2016, 2017; Ichinose
and Masuda, 2018; Govaert and Cao, 2019), games with observa-
tion errors (Hao et al., 2015; Mamiya and Ichinose, 2019), multi-
player games (Hilbe et al, 2014a, 2015a; Pan et al, 2015;
Milinski et al.,, 2016; Stewart et al.,, 2016; Ueda and Tanaka,
2020) continuous action spaces (McAvoy and Hauert, 2016, 2017;
Milinski et al., 2016; Stewart et al.,, 2016), alternating games
(McAvoy and Hauert, 2017), asymmetric games (Taha and
Ghoneim, 2020), animal contests (Engel and Feigel, 2018), human
reactions to computerized ZD strategies (Hilbe et al., 2014b;
Wang et al., 2016), and human-human experiments (Hilbe et al.,
2016; Milinski et al., 2016; Becks and Milinski, 2019).

In those studies, Mamiya and Ichinose showed the existence of
ZD strategies in games with a discount factor and observation
errors (Mamiya and Ichinose, 2020). These two factors are an
important generalization because they are better able to capture
real life interactions which are often noisy. In their analyzes, how-
ever, the conditions for the existence of zero-determinant strate-
gies are not mathematically analyzed although some numerical
examples are shown. Here, we analytically derive those conditions
and study how these two factors affect the existence of ZD
strategies.

2. Model

We consider the symmetric two-player two-action RPD game
with imperfect private monitoring. Each player i € {X,Y} chooses
an action g; € {C,D} in each round, where C and D imply coopera-
tion and defection, respectively. After the two players conduct the
action, player i observes private signal w; € {g,b} about the oppo-
nent’s action, where g and b imply good and bad, respectively. Let g
(b) be the correct signal against the action C (D). o(w|a) is the prob-
ability that a signal profile @ = (wx,wy) is realized when the
action profile is @ = (ax, ay) (Sekiguchi, 1997). Let € be the proba-
bility that an error occurs to one particular player but not to the
other player while ¢ be the probability that an error occurs to both
players. Then, the probability that an error occurs to neither player
is T=1-2€e— ¢ We assume that the probability of observing a
correct signal is higher than that of an incorrect one;
1/2 < 7 < 1. For example, when both players take cooperation,
7((8,8)(C.0)) = 1 - 2¢ — & 6((g,b)|(C.C)) = a((b.g)|(C,C) = ¢,
and a((b,b)|(C,C)) = ¢ are realized.
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In each round, player i’s realized payoff u;(a;, ;) is determined
by his own action a and signal «; such that
ui(C,g) = R,u;(C,b) = S,u;(D,g) =T, and u;(D, b) = P. Hence, player
i's expected payoff against the action profile a is given by

fila) => ui(a;, w)o(wla). (1

The expected payoff is determined by only action profile a regard-
less of signal profile w. Thus, the expected payoff matrix against
actions is given by

CcC D
C (Rg Sg (2)
D\Tg Pg)
According to Eq. (1), RgSg,T;, and P are derived as

Re=R(1-€-&+S(€e+),Se=S(1—-€—&)+ R(e+¢),Tg=T
(1-€—-¢&) +Pe+¢&),Pp=P(1 —€—¢&)+T(e+ &), respectively. We
assume that

TE > RE > PE > SE, (3)
and
2Ry > Tg +SE, (4)

which dictate the RPD conditions with imperfect private monitor-
ing. In this paper, T,R, P, and S are chosen such that T, Rg, Pg, and
Sg are fixed.

We introduce a discount factor to the repeated game. The game
is to be played repeatedly over an infinite time horizon but the
payoff will be discounted over rounds. Player i's discounted payoff
of action profiles a(t), t € N is §'f;(a(t)) where § is a discount factor
and tis a round. 6 can also be interpreted as the probability that the
next round takes place (Wang et al., 2015). Finally, the average dis-
counted payoff of player i is

5= (1-8)> 3f,(a(0). (5)
t=0

Consider player i that adopts memory-one strategies, with
which they can use only the outcomes of the last round to decide
the action to be submitted in the current round. A memory-one
strategy is specified by a 5-tuple; X's strategy is given by a combi-
nation of

P = (P1,D2,P3,P4; Do), (6)

where 0 < p; < 1,j € {0,1,2,3,4}. The subscripts 1, 2, 3, and 4 of p
mean previous outcome Cg, Ch, Dg and Db, respectively. In Eq. (6), p,
is the conditional probability that X cooperates when X cooperated
and observed signal g in the last round, p, is the conditional prob-
ability that X cooperates when X cooperated and observed signal
b in the last round, p; is the conditional probability that X cooper-
ates when X defected and observed signal g in the last round, and
D4 is the conditional probability that X cooperates when X defected
and observed signal b in the last round. Finally, p, is the probability
that X cooperates in the first round. Similarly, Y’s strategy is speci-
fied by a combination of

q = (41.92,93,44;90), (7)

where 0< q; < 1,j€{0,1,2,3,4}.

Define v (t) = (v1(t), v2(t), v3(t), v4(t)) as the stochastic state of
two players in round t where the subscripts 1, 2, 3, and 4 of vimply
the stochastic states (C,C), (C,D), (D,C), and (D,D), respectively. v (t)
is the probability that both players cooperate in round ¢, v, (t) is the
probability that X cooperates and Y defects in round t, and so forth.
Then, the expected payoff to player X in round ¢ is given by »(t)Sx,
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where S)T( = (Rg, Sg, Tk, Pr). The expected per-round payoff to player
X in the repeated game is given by

sy=(1— 5)5}3[

t=0

v(t)Sx, 8)

where 0 < 4§ < 1.
The initial stochastic state is given by

(0) = (PodoPo(1 = qo), (1 = Po)qo: (1 = Po)(1 — qo))- 9)

The state transition matrix M of these repeated games with obser-
vation errors is given by

™1qq (1 -4) (1 -p1)G T(1-p)(1-aq)
+€P1q; +epi(1—4,) +€(1-py)q; +€(1-py)(1-q,)
+€DP,q, +€py(1 - ¢qy) +€(1-p2)a +€(1=py)(1—q4)
20/ \ (1= 03) ) \+E(1 =p2)da ) \+E(1=p,)(1 - @)
€P1qs ep;(1-¢s) €(1-p1)gs €(1—-py)(1—4qs)
+p1Ga || +pi(1=qq) || +E(1=pi)qs || +¢(1=p1)(1 —qa)
+1P,243 +7p,(1 — q3) +7(1—Pp,)qs +7(1=po)(1 - q3)
M= +€P204 +€py(1—4q4) +€(1-p,)4s +€(1=py)(1 - q4) (10)
€Psqy €eps(1—q;) €(1-ps3)q, €(1-p3)(1—qy)
+Tp3q> +1p3(1 - q3) +7(1 - p3)q, +7(1 - p3)(1-q3)
TPy || +¢pa(1—q1) || +¢(1=pa)ar | | +¢(1=pa)(1 —q1)
+E€P4q> +eps(1—4qy) +€(1 = P4)q, +€(1=py)(1-1qy)
psqs éps(1-¢3) &(1-p3)qs ¢(1—p3)(1—gq3)
+€P30y +eps(1—qy) +€(1—ps)q, +€(1—p3)(1-q,)
+€D4q3 +eps(1-4q3) +€(1 = Pp4)qs +€(1 = pa)(1—q3)
+TP4qs +1p4(1—4q4) +7(1 = P4)ds +1(1—py)(1 —q,)
Then, we obtain
o]
sx = (1-0)p(0)>_(6M)'Sx = 'Sy, (11)
t=0

where ¢" = (1 — §)(0)(I — M) ', which is the mean distribution of
v(t) and I is the 4 x 4 identity matrix. Additionally, we define

Podo Po(1—¢o) (1-Do)go (1 —Dpo)(1—qp)

| Podo Po(1—qo) (1—-Ppg)do (1 —po)(1—do)
Mo=1 psdo po(1 o) (1-po)as (1-po)1-gp) | %
Podo Po(1—¢qo) (1-Do)go (1 —Dpo)(1—qp)

Because v; + v, + v3+ vs =1, 9(0) = vTMO holds. By substituting
v(0) = v"M, in o' = (1 -8 w(0)(I—sM)"' and multiplying both
sides of the equation by (I —JM) from the right, we obtain
v'(I-6M)=(1-6)»"M,. Thus, we obtain »'M =0, where
M' =M + (1 — §)M, — I. We immediately obtain an expression for
the dot product of an arbitrary vector f = (fy,f,,f5,f4) with the
fourth column vector u of matrix M’ as a consequence of Press
and Dyson’s formalism, which can be represented by the form of
the determinant

3(TP1qy + €P1Gy + €P2G1 + EP2dy) — 1+ Podo(1 — )
0(€p1Gs + ED1q4 + TP2G5 + €P2q4) + Podo(1 — 0)
0(€psqy + P3Gy + P4y + €P4q) + Poqo(1 — 0)
0(EP3qs + €D3q4 + €P4q3 + TP4q4) + Podo(1 — 0)

u.f:

where =1 -€— ¢ and 17 = € + & Furthermore, Eq. (13) should be
normalized to have its components sum to 1 by u-1, where
1=(1,1,1,1). Then, we obtain the dot product of an arbitrary
vector f with mean distribution ». Therefore, we obtain their per-
round expected payoffs:

S(ppy +1p2) — 1+ po(1 = 9)
o(Mpy + 1py) — 1+ po(1 - 9)
O({p3 + NPs) + Po(1 - 9)
o(MP3 + 1P4) + Po(1 —9)
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< _U-Sx_D(p.g5x)

KV T D) 14
. 7u’SY7D(p7q7SY)

VTN T D) 1)

When we set 6 =1, Eq. (13) corresponds to Eq. (2) of Hao et al.
(2015). By using Eq. (13), we can calculate players’ per-round
expected payoffs when 0 < 6 < 1 by the form of the determinants.
6 =1 is the case where future payoffs are not discounted.

