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� Introduces Fisher's reproductive value into the study of evolutionary graph theory.
� Proves basic properties of reproductive value on graphs.
� Calculates neutral fixation probability for any graph.
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a b s t r a c t

Evolutionary graph theory has grown to be an area of intense study. Despite the amount of interest in the
field, it seems to have grown separate from other subfields of population genetics and evolution. In the
current work I introduce the concept of Fisher's (1930) reproductive value into the study of evolution on
graphs. Reproductive value is a measure of the expected genetic contribution of an individual to a distant
future generation. In a heterogeneous graph-structured population, differences in the number of
connections among individuals translate into differences in the expected number of offspring, even if
all individuals have the same fecundity. These differences are accounted for by reproductive value. The
introduction of reproductive value permits the calculation of the fixation probability of a mutant in a
neutral evolutionary process in any graph-structured population for either the moran birth–death or
death–birth process.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Population structure has, for some time, been recognized as an
important factor in determining the outcome of an evolutionary
process. Structure can act to arrange individuals and produce
evolutionary outcomes not seen in well-mixed populations
(Nowak and May, 1992). Early models considered an infinite
number of islands of individuals, each linked by global dispersal
(Wright, 1931). Subsequent work, like the stepping-stone model of
Kimura and Weiss (1964) and Weiss and Kimura (1965), consid-
ered the spatial arrangement of these islands. These models were
refined to the finite population case by considering a finite number
of breeding demes linked by dispersal patterns (Levins, 1969,
1970). Drawing on these earlier models, evolutionary graph theory
has emerged as a convenient framework for modelling population
structure (Lieberman et al., 2005).

An evolutionary graph G is a collection of vertices V and edges E
between them. The vertices are occupied by haploid individuals
and the edges indicate who interacts with whom and where
offspring disperse. Throughout this paper I denote vertices by vi

and the individual residing on vi by i. It is possible that the vertices
are linked by two sets of edges, one indicating interactions and the
other, replacements (Ohtsuki et al., 2007), but these two sets are
often assumed to coincide, as they do in this paper.

Since their introduction in Lieberman et al. (2005), evolution-
ary graphs have become a well-studied representation of struc-
tured populations. The exact features of graphs that promote, or
work against, cooperation are, however, still elusive. For highly
symmetric (vertex-transitive) graphs exact results for any additive
game undergoing a weak-selection evolutionary process have
been obtained (Ohtsuki et al., 2006; Taylor et al., 2007). This is
the largest class of graphs for which results are known, encom-
passing many other results (Ohtsuki and Nowak, 2006; Grafen,
2007). Actual interaction graphs are often highly non-symmetric
(Santos et al., 2008) and it is of great interest to study evolution in
these environments.

Very few results have been obtained for non-symmetric graphs.
There has been some interest in the role of vertex degree. Some
work (Santos et al., 2008) has focused on the distribution of the
degrees of vertices. Certain distributions (scale-free) have been
shown to promote altruistic and cooperative behaviours more than
others (e.g., regular graphs). These approaches have uncovered
global features of graphs and a description of the process at the
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level of the individual is desirable. One of the challenges faced in the
study of heterogeneous populations is dealing with individuals
of differing quality. Reproductive value (Fisher, 1930) is a way of
accounting for such differences.

Antal et al. (2006) are perhaps the first to consider hetero-
geneous graphs at the individual scale. They have found that it is
advantageous for the fitter mutant to occupy high-degree nodes in
a Moran death–birth model (their ‘biased voter model’) and lower-
degree vertices in the birth–death process (their ‘biased invasion
process’). This has been confirmed by subsequent research (Broom
et al., 2011). In the current paper I show that these results, when
phrased in terms of reproductive value (Fisher, 1930; Grafen,
2006), are two sides of the same coin.

The work of Antal et al. (2006) and Broom et al. (2011) focuses
on the case of constant selection, where the resident population
has fecundity 1 and a mutant with fecundity r41 arises. The
probability of this mutant taking over the entire population is
calculated and compared against the neutral case of r¼1. If this
mutant fixation probability is greater, the mutant is advantageous.
An extension of the results of Antal et al. (2006) and Broom et al.
(2011) to the case of a public-goods game, as in Santos et al.
(2008), is highly desirable. I attempt to make headway by
presenting an example that illustrates that a mutant individual
can have greater evolutionary success depending on where it first
emerges.

The main thrust of this paper is a complete description of the
fixation probability of an allele in any graph-structured population
undergoing neutral drift. For a structured population of size Nwith
the property that all sites are equivalent—for example, degree-
regular graphs—then this fixation probability is 1/N, irrespective
on which vertex the allele is first found. This is not the case for
degree-heterogeneous graphs. In general, the fixation probability
depends on the degree of the vertex on which the allele initially
appears. In the current paper I calculate these fixation probabilities
for both the birth–death and death–birth Moran processes on any
graph. A general rule is derived: fixation probability is positively
associated with relative reproductive value. An allele will have a
higher fixation probability if it first emerges on a vertex with a
higher reproductive value in both the birth–death and death–birth
processes.

