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H I G H L I G H T S

� Optional games on cycles and complete graphs are analyzed.
� We explore various limits for weak selection and large population analytically.
� Some analytic results for strong selection limits are obtained.
� Numerical analysis is performed on optional PD games on simple graphs.
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a b s t r a c t

We study stochastic evolution of optional games on simple graphs. There are two strategies, A and B,
whose interaction is described by a general payoff matrix. In addition, there are one or several
possibilities to opt out from the game by adopting loner strategies. Optional games lead to relaxed
social dilemmas. Here we explore the interaction between spatial structure and optional games. We find
that increasing the number of loner strategies (or equivalently increasing mutational bias toward loner
strategies) facilitates evolution of cooperation both in well-mixed and in structured populations. We
derive various limits for weak selection and large population size. For some cases we derive analytic
results for strong selection. We also analyze strategy selection numerically for finite selection intensity
and discuss combined effects of optionality and spatial structure.Q3
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1. Introduction

In the typical setting of evolutionary game theory, the indivi-
dual has to adopt one of several strategies (Hofbauer and Sigmund,
1988, 1998; Weibull, 1997; Friedman, 1998; Cressman, 2003;
Nowak, 2004; Vincent and Brown, 2005; Gokhale and Traulsen,
2011). For example in a standard cooperative dilemma (Hauert
et al., 2006; Nowak, 2012; Rand and Nowak, 2013; Débarre et al.,
2014), the individual can choose between cooperation and defec-
tion. Natural selection tends to oppose cooperation unless a
mechanism for evolution of cooperation is at work (Nowak,
2006a). In optional games there is also the possibility not to play
the game (Kitcher, 1993; Batali and Kitcher, 1995; Hauert et al.,
2002; Hauert, 2002; Szabó and Hauert, 2002a; De Silva et al.,
2009; Rand and Nowak, 2011). The individual player has to choose
whether to participate in the game (by cooperating or defecting)
or to opt out. Opting out leads to fixed “loner's payoff”. This loner's
payoff is forfeited if one decides to play the game. Thus there is a
cost for playing the game. Optional games tend to lead to relaxed
social dilemmas (Michor and Nowak, 2002; Hauert et al., 2006).

They have also been used to study the effect of costly punishment
(by peers and institutions) on evolution of cooperation (Boyd and
Richerson, 1992; Nakamaru and Iwasa, 2005; Hauert et al., 2007;
Sigmund, 2007; Traulsen et al., 2009; Hilbe and Sigmund, 2010).
There is also a relationship between optional games and empty
places in spatial settings (Nowak et al., 1994).

Here we study the effect of optional games on cycles and on
complete graphs (van Veelen and Nowak, 2012). Cycles and
complete graphs are on opposite ends of the spectrum of spatial
structure. Most graphs will lead to an evolutionary dynamics
between these two extremes. Evolutionary graph theory
(Lieberman et al., 2005; Santos and Pacheco, 2005; Ohtsuki
et al., 2006; Szabó and Fáth, 2007; Fu et al., 2007a, 2007b;
Santos et al., 2008; Perc and Szolnoki, 2010; Perc, 2011; Allen
et al., 2013; Maciejewski, 2014) is an approach to study the effect
of population structure on evolutionary dynamics (Nowak and
May, 1992; Nakamaru et al., 1997; Tarnita et al., 2009a, 2009b,
2011; Nowak et al., 2010). Using stochastic evolutionary dynamics
for games in finite populations (Foster and Young, 1990; Challet
and Zhang, 1997; Taylor et al., 2004; Nowak et al., 2004; Imhof and
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Nowak, 2006; Traulsen et al., 2006), we notice that the number of
different loner strategies has an important effect on selection
between strategies that occur in the game. Increasing the number
of ways to opt out (or, increasing mutational bias toward Garcia
and Traulsen, 2012 loner strategies) in general favors evolution of
cooperation.

Our paper is organized as follows. In Section 2 we give an
overview of the basic model and list our key results. In Section 3
we calculate the abundance in the low mutation limit. It is used to
investigate the conditions for strategy selection in the weak
selection limit in Section 4 and in the strong selection limit in
Section 5. We calculate these conditions for optional games with
simplified prisoner's dilemma games in Section 6. We then analyze
strategy selection numerically for finite mutation rate as well as
finite selection intensity in low mutation in Section 7. In our
concluding remarks in Section 8, we summarize and discuss the
implications of our findings.

2. Model and main results

We consider stochastic evolutionary dynamics of populations
on graphs. In particular, we investigate the condition for one
strategy to be favored over the others in the limit of low mutation
and for two different reproduction processes, birth–death (BD)
updating and death–birth (DB) updating on cycles. We compare
the results with those for the Moran Process (MP) on the complete
graph. The fitness of an individual is determined by the payoff
from the non-repeated matrix games with its nearest neighbors.
We use exponential fitness,

f r ¼ ewPr ; ð1Þ

for the individual at the site r, where Pr is its accumulated payoff
from the games with its neighbors. The intensity of selection, w, is
a parameter representing how strongly the fitness of an individual
depends on its payoff.

We first study a general matrix game whose payoff matrix is
given by A¼ ½aij�, i.e., a game that an individual using strategy Si
receives aij as a payoff when it plays with an individual with
strategy Sj. Then we apply our finding to an optional prisoner's
dilemma game to find a condition for evolution of cooperation.

We calculate the abundance (frequencies in the stationary
distribution) of strategies in the low mutation limit, where
mutation rate u goes to zero, and find the condition that strategy
Si is more abundant than strategy Sj. For low mutation, abundance
can be written in terms of fixation probabilities which we obtain
in a closed form for general w. Although the formal expression of
abundance is useful for numerical calculation, the complexity of
the expression makes it hard for us to understand the strategy
selection mechanism intuitively.

For low intensity of selection ðw-0Þ, however, the fixation
probability reduces to a linear expression in aij with clear inter-
pretation. The condition for strategy selection is then given by a
simple linear inequality in terms of payoff matrix elements. This is
the case even for the large population limit of N-1.

However, when considering the limits of weak selection ðw-0Þ
and large population ðN-1Þ, the condition for strategy selection
depends on the order in which these limits are taken. We there-
fore consider two different large population, weak selection limits:
the wN limit and the Nw limit. In the wN limit, w goes to zero
before N goes to infinity such that Nw is much smaller than 1.
In the Nw limit, N goes to infinity before w goes to zero such that
Nw is much larger than 1.

2.1. wN limit

We first calculate the fixation probability, ρik, which is the
probability that a strategy Si takes over the whole population of
the strategy Sk for the w-0 limit. It can be written as

ρik ¼
1
N
þdikw; ð2Þ

here the “biased drift”, dik is defined by

dik ¼

1
2
lik�

1
2N

sik for BD

1
4
lik�

1
4N

sik for DB

1
4
lik�

1
12

sik for MP

8>>>>>><
>>>>>>:

ð3Þ

with the anti-symmetric term lik and the symmetric term sik
given by

lik ¼ sNaiiþaik�aki�sNakk
sik ¼ sNðaii�aik�akiþakkÞ: ð4Þ
The structure factor, sN for the population of the size N, is given by

sN ¼
1�2=N for BD & MP
3�8=N for DB:

(
ð5Þ

Using fixation probabilities of Eq. (2), we then calculate
abundance in the low mutation limit and show that strategy Si is
more abundant than strategy Sj when

∑
k
lik4∑

k
ljk ð6Þ

as previously known (Nowak et al., 2010; Ohtsuki and Nowak,
2006). The fixation probability obtained for a general 2�2 matrix
game is also applied to calculate the abundance of cooperator and
defectors in optional prisoner's dilemma game (Szabó and Hauert,
2002b) with ðnþ2Þ strategies, cooperator (C), defector (D) and n
different types of loners, L1;…; Ln. The payoff matrix is given by

C

D

L1
⋮
Ln

C D L1 ⋯ Ln
R S g ⋯ g

T P g ⋯ g

g g g ⋯ g

⋮ ⋮ ⋮ ⋱ ⋮
g g g ⋯ g

0
BBBBBB@

1
CCCCCCA
: ð7Þ

When two cooperators meet, both get payoff R. When two
defectors meet, they get payoff P. If a cooperator meets a defector,
then the defector gets the payoff T while the cooperator get the
payoff S. Loners get payoff g always. Cooperators or defectors also
get payoff g when they meet a loner. Since n different types of
loners have the same payoff structure, this system is equivalent to
the population with three strategies, C, D, and a single type of
loners, L, if the mutation rate toward L (from C or D) is n times
larger than the other way.