3. Result

We analytically study conditions for the existence of Equalizer
and pcZD strategies as a function of observation errors and a dis-
count factor in Repeated Prisoner’s Dilemma games with imperfect
private monitoring.

A player X can choose a strategy p so that he unilaterally
enforces asx + fsy + 7 = 0 to Egs. (14) and (15) for any opponent’s
strategy g. As shown in Mamiya and Ichinose (2020), such a strat-
egy of player X is given by

o(ppy +1py) = 1+ po(1—0) = oRe + BRe +7,

o(Npy + mupy) = 1+ po(1 —6) = oSg + pTe + 7, a6)
O(Ups +1Ps) +Po(1—0) = aTp+ pSp+7,
0(Np3 + 1ps) + Po(1 —0) = aPp + pPp + 7.

Strategies which satisfy Eq. (16) are ZD strategies. «, 8, and ) are
parameters determined by player X. Equalizer, Extortion, Generous,
and pcZD strategies are derived by giving appropriate values to o, j3,
and y. In this paper, # satisfies 1 = € + ¢ < 1/2 because of assuming
1/2<1<1.

3.1. Equalizer

3.1.1. Expression
We substitute o = 0 into Eq. (16) to obtain Equalizer:

o(py +1py) = 1+po(1-0) = pRe+7,

o(py + Upy) = 1+po(1-90) = pTe+7, an
O(Up3 +1MPs) +Po(1 = 6) = pSe+7,
3(1p3 + Wps) +Po(1 =) = BPp+7.

Equalizer can fix the opponent’s payoff no matter what the oppo-
nent takes, which means that sy = —y/g. From the four equations
in Eq. (17) we have

o(uqy +1g;) —1+qo(1-9) f4
o(1qs +1qs) +qo(1=9)  f,
o(nqy + pGy) =1+ qo(1-9) f3
3(nqs + Uqs) +qo(1—0)  f4

=D(p,q.f),

(13)

(1-0py +0ps)(1H—1)

b =y Re—Pr) (T —Se)
(10D, Do+ 0D) (1Pr —15¢) + (By — 0Dy +004) (tRe ~1Te)
(R —Pg) —n(Tg —Sg)

(18)
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Fig. 1. Minimum discount factor J. against error rates 7.

Also, p, and p; can be rewritten as

p, =P (U(Tg — Pe) = n(Re = Sg)) — (5 + Pa)(Te — Re)
: U(Rg — Pg) — (T — Sg) ’

by = (3 — P1)(Pe — Sg) + pa((Re — Se) — n(Te — Pg))
} U(Re — Pg) — (T — Sg) '

We substitute Eq. (18) into sy = —y/p to obtain

(19)

Sy =

(1—0py +0py)(u—mn)

(20)
Eq. (20) is a weighed average of (uPr—#nSg)/(u—n) and
(URe — nTE)/(1 — 1) with non-negative weights. Therefore, when 7
satisfies p(Rg — Pg) — n(Tg — Sg) > 0, that is

R — Pg

R A ) =

Equalizer can impose any payoff value sy such that

,uPE — 1’]5}5 <sy < ,URE — 1’]TE (22)
w=n w=n

If player X sets p, = p, = 0, he can impose sy = (uPg — 3Sg)/ (it — 7).
If player X sets p; = p, = 1, he can impose sy = (uRr — §Tg)/ (1t — }).
In the previous study (Mamiya and Ichinose, 2020), the condition of
error rates for the existence of Equalizer was not analytically
obtained. In this study, we analytically derived the condition, that
is Eq. (21). Any Equalizers no longer exist when 5 satisfies
1. < n < 1/2 (Appendix A).

3.1.2. Existence condition

In this section, we identify the condition for 6 under which
Equalizer can exist. When # satisfies n <#.,n also satisfies
W(Tg — Pg) — n(Rg — Sg) > 0 and p(Rg — Sg) — n(Te — Pg) > 0 because
of the RPD condition Tg > Rr > Pr > Sg. As you can see in Appendix
A, any Equalizers no longer exist when # satisfies . < 17 < 1/2. Eq.
(19) indicates that an Equalizer strategy exists if and only if

0 < py(A(Te — Pe) — n(Re — Se) — (5 -+ P ) (T~ Ro)
< U(Re — Pg) — (T — Sp), (23)

0< (% = P1)(Pe — Sg) + p4(U(Re — Sg) — 1(Te — Pg))
< W(Rg — Pg) — n(Tg — Sg), (24)

for some 0 < p; < 1and 0 < p, < 1. Independent of 6, p, and p, sat-
isfies the second inequality of Eq. (23) and the first inequality of

(1 = 3py — Po + Pg) (UPE — 1SE) + (Po — P + IP4) (URg — 4TE) .
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Eq. (24) because they are satisfied in the most stringent case, i.e,
p; =1 and p, = 0. The first inequality of Eq. (23) and the second
inequality of Eq. (24) lead

H(Te — Pg) — n(Re — Sg) 1
p4< TEfRE p]757 (25)

and

Pa < HU(Rg — Pg) — n(Te — Sg)
M(Rg — Sg) — n(Tg — Pe)
.

' 5) WRe —Se) — n(Te — Pr)’

respectively. From these inequalities, the feasible set (p;,p,)
becomes smaller as ¢ decreases. When & decreases, the last Equal-
izer left is the strategy with p, = 1 and p, = 0. Therefore, the condi-
tion for § under which Equalizer strategies exist is given by

(26)

[
T —Re Py —S¢ ) 27)
M(Re — Pg) — n(Tg — Seg) + Tp — Re " ft(Re — Pg) — n(Tg — Sg) + Pe — S /)

Emax(

In the case that R + Pr < Tg + Sk is satisfied, the first element in Eq.
(27) is larger than the second one (Eq. (156) of Appendix F). In the
case that Rg + Pg > Tg + Sg is satisfied, the second element in Eq.
(27) is larger than the first one (Eq. (151) of Appendix F). Finally,
in the case that Rg + P = Tr + S¢ is satisfied, both elements take
the same value.

When there are no observation errors but a discount factor
(=0 and é6<1), 6. with # =0 corresponds to Eq. (32) in
Ichinose and Masuda (2018).

3.1.3. Numerical examples

Here we numerically show the minimum discount factor
dc against error rates (Fig. 1). We wused (Tg, R, P, Sg) =
(1.5,1,0,-0.5) in the figure. As the figure shows, 6. = 1/3 when
there are no errors (7 = 0). Thus, Equalizer can exist within the
range of 1/3 < 6 < 1. However, as error rates increase, 6. becomes
larger. Large error rates make the range of § narrow where
Equalizer can exist. As shown in the figure, 6. = 0.4167 when
1n=0.1,6. = 0.5556 when # = 0.2, and . = 0.8333 when n = 0.3.
When 5 = 1/3, Equalizer can only exist at 6 = 1.

Fig. 2 shows the range of the expected payoff of the opponent
which Equalizer can enforce as a function of error rates. When
there are no errors, Equalizer can fix the opponent’s expected pay-
off to any values between Pz = 0 and R = 1. However, when there
are errors, the controllability of Equalizer becomes weak. As error
rates increase, the range of the opponent’s payoff becomes nar-
rower. The ranges of the expected opponent’s payoffs are

1.0

0.6

Sy

0.2

%99 0.1 0.2 03 0.4 0.5
n=e+¢§

Fig. 2. Ranges of expected opponent’s payoffs sy which Equalizer can enforce.
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0.0625 < sy < 0.9375 when 1 =0.1,0.1667 < sy < 0.8333 when
n =0.2, and 0.3750 < sy < 0.6250 when 7 =0.3. When 5 =1/3,
Equalizer can only fix the opponent’s payoff at sy = 0.5. When
1 > 1/3, Equalizer no longer exists.