2. Reproductive value

Reproductive value has been defined in various ways by different
authors. The core of the definitions is the notion of long-term
genetic share of a population. Fisher (1930) first introduced repro-
ductive value as a means of accounting for the differences in the
reproductive output of different ages of females. Since that time
reproductive value has been applied to age (Charlesworth, 1980), sex
(Taylor, 1990), and spatially structured (Rogers and Willekens, 1978)
populations and has been placed on a rigorous mathematical footing
(Grafen, 2006). At an intuitive level, the relative reproductive value
of an individual i is the probability that i is the ancestor of a
randomly chosen individual in a distant future generation (Taylor
and Frank, 1996).

To define reproductive value, I suppose that the individuals in
the population under consideration are neutral with respect to
selection. That is, the genotype of an individual does not affect
their fitness. Births and deaths occur at random in the population.
Throughout this paper I work with two Moran processes, which
will be made explicit, that ensure a fixed population size. In the
birth–death process, a birth occurs randomly in the population
and the new offspring displaces a neighbouring individual, who
dies. In the death–birth process an individual is chosen to die and
a neighbouring individual is chosen at random to place an

offspring on the newly vacated site. These birth and death
probabilities are captured by a transition matrix M. Specifically, I
define the i, j entry of M to be the probability pij that the current
individual i is the offspring of individual j produced during a birth/
death event. This entry will differ depending on whether births
precede deaths or vice versa, and examples throughout the
paper will illustrate this. An individual may be unaffected by the
birth/death event in which case we say that such an individual is
“from itself”.

As a first example of such an M matrix, consider a birth–death
process on the 3-line graph in Fig. 1. In the neutral process all
individuals have the same fecundity and are therefore chosen to
reproduce with equal probability, which in the 3-line case is 1/3.
If the centre, or hub, individual is chosen, then it places an offspring
on either leaf vertex with probability 1/2. If a leaf is chosen, its
offspring disperses to the hub with probability 1. Given the current
state of the population, we can ask where the individual on a leaf
vertex was before a birth–death event. With probability 1/6, the
individual is the offspring of the hub vertex and with probability 5/6
the individual was unaffected by the birth–death event and was
already resident on the leaf vertex. For the hub individual, with
probability 1/3 it came from one of the leaf vertices and with
probability 1/3 it was unaffected by the birth–death event and
already resident on the hub. In all, with the vertex numbering in
Fig. 1,

M¼

5
6

1
6 0

1
3

1
3

1
3

0 1
6

5
6

2
664

3
775: ð1Þ

This matrix M can be used to find the vector of probabilities of the
origin of the left-most leaf individual. Represent this individual with
the vector ½1;0;0�. This yields

½1;0;0�

5
6

1
6 0

1
3

1
3

1
3

0 1
6

5
6

2
664

3
775¼ 5

6
;
1
6
;0

� �
; ð2Þ

which captures the argument above: with probability 5/6 the leaf
individual was unaffected by the birth–death event and with
probability 1/6 it is an offspring of the hub individual. Another
right-multiplication by M yields the probability vector for the
generation two previous, and so on.

To find the probability that a randomly chosen individual in the
population at a time t, measured in the number of birth/death
events, in the future is from the lineage originating from individual
i at the present time t0¼0, we perform a calculation similar to the
above on the vector ½1;1;1�:

½1;1;1�

5
6

1
6 0

1
3

1
3

1
3

0 1
6

5
6

2
664

3
775
t

: ð3Þ

This expression converges rapidly as t increases (Barton and
Etheridge, 2011). Hence, the vector resulting from the calculation
in Expression (3) above is stable to additional right-multiplications
by M for sufficiently large t. This vector is the vector of reproduc-
tive values and when normalized, yields the probability distribu-
tion of the origin of a randomly chosen individual. This is captured

1 2 3

Fig. 1. The line graph on three vertices is the simplest example of a degree-
heterogenous graph. Label the vertices v1, v2, and v3 from left to right. As is shown
in the penultimate section, spiteful behaviours can evolve in such a population
structure and these depend on where the spiteful individual first emerges.
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in the following definition, which is a common contemporary
version of Fisher's original reproductive value (Rousset, 2004;
Barton and Etheridge, 2011).

Definition 1. Let G be a graph and M be the backward neutral
transition probability matrix defined above. The reproductive
value of individual i is the ith entry Vi of the non-zero solution
vector V of the equation V¼VM. That is, V is the left eigenvector of
M corresponding to the eigenvalue 1.

It is worth noting that the equation V¼VM does not have a
unique solution for V; any non-zero multiple c of a solution V0 is
also a solution. Therefore, reproductive values are understood
throughout this paper as relative values.

In the neutral process on a graph, some vertices may be
favoured by the population dynamics and the individual residing
on such a vertex can expect to have a greater number of offspring.
These natural differences need to be accounted for in an evolu-
tionary analysis. In a non-neutral case, where the evolutionary
outcome is determined by differences in fitness, some vertices
may bestow a natural fitness advantage to the resident irrespective
of the resident's trait value. Thinking in terms of evolutionary
game theory, individuals residing on vertices interact along edges
and experience gains and losses to fitness due to these interac-
tions. These gains and losses may differ depending on who is
receiving the benefit/cost (Taylor, 1990). An individual on a high-
degree vertex may experience a loss of fitness, but this may be
offset by the natural fitness advantage of residing on a high-degree
vertex. These environment-mediated fitness differences must first
be understood before proceeding with non-neutral evolutionary
processes.