In the limit of w goes to zero, we find that the condition for
xC4xD is given as

sNðnÞRþS4TþsNðnÞP; ð8Þ
where

sNðnÞ ¼
1þ1

2
n

� �
1� 2

N

� �
for BD&MP

1þ1
2
n

� �
3� 8

N

� �
for DB:

8>>><
>>>:

ð9Þ

As long as w goes to zero first ðNw51Þ, inequality (8) is valid even
in the large population limit of N-1, where the structure factor
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sNðnÞ becomes

sðnÞ ¼
1þ1

2n for BD & MP

3þ3
2n for DB:

(
ð10Þ

If we do not allow any loner type, then n¼0 and sNðnÞ becomes
sN of Eq. (5) as expected, and cooperators are more abundant than
defectors if and only if ρCD4ρDC . On the other hand, when the
number of loner types, n, goes to infinity, s becomes infinity and
social dilemmas are completely resolved. Cooperators are more
abundant than defectors whenever R4P.

2.2. Nw limit

We still consider the low selection intensity limit ðw-0Þ but
we take the large population limit first such that Nw is much
larger than 1. In this case, we can calculate the fixation probability
analytically only for BD and DB. Fixation of Si (invading strategy Sk)
is possible only when lik is positive where

lik ¼saiiþaik�aki�sakk: ð11Þ
The structure factor for infinite population s in Eq. (11) is 1 for BD
and 3 for DB. When lik is positive, fixation probability ρik is
proportional to lik and is given by

ρik ¼
likΘðlikÞ for BD
1
2likΘðlikÞ for DB;

(
ð12Þ

where ΘðxÞ is the Heaviside step function.
We calculate the abundance for the low mutation limit using

fixation probabilities given by Eq. (12) for a general 3 strategy
game and find conditions for the abundance xi of strategy Si to be
larger than the abundance xj of strategy Sj. Here i, j, and k are the
indices representing three distinct strategies, Si, Sj, and Sk, respec-
tively. If both lij and lik are positive, Sj and Sk cannot invade Si and
we have xi ¼ 1 and xj ¼ xk ¼ 0, i.e., xi4xj always. By the same
token, xi cannot be larger than xj when both lji and ljk are positive.
If lki and lkj are positive, both xi and xj are zero. The only non-trivial
case is when three strategies show rock–paper–scissors-like char-
acteristics in terms of lij. For the lij40 case (with ljk40 and lki40),
strategy Si is more abundant than strategy Sj when lij4 lki. For the
lji40 case (with lik40 and lkj40), strategy Si is more abundant
than strategy Sj when ljio lkj.

The analysis for three strategy game can be applied to optional
prisoner's game with n types of loners whose payoff matrix is
given by Eq. (7). The condition for xC4xD can still be written as a
linear inequality but the coefficients of the linear inequality
depend on the signs of R�P, R�g, and P�g. For simplicity, we
first assume that R4P without loss of generality. Then, when
P4g, the condition for xC4xD becomes

RþS4TþP for BD
3RþS4Tþ3P for DB:

ð13Þ

For the other case of Pog, the condition for xC4xD becomes

RþS4TþPþnðP�gÞ for BD
3RþS4Tþ3Pþ3nðP�gÞ for DB:

ð14Þ

For high intensity of selection ðwb1Þ, strategy selection
strongly depends on the number of loner strategies, n. If n is
larger than 1, then cooperators are more abundant than defectors
as long as g4P. On the other hand, for n¼1, the condition for
xC4xD depends on the reproduction processes. For n¼1, we
obtain the condition only for the “simplified” prisoner's dilemma
game (donation game) in which the payoffs are described in terms
of the benefit, b, and the cost, c, of cooperation, R¼ b�c, S¼ �c,
T¼b, P¼0. For BD, cooperators are always less abundant than

defectors as long as gob. For DB and MP, xC is larger than xD if

cob=2 for DB
cog for MP:

ð15Þ

2.3. Numerical analysis

Our analytic results are obtained in the two extreme limits of
selection strength (w-0 and w-1) in the zero mutation limit.
For finite values of w (with low mutation rate), we solve condi-
tions for xC4xD numerically, using calculated abundance from
fixation probabilities. For finite mutation rates, we perform a series
of Monte Carlo simulations and measure abundance to obtain the
condition for strategy selection.

In particular, we consider a simplified prisoner's dilemma game
with one type of loners (n¼1) in which the analytic conditions for
xC4xD [inequalities (8), (13) and (14)] become

co N�6
5N�6

b for BD&MP

co 7N�24
11N�24

b for DB; ð16Þ

for the wN limit, and

g42c for BD

g4
4
3
ðc�b=2Þ for DB; ð17Þ

for the Nw limit.
We first confirm these conditions numerically with a finite but

small w in the low mutation limit. Abundance of each strategy is
calculated for Nw¼0.01 and Nw¼100 (with N¼104). We find
more cooperators than defectors when inequality (16) is satisfied
for Nw¼0.01 and inequality (17) for Nw¼100. When Nw is much
smaller than 1, cooperators in BD and those in MP are more
abundant than defectors in the same region in the parameter
space as inequality (16) predicts. However, they are different for
general Nw. When Nw is much larger than 1, cooperators are less
abundant than defectors always for BD but we find more coop-
erators than defectors when g4c for MP.

For finite mutation rate, we investigate abundance by Monte
Carlo simulation. We start from a random arrangement of three
strategies on a cycle (BD and DB) or a complete graph (MP) with
N¼50 sites. Population evolves with BD, DB, or MP updating
processes with the mutation rate, u¼0.0002. We monitor the time
evolution of the average frequencies and see if the population
evolves to a steady state in which average frequency remains
constant. We measure abundance, the frequency average in the
steady state, and find that abundance in our simulations agrees
quite well with calculations in the low mutation limits using
fixation probabilities.

3. Derivation of general expressions for fixation probability
and abundance

We now begin our derivation of the results presented above.
We begin by obtaining general expressions for fixation probability
and abundance that are valid for any population size and selection
intensity. These expressions are obtained first for a general 3�3
matrix game, and then for the optional prisoners' dilemma game.

When there are mutations, the population will not evolve to an
absorbing state of one kind. Yet, in many cases, it is expected for
them to evolve to a steady state in which the frequency of each
type (in a sufficiently large population) stays constant. We use the
term “abundance” for frequency in the steady state. For a small
population, frequencies may oscillate with time through mutation-
fixation cycles, especially when the mutation rate is very small.
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In this case, abundance is defined as the time average of frequen-
cies over fixation cycles.

In this section, we consider abundance in the low mutation
limit, in which the mutation rate u goes to zero. We imagine an
invasion of a mutant in the mono-strategy population and we
ignore the possibility of further mutation during the fixation
sweep. In this low mutation limit, abundance can be expressed
in terms of fixation probabilities. We first calculate fixation
probabilities for general selection intensity w and present them
in a closed form for BD and DB. Then, we present abundance in
terms of fixation probabilities.

3.1. Fixation probability

We consider the fixation probability of A (invading a population
that consists of B) for a general 2�2 matrix game with the payoff
matrix

A

B

A B
a b
c d

� �
:

In general, the fixation probability of A is given by

ρAB ¼ 1þ ∑
N�1

m ¼ 1
∏
m

NA ¼ 1

T �
NA

T þ
NA

" #�1

ð18Þ

where T7
NA

is the probability that the number of A becomes NA71
from NA (Nowak, 2006b). When new offspring appears in the
nearest neighbor sites, as they do for BD and DB, only one
connected cluster of invaders can form on a cycle and T7

NA
can be

easily calculated. In fact, with exponential fitness, ρAB is given in a
closed form.