3.2. Positively correlated ZD strategies
3.2.1. Expression

By substituting o = ¢, f = —¢), and y = ¢(y — 1)x into Eq. (16),
ZD strategies for player X can be rewritten as

o(upy +1pa) +(1=6)py =1-9¢(x — 1)(Re — K),

d(Mpy +upy) +(1=0)pg =1 —¢(Te —Sg + (1 — 1)(Te — K)),
o(ups +1py) + (1 =0)py = ¢(Te — Sg + (X — 1)(K = Sg)),
o(Mps + uUps) + (1 =06)py = ()} — 1)(k — Pg),

(28)

where ¢, %, and k are the coefficients. Eqs. (14) and (15) allow
player X using ZD strategies to enforce

Sy — K = (Sy — K) (29)

for any strategy q of the opponent player Y. We call y a correlation
factor. The parameter x is called the baseline payoff. Player X can
make the payoffs between X and Y positively correlated with
x = 1. ZD strategies which enforce Eq. (29) with some fixed
y = 1 are called positively correlated ZD (pcZD) strategies in Chen
and Zinger (2014).

3.2.2. Existence condition

In this section, we analytically derive the condition for pcZD
strategies to exist according to the degree of error rates and a dis-
count factor. When 6<1 and =1 hold, no solution
p;,j €{0,1,2,3,4} which satisfies Eq. (28) exists. Thus, ZD strate-
gies with ¥ =1 do not exist when é < 1. Therefore, in the follow-
ing, we assume y # 1. By solving Eq. (28) for p;,j € {1,2,3,4},

:1—¢2{RE—K—ﬁ<L;SE+T5—RE)}~,
:1*¢’5{{RE*K+ﬁ<L§SE+TE*RE)}-,
:¢Z{K—P5+’—ln<TE;SE+PE—SE>},

(

op; + (1 =6)pg
op, + (1 =9)pg
ops3 + (1 -90)pg

opat+(1—0)py = o {i—Pe— 7 (T5% + P = S¢) },

(30)
are obtained, where y=x—-1#0. By applying
0<p;<1,je{1,2,3,4} to Eq. (30)

- )
(=91 -po) < o Re - - (T2 1o ke ) |
< (1=0)(1=po) +9, (31)
. T - S
(=01 - po) < oz{Re et 2 (T2 1o k)|
< (1=0)(1=po) +9, (32)
. . Te—§
(1*5)p0<¢X{K*P5+ﬁ< Ej( E+PE*SE)}

< (1=90)pg+9, (33)
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n ~ S >}
K—Pp——— +P;—S
W{ ST n< 7 o

<(1=9)po +9, (34)

are obtained. The sum of the first inequality in Eq. (31) multiplied
by u and the first inequality in Eq. (32) multiplied by # becomes

(1=0)(1=po) < &% — 1)(Re — K). (35)

Similarly, the sum of the first inequality in Eq. (33) multiplied by #
and the first inequality in Eq. (34) multiplied by u becomes

(1-9)po

(1=0)py < ¢(x — 1)(K — P). (36)
Summing up the obtained two inequalities shows
1-0<¢(y—1)(Re —Pg). In particular, ¢(x —1) >0, therefore

x>1and ¢ >0. ¢ <0and y <1 is omitted because if we assume
% < 1, no ZD strategies with 0 < y < 1 exist and ZD strategies with
% < 0 are not pcZD strategies (Appendix B). Additionally, Eq. (35)
and Eq. (36) imply Pr < ¥ < Rg when ¢(y — 1) > 0.

Because all of the middle terms from Eq. (31) to Eq. (34) are
greater than or equal to zero, we obtain

L) <
Pg+—— +Pr—Sp) <
Fu-n g T
SRE_M717< 7 +TE—RE) (37)
In the following, we analyze Eqs. (31)-(34) by dividing into three
cases (1) 0<py <1,(2)py =0, (3) pp =1 as follows.
(1) Caseof 0 < p, < 1:
Eqgs. (31)-(34) lead to
/({RE —K— 7 (TEQSE + TE — RE>}
(1-06)1=po)+0
}/{RE—K——(TE SE+TE—RE>

<

H=n

— | =

) (T=0)1—py) ’ 2
X{RE—K+ﬁ(Tﬁ—;SE+TE—RE>} 1
(T=0)(1—-po)+0 <%
TARe — K+ 5 (1% 4+ Te — R
A <1’§><<1/po>E & %)
- Pe+ it (T4 Pe-Se) )
(A= o)py+0 <%
ol poy i (Te=Se  p.
dergizos
d—opy+0 <%
o (Te=Se _
<7{K K ?1”—(5)119:& SE)}' @)

The condition under which a positive ¢ value that satisfies Egs.
(38)-(41) exists is given by
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5 Tp=S,

X{RE— K-&-ﬁ(%-FTE—RE)}
(1-0)(1—po)+0

< , 42
-0)1-po) @)
)A({RE—K-&-,%”(TE.—;SE-FTE—RE)}
(1-06)(1—po)+9
¥ _p._ " (Te=Se _
<X{K PE H*'I( 7 +PE SE)}7 (43)
(1-9)po
}A({K—PE-FIL%(TE.—ZSE-FPE—SE)}
(1=9)py +9
¥ e (Te=Se _
<X{RE K H*W( 7 +TE RE)}7 (44)
(1=9)(1=py)
= Pe+ oty (5% 4+ Pe = St )}
(1=96)py+9
¥ _p. " (Te=Se _
gX{K P H,,,( 7+ Pe 55)}- 45)
(1-4)po
Solving the above inequalities for x, we obtain
Lo 1)(1—po)+1 (Te—S
K< Ry b )Lfnp()) ”(EZ E+TE—RE>, (46)
Tr —
K>Ps+ﬁ<EysE+PE*SE)+(1
T —Sg | ((Tg —Re) — n(Pe — SE)}
— O)pod Re — Pp+ - . @7
)pO{E 3 7 TR (47)
K<Rf—ﬁ(T‘f}Tc55+TE—RE)—<1—6)(1
Te =S u(Pe—Sp) —n(Te — RE)}
)R —Pp 7 48
po{Rs - o (48)
I _Dpy+n (Te =S
o> e G (TSt ;) (49)

(Appendix C). The condition under which a positive x value that
satisfies Eqs. (46)-(49) exists is given by

n TE—SE )
Pe+—— (4P -5 ) +(1
’ u—n( R

Tp—Se ,U(TE*RE)*”I(PE*SE)}
—0)Pos Re = Pp +——5—+
)Po{ E— Ik 5 w—1
(l—l)(l—Po)“"?(TE*SE )
<R -2 —+Tr—Rg ), 50
\ . S Te - R (50)
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P5+%<TETSE+PE—SE> +(1

Vi
Tg - S Te —R:) = n(Pr—S
—5)p0{RE—PE+ EX I 2_2(5 E>}

< Re 1 (TE;SEJrTE*RE)*(l*&)(l

S Hen
Te—Se . u(Pe—Se) — Tz — R
—po){Rs—Ps+ EZ g 0 E;_Z( : E)},

1_ _

Pe + G=Dpotn (TE - SE+PE*SE>
n-n X

1_ _ _

(5 1)!(117 np0)+’7 (TE - SE+TE *RE), (52)

<Re—
t 7

1_ _

PE+(6 ]>p0+n<TE = SE+PE—SE>
- 7

L(MJFTE—RE) (-4

n=n X
Tg —Sp  p(Pg — Sp) —n(Te - RE)}
- Rg —Pe+——+ . 53
por{Re - Pe4 T — (53)
In this case, the above inequalities satisfy Eq. (37). From the above
inequalities,
(1 —=0+20m)(Te — Sg) < {0(1(Re — Pe) — n(Te — Sg)) — (1
= 0)(Te — Re)} 1, (54)

<Re —

(1 =0+ 26n)(Te — Sg) < {0(1(Re — Pg) — n(Tg — Sg)) — (1
—=0)(Pe —Sg) — (1 = 0)po(Te — Re
—Pe+Sg)}7, (55)

(1 =0+ 20m)(Te — Sg) < {0(u(Re — Pg) — n(Tg — Sg)) — (1
= 0)(Te — Re) + (1 = 0)po(Te — Re
—Pe+Se)} 1 (56)

(1 =06+ 20n)(Te — Sg) < {0(u(Re — Pg) — n(Tg — Sg)) — (1

—0)(Pe —Se)} s (57)
are obtained (Appendix D). Because the left-hand side of these
inequalities are always greater than zero and j > 0, the coefficient

of ¥ must be greater than zero. Therefore, § > 6. and 1 < 7. must
hold (Appendix E). Egs. (54)-(57) are transformed into