If the population structure is very symmetric—like the lattice
structure in Fig. 3—then all individuals have identical reproductive
output. This is not the case for general, non-symmetric graphs,
such as the line 3-line graph in Fig. 1 or the wheel graph in Fig. 2.
In those examples, the differences in degrees result in differences
in how often an individual replaces, or is replaced by an offspring
of, another individual. These differences in fitness are accounted
by reproductive value.

As an illustrative example, consider the wheel graph in Fig. 2.
There are two types of vertices, those on the periphery, denoted
vP, and the lone centre, denoted vH. Consider, in turn, both a birth–
death and a death–birth Moran (1958) process on this graph, and
suppose that the population is neutral. In the birth–death process
an individual is chosen at random to give birth and the resulting
offspring displaces an adjacent neighbour at random. The indivi-
dual at vertex vH is chosen to give birth with probability 1/9, yet its
neighbours are selected with probability 8/9. Once a vP resident is
selected, it displaces vH with probability 1/3. In the death–birth
process vH is chosen to die with probability 1/9 but its neighbours
are chosen with probability 8/9. It would seem, then, that indivi-
duals at vertex vH are somehow “better off” in the death–birth than

in the birth–death scheme. This is indeed the case. The way of
quantifying “better-off-ness” is with reproductive value.

3. Metapopulations

Ametapopulation is a collection of demes all linked by a dispersal
pattern. Evolutionary graphs can often be thought of metapopula-
tions where the vertices are demes and the edges are the dispersal
pattern. Metapopulations were introduced by Levins (1970) as a
means of describing populations with subpopulations experiencing
extinction and re-colonization. Since Levins (1970), the scope and
generality of metapopulation models has increased dramatically, see
Hanski (1998) for an introduction.

Consider a metapopulation consisting of N demes v1; v2;…; vN .
Each deme vi is a well-mixed population of fixed size Ni. The total
population size is a constant, Ntot. After reproduction the offspring
migrate to another deme with probability m or stay on their natal
deme with probability 1�m and for simplicity I assume that the
value of m is identical for all demes.

There are many possible population dynamics, for example, the
Wright–Fisher process (Wright, 1931), imitation dynamics (Antal
et al., 2006), and the Cannings (1974) process. I restrict the focus of
this paper to two: the Moran death–birth and birth–death pro-
cesses (Moran, 1958). In the death–birth process an individual is
chosen at random to die. Suppose this individual resides on deme
vi. With probability 1�m the newly vacated site is occupied by the
offspring of a deme mate. With probability m it is occupied by the
offspring of a member of a neighbouring deme vj chosen according
to its relative size:

Nj

∑kAN ðviÞNk
; ð4Þ

where the sum is taken over all deme vi's neighbouring demes
N ðviÞ.

In the above definition I have assumed uniform dispersal
probabilities to a deme. That is, if an individual on vi dies and is
not replaced by a deme mate, then it is replaced by the offspring of
a neighbouring deme vj with probability proportional to vj's size
relative to the other neighbours of vi. It is possible, however, that
offspring are more likely to come from certain demes, regardless
of the resident population size.

Denote the probability that an individual chosen to die on vi is
replaced by the offspring of an individual from vj, conditional on
the individual not being replaced by the offspring of another
individual on deme vi, by wji. If an individual dies on deme vi and
the empty site is not taken by the offspring of a deme vi individual,
then it is taken by the offspring from a neighbouring deme. Hence,

∑
ja i

wji ¼ 1: ð5Þ

With this notion of non-uniform dispersal probability, the prob-
ability that a newly vacated site on deme i is occupied by an
offspring of deme j is given by

wjiNj

∑kAN ðviÞwkiNk
: ð6Þ

In the birth–death process an individual is chosen at random to
reproduce and the new offspring either stays on its natal deme
with probability 1�m and displaces a deme-mate or disperses to a
neighbouring deme with probability m. The neighbouring deme is
chosen according to the dispersal probabilities uij. Define uij to be
the probability that an offspring produced on vi disperses to and
replaces an individual on deme vj, conditional on the offspring not
staying and replacing an individual on vi. Note that, similar to theFig. 2. The wheel graph on 9 vertices.
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above,

∑
ja i

uij ¼ 1: ð7Þ

It is to be kept in mind that the uij are the dispersal probabil-
ities in the birth–death process while the wji are in the death–birth
process. In general, the uij and wji are not equal; a distinction I will
draw in the next section. The difference between the two may
seem subtle—uij is the probability that an offspring produced on
deme i displaces an individual on deme j, while wji is the
probability that an empty site on deme j is filled by an offspring
from deme i—but must be kept in mind. The real difference
between the uij and wji is that the uij are normalized with respect
to the deme dispersed from, while wji is normalized with respect
to the deme dispersed to. This distinction allows Eqs. (8) and (9) to
be easily generalized to graph-structured populations. Note that
for uniform dispersal probabilities on degree-regular graphs,
uij ¼wji.