For BD, the fixation probability can be written in the form of

ρAB ¼
f

gþhyN
; ð19Þ

with

f ¼ ewðaþbÞ �ewðcþdÞ

g¼ ewðaþbÞ �ewðcþdÞ þewða�bþ cþdÞ

h¼ ewð2a� c�2dÞ½ewðaþbþ cÞ �ewðaþbþdÞ �ewð2cþdÞ�
y¼ ewðcþd�a�bÞ; ð20Þ
when aþbacþd. Note that both denominator and numerator on
the right hand side of Eq. (19) are zero when aþb¼ cþd. For this
singular case, ρAB can be directly calculated from Eq. (18) and is
given by

ρAB ¼
1

1þe2wðb� cÞ �2ewða�bÞ þNewða�bÞ: ð21Þ

In the limit of aþb-cþd, Eq. (19) [with Eq. (20)] becomes
identical to Eq. (21). Hence, we can write the fixation probability
of A for BD on a cycle as Eq. (19) for general case if it is understood
as the limiting value when both denominator and numerator
becomes zero.

For DB, the fixation probability can also be written in the form
of Eq. (19) but now with

f ¼ ewð3aþbÞ �ewðcþ3dÞ

g¼ ðewð3aþbÞ �ewðcþ3dÞÞ3þe2wðd�bÞ

2

þewðcþdÞðe2wbþe2wdÞðewðaþbÞ þe2wdÞðe2waþewðcþdÞÞ
2e2wbðewðaþbÞ þewðcþdÞÞ

h¼ ½ewð3aþbÞðe2wbþe2wdÞðe2waþewðcþdÞÞ4�

� ðe2waþ3e2wcÞðewðcþ3dÞ �ewð3aþbÞÞ
2e3wðcþdÞðewðaþbÞ þe2wdÞ4ðe2waþe2wcÞ

" #

� e2wð2aþbÞðe2wbþe2wdÞðe2waþewðcþdÞÞ5
2e3wðcþdÞðewðaþbÞ þe2wdÞ3ðewðaþbÞ þewðcþdÞÞ

y¼ e�wð3aþb� c�3dÞ þewðcþd�2aÞ

1þewðcþd�2aÞ ; ð22Þ

when 3aþbacþ3d. We can also show that Eq. (19) [with Eq. (22)]
becomes the fixation probability for 3aþb¼ cþ3d if we take the
limit of 3aþb-cþ3d.

For MP, the fixation probability given by Eq. (18) cannot be
written in a closed form in general but reduces (Traulsen et al.,
2008) to

ρAB ¼ ∑
N�1

m ¼ 1
e�w ðða�b� cþdÞ=2ðN�1ÞÞmðmþ1Þ� ðða�bNþdN�dÞ=ðN�1ÞÞm½ �

� ��1

:

ð23Þ
For aþd¼ bþc, the summation in Eq. (23) can be calculated
exactly and we have

ρAB ¼
ewða�bNþdN�dÞ=ðN�1Þ �1
ewNða�bNþdN�dÞ=ðN�1Þ �1

: ð24Þ

For aþdabþc, the summation can be approximated by an
integral (Traulsen et al., 2008) and we have

ρAB �
erf

ffiffiffiffiffi
w
u

r
½uþv�

� �
�erf

ffiffiffiffiffi
w
u

r
v

� �

erf
ffiffiffiffiffi
w
u

r
½uNþv�

� �
�erf

ffiffiffiffiffi
w
u

r
v

� �; ð25Þ

here u¼ ða�b�cþdÞ=ð2N�2Þ, v¼ ð�aþbN�dNþdÞ=ð2N�2Þ and
erfðxÞ ¼ ð2= ffiffiffiffi

π
p Þ R x

0 e
�y2 dy is the error function. The summation in

Eq. (23) can also be calculated exactly for the wN limit (see Section
4) where the exponential term can be linearized.

3.2. Abundance in the low mutation limit

Let xi be the abundance of strategy Si, whose payoff matrix is
given by

S1
S2
S3

S1 S2 S3
a11 a12 a13
a21 a22 a23
a31 a32 a33

0
B@

1
CA: ð26Þ

Then, in the low mutation limit, we expect the abundance vector,
x!¼ ðx1; x2; x3Þ, can be written as

x!¼ x!T ; ð27Þ
with the transfer matrix

T ¼
1�ρ21�ρ31 ρ21 ρ31

ρ12 1�ρ12�ρ32 ρ32

ρ13 ρ23 1�ρ13�ρ23

0
B@

1
CA;

here ρij is the fixation probability of strategy Si (invading the
population of strategy Sj). A (unnormalized) left eigen-vector of T
with the unit eigenvalue, x!u ¼ ðxu1; xu2; xu3Þ, is given by

xu1 ¼ ρ12ρ13þρ13ρ32þρ12ρ23

xu2 ¼ ρ23ρ21þρ21ρ13þρ23ρ31

xu3 ¼ ρ31ρ32þρ32ρ21þρ31ρ12: ð28Þ

Once we calculate all fixation probabilities ρij, the steady state
frequencies xi can be obtained by normalizing xiu;

xi ¼ xui ∑
j
xuj :

,
ð29Þ

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

H.-C. Jeong et al. / Journal of Theoretical Biology ∎ (∎∎∎∎) ∎∎∎–∎∎∎4

Please cite this article as: Jeong, H.-C., et al., Optional games on cycles and complete graphs. J. Theor. Biol. (2014), http://dx.doi.org/
10.1016/j.jtbi.2014.04.025i

http://dx.doi.org/10.1016/j.jtbi.2014.04.025
http://dx.doi.org/10.1016/j.jtbi.2014.04.025
http://dx.doi.org/10.1016/j.jtbi.2014.04.025
http://dx.doi.org/10.1016/j.jtbi.2014.04.025


3.3. Optional prisoner's dilemma game

The fixation probabilities obtained in Section 3.1 can be used to
calculate the abundance of cooperators and defectors in optional
prisoner's dilemma game. Here, we consider the game with ðnþ2Þ
strategies, cooperator (C), defector (D) and n different loners,
L1;…; Ln, whose payoff matrix is given by Eq. (7). We introduce n
different types of loners to investigate how the condition for
the emergence of cooperation varies with the number of loner
types, n.

Let xC , xD, and xLj be the abundance of C, D, and Lj, respectively.
Then, for low mutation, the abundance vector ~x!¼ ðxC ; xD;
xL1 ;…; xLn Þ can be written as

~x!¼ ~x! ~T ð30Þ
with

~T ¼

~T CC ρDC ρL1C ⋯ ρLnC

ρCD
~TDD ρL1D ⋯ ρLnD

ρCL1 ρDL1
~T L1L1 ⋯ ρLnL1

⋮ ⋮ ⋮ ⋱ ⋮
ρCLn ρDLn ρL1Ln ⋯ ~T LnLn

0
BBBBBBBB@

1
CCCCCCCCA
: ð31Þ

As before, ρij is the fixation probability that an Si takes over the
population of Sj and ~T ii ¼ 1�∑ja iρij with the convention that
strategy 1 is C, strategy 2 is D, and strategy Si is Li�2 for i42. Since
the payoffs of the games involving loners are independent of the
loner type, so are the fixation probabilities involving Lj. By
denoting ρiLj by ρiL, Eqs. (30) and (31) can be rewritten in terms
of the total frequency of loners xL ¼∑jxLj as

x!¼ x!T ð32Þ
with x!¼ ðxC ; xD; xLÞ, where

T ¼
1�ρDC�nρLC ρDC nρLC

ρCD 1�ρCD�nρLD nρLD

ρCL ρDL 1�ρCL�ρDL

0
B@

1
CA: ð33Þ

The evolution dynamics of Eq. (32) with the transfer matrix, T, of
Eq. (33) can be interpreted as biasing the mutation rate toward
loner strategies. The mutation rate toward L (from C or D) is n
times larger than the other way.