(1 —0+20n)(Te — Sg) <y
S((Rg — Pe) —n(Te — Sg)) — (1 —0)(Te —Re) ~ 7

(58)

(1 -6+ 26n)(Tg — Sg)
(1R — Pe) —n(Te — Sg)) = (1 = 6)(Pg — Sg) = (1 = 0)po(Te — Re — Pe + S)
<k

(59)

(1 -0+ 20n)(Te - Sp)
o(u(Rg — Pg) — n(Tg — Sg)) — (1 = 6)(Te — Re) + (1 — 6)po(Te — Rg — P + Se)
<I

(60)
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(1 -6+ 20n)(Te - Sp)
S(i(Rg — Pe) — (T — Sg)) — (1= 0)(Pe — Sp)

When Rg+Pg>Te+Sg Eq. (61) is the maximum. When
Re+Pg<Tg+Sg, Eq. (58) is the maximum. When
Rg + Pg = Tg + Sg, Eqs. (58)—(61) take the same value (Appendix
G). Therefore, when 0 < p, < 1, pcZD exists if and only if § > J,
and 1 < 7., where the . and 7. values coincide with those for
Equalizer which are given by Eq. (27) and Eq. (21). Under 6 > J,
and 17 < 1., Eqs. (58) and (61) imply

1= A =max()y, 1a), (62)

where

< (61)

(1—0+20m)(Te — S)

H=1+

O(1(Rg — Pe) — n(Te — Sg)) — (1 = 0)(Te — Rg)’
(1 -0+ 20n)(Te — Sg)
=1 . 64
72 =1 SR = Pe) — (Te — S)) — (1 - 9)(Pe — So) (4
(2) Case of p, = 0:
In the case of p, = 0, Egs. (31)-(34) lead to
n TE SE )} 1
Rg—K——— +Te—R
X{ t = 17( 7 SN )
e (Te=Se _
<X{RE K ,7< S Ty RE>}7 .
1-9
Hu Te — Sg )} 1
R — K +— = +Tg — R <=
’C{ t = n< 7 )Y
y Te—Se _
< X{RE - K+ ﬂ <f+ TE RE>} (66)
1-6
Y _ K (TeSe _
X{K PE+/"'7( l +PE SE>}<17 (67)
0 ¢
5 _ _ M (Te=Se _
’C{K P #—*1( 7P SE>}<1. (68)

o S
The condition under which a positive ¢ value that satisfies Eqs. (69)
and (70) exists is given by

)A({RE—K-F—'l_l”(TEXSE-l-TE—RE)}

u
S 1 Tg—Sg
gX{RE—K_u_ln<T+TE_RE>}7 (69)
1-6
}AC{K_PE‘Fﬁ(%‘FPE_SE)}
1)
Te—Se _
<X{RE_K_W< +TE RE>} (70)
1—6
Solving Egs. (69) and (70) for «,
L 1) 4+n(Te-5S
KgRE—(‘)M_)”’/I<EZ E+TE—RE>, (71)
Te - S
ey (g e e -
75){R57PE+TETSE+M(PE*SE)717(TE*RE)} (72)
X n-n

are obtained. If these inequalities hold, the second inequality of Eq.
(37) is automatically satisfied. Thus, we only need to consider the
two conditions above and the following condition:
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n )

Pp+——
g u—n( 7

These three conditions are the same as the inequalities from Eq.
(46) to Eq. (49) in the case of p, = 0. We obtain J.,#, and . as
the case of 0 < p, < 1. Therefore, in the case of p, = 0,7, is given
by Eq. (21), d. is given by Eq. (27) and g, is given by Eq. (62).

(3) Case of p, = 1:

In the case of p, = 1, Eqs. (31)-(34) lead to

+P5755> <K. (73)

gy (s enon)) )

)A({RE—K"‘TMW (;'EKSE—%TE—RE)}g% (75)

He-pe gty (7 R g
Z{KPEJF;:HI;(_TE;EJFP 7SE)}7 (76)

Hepe gty (e se) <5

gZ{K—PE—ﬁ(TE 4 Py ‘SE)} (77)

1-0

The condition under which a positive ¢ value that satisfies Egs. (78)
and (79) exists is given by

Z{RE—KJrﬁ(TE%MTE—RE)}

5
gl — Pp — L (TeSe _
<X{K Pty (7 + P SE)}, (78)
1-6
; Te—S
X{K_PE—i_‘ulj,/,( EX E+PE—SE>}
Y —py — M (Te=Se _
< X{K PE u-n ( + PE SE)} (79)
1-5
Solving Egs. (78) and (79) for x,
n — S
P+ — ( +P 75> el
T S
—6){RE—PE+TE?5E+“(TE—RE>—n(PE—SE)}
L n=n
<K, (80)
—14+n(Tg-S
PE+ ‘u 1717<EM E+PE_SE)\ . (81)

If these inequalities hold, the second inequality of Eq. (37) is auto-
matically satisfied. Thus, we only need to consider the two condi-
tions above and the following condition:

K< Rg——1— (TE 7 S RE> (82)

These three conditions are the same as the inequalities from Eq.
(46) to Eq. (49) in the case of p, = 1. We obtain J.,#, and . as
the case of 0 < p, < 1. Therefore, in the case of p, = 1,7, is given
by Eq. (21), d. is given by Eq. (27) and y, is given by Eq. (62).
From the above, we derive the condition of #, d, x and y where
pcZD strategies exist. We reveal that the condition of 6 is § > J, the
condition of # is given by 7 < #,, the condition for x is given by Eq.
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(37) and the condition of y is given by Eq. (62). The é. and #, are
given by Eq. (27) and Eq. (21).

% with 7 =0 corresponds to Eq. (67) and Eq. (84) of Ref.
Ichinose and Masuda (2018). Ichinose and Masuda derived that
% takes the same value in both x =P and k = R cases (Ichinose
and Masuda, 2018). Here we show that, not just x =P and
K = R, . takes the same value for all x such that P < x < R when
there are no observation errors but a discount factor (1 = 0 and
d<1).

When there are observation errors and no discount factor (7 > 0
and ¢ = 1), Hao et al. have numerically showed the conditions for k
and y (Hao et al., 2015). In our study, we analytically show the con-
ditions for x and y, where « is given by Eq. (37) and y is given by
Eq. (62) when § = 1.

3.2.3. Numerical examples

Fig. 3 shows the base line payoff x and correlation factor y
which pcZD can enforce when a discount factor and error rates
change. The figure represents Eqs. (46)-(49) and Eq. (62) when
the error rates are #=0.0,0.1 and the discount factor
6=1.0,0.9,0.8. T,R,P, and S are set so that
(Tg, Rg, Sk, Pg) = (1.5,0.5,0.0, —0.5) are satisfied. Thus, the values
of T,R,P and S change depending on the value of . The green
regions represent the possible pcZD strategies when p, = 0. When
Do is arbitrary, the hatched regions including the green regions are
possible.

Fig. 3(A-C) are the cases of 6 = 1.0,0.9 and 0.8 when the error
rate is fixed at zero (17 = 0.0). As seen in the figures, y, becomes lar-
ger when the discount factor 5 decreases. On the other hand, the
existing region of x which pcZD can enforce does not change when
Do is arbitrary. In Fig. 3(B and C), when p, = 0, only x with x = P
can take y = .. This strategy corresponds to Extortion. p, must be
properly set when x # P; is required. For instance, p, must be
Po =1 when y = 3, and k = R are required. This strategy corre-
sponds to Generous.

A 6§=1.0 B

=
U

6
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Fig. 3(D-F) are the cases of 6 = 1.0,0.9, and 0.8 when the error
rate is fixed at 0.1 (7 =0.1). As well as the case of no errors, y,.
becomes larger when the discount factor § decreases. From these
figures, we can see the region of x becomes small depending on
1. When 6 = 1.0, only k with k = 0.5 can set y = .. This fact has
been numerically shown in Hao et al. (2015). In contrast, in the
cases of 0 < 1.0, the regions of x expand y = ., however, the
regions are small compared to the case of » = 0. Moreover, .
becomes larger depending on 7 and 6. Thus, the regions of y and
K become small even though the regions of x expand which can
take y = x..

Fig. 4 shows y. for pcZD when a discount factor and error rates
are varied. As seen in the figure, when there is neither a discount
factor nor error rates, pcZD can take any y with y > 1. However,
when there are errors or a discount factor, the range of y becomes

20.0
6
7.5 — 1.0
15.0 0.9
— 0.8
125 — 07
€] — 0.6
10.0
i — 0.5
7.5
5.0
2.5
0'%.0 Oil 0f2 0;3 Oi4 0.5
n=e+§

Fig. 4. Minimum correlation factor y. for pcZD when the discount factor and the
error rates are varied.