I now derive equations for the reproductive values in the
Moran death–birth and birth–death processes in metapopulations.
To do this, I define a matrix M similar to that in Definition 1, but
where the entries are the indexed by demes, not individuals.
Specifically, the i, j entry of M is the probability that a randomly
chosen individual on deme vj was from the deme vi before a birth/
death event. Definition 1 then yields a reproductive value Vi for
each deme vi. To find the reproductive value of an individual on
deme vi, simply divide the deme reproductive value by the size of
the deme, Vi=Ni. In all, this yields the following.

Theorem 1. Consider a metapopulation of size Ntot residing on N
demes structured according to some graph G. Deme vi is of size Ni,
where 1r irN. Denote the reproductive value of deme vi by Vi.

1. For the death–birth process, the Vi satisfy

Vi ¼ ∑
jAN ðviÞ

wijNi

∑kAN ðvjÞwkjNk
Vj: ð8Þ

2. For the birth–death process, the Vi satisfy

∑
jAN ðviÞ

ujiNj

 !
Vi ¼Ni ∑

jAN ðviÞ
uijVj: ð9Þ

In both cases the sums are taken over all neighbours N ðviÞ of vi,
or neighbours N ðvjÞ of vj.

Proof. This is done by simply calculating the columns of the
matrix M. I demonstrate this for the death–birth process only,
since Eq. (9) is found in a similar way. Entry j in the ith column of
M is the probability pji that an individual currently in deme vj was
in deme vi before the death–birth event. For the entry pii, an
individual on deme vi either was unaffected by the death–birth
event, with probability ðNtot�1Þ=Ntot , or is the offspring of a vi
deme mate, with probability ð1�mÞ=Ntot . For all pji with ja i, an
individual on deme vj is the offspring of a deme vi individual with
probability

m
Ntot

wijNi

∑kAN ðvjÞwkjNk
: ð10Þ

Substituting these expressions into the backward transition prob-
ability matrix M and evaluating the equation for reproductive
value in Definition 1 for Vi yield

Vi ¼
Ntot�1
Ntot

Viþ
1�m
Ntot

Viþ
m
Ntot

∑
jAN ðviÞ

wijNi

∑kAN ðvjÞwkjNk
Vj: ð11Þ

Simplifying gives Eq. (8) in Theorem 1.

Theorem 1 demonstrates how the reproductive values in a
metapopulation depend only on the size of the demes and the
rates of dispersal. An interesting example to consider is a hetero-
geneous metapopulation that has all demes of the same repro-
ductive value. Suppose such a metapopulation is structured
according to the wheel graph of the previous section. Deme vH is
of size NH and vP is of size NP. Setting VP¼VH in the equation in
Theorem 1 that describes the death–birth process yields a system
of equations for NP and NH with solution NH ¼ 6NP . That is, in a
metapopulation structured according to the 9-wheel graph, the
reproductive values of all the demes are equal provided NH ¼ 6NP .
The individual reproductive values are obtained by dividing the
deme RVs by the size of the deme. In this way it is seen that an
individual in a periphery deme in a population undergoing a
death–birth process has a greater reproductive value than on in
the hub, despite both being members of deme with the same
average reproductive value.

4. Graph-structured populations

A graph-structured population is a special case of a metapo-
pulation with Ni¼1 for all i and Ntot ¼N. There are a couple of
ways we can analyse the reproductive value equations in Theorem
1 in the context of evolutionary graphs. First I consider the case
that the probability of offspring dispersal from a vertex to a
neighbouring vertex is uniform. That is, I set

wji ¼ uij ¼
1=di if vi and vj are adjacent
0 otherwise

�
;

where di is the degree of vertex i and wji and uij are the death–
birth and birth–death dispersal probabilities, respectively, defined
in the previous section. This yields the following solutions to the
equations in Theorem 1.

Corollary 1. For an evolutionary graph with uniform dispersal from
any vertex the reproductive values Vi for the vertices vi of degrees di
are as follows:

1. For the death–birth process,
Vi ¼ di ð12Þ

2. For the birth–death process,

Vi ¼
1
di
: ð13Þ

This corollary is very useful in describing the neutral process,
which will be done next. First note that the equations in Theorem
1 have a degree of freedom, so there are an infinite number of
solutions. But they are all scalar multiples of those given above.

I now consider the relationship between reproductive value
and fixation probability. Suppose a population consists entirely of
one type (type B) of individual. After a reproductive event a
mutant (type A) appears. The probability that the progeny of the
mutant go on to displace all resident types is the fixation
probability ρA of A. In general this fixation probability depends
on where in the population the A type emerges. Define ρAji as the
fixation probability of an A that emerges on vertex vi.

It is known (ex. Leturque and Rousset, 2002) that the fixation
probability of a neutral mutant in a metapopulation is equal to its
relative reproductive value. This fact can easily be seen to be the
case from a result of Broom et al. (2010).

Theorem 2. Let G be an evolutionary graph with N vertices and
suppose the edges are uniformly weighted. The fixation probability
ρAji of a single A type that emerges on vertex vi of G in the neutral
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population is

ρAji ¼
Vi

∑N
j ¼ 1Vj

; ð14Þ

where Vi is the reproductive value of vertex vi.