The abundance vector of three strategies, C, D, and L, is
proportional to the left eigen-vectors of Twith the unit eigenvalue,
x!u ¼ ðxuC ; xuD; xuL Þ, given by

xuC ¼ ρCDρCLþnρCLρLDþρCDρDL

xuD ¼ ρDLρDCþρDCρCLþnρDLρLC

xuL ¼ n2ρLCρLDþnρLDρDCþnρLCρCD; ð34Þ
here ρCD;ρCL;… are fixation probabilities between three strategies
with the payoff matrix,

C

D

L

C D L
R S g

T P g

g g g

0
B@

1
CA: ð35Þ

4. Analysis of the wN limit

We now consider the results of Section 3 under the wN limit.
This limit is obtained by taking the w-0 limit for fixed N, and
then taking the N-1 limit of the result. We calculate the
abundance in terms of fixation probabilities in the wN limit and
analyze the condition for the cooperators are more abundant than
defectors.

4.1. Fixation probability

As w goes to zero, the fixation probability for BD, Eq. (19) [with
Eq. (20)], becomes

ρAB ¼
1
N
þ w

2N2½ðN
2�3Nþ2ÞaþðN2þN�2Þb�

� w

2N2½ðN
2�Nþ2ÞcþðN2�N�2Þd�

¼ 1
N
þw
2

ðsNaþb�c�sNdÞ�
sN

N
ða�b�cþdÞ

h i
; ð36Þ

where sN ¼ 1�2=N. In the second line, we divide the w dependent
parts as the sum of the anti-symmetric term and the symmetric
term under exchange of A and B. The symmetric term contributes
equally to both ρAB and ρBA and is irrelevant to determine
abundance. For DB, the fixation probability according to Eq. (19)
[with Eq. (22)] becomes

ρAB ¼
1
N
þ w

4N2½ð3N
2�11Nþ8ÞaþðN2þ3N�8Þb�

� w

4N2½ðN
2�3Nþ8Þcþð3N2�5N�8Þd�

¼ 1
N
þw
4

ðsNaþb�c�sNdÞ�
sN

N
ða�b�cþdÞ

h i
; ð37Þ

where sN ¼ 3�8=N. For MP, the fixation probability cannot be
expressed in a closed form for general w. However, when w goes to
zero, it can be calculated using Eq. (23), and is given by

ρAB ¼
1
N
þ w
6N

½ðN�2Þaþð2N�1Þb�� w
6N

½ðNþ1Þcþð2N�4Þd�

¼ 1
N
þw
4
½sNaþb�c�sNd��

w
4
sN

3
ða�b�cþdÞ

h i
; ð38Þ

where sN ¼ 1�2=N.
The fixation probabilities for the three processes, as given by

Eqs. (36)–(38), can be expressed as

ρAB ¼
1
N
þwθa½sNaþb�c�sNd��wθs½sNða�b�cþdÞ�; ð39Þ

with sN , θa, and θs given by the following table:

ð40Þ

We would like to emphasize that the difference between ρAB and
ρBA comes from the anti-symmetric term. In other words, strategy
selection is determined by the sign of sNaþb�cþsNd. This value
is identical for BD on cycle and MP. The coefficient of the anti-
symmetric term, θa, for BD and MP would have been the same if
we had normalized the accumulated payoff such that an individual
in a population of mono-strategy has the same fitness for both BD
and MP. For MP, each individual plays games with N�1 neighbors
while an individual on a cycle has two neighbors. To have the same
effective payoff with individual on a cycle, we need to normalize
the accumulated payoff for MP by multiplying 2=ðN�1Þ. However,
for MP, we use Pr in Eq. (1) as the average payoff which is the
accumulated payoff divided by N�1 following the established
convention (Nowak, 2006b). Hence, the results for MP using
intensity of selection, w, should be compared with those with half
of the intensity, w/2 for BD and DB. We also note that the
symmetric terms are of order w/N for BD and DB on cycles while
it is of order w for MP.
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Fixation probability in the wN limit is obtained by taking N-1
limit of Eqs. (39) and (40)

ρAB ¼

1
N

1þNw
2

ðaþb�c�dÞ
� �

for BD

1
N

1þNw
4

ð3aþb�c�3dÞ
� �

for DB

1
N

1þNw
6

ðaþ2b�c�2dÞ
� �

for MP:

8>>>>>>>><
>>>>>>>>:

ð41Þ

These results can be understood by considering a fixation
process as a (biased) random walk on a one-dimensional lattice.
Let T7

NA
be the probability that the number of A to be NA71 from

NA as introduced in Eq. (18). Then, without a mutation, we have
T �
N ¼ T þ

0 ¼ 0. Hence, there are two absorbing states, the B state at
NA ¼ 0 and the A state at NA ¼N.Q4 Now, ρAB can be interpreted as
the probability that the random walker reaches the NA ¼N state
starting from the NA ¼ 1 state. For large N, the master equation
describing population dynamics can be approximated by a Fokker–
Planck equation with (biased) drift, vNA , and the (stochastic)
diffusion, dNA , which are approximately given by vNA � ðT þ

NA
�T �

NA
Þ

and dNA
� ðT þ

NA
þT �

NA
Þ=N (Traulsen et al., 2006). For small w, drift

velocity is proportional to w, and the relative contribution of the
diffusion term, dNA=vNA , is asymptotically given by dNA=vNA � 1=Nw.
For weak selection ðNw51Þ, where dNA=vNA is large, the fixation
probability is mainly determined by the (stochastic) diffusion
term, 1/N, and can be written as

ρAB ¼
1
N
þvAB: ð42Þ

The perturbation term, vAB, is the (weighted) average drift velocity
over NA ¼ 1 to NA ¼N�1 state and is given by

vAB ¼ 〈vNA 〉¼∑
NA

ϕNA
ðT þ

NA
�T �

NA
Þ; ð43Þ

where ϕNA
is the frequency of visits to the state NA (the expected

sojourn time at NA). When w is small, the difference between T þ
NA

and T �
NA

is also small and “walkers” can diffuse around state NA

easily. Then we can treat x¼NA=N as a continuous variable,
especially when N is large. Hence, for small w and large N, ϕ
satisfies the diffusion equation in one-dimension

d2ϕ
dx

¼ 0; ð44Þ

whose solution is given by

ϕNA
¼ c1þc2

NA

N

¼ 2
NðN�1Þ ðN�1Þ�ðN�2ÞNA

N

� �

� 2
N

1�NA

N

� �
; ð45Þ

for NA ¼ 1;…;N�1. Here, two constants c1 and c2 have been
determined by the boundary conditions, ϕN ¼ ð1=ðN�1ÞÞϕ0 (for
neutral drift of w¼0, ϕN=ϕ0 ¼ ð1=NÞ=ð1�1=NÞ ¼ 1=ðN�1Þ) and the
normalization, ∑ϕNA

¼ 1.

Since T7
NA

¼ T7 is independent of NA for almost every NA, for
BD (except NA ¼ 1 and NA ¼N�1) and DB (except NA ¼ 1, 2, N�2,
and N�1) on cycles, vAB can be treated as a constant for large N. By
considering the motion of the domain boundary between A and B
blocks, we obtain

vAB ¼ 〈T þ �T � 〉¼
w
2
ðaþb�c�dÞ for BD

w
4
ð3aþb�c�3dÞ for DB:

8><
>: ð46Þ

For MP, T7
NA

depends NA but vAB can also be easily calculated from

ϕNA
of Eq. (45). During the fixation sweep, the average number of

A in the population is 〈NA〉¼∑ NA ϕNA
�N=3. In the wN limit, we

have

vAB �
w
2
∑
NA

ϕNA
½ða�cÞNAþðc�dÞðN�NAÞ�

¼Nw
6

½a�cþ2ðb�dÞ�: ð47Þ

Inserting vAB, given by Eq. (46) or (47), into Eq. (42), we recover
Eq. (41).

