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a b s t r a c t

Why did Darwin fail to develop his insights on kin selection into a proper theory of social adaptation?

One suggestion has been that his inadequate understanding of heredity kept the problem out of focus.

Here, I determine whether it is possible to develop a quantitative theory of kin selection upon the

assumption of blending inheritance. I find that, whilst Hamilton’s rule of kin selection can be readily

derived under the assumption of blending inheritance, this mechanism complicates the computation of

relatedness coefficients, and can even cause them to fluctuate over generations. Nevertheless, I show

that the ultimate criterion for selection to favour any social trait – i.e. a time-average of Hamilton’s rule

– remains the same as under particulate inheritance. By eliminating the gene from the theory of kin

selection, I clarify the role that it plays in the theory of social adaptation.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Darwinism is a theory of the process and purpose of biological
adaptation. Natural selection leads to the accumulation of those
traits whose heritable components are associated with greater
individual reproductive success and so, Darwin (1859) argued,
individual organisms will appear increasingly well adapted to
maximize their personal reproductive success. This argument has
been mathematically formalized by Grafen (2002). Although
working in ignorance of the mechanism of heredity – indeed,
assuming this to involve a type of blending of the characters of an
individual’s parents – Darwin provided a convincing materialistic
account of the origin of design in the living world, a phenomenon
that had previously been attributed to the work of deities (Paley,
1802).

The only major revision to the theory of Darwinian adaptation
has been to accommodate social interactions between relatives.
Darwin (1859, Chapter 7) noted the ‘‘special difficulty’’ posed to
his theory by sterile workers among the social insects: how can
natural selection give rise to their adaptations, if they have no
descendants? His solution was to point out that natural selection
can operate both directly, upon the individual’s own reproductive
success, and also indirectly, upon the reproductive success of her
relatives, who may carry a heritable tendency for her character-
istics in latent form (Darwin, 1859, Chapter 7; see also Ratnieks
ll rights reserved.
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et al., 2011). This theory of ‘‘kin selection’’ (Maynard Smith, 1964)
was developed by Hamilton (1963, 1964, 1970, 1996), who
showed that natural selection should lead individuals to appear
designed as if to maximize the sum of their direct and indirect
fitness, i.e. their ‘‘inclusive fitness’’ (see also Grafen, 2006a). This
allows for altruistic adaptations, that lower the personal fitness of
the individual, whilst providing a benefit to her relatives.

It is unclear why Darwin failed to develop his initial insights
on kin selection into a proper theory of social adaptation.
Hamilton (1972) suggested that Darwin’s inadequate understand-
ing of heredity had kept the problem out of focus. Moreover, some
have claimed that it was simply not possible to formulate a theory
of kin selection prior to the discovery of classical genetics
(e.g. Borrello, 2010, p. 8; Cunningham, 2010, p. 31). Is the logic
of kin selection crucially founded upon particulate inheritance, so
that elucidation of the true function of Darwinian adaptation was
contingent upon the discovery of Mendelian genetics (Mendel,
1866) and its reconciliation with Darwinism (Yule, 1902; Fisher,
1918, 1930)? In support of this idea is the fact that Hamilton
(1963, 1964) approached the problem of altruism by taking a
‘‘gene’s eye’’ view, recognizing that the ultimate beneficiary of
natural selection is not the individual but the gene, which is
stably inherited over generations.

In opposition to this idea is the fact the canonical derivation of
Hamilton’s rule of kin selection (Hamilton, 1970; Frank, 1998)
makes use of Price’s (1970) equation, which can be applied to any
system of inheritance (Price, 1972, 1995; Frank, 1995; Gardner,
2008; Jäger, 2008; Helenterä and Uller, 2010). Since Hamilton’s
rule emerges as a simple partition of Price’s equation it should, in
principle, also apply to any system of inheritance. However, the
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implications of non-particulate inheritance for the theory of kin
selection remain obscure. How different would the theory of
social adaptation have appeared, had it been founded upon a
different mechanism of inheritance?