A proof of this result is in the appendix.
The fundamental question in evolutionary theory is, when does

a mutant have an evolutionary advantage over a resident popula-
tion? A natural condition is that the probability ρ that the mutant
fixes in the population is greater than what it would be in the
absence of selection. From early on in the evolutionary graph
theory literature (Lieberman et al., 2005) this condition took the
form ρA41=N, where A is the mutant and N is the total population
size. Theorem 2 indicates that this condition is insufficient for
graphs with vertices of differing degrees. For an arbitrary graph,
ρAji depends on i. Notice, however,

1
N

∑
N

i ¼ 1
ρAji ¼

1
N

∑
N

i ¼ 1

Vi

∑N
j ¼ 1Vj

¼ 1
N
: ð15Þ

Returning to the wheel graph example, Theorem 2 allows for an
easy calculation of the neutral fixation probability of a hub ρAjH or
periphery ρAjP mutant on a wheel graph of arbitrary size, Nþ1.
Table 1 records these fixation probabilities for both the birth–
death and death–birth processes.

A few interesting observations can be made at this point. First,
in the death–birth process ρAjH does not depend on the size of the
population. This is understood as a balance between the prob-
abilities that the hub or a periphery individual is chosen to die.
For large populations the probability that the hub dies is essen-
tially zero, yet the probability that the hub reproduces is fixed at
1/3. Second, for the birth–death process, both ρAjP and ρAjH go to
0 as N increases. This is because for large populations the prob-
ability that any one individual is chosen to reproduce in close to 0.

An interesting extension of Theorem 2 is to the neutral fixation
probability of a set M of A types. Such a fixation probability is
defined as the probability that the population eventually consists
entirely of all A given that it initially started with a set M� VðGÞ of
As.

Theorem 3. The neutral fixation probability ρAjm of a set M of A
types on a graph G undergoing either a birth–death or death–birth
Moran process is

ρAjM ¼ ∑
iAM

ρAji: ð16Þ

That is, the neutral fixation probability of a set of A types is the sum of
the individual neutral fixation probabilities.

A proof of this theorem in found in the appendix.
This theorem is remarkable in that the configuration of the A

types is irrelevant. It does not matter if the set M is clustered or
spread about the graph; the fixation probability is the same, see
Fig. 3.

5. Non-neutral cases

So far I have analysed the equation in Theorem 1 by supposing
that the dispersal from any vertex i to a neighbouring j is
wji ¼ uij ¼ 1=di. This need not be the case. One could imagine a
population residing in a windy or a stream environment that
results in preferential dispersal. Removing the assumption of
uniform dispersal makes Theorem 1 less transparent. Relating
reproductive value to an existing object in the study of evolu-
tionary graphs, the temperature of vertices as introduced in
Lieberman et al. (2005) allows us to gain some traction.

For the birth–death process, the temperature Ti of a vertex vi is

Ti ¼ ∑
jAN ðviÞ

uji; ð17Þ

where the sum is over all neighbours of vi. If the graph is weighted
with wji weights, as in the death–birth process, the above defini-
tion can be rewritten accordingly:

Ti ¼ ∑
jAN ðviÞ

wij: ð18Þ

Eq. (18) is not the definition of temperature as found in, e.g.,
Lieberman et al. (2005) and Nowak (2006). Previous work on the
temperature of vertices has only considered the birth–death
process. As we have seen in Eq. (8) it is necessary to introduce
wji for the death–birth process. Recall that ∑jAN ðviÞwji ¼ 1. The Ti in
Eq. (18) does not necessarily equal 1, and therefore plays the same
role for the wij that the temperature Ti in Eq. (17) does for the uji.
It can be shown that the existing results on temperature, including
Theorem 4 below, also hold for graphs carrying the wji weightings.

The fundamental result concerning the temperatures on an
evolutionary graph is the isothermal theorem of Lieberman et al.
(2005) (see also Nowak, 2006). Suppose a mutant with fecundity r,
where r41, emerges in a population of individuals each having
fecundity 1. The population updates with a Moran process and the
probability ρ that the mutant fixes in the population is observed.
This is the constant-fecundity process (Lieberman et al., 2005).

The results of Lieberman et al. (2005) are that for an isothermal
graph, where all vertices have the same temperature, the fixation
probability is exactly what one would find in a unstructured
population—that is, where all vertices are adjacent; a complete
graph—of the same size, N.

Theorem 4 (Lieberman et al., 2005). Let G be a graph and Ti be the
temperature of the vertex vi. For the constant-fecundity process
described above,

ρA ¼
1�1=r
1�1=rN

ð19Þ

Table 1
The fixation probabilities for an allele that begins on a hub
or on a periphery vertex for both the birth–death and
death–birth Moran processes.

Fixation probability DB BD

ρAjH 1=4 3=ðN2þ3Þ
ρAjP 3=ð4NÞ N=ðN2þ3Þ

Fig. 3. The fixation probability of a set of individuals is the sum of the fixation
probabilities of the individuals in the set. In this example on a lattice, the set of
black individuals has the same fixation probability whether they are clumped (a) or
spread out (b).
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if, and only if,

Ti ¼ Tj 8 i; jAVðGÞ: ð20Þ

Eq. (20) is the isothermal condition. This relates nicely to
reproductive value.