0.9 C 0.8

=0.0

n

Base line payoff k

Xc=1.0

Xe=1.235

Xe=1.571

|
= o
[ Y,

=
o

0.1

Base line payoff k

n

Xe=1.571

Xc=1.966

Xc=2.565

|
o
n

1 5 10 15 20 1 5

Correlation factor x

Correlation factor x

20 1 5 10 15
Correlation factor x

10 15 20

Fig. 3. Possible regions of base line payoff x and correlation factor y which pcZD can enforce. Green regions represent the possible x and y for pcZD when p, = 0. Hatched
regions, which include green regions as their subsets, represent the possible i and y for pcZD when p, is arbitrary. Blue lines represent the minimum correlation factor .. We
set (Tg,Re, Se, Pp) = (1.5,0.5,0.0, —0.5). Each panel represents Eqs. (46)-(49) and Eq. (62) when error rates are # = 0.0,0.1 and discount factors é = 1.0,0.9, 0.8, respectively.

When § = 1.0,k and y do not depend on p, because there is no discount factor.
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narrow. As the error rate increases or the discount factor decreases
from 1, the range of y becomes narrower. When ¢ =1, are
1.0,1.57143,3.0,and 13.0in# = 0,0.1,0.2, 0.3, respectively. When
6=09,%. are 1.2353,1.9655,3.9677, and 33.0 in
1n=0,0.1,0.2,0.3, respectively. When 6=0.8, % are
1.5714,2.5652, and 5.7273 in # =0,0.1,0.2, respectively. When
6=0.7, . are 2.0909,3.5882, and 9.9231 in # = 0,0.1,0.2, respec-
tively. When 6=0.6,%. are 3.0000,5.7273, and 33.0 in
n =0,0.1,0.2, respectively. When 6 = 0.5, . are 5.0 and 13.0 in
1n =0,0.1, respectively. When y is large, if the opponent improves
his payoff, the payoff of the pcZD player is improved, more than the
opponent. Thus, for the opponent, the motivation that improves his
payoff becomes weak because the range of improvement
decreases.

4. Conclusions

In this study, we introduced observation errors and a discount
factor in the RPD games and analytically investigated the condi-
tions in which Equalizer or pcZD strategies can exist. As a result,
we obtained the conditions for the discount factor and the error
rate where those strategies can exist. As the error rates increase,
the payoff of the opponent which Equalizer can control becomes
narrower. Moreover, as the error rates increase, Equalizer can exist
only when a discount factor is high. On the other hand, the ranges
of the slope y and the baseline payoff x for pcZD becomes narrow
as a discount factor becomes small or the error rate becomes large.
In short, our results show that it is difficult for Equalizer and pcZD
to exist when those factors are considered and that the controlla-
bility of the linear lines for Equalizer and pcZD decrease due to
those two factors.

We have only considered observation errors but various other
types of errors occur in animal and human behaviors. The effect
of such errors on cooperation has been studied by using the PD
game (Stephens et al., 1995; Szolnoki et al., 2009; Nakamura and
Masuda, 2013; Szolnoki and Perc, 2014c). Implementation errors
in the RPD game (Stephens et al., 1995), noise for strategy updating
in the spatial PD game (Szolnoki et al., 2009), incomplete observa-
tion in indirect reciprocity (Nakamura and Masuda, 2013), and
deceitful defectors (Szolnoki and Perc, 2014c) have been incorpo-
rated. It is important to explore the existence of ZD strategies
under not just observation errors but also various types of errors.

It is well known that pcZD can change the adaptive opponent’s
strategy so that the opponent’s payoff is improved. As the error
rates increase, the minimum y becomes larger as we showed. This
means that pcZD exploits the opponent more, which decreases the
motivation of the opponent to change his strategy because the
improvement of the opponent’s payoff becomes small. If there
are errors, because k can only take a value in Pg < K < Rg, neither
Extortion nor Generous can exist, which also means that it is
impossible for pcZD to enforce an exploitative or a generous linear
payoff relationship. Chen and Zinger showed the existence of
adapting paths which lead to unconditional cooperation for the
adaptive opponent in the RPD game with T>R>P>S and
2R > T+ S > 2P in the case of no errors (Chen and Zinger, 2014).
It would be interesting to show the existence of such adapting
paths even in the case with errors and a discount factor.

ZD strategies can unilaterally control the payoff of the oppo-
nent. However, as we have shown, it would be difficult for those
strategies to exist in the real world because real interactions are
often noisy. Although some previous studies have shown the role
of ZD strategies in humans, one has to be careful how noises take
place in such a situation. Finally, our results are limited to the
two-player RPD games. Other studies have focused on n-player
games (Hilbe et al., 2015a, 2014a; Pan et al., 2015; Govaert and

Journal of Theoretical Biology 526 (2021) 110810

Cao, 2019). Investigating the conditions for the existence of ZD
strategies in n-player games warrant future work.
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Appendix A. Any Equalizers do not exist when n, <y <1/2

We prove that any Equalizers do not exist when . <1 < 1/2.
First, when 3. =# (<= u(Rg — Pg) — n(Tg — Sg) = 0), Eq. (19) is
not defined. Next, we consider the case of n.<n<1/2
(n, <n <= WReg —Pg) —n(Tg —Sg) <0). In terms of Eq. (19),
0<p,<land0<p; <1leadto

(Re = Pg) = 1(Te = Se) < Py (1UTe — Pe) = 1(Re — Se))
- (§+pi) TR <0, 83)

p(Re — Pe) (T = 56) < (5= ) (P = 5e) + Pau(Re = 1)
(T~ Pg) <0, 34

We divide it into two cases (1) w(Tg — Pg) — §(Rg — Sg) > 0 or
,u(RE — SE) — VI(TE — PE) > 0 and (2) /.l(TE — PE) — V](RE — SE) <0 and
M(Rg — Sg) — n(Te — Pg) < 0.

First, we assume W(Tg —Pg) —n(Rg — Sg) >0 or
M(RE — SE) — W(TE — PE) > 0. From ,LL(TE — PE) — ﬂ(RE — SE) >0, the
first inequality of Eq. (83) is not satisfied for any p, and p,. Also,
from w(Re — Sg) — n(Te — Pg) > 0, the second inequality of Eq. (84)
is not satisfied for any p, and p,.

Second, we assume  u(Tg—Pg)—n(Re—Sg) <0 and

,LL(RE — SE) — 7’](TE — PE) <0. When Te — Pg > Rg — 557
W(Tg — Pg) — n(Rg — Sg) < 0 lead to

Tp —Pg

> ——=>1/2. 85

N2 Re—Pe=S (85)
Therefore, n<1/2 is not satisfied. When
Te — Pe < Rg — Sg, W(Re — Sg) — n(Tg — Pg) < 0 lead to

RS ). (86)

Nz2s—ph 5 o
Tg+Rg — P — S

Therefore, # < 1/2 is not satisfied. As a result, any Equalizers do not
exist when n, <5 < 1/2.
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Appendix B. ZD strategies with 0 < y < 1 do not exist

Let us consider Egs. (31)-(34) under ¢ <0 and y < 1. In this
case, we prove that ZD strategies with 0 < ¥ < 1 do not exist.

We assume that ¢ < 0 and y < 1. From here, we analyze them
by dividing them into three cases (1) 0 <p, <1, (2) po =0, (3)
Po = 1 as follows.

(MOo<py<1:

From Eqgs. (31)-(34),

7{RE*K*ﬁ(TE7TSE+TE*RE)} 1 7{er<fﬂ(”ff+TrRs)}
T—o)1-py) <3S A—0)1-py)+0

(87)

HRe—k+ 5 (B2 Te—Re)} 1 7{Re— i+ (T +Te—Re) |
T—0)1-po) S%S A=0)1-py)+0

(88)

L) JEPP S T U SY)

(1-6)po <3S (1—5)p0+5 '

(89)

i - P - (T SE+PE—SE)} 1 7{K Pe - 2 (% 4 P - ) |

(1-0)p, S5S (1-0)py+0 '

(90)

are obtained. For the above four equations, we need to check all six-
teen ways of inequalities for ¢ to exist. As one of the conditions in
those equations, the following inequality must hold

Z{RE7K+ﬁ(L;SE+TEfRE)}

(1—=6)(1 —=po)
gX{RE_K_L_n<%+TE_RE>} (91)
(1-=0)(1—po) +9

From the above, we obtain
((1 = 9)(1 —po) + op4)(Tg — S¢)

rs- ((1=0)(1 = po) +0p4)(Te — Se) — (1 = 0)(1 = po) + o) (Re — Sg) + o(pt — ) (Rg — k)
< -1,

(92)

where the denominator is positive and

—((1 = 6)(1 — pg) + ou)(Re — Sg) + 6(t — n)(Re — K) is negative when
Pr < K < Rg. Therefore, ZD strategies with 0 < y < 1 do not exist in
the case of 0 < p, < 1 because we obtain y < 0.