In this article, I develop the theory of kin selection under the
assumption of blending inheritance. My main aim is to assess what
aspects of the modern theory of social adaptation could have been
developed in the ignorance of classical genetics. To this end,
I review some basic results for the ‘‘paint-pot’’ theory of blending
inheritance (Fisher, 1930; Hardin, 1959), and I derive Hamilton’s
rule of kin selection in this context. I then examine the conse-
quences of blending for relatedness coefficients of genealogical kin,
revealing that these may differ from their Mendelian equivalents.
Indeed, they may even fluctuate over time. However, I show that a
time average of the evolutionary response to kin selection under
blending coincides exactly with that derived under Mendelian
considerations. By eliminating the gene from the theory of kin
selection, I clarify its role in the theory of social adaptation.
2. Models and analysis

2.1. Blending inheritance under neutrality

Here I provide a basic treatment of blending inheritance –
specifically, the paint-pot model of blending (Fisher, 1930; Hardin,
1959) – in a neutral population context. This analysis recovers
results presented by Fisher (1930), although here the input of
mutational variance is made mathematically more explicit.

I assume an infinite population with discrete, non-overlapping
generations. An individual’s phenotypic value can be written as
p¼hþe, where h is her heritable ‘‘breeding’’ value and e is an
uncorrelated, unbiased environmental effect (i.e. cov(e,h)¼
E(e)¼0). Hence, the population-average phenotype is equal to
the population-average breeding value (i.e. E(p)¼E(h)). An indi-
vidual’s breeding value is the average of those of her mother and
father (x and y, respectively), plus an uncorrelated, unbiased
mutational effect (m, such that cov(m,x)¼cov(m,y)¼E(m)¼0).
That is, h¼(xþy)/2þm. Note that the population-average breed-
ing value does not change over generations:

EðhÞ ¼ E
xþy

2
þm

� �
¼

1

2
ðEðxÞþEðyÞÞþEðmÞ ¼ Eðh0Þ, ð1Þ

where E(h0)¼E(x)¼E(y) is the population-average breeding value
for the previous generation (that is, the prime indicates a step
back, rather than a step forward, in time). This simple result
refutes the ‘‘swamping’’ argument of Jenkin (1867); there is no
tendency for blending to favour wildtype over variant trait values
(see also Davis, 1871; Bulmer, 2004).

However, the population variance in breeding value may
change, as shown by the fact that:

varðhÞ ¼ var
xþy

2
þm

� �
¼

1

4
ðvarðxÞþvarðyÞþ2covðx,yÞÞþvarðmÞ

¼
1þ f

2
varðh0ÞþvarðmÞ, ð2Þ

where f¼cov(x,y)/var(x) is the coefficient of inbreeding.
Assuming no mutational input (var(m)¼0), the heritable

variance in every phenotypic character is expected to decline
geometrically, with its value in each generation being a fraction
(1þ f)/2 of its value in the previous generation (Fisher, 1930).
In the absence of inbreeding (f¼0), this represents a halving of
heritable variance. Heritability can only be maintained in the
limit of full inbreeding (f¼1). This erosion of heritable variation is
the main difficulty that blending inheritance posed for Darwin’s
theory of natural selection (Fisher, 1930).
However, fresh mutational input can maintain heritability. For
example, if there is a constant supply of variance var(m) in every
generation, then dynamical Eq. (2) can be solved for equilibrium
(var(h)¼var(h0)) to obtain:

varðhÞ ¼
2varðmÞ

1�f
, ð3Þ

e.g. in the absence of inbreeding (f¼0), the equilibrium heritable
variance is twice that of the mutational input added to the
population in every generation. Note that this scenario is exactly
equivalent to the ‘‘infinitesimal model’’ of Fisher (1918), if the
mutational input is regarded as being analogous to the variation
created by recombination. More generally, if the mutational input
varies from generation to generation, the analogy with the
infinitesimal model breaks down, and the heritable variance will
fluctuate over time.

2.2. Kin selection under blending inheritance

The canonical derivation of Hamilton’s rule is based upon Price’s
equation (Hamilton, 1970; Price 1970, 1972; Queller, 1992; Frank,
1998; Gardner et al., 2011). This expresses the change in the
average heritable component of any character between genera-
tions, that is ascribed to the action of natural selection, by

DSEðhÞ ¼ covðv,hÞ, ð4Þ

i.e. the change is equal to the covariance between an individual’s
breeding value h and her relative fitness v (i.e. number of offspring,
relative to the population average of this quantity; Price, 1970,
1972). Eq. (4) explicitly neglects the impact of non-selective
evolutionary factors on change in heritable traits (e.g. biased
mutation). For simplicity, I also neglect class structure, such that
reproductive value coincides exactly with offspring number
(Fisher, 1930; Grafen, 2006b).