Theorem 5. A graph is isothermal if, and only if, all vertices have the
same reproductive value.

Proof. First, assume Vi¼Vj for all vertices vi and vj of G. From Eq. (8),
I have

Vi ¼ ∑
jAN ðviÞ

wijVj⟹ ∑
jAN ðviÞ

wij|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Ti

¼ 1 ð21Þ

for the death–birth process, and

∑
jAN ðviÞ

uji

 !
Vi ¼ ∑

jAN ðviÞ
uijVj⟹ ∑

jAN ðviÞ
uji|fflfflfflfflffl{zfflfflfflfflffl}

Ti

¼ ∑
jAN ðviÞ

uij ¼ 1 ð22Þ

for the birth–death process.
Now assume Ti¼Tj for all vertices vi and vj of G. Suppose, for

contradiction, that not all vertices of G have the same reproductive
value. There exists a vertex vk such that Vk is the maximum of all
reproductive values and at least one neighbour of vk has a
reproductive value strictly less than Vk. Similarly, let vertex vl be
such that Vl is the minimum of all reproductive values and at least
one neighbour of vl has a reproductive value greater than Vl.
Consider the death–birth process; the argument for the birth–
death process is similar. From Eq. (8),

Vk ¼ ∑
jAN ðvkÞ

wkjVjo ∑
jAN ðvkÞ

wkjVk⟹Tk ¼ ∑
jAN ðvkÞ

wkj41: ð23Þ

Also,

Vl ¼ ∑
jAN ðvlÞ

wljVj4 ∑
jAN ðvlÞ

wljVl⟹Tl ¼ ∑
jAN ðvlÞ

wljo1: ð24Þ

Hence, TkaTl, which is a contradiction. □

In Broom and Rychtář (2008) the authors prove that, assuming
dispersal from a vertex is uniform, a graph is isothermal if, and
only if, the graph is regular. In light of Corollary 1 or Theorem 4,
an analogous result exists for reproductive value. An interesting
question is, is it possible for the vertices of a non-regular graph to
all have the same reproductive value? The answer is yes, as is seen
by, once again, returning to the wheel graph example. For the
wheel graph on 9 vertices in Fig. 1 consider the birth–death
process and define the dispersal probabilities:

uPH ¼ 1
8
; uPP ¼

7
16

and uHP ¼
1
8
:

This example is easily seen to be isothermal and hence, by
Theorem 4, all vertices have the same reproductive value.

For the death–birth process and constant fecundity, higher-
degree vertices are favoured for the emergence of more fecund
alleles, since they confer a natural advantage: higher degree means
a greater likelihood of a neighbour dying which translates into a
greater-than-average chance of placing an offspring. The situation
is reversed for the birth–death process: lower degree means less-
than-average chance of being displaced by a neighbour's offspring.
In both cases the favourable vertex is one with a high reproductive
value.

Previous work on degree-heterogeneous graphs (Broom et al.,
2011; Antal et al., 2006) has reached the conclusion that the
death–birth process favours mutants that emerge on vertices of
high degree, while the birth–death process favours mutants
arising on low degree vertices. This is precisely what is found in

the corollary to Theorem 1. However, rather than viewing the
results of Broom et al. (2011) and Antal et al. (2006) as two
separate cases, the above results on reproductive value allow us to
observe a general phenomenon: the vertices that favour the
mutant allele in the constant-selection framework are those with
the greatest reproductive value, regardless if the update rule is
death–birth or birth–death. The difference in fecundity acts to
embellish the effect of reproductive value. Reproductive value
provides a unifying concept for these results.

5.1. Evolutionary games

I now consider evolutionary games on graphs. Consider a
population consisting of two types of individuals: As and Bs. Each
pair connected by an edge gives and receives payoffs according to
the game matrix:

A B

A b�c �c

B b 0
ð25Þ

For b; c40, this is the additive prisoner's dilemma game.
The payoffs accrued by individuals interacting according to the

game in Matrix (25) translate into fecundity. The fecundity of an
individual i is

f i ¼ eδP ; ð26Þ
where δ is the strength of selection and P is the payoff received from
playing the game with their neighbours Lieberman et al. (2005). For
example, if an A individual has one A and two B neighbours then
their total payoff is P ¼ b�cþ2ð�cÞ ¼ b�3c. Once these fecundity
values are calculated, a population update occurs. For the death–birth
process, an individual i dies with probability 1/N and is replaced by
an offspring of its neighbour j with probability:

f j
f tot

; ð27Þ

where ftot is the total fecundity of all the neighbours of i. For the
birth–death process, an individual i is chosen for reproduction with
probability:

f i
f tot

; ð28Þ

and the offspring displaces a neighbour of i with uniform probability,
1=di.

To illustrate the effects of reproductive value on the outcome of
an evolutionary game, I consider the simplest example of a
heterogeneous graph, the 3-line in Fig. 1. Denote a end point
vertex with the subscript p and the central hub vertex with h.
I consider only the birth–death process.