(2)po=0

From Eqgs. (31)-(34),

/{REfoﬂ(TE SEJrTE*RE)} 1
1-5 <7
Z{RE—K—&-ﬁ(T?—;SE-&-TE—RE)} 1
1-0 S ¢
X{RE—;HM’_‘ <TEASE+TE—RE)} (94)
%gk{K—P5+ﬁ(5%+PE‘SE>}7 (95)
1 Jyk—Pg— L (%P S
Eg { E unéx E E)}’ (96)

10
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are obtained. For the above four equations, we need to check all
eight ways of inequalities for ¢ to exist. As one of the conditions
in those equations, the following inequality must hold

X{RE—K+ﬁ(%+TE—RE)}

1-0
T - S
\7{RE_K_unn< Ex E+TE_RE>}
From the above, we obtain
(1 —on)(Tg — Sg)
(1 —on)(Rg — Sg) +

>~

(1= on)(Te = Sp) -
< -1,

o(pt—m)(Rg — K)

(98)

where the denominator is positive and
—(1 = 6n)(Re — Sg) + 6(u — n)(Re — k) is negative when P < K < Rg.
Therefore, ZD strategies with 0 < ¥ < 1 do not exist in the case of
Po = 0 because we obtain y < 0.

B)py =1t

From Eqgs. (31)-(34),

-2}

1
5 < 5 ; (99)
1 i{Re—ret it (T4 Te - Re) |
5 ) , (100)
’({KprJ“/ﬁﬂ(TE SE+P5755)}<1
1-5 S
. Te—S
< M{K—Pg-&-ﬁ( - E+PE—SE>}, (101)
Z{K—Ps—ﬁ<TETfSE+PE—SE>}<l
1-5 S
) Te—S
<afue-pe- g (B e reos) | (102

are obtained. For the above four equations, we need to check all
eight ways of inequalities for ¢ to exist. As one of the conditions
in those equations, the following inequality must hold

Z{K—PE-Fﬁ(TE;SE-&-PE—SE)}
1-9
~ n SE )}
<yliw—p -1 +P—S 103
7{ ’ ufn( T (10%)

From the above, we obtain

(1 —on)(Tg — Se)

1< - S
S T = on)(Te = Se) — (1= om) (Te — Pe) + 6(.— (<<~ Pp)
< -1,
(104)
where the denominator is positive and
—(1 —0on)(Tg — Pg) + o(u — n) (K — Pg) is negative when

Pg < k < Rg. Therefore, ZD strategies with 0 < y <1 do not exist
in the case of p, = 1 because we obtain y < 0.

Appendix C. Transforming Eqs. (42)-(45) to Eqs. (46)-(49)

C.1. Transforming Eq. (42) to Eq. (46)
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Multiplying both sides of Eq. (42) by 1/}, (1 — 6)(1 — p,) + ¢ and
(1 -06)(1 —pg), we obtain

(1-0)(1 —po){Re — K+ 7

< ((1=0)(1 = py) + O){Re — 1 — 1

(T T - Re) }

(58

Transposing the terms of x to the left-hand side and transposing the
other term to the right-hand side, we obtain

(1=0)(1 =po) + )k — (1= 6)(1 = po)K
< (1= 0)(1 = po) + 0){Re — 4 (5% 4+ Te — Re )}
~(1=0)(1 = po){Re + 324 (5% + Te — Re ) .
The above inequality can be simplified into
K < 0Re — (16 + (1 - 6)(1 - po))

1 s, )
+Tg—R
qu( R

Dividing both sides of the above inequality by §, we obtain

1_ — —
G—DA-po) +1 <TE - SE+TE*RE)-
H=n hd

(105)

(106)

(107)

K <R — (108)

C.2. Transforming Eq. (43) to Eq. (47)
Multiplying both sides of Eq. (43) by 1/}, (1 — 6)(1 — py) + 6 and
(1 — &)p,y, we obtain
(1= o)po{Re — 1+ 725 (5% + Te — Re ) }
(5 +-5).

< (=01 =p)+o){r—Pe— L
Transposing the terms of « to the right-hand side and transposing
the other term to the left-hand side, we obtain

1- 5)p0{RE +ﬁ (TE)ESE +Tg - RE)}
+((1 = 0)(1 = po) + O){Pe + 7 (% + Pe — S ) |

< ((1=0)(1 =po) + )k + (1 = d)pok.

The above inequality can be simplified into

P5+L< XSHPFSE) (1

(109)

(110)

SE H(Te —Re) —

-

o n T re-s0)

n
n

<K (111)

C.3. Transforming Eq. (44) to Eq. (48)

Multiplying both sides of Eq. (44) by 1/}

(1-06)(1 —py), we obtain
(1= 0)(1 = po){ = Pe + 325 (1% 4+ Pe - 5¢) }

<( fé)po+(5){R57K7ﬁ(“f;55+TEfRE)}.

Transposing the terms of k to the left-hand side and transposing the
other term to the right-hand side, we obtain

(1=0)(1 = po)x + (1 = 06)py + 0)K
<((1=0)po+ ) {Re — 5 (T2 + Te —Re )}

+(1=0)(1 = po){Pe — 5 (5% + P — ) |.

,(1=90)py+ 6 and

(112)

(113)
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The above inequality can be simplified into

K < E*L(TE TeSe 4 Tg *RE)

s
(1= 8)(1 — po){Re — Py + Te55% o MO nTe-fo)l,

(114)

CA4. Transforming Eq. (45) to Eq. (49)

Multiplying both sides of Eq. (45) by 1/j,(1 —d)p, + 6 and
(1 — 8)p,y, we obtain

(1= 6)po{c—Pe+ 74 (5 4 Pp —5¢) }
< (1= 0)po +6) {1 — P — 1 (15 1 Py — ) .

Transposing the terms of « to the right-hand side and transposing
the other term to the left-hand side, we obtain

Ce)
(55}

+((1 = o)po + o) {Pe + 2
(1 - 8)pok.

<((1—=0)py + )k —

(115)

(1= o)po{ ~Pe + 2

(116)

The above inequality can be simplified into
1 ( —Sg

n=n

Dividing both sides of the above inequality by J, we obtain

(5 u)p;Jr”I(

oPg + (1 = d)po + o) ——

+PE—SE)\ K. (117)

P+

: +prsf) <k (118)

hd

Appendix D. Transforming Eqgs. (50)-(53) to Eqs. (54)-(57)
D.1. Transforming Eq. (50) to Eq. (54)

Transposing the terms of j to left-hand side of Eq. (50) and
transposing the other term to right-hand side of Eq. (50), we obtain

e _s G=1)apoyen | 7p—s,
{leJr(l 9)Po + H=n } v

<Ry —Pp— LI, gy (119)
— 5 (Pe = Sg) = (1 = O)po{ Re — P + LI Pes0 ),
Multiplying both sides of the above inequality by (i — 1), we
obtain
{01+ (1 —=m3(1 = 8)po + (1 = 8)(1 = py) + o} T3
< (= 3(Re —Pe) — {(1—8)(1 —po) + o} (Te — Re)
—N6(Pe — Sg) — 0(1 = d)po{ (1t — M) (Re — Pg) + w(Te — Re) — 1(Pe — Sg)}-
(120)
The above inequality can be simplified into
(1= (1= 0)po)(1 — 6+ 20m) T
< (u=md(Re = Pg) — (1= 6)(1 = po)(Te — Re) — on(Te — Re)
—10(Pg — Sg) — (1 = 0)po (i — 1) (Re — P) — (1 — 0)po (U(Te — Re) — n(Pg — Sg)).
(121)

Factoring out a common factor of the above inequality, we obtain
(1= (1= 8)po) (1 — &+ 20m) &%

< (1= (1 =0)po)o(p —m)(Re — Pg) — (1 - (1 -6)po
—((1=9)(1 = po) +6(1 = &)popt + on)(Te — Re).