4.2. Strategy selection

Here, we consider the condition for strategy Si is more
abundant than strategy Sj, i.e., xi4xj. We can write the formal
expression for the condition xi4xj for the general selection
strength and population size using Eqs. (28) and (19). Although
the formal expression may be useful to analyze abundances of
strategies numerically, it provides little analytic intuition due to
the complexity of the expression. Hence, here, we solve the
inequalities analytically for low intensity of selection ðw-0Þ. For
finite intensity of selection, we find the condition for xi4xj
numerically in Section 7.

When wN is much smaller than 1, from Eq. (39), the fixation
probability, ρij, is written as

ρij ¼
1
N
½1þwdij� ð48Þ

with

dij ¼ θaðsNaiiþaij�aji�sNajjÞ�θssNðaii�aij�ajiþajjÞ: ð49Þ

Since abundance x1 of strategy S1 is proportional to x1
u of

Eq. (28), we can write

x1p ð1þwd12Þð1þwd13Þþð1þwd13Þð1þwd32Þþð1þwd12Þð1þwd23Þ

� 3þw½2ðd12þd13Þþd32þd23�
¼ 3þw½ðd12�d21Þþðd13�d31Þ�
þw½ðd12þd21Þþðd13þd31Þþðd32þd23Þ�

¼ 3þw ∑
3

j ¼ 1
∑
3

k ¼ 1
ðdjkþdkjÞþw ∑

3

k ¼ 1
ðd1k�dk1Þ: ð50Þ

In the last step, we use dii ¼ 0. In general, abundance xi of strategy
Si can be calculated similarly

xip3þw ∑
3

j ¼ 1
∑
3

k ¼ 1
ðdjkþdkjÞþw ∑

3

k ¼ 1
ðdik�dkiÞ

¼ 3�2wθssN ∑
3

j ¼ 1
∑

k ¼ 13
ðajj�ajk�akjþakkÞ

þ2wθa ∑
3

k ¼ 1
ðsNaiiþaik�aki�sNakkÞ: ð51Þ

Since the first two terms are independent of i, abundance order is
determined by the third term. In other words, strategy Si is more
abundant than strategy Sj when

∑
3

k ¼ 1
lik4 ∑

3

k ¼ 1
ljk; ð52Þ

where

lik ¼ sNaiiþaik�aki�sNakk; ð53Þ
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here inequality (52) is derived for abundance with three strategies.
Its generalization with n strategies, ∑n

k ¼ 1lik4∑n
k ¼ 1ljk, can be

derived similarly.

4.3. Optional prisoner's dilemma game

The analysis used in Section 4.2 can also be applied to strategy
selection on optional prisoner's dilemma game [with payoff given
by Eq. (7)]. Let Δxu be the difference between (unnormalized)
abundance of C and D, i.e.,Δxu ¼ xuC�xuD, where xuC and xuD are given
by Eq. (34). Then, cooperators are more abundant than defectors
when Δxu is positive. When Nw is much less than 1, we have

Δxu ¼ ðρCLþρDLÞðρCD�ρDCÞþnðρCLρLD�ρLCρDLÞp2wðdCD�dDCÞ
þnwðdCLþdLD�dLC�dDLÞ

¼ 4wθaðsNRþS�T�sNPÞþ2nwθa½sNðR�gÞþsNðg�PÞ�

¼ 4wθa
2þn
2

sNRþS�T�2þn
2

sNR
� �

; ð54Þ

here θa and sN are given by Eq. (40) and dij is given by Eq. (49)
with payoff matrix element given by Eq. (35). Since xC4xD when
Δxu is positive, we have more cooperators than defectors when

sNðnÞRþS4TþsNðnÞP ð55Þ
with

sNðnÞa¼
1þ1

2
n

� �
1� 2

N

� �
for BD & MP

1þ1
2

n
� �

3� 8
N

� �
for DB:

8>>><
>>>:

ð56Þ

For large population limit ðN-1Þ, sNðnÞ becomes

sðnÞ ¼
1þ1

2n for BD & MP

3þ3
2n for DB:

(
ð57Þ

The structure factor, sðnÞ, becomes s of Eq. (5) when n¼0 (with-
out loner strategy). Then, cooperators are more abundant than
defectors when RþS4TþP for BD & MP and 3RþS4Tþ3P for DB
as expected. On the other hand, the social dilemma is completely
resolved (xC4xD whenever R4P) when the number of loner
types, n, goes to infinity.

We observe that condition (55) for the success of cooperation
does not depend on the loner payoff g. This may be counter-
intuitive, since the abundance of loners increases with g, and
cooperators fare better when loners increase. However, in the wN
limit, the frequency of loners is a first-order deviation from
n=ðnþ2Þ. The effect of this deviation on cooperators is a second-
order effect that disappears in the wN limit.

5. Analysis of the Nw limit

Here, we consider the results of Section 3 under the Nw limit.
We first calculate fixation probability in the large N limit using Eq.
(19). The Nw limit is obtained by taking the w-0 limit of the
result. Once we obtain fixation probability in this limit, we
calculate the abundance and find that the condition for strategy
Si is more abundant than strategy Sj for three strategy games.

5.1. Fixation probability

Fixation probability of Eq. (19) is valid for general w and N for
BD and DB. When N goes to infinity (with a finite w), ρAB becomes
zero if y41 since the Nth power term in Eq. (19) becomes infinity.
When yo1, the Nth power term becomes zero and ρAB of Eq. (19)
becomes f =g. Since yo1 when aþbocþd for BD (and when
3aþbocþ3d for DB), the fixation probabilities in the limit of

large population limit are given by

ρAB ¼
ewðaþbÞ �ewðcþdÞ

ewðaþbÞ �ewðcþdÞ þewða�bþ cþdÞ ð58Þ

when aþb4cþd and 0 otherwise for BD, and

ρAB ¼
3þe2wðd�bÞ

2
þ ewðcþdÞðe2wbþe2wdÞ
2e2wbðewðaþbÞ þewðcþdÞÞ

�

�ðewðaþbÞ þe2wdÞðe2waþewðcþdÞÞ
ewð3aþbÞ �ewðcþ3dÞ

��1

ð59Þ

when 3aþb4cþ3d and 0 otherwise for DB. For MP, ρAB can be
approximated by Eq. (25) for large N.

Fixation probability in the Nw limit is obtained by taking w-0
limit to Eqs. (58) and (59). In this limit, ρAB becomes

ρAB ¼
wðaþb�c�dÞΘðaþb�c�dÞ for BD
wð3aþb�c�3dÞΘð3aþb�c�3dÞ for DB:

(
ð60Þ

This result can also be understood from randomwalk argument
on a 1D lattice. Here, Nw is much larger than 1 and hence
diffusion-to-drift-velocity ratio, d=v� 1=Nw is small. Hence, popu-
lation dynamics is mainly determined by the (biased) drift term
rather than the stochastic diffusion. Fixation (random walker at
NA ¼N state) is now possible only when the drift bias is positive
for (almost) everywhere. For BD and DB on cycles, drift velocity is
independent of NA and proportional to saþb�c�sd.

5.2. Strategy selection

We now consider the condition for xi4xj in the large popula-
tion limit with finitew for BD and DB. As mentioned before, we are
comparing abundance xi and xj in the population with three
strategies, Si, Sj and Sk. We first note that xj and xk are zero when
both ρji and ρki are zero [see Eq. (28)]. This is the case when both lji
and lki are negative [see Eq. (12)] where lij ¼saiiþaij�aji�sajj.
Therefore, 1¼ xi4xj ¼ 0 if both lij and lik are positive. By the same
token, 0¼ xioxj ¼ 1 when both lji and ljk are positive. If lki and lkj
are positive, both xi and xj are zero. Hence, the condition for xi4xj
becomes non-trivial only when three strategies show rock–paper–
scissors characteristics. For the lij40 case (with ljk40 and lki40),
xiu and xuj in Eq. (28) become ρijρjk and ρjkρki respectively. There-

fore, Si is more abundant than Sj when ρij4ρki. For the other case
of lji40 (with lik40 and lkj40), xiu and xuj become ρikρkj and ρjiρik

and xi4xj when ρkj4ρji. Hence, there are three cases that
strategy Si is more abundant than strategy Sj in the large popula-
tion limit:

� case 1 [lij40 and lik40]: xi4xj always,
� case 2 [lij40, ljk40, and lki40]: xi4xj if ρij4ρki, and� case 3 [lji40, lik40, and lkj40]: xi4xj if ρjioρkj.