Assuming nonzero heritable variance, the covariance in Eq. (4)
can be expressed as a product of the heritable variance var(h) and
a coefficient b(v,h)�cov(v,h)/var(h). This coefficient happens to
be equal to the slope of the straight line fitted, by the method of
least-squares, to the set of population data (v,h), i.e. it is a least-
squares linear regression coefficient (Price, 1970; Frank, 1998;
Gardner et al., 2011). This yields

DSEðhÞ ¼ bðv,hÞvarðhÞ, ð5Þ

which captures Darwin’s (1859) basic requirements for a
response to natural selection: heritable variation (var(h)40) for
a character that is correlated with relative fitness (b(v,h)a0).

Correlations between an individual’s heritable character and
her fitness can occur for two reasons. First, the character may be
expressed in the phenotype of the focal individual, and mediate
her reproductive success (direct fitness effect). Secondly, the
character may be carried by the individual’s social partners,
expressed in their phenotypes, and mediate her reproductive
success through their social interactions with her (indirect fitness
effect; Fisher, 1930; Hamilton, 1964, 1970). For simplicity,
assume that individuals are paired with a single social partner,
whose breeding value for the character of interest may be
denoted H. Then, the regression of relative fitness against breed-
ing value can be partitioned, without loss of generality, into these
direct and indirect fitness effects:

DSEðhÞ ¼ ½bðv,h9HÞþbðv,H9hÞbðH,hÞ�varðhÞ, ð6Þ

where b(v,h9H)��c is the partial regression of the individual’s
relative fitness against her own breeding value (i.e. holding fixed
the effect of her social partner’s breeding value), b(v,H9h)�b is
the partial regression of the individual’s relative fitness against
her social partner’s breeding value (i.e. holding fixed the effect of
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her own breeding value), and b(H,h)�r is the kin selection
coefficient of relatedness, which describes the statistical associa-
tion between the breeding values of social partners (Hamilton,
1970; Queller, 1992; Frank, 1998; Gardner et al., 2011).

Thus, assuming heritable variation upon which natural selec-
tion can act (var(h)40), the condition for a selective increase in the
average heritable component of any character of interest is given
by Hamilton’s rule: �cþbr40 (Hamilton, 1963, 1964, 1970).
Although I have assumed only a single social partner, for ease of
exposition, this derivation of Hamilton’s rule can be readily
extended to multiple social partners interacting in multiple roles
(Grafen, 2006a). Importantly, the present derivation has made no
assumption of particulate inheritance, and hence applies equally to
a blending scheme. Thus, kin selection operates – in outline – in
the same way, irrespective of whether inheritance is particulate or
blending. In the next section, I examine whether the details of the
evolutionary response to kin selection differ between inheritance
schemes, by examining the consequences of blending inheritance
for the kin selection coefficient of relatedness.

2.3. The correlation between relatives on the supposition of blending

inheritance

I now consider the consequences of blending inheritance for the
kin selection coefficient of relatedness. A standard simplifying
assumption often made by kin selection analyses is that selection
is vanishingly weak, so that – to first order in the selection
coefficient – Hamilton’s rule can be expressed in terms of related-
ness coefficients that are calculated in a neutral population
(Bulmer, 1994). I make this weak selection assumption for the
remainder of the analysis. I also continue to assume discrete, non-
overlapping generations, with mating and social interaction occur-
ring only between individuals belonging to the same generation,
and avoidance of inbreeding (f¼0). Finally, I assume that the only
cause of relatedness between social partners is coancestry.

As under particulate inheritance, the coefficient of relatedness
under blending inheritance is given by

r�
covðH,hÞ

varðhÞ
ð7Þ

Thus, the relatedness to self is found by substituting H¼h, to
obtain rSELF¼cov(h,h)/var(h)¼1. Similarly, the relatedness to a full
sibling is found by writing h¼(xþy)/2þm and H¼(xþy)/2þM,
where M is the sibling’s mutational effect. Continuing with the
assumption that mutation is random and unbiased, this gives
rSIB¼cov((xþy)/2, (xþy)/2)/var(h)¼(1/2)� (var(h0)/var(h)). More
generally, under the assumption of blending inheritance, the kin
selection coefficient of relatedness r is equal to the product of two
quantities, r�V (see Appendix for details). The first factor r is the
traditional genealogical relationship of two individuals, i.e. r¼1
for self, r¼1/2 for a full sibling, r¼1/4 for a half sibling and r¼
1/8 for a cousin. The second factor V is computed by dividing the
heritable variance of the most-recent common ancestor’s genera-
tion by that of the present generation.