)Mo(Pg — Sg)

(122)
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The above inequality can be simplified into
(1—(1=0)po)(1 — &+ 2m) &3¢

< (T=(1=0)po)o(k —m)(Rg — Pr) —
—(1 = u6)(1 = (1 = 0)po)(Te — Re)-

(1= (1 = d)po)nd(Pe — Se)

(123)
Dividing both sides of the above inequality by 1 — (1 — J)p,, we
obtain

— St

(1-0+ 25’7) < O(U(Re — Pg) —

X (TE — RE)

N(Te —Sg)) — (1 -9)

v

(124)
Multiplying both sides of the above inequality by j, we obtain
(1 =06+ 20m)(Te — Sg) < (6(1(Re — Pg) — n(Te — S)) — (1

—0)(Te — Re))%- (125)

D.2. Transforming Eq. (51) to Eq. (55)

Transposing the terms of j to left-hand side of Eq. (51) and
transposing the other term to right-hand side of Eq. (51), we obtain

(it + (U= 0)po + g5+ (1= 9)(1 — po) } T
< Re—Pe— 5 (Te —Re) = (1= 9)(1 = po)(Re — Pe) — (1 0)(1 -
— 725 (Pe = S2) = (1= 8)po(Re — Pe) — (1 — 0)py lFeAr5)

MPE— 5& ’](Tk —Re)

Po)

(126)
Multiplying both sides of the above inequality by u — 7, we obtain

{(t=m( = 8)po + 21+ (= m)(1 = 8)(1 - po)} 15

(1= n)(Rg = Pg) = n(Tg — Rg) = (u—n)(1 = 9)(1 *po)(RE*PE)
—(1=0)(1 = po)(1(Pe — Sg) — N(Te — Re))
—1(Pg = Sg) — (U —1)(1 = 0)po(Re — Pg) —

N

(1= 9)po(i(Te — Re) — n(Pe — Sg))-

(127)
The above inequality can be simplified into

(1-5+2p8) i

(e =m)(Re = Pg) = n(Te — Re) — (0 = 1)(1 = 6)(1 — po) (Rg — Pg)

—H(1 = 6)(1 = po)(Pg — Sg) +1(1 = 8)(1 = po)(Te — Re)

—N(Pg = Sg) = (1= 1) (1 = 0)po(Re — Pg) — pi(1 — 0)po(Te — Re) + 1(1 — 6)po (P — Se)-
(128)

IN

Factoring out a common factor of the above inequality, we obtain

(1=0+2n8) % < (p—m)(1 = (1= 8)(1 = pg) = (1 = 8)Po)(Re — P)
+(=n+n(1 =) (1 = po) — u(1 = 8)po)(Te — Re)
+(=p(1 = 0)(1 = po) =1 +n(1 = 8)po)(Pe — Se).

The above inequality can be simplified into

O((Rg — Pg) — (T — Sg))
—(1 = 8)(Pg — Sg) — (1 — 0)po(Te — Re — P + Sp).
(130)

(129)

(1-3+2n9) TE;SE <

Multiplying both sides of the above inequality by ), we obtain

(6(u(Re — Pg) — (T — Sg))
—(1=0)(Pe — Sg) — (1 — 9)po(Te — Re — Pe + Sg)) -

(1=0+2n0)(Te = Sg) < (131)

D.3. Transforming Eq. (52) to Eq. (56)

Transposing the terms of j to left-hand side of Eq. (52) and
transposing the other term to right-hand side of Eq. (52), we obtain

{( )Po+'7+( 1) pu)+r1} Tg-Sg
=

n H=n b (132)

_pp— G0k (T —

1-1)po+n
Hn=n 7() ) > (PE*

SR I

Se).
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Multiplying both sides of the above inequality by (u—#7)s, we
obtain

(-
< (f=1)o(Re — Pg) —

8)Po + 31 + (1 = 8)(1 = pg) + o) B
(1 =0)(1 = po) + Oﬂ)(Tf = Re) = ((1 = 0)po + 017)(Pg — Sp).

(133)
The above inequality can be simplified into
(1 -5+ 20m)

< O(U(Rg — Pg) — 1(Tg — Sg)) — (1 = 6)(Te — Re) + (1 — 6)po(Te — Rg — P + S).

(134)

Multiplying both sides of the above inequality by }, we obtain

(1 —=0+420m)(Te — Sg)

< (3(H(Rg = Pg) = n(Te = Sg)) = (1 = 0)(Te — Re) + (1 = 8)po(Te — Re — Pe + Sg)) -

(135)

D.4. Transforming Eq. (53) to Eq. (57)

Transposing the terms of j to left-hand side of Eq. (53) and
transposing the other term to right-hand side of Eq. (53), we obtain

14 ¥ =
{%4_ (1-0)(1—po) + o= n}TEZSE

< Re—Pp— 35 (Te —Re) — (1 - 0)(1 — po)(Rg — Pp) (136)
< —Sg)—n(Tg— 11
—(1=5)(1 — py) MPe=se1Te-Re) G J,‘,’f” (Pe — S).

Multiplying both sides of the above inequality by (u—#)s, we
obtain

{(1 = 6)po + 1+ 6(1 = )(1 = 6)(1 — po) + o} T3 *

< (u—m)0(Rg — Pg) —nd(Te — Rg) — (0 —n)d(1 = 0)(1 — po)(Re — P)
—(1=8)(1 = po)d(1(Pe — Sg) — 1(Te — Re)) — ((1 = 0)po + 10) (P — S).

(137)

Factoring out a common factor of the above inequality, we obtain

{(1 = 0)pg + 0+ 3(— m)(1 = 8)(1 ~ py) + by} i

< (=1 =1 =0)(1=po)dRe —Pg) + (1= 8)(1 —po)n — 1)3(Te — Re) (138)
F(=(1=8)(1 = po)opt — ((1 = 0)po + 1)) (Pe — Sg).

The above inequality can be simplified into
(1=6+20m)(1 = (1-3)(1 - py)) &%

< (=mo(1 = (1=8)(1 - po))(Re — Pe) (139)

=0(1 = (1 =3)(1 = po))n(Te — Re) + (64t = 1)(1 = (1 = 9)(1 = Po)) (P& — Sk)-

Dividing both sides of the above inequality by 1 — (1 — 6)(1 — py),
we obtain

S
(1= -+ 20m) = < (s — )o(Re — Pe) - on(Ts — Re)
+(0p — 1)(Pg — Sp). (140)
The above inequality can be simplified into
S . .
(1 =0+ 20m) TE=2F < 5(uRe — Pe) — 1(Te — ) — (1 - 9)
x (Pg — Sg). (141)

Multiplying the both sides of the above inequality by j, we obtain
(1 =6+ 26n)(Tg — Sg) < (6((Re — Pg) — n(Tg — Sg)) — (1
—0)(Pe —SE) 1 (142)

Appendix E. Condition of discount factor é and error rate 5 for
the existence of pcZD strategies

Because the coefficient of J of Egs. (54)-(57) must be positive,
we obtain
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o>

o>

O(M(Re — Pg) — n(Tg — Sg)) — (1 = 6)(Te — Re) > 0, (143) 5> Pg — S¢ (150)
W(Rg — Pg) —(Tg — Sg) + Pp — Sg~
O(u(Rg — Pg) — n(Tg — Sg)) — (1 = 6)(Pg — Sg + po(Te — Re For Eqs. (147)-(150), due to
— P +Sp) 0 <1, u(Re — Pg) = n(Tg — Sg) > 0( <= n <n,) must hold. Thus,
<0 (144) there are no pcZD strategies when 7 > .. 3, is the same as the
’ one defined in Eq. (21). In the case of Rg + Pz > Tg + Sg, Eq. (150)
is the maximum. In the case of Rg + Pr < T + Sg, Eq. (147) is the
O(W(Rg — Pg) — n(Tg — Sg)) — (1 — 6)(Tg — Re — po(Te — R maximum. In the case of Rg + Pp = Tg + S, Eqs. (147)-(150) take
_ the same value (Appendix F). Therefore, we obtain 6 > J.. J. is the
P + Sg)) .
same as the one defined in Eq. (27).
>0, (145)
Appendix F. Magnitude relationship of Eqs. (147)-(150)
O(U(Re — Pg) — n(Tg — S)) — (1 = 0)(Pg — Sg) > 0. (146)
In this section, we check the magnitude relationship of Egs.
In this case, solving Egs. (143)-(146) for §, we obtain (147)-(150).
T — Re
6> (147) F.1. Case of R + Pg > Tg + Sg

,LL(RE — PE) — H(TE — SE) + TE — RE7
We first check the case of Rg 4+ Pr > Tr + Sg. Each of the differ-

Pg — Sg + po(Te — Re — Pg + Sg) ences between Eq. (150) and Eqgs. (147)-(149) is
WU(Re — Pg) — (Tg — Sg) + Pg — Sg + po(Te — Re — Pe 4 Sg)’ (Eq. (150)-Eq. (147))
(148) _ P S B Te —Re
7,u<RE_PE)_;7(TE_SE)+PE_SE J(Rg — Pg) —1(Tg — Sg) + Tg — Re
Tt — Re — po(Te — Re — P + S¢) _ (Te — R — P + Se) (W(Rg — Pe) — (T — Sp)) -0
: (Re — Pg) — (T — Sg) + Pr — Sg) ((Re — Pg) — 7(Tg — S¢) + T — R
W(Rg — Pg) —(Tg — Sg) + Te — Re — po(Te — Re — Pg + Sg) (Re = Pe) = 1(Te = 35) + Pr = Se) (i(Re = Pe) = 1(Tz = ) + Te E)(ISI)