The reproductive values for the birth–death process are easily
calculated from Corollary 1:

Vp ¼ 1; and; Vh ¼
1
2
: ð29Þ

Hence, in the neutral process, where δ¼ 0 in Eq. (26),

ρp ¼
2
5
; and; ρh ¼

1
5
: ð30Þ

The neutral fixation probabilities ρneutral give us a condition for the
spread of the strategy A: A is favoured by evolution provided
ρA4ρneutral. Note that, for regular graphs, a class of graph that
includes complete, cycles, lattices, and all vertex-transitive graphs,
this condition reduces to ρA41=N, which is the condition com-
monly found in the literature (Nowak, 2006). In the present
example, an A type is favoured by evolution provided
ρAjp4ρneutraljp ¼ 2=5 if it emerges on an end vertex and
ρAjh4ρneutraljh ¼ 1=5 on the hub vertex.
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I now calculate the probability that a single A reaches fixation
in a population otherwise composed of all B. To do this, I assume
weak selection. This means that δ≪1 in Eq. (26). This allows for an
accurate Taylor series approximation for Eq. (26).

Now suppose that the 3-line population initially consists of all
B. A mutant A appears on one of the end point vertices. It is easy to
show, by solving a system of equations that describes the fixation
probability, that the fixation probability of this mutant is

ρAjp ¼
2
5
� 14

25
cþ 6

25
b

� �
δþoðδÞ: ð31Þ

The condition ρAjp4ρneutraljp yields a condition on the b and c
parameters. Namely, an A type on an end point vertex is favoured
by evolution provided b=co�7=3. This condition is clearly never
satisfied for positive b and c. If, however, bo0, then the condition
can be satisfied. This is an example of a spiteful behaviour: an
individual pays a cost to purposely harm another (Gardner and
West, 2006).

A similar calculation reveals that the fixation probability of an A
type that emerges on the hub vertex is

ρAjh ¼
1
5
� 12

25
cþ14

75
b

� �
δþoðδÞ: ð32Þ

This A is favoured by evolution provided b=co�18=7. Again, this
is satisfied only when bo0.

To compare these two results for the fixation probability of
spite, suppose that the cost of the spiteful act is fixed at c¼1. Then
it is seen that the hub requires a higher level of spite than the end
point vertices in order for the trait to fix in the population. Put
another way, spite can emerge more easily on the end point
vertices.

The lesson from this example is that the spread of strategy may
be tied to where the strategy first emerges. In turn, the favoured
vertices are those with a greater reproductive value.

6. Discussion

In this paper, I have brought the notion of reproductive value
into the study of evolution in graph-structured populations. This
makes headway into unifying existing results on degree-
heterogeneous graphs. Generally, for a constant-fecundity process
in a graph-structured population, it may be best for the more
fecund type to emerge on a vertex with high reproductive value.
This depends on the type of population regulation. For birth–death
updating, mutants are favoured on low-degree vertices, while
mutants in the death–birth process are favoured high-degree
vertices. This has been observed by other authors (Antal et al.,
2006), but as separate cases. Reproductive value unites these into
two sides of the same coin.

The main driving force of these differences is the neutral
fixation probability. Some breeding sites are more advantageous
to occupy in that they naturally confer a fitness advantage on their
resident. This natural advantage is captured by the reproductive
value of an individual on such a site.

The effect of heterogeneous population structures is still not
well understood. It is now well-known that degree-heterogeneous
graphs can affect evolution (Antal et al., 2006; Santos et al., 2008;
Broom and Rychtář, 2008; Broom et al., 2011), but an explanation
of how the degrees of individual vertices contribute to these
effects is still needed. The concept of reproductive value fills this
void. In the neutral process, those individuals that reside on
vertices of a higher reproductive value have a higher-than-
average probability of fixing in the population. Understanding
the neutral process allows for a baseline condition against which
the fitness advantage of a non-neutral allele can be measured.

Where the allele emerges matters. If the allele has a fixation
probability greater than the relative reproductive value of the
vertex on which it emerges, it is favoured by evolution. Such a
condition opens up the further study of evolution in heteroge-
neous graph-structured populations.

This work also clarifies terminology existing in the literature.
Take, for example, a statement from Santos et al. (2008), “For
regular graphs (in which, from the perspective of a population
structure, every individual is equivalent to any other)…” The
meaning of such a statement is not entirely clear. The statement
is true for vertex-transitive graphs, as shown in Taylor et al. (2007),
where it is understood that the graph “looks the same” from every
vertex. Reproductive value formalizes the idea present in the
above statement: on a regular graph, all individuals have the same
reproductive value. It should be noted that all vertex-transitive
graphs are regular, but not all regular graphs are vertex-transitive;
an example is the Frucht graph (Frucht, 1949). There are a host of
factors that influence the outcome of an evolutionary process on a
graph: the graph structure, including symmetry, the degree dis-
tribution, and the underlying structure; the population regulation
scheme; and whether the population is experiencing constant or
frequency-dependent selection. All of these factors need to be
stated carefully to avoid the misinterpretation of results.
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Appendix A

A.1. Proof of Theorems 2 and 3

I first prove Theorem 3 and then use this result in the proof of
Theorem 2.

Theorem 3. The neutral fixation probability ρAjm of a set M of A
types on a graph G undergoing either a birth-death or death-birth
Moran process is

ρAjM ¼ ∑
iAM

ρAji: ð33Þ

That is, the neutral fixation probability of a set of A types is the sum of
the individual neutral fixation probabilities.