Thus, the coefficient of relatedness depends upon the dynamics
of heritable variance between generations. If there is no input of
novel mutation, then the heritable variation halves in every
generation (i.e. var(h)¼var(h0)/2¼var(h0 0)/4, etc.). This means
that relatedness to self is rSELF¼1, relatedness to full siblings
is rSIB¼(1/2)� (var(h0)/var(h))¼1, relatedness to half siblings is
rHALFSIB¼(1/4)� (var(h0)/var(h))¼1/2, and relatedness to cousins is
rCOUSIN¼(1/8)� (var(h0 0)/var(h))¼1/2, where var(h0 0) is the herita-
ble variance two generations prior to the focal generation. Certain
of these coefficients differ from those obtained under Mendelian
inheritance: rSELF¼1, rSIB¼1/2, rHALFSIB¼1/4, and rCOUSIN¼1/8.
The reason for this discrepancy is illustrated by considering the
relatedness to full siblings. Under Mendelian inheritance, the
genetic complements of full siblings reflect independent, partial
samples of genes drawn from the same two parents, hence they
will tend to differ genetically. In contrast, under blending, full
siblings share exactly the same inheritance and hence, in the
absence of de novo mutation, they are identical in their heritable
characteristics.

However, under blending, natural selection can only have a
sustained impact upon evolution if mutational variance is nonzero.
In the simplest scenario, a constant supply of mutational variance
is added in every generation, such that the heritable variation is
maintained at some constant level (i.e. var(h)¼var(h0)¼var(h0 0)¼2
var(m)). In this scenario, V¼1 for all coefficients of relatedness, and
hence r¼r for all degrees of relationship, i.e. coefficients of
relatedness under blending coincide exactly with those obtained
under Mendelian inheritance.

More generally, the input of mutational variance might vary
between generations – indeed, this was Darwin’s (1859,
Chapter 4) view – and hence the heritable variation will display
more complicated dynamics through time. Thus, the response to
kin selection quantified in Eq. (6) can be re-written as

DSEðhÞ ¼ �cvarðhÞþbrvarðh*Þ, ð8Þ

where h* denotes a breeding value in the generation occupied by
the most recent common ancestor of socially interacting relatives
(I assume, for simplicity, that individuals are paired according to
their relationship, i.e. siblings, cousins, etc.). This response to
selection is expected to fluctuate across generations (owing to
fluctuations in var(h) and var(h0)). However, since selection is
weak, of most interest is the average response to selection
occurring over a large number of generations. Taking a time
average (denoted ET(.)) of the response to natural selection over a
large number of generations, assumed to be longer than the cycle
period of the heritable variance dynamics, I obtain

ET ðDSEðhÞÞ ¼ �cET ðvarðhÞÞþbrET ðvarðh*ÞÞ

¼ ½�cþbr�ET ðvarðhÞÞ, ð9Þ

where from Eq. (3), ET(var(h))¼2� ET(var(m)). Hence, the condi-
tion for natural selection to favour an increase in the average
value of any character of interest is –cþbr40, where r is the
coefficient of genealogical relationship, which coincides exactly
with the result obtained under the assumption of Mendelian
inheritance (Hamilton, 1963, 1964).
3. Discussion

I have developed a theory of kin selection under the assump-
tion of blending inheritance. Specifically, I have: recovered and
elaborated upon Fisher’s (1930) results for the evolution of the
average and variance in heritable trait value in neutral popula-
tions, under the assumption of blending; used Price’s (1972)
equation to derive Hamilton’s (1963, 1964, 1970) rule of kin
selection, without reference to particulate inheritance; examined
the impact of blending upon the kin selection coefficient of
relatedness, showing that this may differ from its Mendelian
counterpart, and may even fluctuate over generations; and shown
that a time average of Hamilton’s rule yields the same selection
criterion for traits, irrespective of whether inheritance is Mende-
lian or blending.