For the cases 2 and 3, conditions for xi4xj can be understood by
integrating out the role of strategy Sk. For the case 2, influx to
strategy Si is ρijxj while out-flux is ρkixi. Therefore, a detailed
balance between the abundance of Si and Sj in the steady state
requires

ρijxj ¼ ρkixi: ð61Þ
Hence, xi ¼ ðρij=ρkjÞxj is larger than xj if ρij4ρki. For the case 3,
influx to strategy Si is ρkjxj when the role of strategy Sk is
integrated out. Since the out-flux to strategy Si is ρjixi, we have

ρkjxj ¼ ρjixi ð62Þ
in the steady state, and xi ¼ ðρkj=ρjiÞxj is larger than xj if ρkj4ρji.
From the large N limit of ρij in Eq. (19), we see that the conditions
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for xi4xj for cases 2 and 3 become

f ijgki4 f kigij for case 2
f kjgji4 f jigkj for case 3; ð63Þ

here

f ij ¼ αiiαij�αjiαjj

gij ¼ αiiαij�αjiαjjþαiiα�1
ij αjiαjj ð64Þ

for BD, and

f ij ¼ α3
iiαij�αjiα3

jj

gij ¼
3f ijþα�1

ij α2
jjf ij

2

þ
αjiαjjðα2

ijþα2
jjÞðαiiαijþα2

jjÞðα2
iiþαjiαjjÞ

2α2
ijðαiiαijþαjiαjjÞ

ð65Þ

for DB with αij ¼ ewaij .
Now we consider the Nw limit, where w goes to zero after N

goes to infinity. In this case, f ij and gij in Eq. (65) become linear in
w and ρij becomes proportional to lij (unless lijo0 where ρij ¼ 0).
The conditions for three cases for large population become

� case 1 [lij40 and lik40]: xi4xj always,
� case 2 [lij40, ljk40, and lki40]: xi4xj if lij4 lki,� case 3 [lji40, lik40, and lkj40]: xi4xj if ljio lkj.

5.3. Optional prisoner's dilemma game

We now consider optional prisoner's dilemma game whose
payoff matrix is given by Eq. (7). We first assume R4P. In general,
the effect of loners on the strategy selection between C and D
disappears if R¼P due to the symmetry. Hence, we need to
consider RaP case only and assume R4P without loss of general-
ity. We further assume that R4g. Otherwise, both lCL ¼ sðR�gÞ
and lDL ¼sðP�gÞ are negative and both xC and xD become 0. When
we assume R4P and R4g, two possibilities are left, P4g and
Pog.

As before, we consider the difference between xuC and xuD [given
by Eq. (34)] and letΔxu ¼ xuC�xuD. When goP, both ρLC and ρLD are
zero since both lLC and lLD are negative and we get

Δxu ¼ ðρCLþρDLÞðρCD�ρDCÞ ð66Þ
from Eq. (34). Therefore, xC4xD when

ρCD4ρDC : ð67Þ
This can be easily understood since abundance of loners becomes
zero when Nwb1 in the goP case. On the other hand, for the
g4P case, Δxu becomes

Δxu ¼ ρCLðρCDþnρLD�ρDC Þ: ð68Þ
Therefore, xC4xD when

ρCD4ρDC�nρLD: ð69Þ
The inequalities (67) and (69) are valid as long as Nw is much

larger than 1 for general w. There are three possibilities for Nw to
go infinity, w goes to infinity, N goes to infinity or both go to
infinity. Let us first consider the Nw limit in which N-1 first and
then w-0. In this case, the conditions for xC4xD on cycles,
inequalities (67) and (69) can be written as linear inequalities.
Here, ρCD�ρDC is always proportional to lCD. Also, ρLD becomes
proportional to lLD if g4P. Therefore, we have xC4xD when

sRþS4TþsP�nsðg�PÞΘðg�PÞ; ð70Þ
where s¼1 for BD and 3 for DB.

Now, let us consider high intensity of selection limit where w
itself goes to infinity. Then, ρLD becomes 1 when g4P since loners
dominate defectors and inequality (69) becomes

ρCD4ρDC�n: ð71Þ
This implies that cooperators are more abundant than defectors
always for large w if n41 since ρDC cannot be larger than 1.

6. Optional game with simplified prisoner's dilemma

To further clarify how spatial structure and optionality of the
game affect the success of cooperation, we study an optional
version of a simplified prisoner's dilemma, in which cooperators
pay a cost c to generate a benefit b for the other player. This
simplified prisoner's dilemma is also known as the donation game
or the prisoner's dilemma with equal gains from switching. Here,
we consider the n¼1 optional game with a simplified prisoner's
dilemma, whose payoff matrix is given by

C

D
L

C D L
b�c �c g
b 0 g

g g g

0
B@

1
CA; ð72Þ

here, g is the payoff for a loner (for staying away from a game) and
b and c are the benefit and cost of the cooperation respectively. We
assume that the cost to participate the game, g, is positive but less
than the benefit of cooperation and consider parameter regions of
0ocob and 0ogob.

For the simplified PD game, we have R¼ b�c, S¼ �c, T¼b and
P¼0 and the condition for xC4xD in the wN limit, given by
inequality (55), becomes

co N�6
5N�6

b¼ b
5
þOð1=NÞ ð73Þ

for BD and MP, and

co 7N�24
11N�24

b¼ 7b
11

þOð1=NÞ ð74Þ

for DB. Note that the condition for xC4xD is independent of g, as
we saw earlier in Section 4.3. In the wN limit, the condition for
xC4xD mainly depends on the frequency of loners, which is
roughly 1/3 regardless of g values.

On the other hand, in the Nw limit, inequality (70) becomes

g42c ð75Þ
for BD and

g4
4
3
ðc�b=2Þ ð76Þ

for DB.
Now we consider the large w limit ðwb1Þ. First, note that the

condition for xC4xD, given by inequality (69), becomes

ρCD4ρDC�ρLD ð77Þ
when n¼1. The fixation probabilities, ρCD;ρDC and ρLD, can be
easily calculated from Eq. (19) for large w. For BD, ρCD;ρDC and ρLD
become e� cNw, 1�e�ðbþ2cÞw and 1�e�gw respectively for suffi-
ciently large w and inequality (77) becomes

e� cNw4e�gw�e�ðbþ2cÞw: ð78Þ
Since, e�gw is larger than e�ðbþ2cÞw when gob, inequality (77)
cannot be satisfied for large population ðN4g=cÞ. In other words,
xD is always larger than xC for BD in the w-1 limit. It is
worthwhile to note how strongly strategy selection depends on
the number of loner types for large w. As discussed before,
cooperators are more abundant than defectors if the types of
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loners, n, are larger than 1. On the other hand, for n¼1, defectors
are more abundant than cooperators as long as 0ogob.

For DB, we get similar results for ρCD and ρLD. As w goes to
infinity, ρCD becomes zero while ρLD becomes 2/3. On the other
hand, ρDC depends on the benefit to cost ratio. It is 2/3 if c is larger
than b/2 and zero otherwise. Hence, cooperators are more abun-
dant than defectors when cob=2.

For MP, we calculate fixation probabilities directly using
Eq. (18) in the limit of w-1 and find that ρCD=ρDC becomes
1þe�wc�e�wg for large w. Hence, cooperators are more abundant
than defectors when g4c.

This simplified game allows us to examine how spatial struc-
ture and optionality of the game combine to support cooperation.

7. Numerical analysis

We have analyzed the conditions for strategy selection analy-
tically in the two extreme limits of selection intensity, w-0 and
w-1 in the zero mutation rate. Here, we first obtain conditions
for xC4xD in the simplified game (72) numerically for finite values
of w (with low mutation rate), using calculated abundance from
fixation probabilities. Then, we perform a series of Monte Carlo
simulations with small but finite mutation rates. The condition for
strategy selection is obtained numerically using measured abun-
dance in the simulations.