In preparation for this proof, define the state of the population
to be the set of A types in the population. For all states S, the
fixation probability ρS of the set S satisfies the following equation:

ρS ¼ ∑
T aS

PS;T ρT þ 1� ∑
T aS

PS;T

 !
ρS : ð34Þ

As an explicit instance of this equation, consider a well-mixed
population of size N. The states are precisely the number of A
types. Eq. (34) is then

ρi ¼ Pi;iþ1ρiþ1þPi;i�1ρi�1þð1�Pi;iþ1�Pi;i�1Þρi; ð35Þ
which is found elsewhere in the literature (Nowak, 2006).

Proof. Considering all states of the population, Eq. (34) is a system
of equations. For the initial conditions ρ0 ¼ 0 and ρN ¼ 1, where ρ0
is the state with no A types and ρN0 is the state of all A types, then
the system defined by Eq. (34) has a unique solution up to a non-
zero constant. Hence, it suffices to show that Eq. (33) satisfies
these two initial conditions and the system defined by Eq. (34).
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Clearly, Eq. (33) satisfies the two initial conditions. To show that
it satisfies the system above, rewrite Eq. (34) as

∑
T aS

PS;T ðρS�ρT Þ ¼ 0: ð36Þ

Note that the states S and T can differ by at most one vertex.
For all other states, T ′, PS;T ′ ¼ 0.
Denote the state obtained from state S by switching the type of

individual that occupies vertex j by SðjÞ. With this, Eq. (36) is

∑
j
PS;SðjÞðρS�ρSðjÞÞ ¼ 0: ð37Þ

Rewriting the above in terms of the set M yields

∑
j
PM;MðjÞðρAjM�ρAjMðjÞÞ ¼ 0: ð38Þ

Either jAM or j=2M. In the first case,

ðρAjM�ρAjMðjÞÞ ¼ ρAjM�ρAjM\fjg; ð39Þ

and in the second,

ðρAjM�ρAjMðjÞÞ ¼ ρAjM�ρAjM[fjg: ð40Þ

At this point, I require an expression for PM;MðjÞ. This will depend
on whether a birth–death or a death–birth process is being
considered. For the birth–death process,

PM;MðjÞ ¼
1
N

∑
kAN ′ðjÞ

ukj; ð41Þ

where the sum is taken over all neighbours of j that are a different
type than j. Substituting this into Eq. (38) yields

1
N
∑
j

∑
kAN ′ðjÞ

ukjðρAjM�ρAjMðjÞÞ ð42Þ

¼ 1
N

∑
jAM

∑
k=2M

ukjðρAjM�ρAjM\fjgÞþ ∑
jAM

∑
k=2M

ukjðρAjM�ρAjM[fjgÞ
 !

¼ 0:

ð43Þ
At this point, I directly substitute Eq. (33) into Eq. (43). With some
simplification, Eq. (43) is

1
N

∑
jAM

∑
k=2M

ukjρAjjþ ∑
jAM

∑
k=2M

ujkð�ρAjjÞ
 !

¼ 1
N

∑
jAM

∑
k=2M

ðukj�ukjÞρAjj

 !
¼ 0:

ð44Þ
Hence, Eq. (33) is a solution to Eq. (34) and is, therefore, the
desired probability. □

The argument above can be described as follows. Every
instance of a vertex j of M being replaced by an individual k not
in M exactly cancels with an instance of j replacing k to create the
set M [ k.

The argument for the death–birth process is analogous. The
only difference is that Eq. (41) is

PM;MðjÞ ¼
1
N

∑
kAN ′ðjÞ

wkj: ð45Þ

Theorem 2. Let G be an evolutionary graph with N vertices and
suppose the edges are uniformly weighted. The fixation probability
ρAji of a single A type that emerges on vertex vi of G in the neutral
population is

ρAji ¼
Vi

∑N
j ¼ 1Vj

; ð46Þ

where Vi is the reproductive value of vertex vi.

Proof. I consider a death–birth process; the result for the birth–
death process is derived analogously. A general proof that holds
irrespective of the update rule can be derived from the results of

Leturque and Rousset (2002). The proof of this theorem hinges on
Eq. (34). The following argument follows Broom et al. (2010)
where the authors prove a similar result for a birth–death process.
Similar to the previous proof, ρAji satisfies

ρAji ¼
1
N
∑
ja i

wijρAjfijgþ 1� 1
N
∑
ja i

wji�
1
N
∑
ja i

wij

 !
ρAji: ð47Þ

Rearranging yields

∑
ja i

wjiρAji ¼ ∑
ja i

wijðρAjfijg �ρAjiÞ: ð48Þ

From the Theorem 3, I have ρAjfijg ¼ ρAjiþρAjj. Combining this with
the fact that wji ¼wij ¼ 0 for all non-adjacent i and j, Eq. (48) is

∑
jAN ðiÞ

wjiρAji ¼ ∑
jAN ðiÞ

wijρAjj: ð49Þ

The solution for this is ρAji ¼ di. Normalizing by the sum of the
degrees gives the result. □
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