This analysis reveals that the theory of kin selection could, in
principle, have been developed in ignorance of the particulate
nature of inheritance. This refutes the suggestion that Darwin
could not have known about kin selection – on the basis that this
requires an understanding of classical genetics – which has
recently been used to argue for the historical primacy of group
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selectionism (Borrello, 2010, p. 8) and even against materialism in
evolutionary biology (Cunningham, 2010, p. 31)! Moreover, I have
shown that the key predictions of kin selection are actually
unaffected by this biological detail: an individual is still expected
to behave as if she values her own life as being equal to those of
two siblings, or eight cousins.

However, the analysis of kin selection is more tortuous under
the assumption of blending, so it is likely that Darwin’s ignorance
of the mechanism of heredity did present a real barrier to his
development of a proper theory of social adaptation (cf. Hamilton,
1972). Importantly, kin selection can only operate when there is
both heritability of traits and relatedness between social partners,
and the high rate of spontaneous mutation that is necessary to
maintain heritability under the assumption of blending inheri-
tance also erodes relatedness. Darwin assumed that heritable
variation is introduced into natural populations in infrequent
bursts, associated with environmental disturbance (‘‘a change in
the conditions of life, by specially acting on the reproductive
system, causes or increases its variability’’; Darwin, 1859,
Chapter 4). Accordingly, in the majority of generations there
would be negligible response to any form of selection, and in
those rare burst generations in which the response to selection
would be strongest, the correlation between relatives would be
greatly eroded. Under this scheme, an understanding of how kin
selection mediates the design criterion for organismal adaptation
is achieved only by careful tracking of the dynamics of heritability
and relatedness over multiple generations, which was certainly
beyond Darwin’s mathematical ability.

In contrast, particulate inheritance ensures a relatively high
and relatively constant degree of heritability, even under very low
rates of mutation that have minimal impact upon relatedness.
Hence, it allows sustained selection, with a fixed valuation of
one’s relatives, over multiple generations of evolutionary change.
Accordingly, an analysis of genetic change across a single gen-
eration is often representative of the change that occurs over
multiple generations, such that a quantitative theory of kin
selection is very amenable to simple analysis. Furthermore,
Hamilton’s (1963, 1964, 1972) elucidation of the theory of kin
selection was spurred by taking a ‘‘gene’s-eye view’’ of the
evolution of altruism. This does appear to have focused his
thinking and, clearly, such an approach is only possible under
the assumption of particulate inheritance.

The term ‘‘blending inheritance’’ has been used to refer to a
number of distinct ideas about heredity. For example, Bulmer
(2003) has distinguished the idea of physical fusion of hereditary
particles from that of phenotypic blending of parental characters,
both of which have been described as blending inheritance.
Darwin’s hypothesis of pangenesis involved only partial fusion,
with a hybridization of patent gemmules and segregation of
latent gemmules, in order to account for reversions to ancestral
phenotypes (Bulmer, 2003). The present analysis has focused
upon the simpler ‘‘paint-pot’’ model of blending inheritance,
developed by Fisher (1930) and named by Hardin (1959). More
generally, whilst mechanistic details impact upon the computa-
tion of relatedness coefficients and their dynamics over multiple
generations, the action of kin selection can be expressed in purely
phenomenological terms using Price’s (1970, 1972) equation,
with Hamilton’s (1963, 1964) rule rb�c40 emerging irrespective
of mode of inheritance.

I have shown that the ultimate selection criterion for social
characters – and hence the rationale for the design of organisms –
remains the same irrespective of whether inheritance is particu-
late or blending. This leaves open several issues regarding the
power of natural selection to drive phenotypic change under each
inheritance scheme. Much attention has been given to the idea
that the response to natural selection is vastly reduced under
blending inheritance, owing to the rapid loss of heritable varia-
tion. This problem is resolved by invoking a high rate of mutation.
The present analysis has assumed that mutation is unbiased, so
that its sole contribution to evolutionary change is to fuel the
response to selection. However, any mutational bias would
introduce a further, non-selective component to evolutionary
change. Since this could feasibly be of similar magnitude to the
action of natural selection, the extent to which phenotypic
evolution is driven by a Darwinian rationale (i.e. the ‘‘external-
ism’’ of Pigliucci and Müller, 2010) appears much reduced under
the assumption of blending inheritance.