7.1. Numerical comparison of abundance of cooperators and
defectors

We solve the inequality xC4xD numerically using abundance
given by Eq. (34) with n¼1 and investigate how the boundaries
between C-rich and D-rich regions in the parameter space change
as the selection intensity, w, varies. Without loss of generality, we
set b¼1 and investigate the parameter space given by 0oco1

and 0ogo1. The boundaries are obtained by finding c which
satisfies xC ¼ xD for a given g.

In Fig. 1, we draw C-rich and D-rich regions for BD by blue-
vertical and red-horizontal lines respectively for four different
values of selection intensities. C-rich regions in (a) and (b) are
consistent with the analysis in the wN limit [inequality (73)] and in
the Nw limit [inequality (75)] respectively. The dark-dashed lines,
given by c¼1/5 and g¼2c, are the boundaries between C-rich and
D-rich regions predicted in the wN and Nw limits respectively. For
w¼10 shown in (d), defectors are more abundant for almost the
entire region. This is consistent with the w-1 analysis which
always predict xD4xC for n¼1. For the intermediate value of w¼1
shown in (c), we do not know the analytic boundary but we
observe that the numerical boundary lies between the boundary
for w¼10�2 of (b) and that for w¼10 of (d) as expected.

For DB, we show C-rich and D-rich regions for N¼ 104 in Fig. 2.
As in Fig. 1, they are represented by blue-vertical and red-
horizontal lines respectively for four different values of selection
intensities. C-rich regions in (a) and (b) coincide with the predic-
tions for the wN and Nw limits respectively. The dark-dashed lines,
given by c¼7/11 and g ¼ 4

3 ðc�1
2 Þ, are the boundaries between

C-rich and D-rich regions predicted in the wN and Nw limits
respectively. For w¼10 shown in (d), cooperators are more
abundant if co1=2 as predicted in the w-1 limit. As in the case
of BD, we do not know the analytic boundary for the intermediate
value of w¼1 shown in (c). Yet, at least, we confirm that the
numerical boundary lies between the boundary in the Nw limit
and that in the w-1 limit.

In Fig. 3, we show C-rich and D-rich regions for MP by blue-
vertical and red-horizontal lines respectively. For MP, we do not
have an analytic expression for the fixation probability in a closed
form. Hence we need to calculate fixation probabilities directly
from Eq. (18). Due to numerical cost for calculating abundance,
which increases rapidly with N, we investigate relatively small
population of N¼100. However, they seem to be big enough to
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Fig. 1. C-rich (blue-vertical) and D-rich (red-horizontal) regions for BD in the c–g
parameter space. Population size is N ¼ 104 and selection intensities are (a)
w¼ 10�6, (b) w¼ 10�2, (c) w¼1, and (d) w¼10. Black lines in (a), and (b) are
given by c¼1/5 and g¼ 2c respectively. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)
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c 0 1

1

g

c

0 1

1

g
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c

Fig. 2. C-rich (blue-vertical) and D-rich (red-horizontal) regions for DB in the c–g
parameter space. Population size is N ¼ 104 and selection intensities are (a)
w¼ 10�6, (b) w¼ 10�2, (c) w¼1, and (d) w¼10. Black lines in (a), (b), and
(d) are given by c¼7/11 g¼ 4

3 ðc�1
2 Þ, and c¼1/2 respectively. (For interpretation of

the references to color in this figure caption, the reader is referred to the web
version of this article.)

H.-C. Jeong et al. / Journal of Theoretical Biology ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9

Please cite this article as: Jeong, H.-C., et al., Optional games on cycles and complete graphs. J. Theor. Biol. (2014), http://dx.doi.org/
10.1016/j.jtbi.2014.04.025i

http://dx.doi.org/10.1016/j.jtbi.2014.04.025
http://dx.doi.org/10.1016/j.jtbi.2014.04.025
http://dx.doi.org/10.1016/j.jtbi.2014.04.025
http://dx.doi.org/10.1016/j.jtbi.2014.04.025


confirm the analytic prediction of the boundaries between C-rich
and D-rich regions in the wN limit and in the large w limit. The
dark-dashed lines in (a) and (d), given by c¼1/5 and g¼c, are the
predicted boundaries in the wN and large w limits respectively.

7.2. Combined effects of optionality and spatial structure

Now, let us compare the effects of the option to be loners on
the structured population (BD and DB) to those on the well-mixed
population (MP). It is immediately clear that the effects of spatial
structure depend on the update rule. Comparing Figs. 1 and 3, we
see that BD updating does not support cooperation, in accordance
with findings from other models (Ohtsuki and Nowak, 2006;
Ohtsuki et al., 2006; Débarre et al., 2014). In panels 1(a) and 3(a),
where Nw¼0.1, the C-rich regions for BD and MP appear to
coincide. This accords with our results that, in the wN limit, the
condition for xC4xD is cob=5 for both MP and BD (see Section 6).
In the other panels of Figs. 1 and 3, we see that the C-rich regions
for BD are smaller than those for MP, suggesting that BD updating
actually impedes cooperation relative to its success in a well-
mixed population.

DB updating is generally favorable to cooperation, as can be
seen by comparing Figs. 2 and 3. In the wN limit, for example, the
condition for xC4xD is co7b=11 under DB updating (see Section
6), which is less stringent than the corresponding condition for
MP, cob=5. These conditions correspond approximately to the
C-rich regions shown in Figs. 2(a) and 3(a). However, we find that
as w increases, the C-rich regions for DB do not necessarily contain
those for MP. In other words, for large selection intensity, there are
parameter combinations under which cooperation is favored in a
well-mixed population but disfavored on the cycle with DB
updating. This effect is most visible in Figs. 2(d) and 3(d), but it
can also be seen in 2(c) and 3(c). In the w-1 limit, we found
(Section 6) that cooperation is favored for MP if cog, while it is
favored for DB for cob=2. Either one of these conditions can be

satisfied while the other fails, as can be seen (approximately) in
Figs. 2(d) and 3(d).

Optionality of the game and spatial structure (with DB updat-
ing) are two mechanisms that support cooperation. Do these
mechanisms combine in a synergistic way? We find little evidence
that they do. Let us consider first the wN limit. With spatial
structure alone (DB updating with n¼0 loner strategies), coopera-
tion succeeds if cob=2. With optionality alone (MP with n¼1),
cooperation succeeds if cob=5. With both optionality and spatial
structure (DB with n¼1), the condition is co7b=11, and we
observe that the 7b=11 threshold is less than the sum b=2þb=5
¼ 7b=10 of the thresholds corresponding to the two mechanisms
acting alone. The lack of synergy is even more apparent as the
selection intensity w increases, since, as noted above, there are
parameter combinations for which cooperation is favored for MP
but disfavored for DB.

7.3. Effects of selection intensity

Let us now take a closer look at the effects of selection
intensity. As shown in Figs. 1–3, the boundary between C-rich
region and D-rich region changes as the selection intensity, w
varies. In other words, selection intensity may switch the rank of
strategy abundance for some regions of parameter space as
recently reported (Wu et al., 2013). In Fig. 4, we show selection
intensity dependence of abundance for a couple of different pairs
of c and g. Abundance is numerically calculated using Eq. (28) with
N¼104 for BD and DB. For MP, we consider N¼100 due to
numerical cost. In the left panels, we choose parameters c and g
such that cooperators are more abundant than defectors ðxC4xDÞ
in the wN limit but change abundance order ðxD4xCÞ in the Nw
limit (for BD and DB) or large w limit (for MP). For (a) BD, (c) DB,
and (e) MP, we choose ðc; gÞ ¼ ð0:1;0:1Þ, (0.55, 0.1), and (0.1, 0.1)
respectively and find “crossing intensity”, wc. Population remains
as C-rich phase for wowc where wc is around 0.0005, 0.4, and
0.08 for (a), (c), and (e) respectively. In the right panels, we
consider the opposite cases and choose parameters such that
defectors are more abundant in the wN limit but becomes less
abundant in the Nw limit (for BD and DB) or large w limit (for MP).
For (b) BD, (d) DB, and (f) MP, we choose ðc; gÞ ¼ ð0:25;0:6Þ, (0.655,
0.215), and (0.3, 0.5) respectively. For BD and DB, cooperators seem
to be more abundant only in the Nw limit. They are less abundant
than defectors for large w limit as well as in the wN limit. In other
words, there are two crossing intensities, wc1 and wc2 , such that xC
is larger than xD only for wc1 owowc2 . They are given by wc1 ¼
0:0003 and wc2 ¼ 0:25 for (b) and wc1 ¼ 0:001 and wc2 ¼ 0:04
for (d). For MP shown in (f), there seems to be only one crossing
point around at w¼0.1.