(149)
(Eq. (150)-Eq. (148))(Eq. (150)-Eq. (149))

Pg — Sg
U(Re — Pg) — (Te — Sg) + Pg — S
Pe —Se + po(Te — R — Pr + Sp)

W(Rg — Pg) — n(Tg — Sg) + Pg — Sg + po(Te — Rg — Pe + Sg)
{(Pg — Se)(1(Rg — Pe) — n(Te — Sg) + Pe — Sg + Po(Te — Re — P + S))

—(1(Re — Pg) — (Te — S) + Pe — Se)(Pe — St + Po(Tr — Re — Pe + S¢))} (152)
/{(1(Re — Pe) — n(Te — Sg) + Pp — Se) (U(Re — Pe) — §(Te — Sg) + Pe — Sg + po(Te — Re — Pe + S¢))}
—{Po(Te — Rg — Pg + Sg) (U(Re — Pg) — (T — Se))}
/{(u(Rg = Pg) — (T — Sg) + Pe — Sg)(1(Rg — Pg) — n(Tg — Sg) + Pe — Sg + po(Te — Re — Pe + Se))}
> 0.

Pg — S
‘U(RE — PE) — 7’](TE — SE) +PE — SE
Tg — Rg — po(Te — Re — Pe + Sg)

,LC(RE — PE) — n(TE — SE) + (TE — RE) — po(TE — RE — PE + SE)
{(Pg — Se)(1(Rg — Pe) = n(Te — Sg) + (Te — Re) — Po(Te — Re — Pe + Sp))

~(Te — Re — Po(Te — Re — Pe + Se)) (U(Re — Pe) — (T — ) + Pe — 5p)) (153)
/{(1(Rg — Pg) — n(Te — Sg) + Pp — Se) (U(Rg — Pe) — 1(Te — Sg) + (Te — Re) — po(Te — Re — Pe + Sg))}
—{(1 = po)(Te — Re — Pg + Se)(U(Rg — Pg) — (Te — Sg))}
/{(1(Re — P) — n(Te — Sg) + Pp — Se)(U(Rg — Pe) — 1(Te — Sg) + (Te — Re) — po(Te — Re — Pe + Sg))}
> 0.

13
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Therefore, in this case, Eq. (150) is the maximum.

F.2. Case of Rg + Pg < Tg + S

Next, we check the case of Ry + Pr < Tg + Sg. Each of the differ-
ences between Eq. (147) and Egs. (148)-(150) is
(Eq. (147)-Eq. (148))

Te — Re
W(Rg — Pg) —n(Tg — Sg) + Te — Re
P — Sg + po(Te — Re — Pg + Sg)
WRe — Pg) — n(Tg — Sg) + (Pe — Sg) + po(Te — Re — Pe + Sg)

Journal of Theoretical Biology 526 (2021) 110810

(Denominator of Eq. (60))-(Denominator of Eq. (61))

= O(p(Re — Pe) = n(Te — Se)) — (1 = 6)(Te — Rg) + (1 = 0)po(Te — Re — Pe + S)

(1 = po)(Te — Rg — Pg + Sp) (U(Rg — Pg) — 1(Te — Sg))

(U(Re — Pe) — n(Tg — Sg) + Te — Re) (U(Re — Pg) — (Tg — Sg) + (Pe — Se) + Po(Te — R — Pe + Sg))

> 0.
(Eq. (147)-Eq. (149))
Te — R

Te — Re — po(Te — Re — Pe + Sg)

U(Re —Pg) —n(Te —Sg) + Te — R - W(Re — Pg) — 9(Te — Sg) + (Tg — Re) — po(Te — Re — Pe + Sg)
{(Te — Re)(u(Rg — Pe) — n(Te — Sg) + (Te — Re) — po(Te — R — Pg + Sg))

—(Te — Re — po(Te — Re — Pe + Sg)) (W(Re — Pe) — n(Tg — Sg) + Te — Re)}

J{((Rg — Pe) — n(Tg — Sg) + Te — Re) (U(Rg — Pg) — 7(Te — Sg) + (Te — Re) — Po(Te — Re — Pe + Sp))}
Po(Te — Re — Pp + Sg) (U(Rg — Pp) — (Te — S¢))

(U(Rg — Pg) — 1(Te — Sg) + Te — Re)(1(Re — Pg) — 0(Te — Se) + (Te — Re) — Po(Te — Re — Pg + Sg))

> 0.
(Eq. (147)-Eq. (150))

Te —Rg Py —5¢

WU(Re —Pg) —n(Te —Sg) + Te — R - W(Re — Pe) — n(Tg — Sg) + Pg — S
(Te — Re)(U(Re — Pe) — n(Tg — Sg) + Pg — Sg) — (Pe — Se) (W(Re — Pg) — (Te — Sg) + Tr — Re)

(1(Re — Pe) — n(Tg — Sg) + Pg — Sg) (U(Re — Pe) — n(Tg — Sg) + Tr — Re)

(Te — Re — Pe + Sg)(U(Re — Pe) — (T — Sg))

—(8((Rg — Pe) — n(Tg — Sg)) — (1 — 6)(Pe — Sg)) (159)
= —(1-6)(1-po)(Te — Re — P + Sg) > 0.
Therefore, in this case, Eq. (61) is the maximum.
(154)
(155)
(156)

> 0.

(1(Rg — Pg) — n(Te — Sg) + Pg — Sg) ((Re — Pg) — n(Tg — Sg) + Te — Re)

Therefore, in this case, Eq. (147) is the maximum.
F.3. Case OfRE + Pg =Tg + Sg

In the case of Rg + Pz = T + S, Egs. (151)-(156) become zero.
Therefore, Egs. (147)-(150) take the same value.

Appendix G. Magnitude relationship of Eqs. (58)-(61)

In this section we check the magnitude relationship of Eqs.
(58)-(61).

G.1. Case of Rg + Pg > Tg + S

We first check the case of Rg + Pz > Tr + Sg. Each of the differ-
ences between Eq. (61) and Egs. (58)-(60) is
(Denominator of Eq. (58))-(Denominator of Eq. (61))

O(p(Rg — Pg) — n(Te — Se)) — (1 — 0)(Te — R)

—(0(u(Re — Pg) —1(Tg — Sg)) — (1 — 0)(Pe — Sg)) (157)
= —(1-06)(Tg —Re —Pe+Sg) > 0.
(Denominator of Eq. (59))-(Denominator of Eq. (61))
= O(u(Rg — Pg) — n(Te — Sg)) — (1 = 8)(Pg — Sg) — (1 — 8)po(Te — R — P + Sg)
—(0(u(Re = Pg) — n(Tg — Sg)) — (1 = 6)(Pe — Sg)) (158)

= —(1-0)po(Te — Rg — Pg +S¢) > 0.
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G.2. Case of Rg + Pg < Tg + Sg

Next, we check the case of Rr + Pr < Tg + Sg. Each of the differ-
ences between Eq. (58) and Eqgs. (59)-(61) is.
(Denominator of Eq. (59))-(Denominator of Eq. (58))

= O(U(Re — Pg) = n(Tg — S¢)) — (1 = 0)(Pg — Sg) — (1 = 8)po(Te — Re — Pg + S)
—(8((Rg — Pe) — (Tg — Sg)) — (1 — 6)(Te — Rg))
= (1-0)(1 =po)(Te — Rg — Pp + S) > 0.

(160)

(Denominator of Eq. (60))-(Denominator of Eq. (58))

= O(1(Re — Pg) = n(Tg — Sg)) — (1 = 6)(Te — Re) + (1 = 6)po(Te — Re — Pe + S¢)
—(8((Re — Pe) — (Tg — Sg)) — (1 — 6)(Te — Rg))
= (1 -8)py(Te — Re — Py +5¢) > 0.

(161)

(Denominator of Eq. (61))—-(Denominator of Eq. (58))
O(U(Rg = Pg) — (T — Sg)) — (1 — 6)(Pg — Sg)

—(0(u(Re — Pg) = n(Tg — Sg)) — (1 = 6)(Te — Re))
(1 —=0)(Tg — Re — Pg + Sg) > 0.

(162)

Therefore, in this case, Eq. (58) is the maximum.

G.3. Case OfRE 4+ Pg =Tg + Sg

In the case of Rz + Pz = T¢ + S, Eqgs. (157)-(159) become zero.
Therefore, Egs. (58)-(61) take the same value.
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