Finally, eliminating the gene from the present analysis has
clarified its role in the standard theory of kin selection. In
particular, the gene is neither a unit of selection nor a unit of
adaptation in the standard theory, but merely provides a material
basis for the inheritance of organismal characters. As a compo-
nent of natural selection, kin selection is driven by the differential
reproductive success of individual organisms (Darwin, 1859;
Fisher, 1930; Price, 1970). Hence, the individual is the unit of
selection. Moreover, as a consequence of the action of natural
selection (including kin selection), the individual organism
appears adapted to maximize her inclusive fitness (Hamilton,
1963, 1964, 1970, 1996; Grafen, 2006a). Hence, the individual is
the unit of adaptation. The idea that the gene can be considered
an adaptive agent in its own right is the altogether separate
notion of the ‘‘selfish gene’’ (Hamilton, 1972; Dawkins, 1976,
1978, 1982; Gardner and Welch, 2011).
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Appendix

Here I derive the kin selection coefficient of relatedness in
terms of the coefficient of genealogical relationship and the ratio
of heritable variance in ancestral and present generations, as
given in the main text.

The relatedness between an individual and her social partner
is defined as

r�
covIðhj,hiÞ

covIðhi,hiÞ
, ðA1Þ

where iAI is the index of an individual chosen at random from the
population, hi is this individual’s breeding value, j is the index of
her social partner, and hj is the breeding value of her social
partner. Note that an individual’s breeding value can be expressed
as a function of the breeding values of her ancestors in some past
generation and all the mutational effects that have accrued within
her more recent ancestry:

hk ¼
X2n

l ¼ 1

xðk,l,nÞ

2n þ
Xn�1

t ¼ 0

X2t

l ¼ 1

mðk,l,tÞ

2t , ðA2Þ

where x(k,l,n) is the breeding value of the kth individual’s lth
ancestor in the nth generation prior to the focal one, and m(k,l,t) is
the mutational effect occurring in the kth individual’s lth ancestor
in the tth generation prior to the focal one. For example, setting
n¼1 yields the individual’s breeding value in terms of those of her
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two parents and her own mutational effect:

hk ¼
xðk,1,1Þ þxðk,2,1Þ

2
þmðk,1,0Þ ðA3Þ

The numerator of the RHS of Eq. (A1) is given by

covIðhj,hiÞ ¼ covI

X2n

l ¼ 1

xðj,l,nÞ
2n þ

Xn�1

t ¼ 0

X2t

l ¼ 1

mðj,l,tÞ

2t ,
X2n

l ¼ 1

xði,l,nÞ
2n þ

Xn�1

t ¼ 0

X2t

l ¼ 1

mði,l,tÞ

2t

 !

ðA4Þ

Let n¼m, where m is the most recent generation in which the
two individuals i and j share at least one common ancestor, and
denote the number of their common ancestors in this generation
by n. The two individuals may either derive from a single common
ancestor in this generation (in which case n¼1) or else from a
single mated pair (in which case n¼2). Because they share no
common ancestors in any of the generations tom, all mutational
effects are uncorrelated with any other variable, so Eq. (A4) can be
simplified to

covIðhj,hiÞ ¼ covI

X2m
l ¼ 1

xðj,l,mÞ
2m ,

X2m
l ¼ 1

xði,l,mÞ
2m

 !

¼
1

22m covI

X2m
l ¼ 1

xðj,l,mÞ,
X2m
l ¼ 1

xði,l,mÞ

 !
¼

n
22m varðhðmÞÞ, ðA5Þ

where var(h(m)) is the heritable variance in generation m. Noting
that the denominator of the RHS of Eq. (A1) is equal to var(h(0)),
i.e. the heritable variation in the present generation, the kin
selection coefficient of relatedness can be written in the form

r¼ rV , ðA6Þ

where r¼n/22m is the genealogical relationship between two
individuals (for example, r¼1 for self, r¼½ for full siblings,
r¼¼ for half siblings, and so on) and V¼var(h(m))/var(h(0)) is the
ratio of heritable variance in the most recent generation in which
the two individuals share common ancestors and that of the
present generation.
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