7.4. Simulation with finite mutation rate

Abundance of Eq. (28) is calculated in the low mutation limit
using the fixation probabilities. After the invasion of a mutant to
the mono-strategy population, the possibility of further mutation
during the fixation is ignored. Strictly speaking, this is valid only
when the mutation rate u goes to zero. Here, we measure the
abundance of three strategies, xC ; xD, and xL, by Monte Carlo
simulations with a small but finite mutation rate and compare
them with abundance of Eq. (28).

We start from a random arrangement of three strategies C, D,
and L on a cycle (BD and DB) or a complete graph (MP) with N
sites. Population evolves with BD, DB, or MP updating. The
mutation probability of the offspring is u; it bears its parent
strategy with probability 1�u and takes one of the other two
strategies with probability u. In the mutation process, both
strategies have equal chances, i.e., probability of u/2 for each.
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Fig. 3. C-rich (blue-vertical) and D-rich (red-horizontal) regions for MP in the c–g
parameter space. Population size is N¼100 and selection intensities are (a)
w¼ 10�3, (b) w¼ 10�1, (c) w¼1, and (d) w¼10. Black lines in (a) and (d) are
given by c¼1/5 and g¼c respectively. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this article.)
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To get statistical properties, we perform M ¼ 6�104 indepen-
dent simulations and calculate the average frequencies of strate-
gies. We monitor the time evolution of the average frequencies
and see if the population evolves to a steady state in which
average frequency remains constant. In the ensemble of steady
states, we believe that the probability distribution of frequencies is
stationary. For a single simulation, frequencies in the population
may oscillate through mutation–fixation cycles for small mutation
rates. However, the ensemble average of M independent simula-
tions effectively provides mean frequencies equivalent to time
average over many fixations. We call this mean frequency as
abundance.

Time to reach a steady state from the random initial config-
uration increases rapidly with population size N. Hence, we
simulate relatively small population of N¼50. We use mutation
rate u¼0.0002 such that Nu¼0.01 in all simulations.

We first measure abundance of cooperators, xC , defectors, xD,
and loners, xL, in the small Nw regime with Nw¼0.1. Abundance
versus cost, x–c, plots are shown in Figs. 5-7 for BD, DB, and MP
respectively. For each updating process, we simulate population
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Fig. 4. Selection intensity, w, dependence of abundance, x, of cooperators (blue)
and defectors (red) for BD [(a) and (b)], DB [(c) and (d)], and MP [(e) and (f)].
Abundance is numerically calculated using Eq. (28) with N¼104 for BD and DB, and
N¼100 for MP. The benefit of cooperation, b, is 1. The costs for a game and a
cooperative play, denoted by g and c respectively, are shown in the figures.
Selection intensity w [x-axis] is shown in a log scale while abundance x [y-axis]
is shown in a linear scale. Abundance of loners (not shown) is given by
xL ¼ 1�xC�xD . (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)
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different values of g, (a) 0, (b) 0.2, (c) 0.4, and (d) 0.6. Blue plus, red cross, and green
square symbols represent the xC ; xD , and xL respectively. Blue, red, and green solid
lines are abundance of Eq. (28). Mutation rate is u¼0.0002. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this article.)
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dynamics with 21 different values of c, c¼0, 0.05, …, 1, for each of
four different values of g: (a) 0, (b) 0.2, (c) 0.4, and (d) 0.6. Blue
plus, red cross, and green square symbols represent the xC ; xD, and
xL respectively. They are compared with abundance of Eq. (28),
calculated using fixation probabilities, which are represented by
blue, red, and green solid lines. We first note that the abundance of
all strategies is around 1/3 as expected in the wN limit. Measured
data from simulations are consistent with abundance of Eq. (28)
except a tiny but systematic deviation. When abundance is larger
than 1/3, measured data tend to stay below the lines while they
seem to stay above the lines when it is smaller than 1/3. These
deviations seem to come from the fact that we use finite mutation
rate (u¼0.0002) instead of infinitesimal rate. Random mutations
make abundance move to the average value (1/3) regardless of its
strategy. Except this small discrepancy, simulation data seem to
follow all features of calculated abundance of Eq. (28). For
example, xD and xL increase linearly and xC decreases linearly
with increasing c. Especially, we note that crossing points of xC and
xD are independent of g as predicted. xC and xD meet near c¼1/5
for BD and MP, and near c¼ 7=11C0:64 for DB.

Simulation data for the large Nw also follow the predicted
abundance of Eq. (28) quite well. Figs. 8, 9 and 10 show x–c plots
for BD, DB, and MP respectively for w¼0.2 (Nw¼10). As before, xC ,
xD, and xL versus c graphs are represented by blue plus, red cross,
and green square symbols respectively for four different values of g,
(a) 0, (b) 0.2, (c) 0.4, and (d) 0.6. They are compared with calculated
abundance of Eq. (28), shown by blue, red, and green solid lines. As
before, we observe small but systematic discrepancies between
simulation data and predicted abundance of Eq. (28). Measured
abundance difference between (different) strategies is smaller than
the predictions. This can be understood from the fact that muta-
tions reduce the abundance difference between strategies. Aside
from this systematic deviation, simulation data follow the features
of predicted abundance very well.
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Fig. 7. Abundance xC , xD , and xL vs. c for MP with N¼50 and w¼0.002 for four
different values of g, (a) 0, (b) 0.2, (c) 0.4, and (d) 0.6. Blue plus, red cross, and green
square symbols represent the xC , xD , and xL respectively. Blue, red, and green solid
lines are abundance of Eq. (28). Mutation rate is u¼0.0002. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this article.)
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the references to color in this figure caption, the reader is referred to the web
version of this article.)
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We now investigate C-rich and D-rich regions in the para-
meter space of c and g and compare them with those in the
low mutation limit. We first measure xC and xD for 21�21
different c–g pairs in rA ½0 1� and gA ½0 1� with intervals of 0.05.
Then, we plot a normalized abundance difference between coop-
erators and defectors, r¼ ðxC�xDÞ=ðxCþxDÞ in color in 21�21
mesh in the c–g parameter space (Figs. 11 and 12) to illustrate
the C-rich and D-rich regions. As before, we use population of
N¼50 with mutation rate u¼0.0002. The blue-vertical and the
red-horizontal painting represent the C-rich and D-rich regions
respectively.

Fig. 11 shows the normalized abundance difference, r in the
small Nw regime for the three processes with w¼0.002 (Nw¼0.1).
As predicted by the panels (a) in Figs. 1–3, blue-rich region
changes to red-rich region as c increases, more or less, uniformly
regardless of g values. The phase boundaries calculated in the low
mutation limit are shown in black-dashed lines. Those lines locate
near c¼1/5 for BD and MP and near c¼7/11 for DB updating and
they are consistent to the boundaries between two colors.

Boundaries (of C-rich and D-rich regions) obtained from
the simulations for the large Nw regime are also consistent with
those calculated in the low mutation limit. Fig. 12 shows the
normalized abundance difference, r, in color for the three pro-
cesses with w¼0.2 (Nw¼10) in the c–g parameter space. As in
Fig. 11, the blue-vertical and the red-horizontal painting represent
the C-rich and D-rich regions respectively. The phase boundaries
calculated in the low mutation limit are shown in black-dashed
lines. They are consistent with color boundaries quite well
except for large g for BD updating. We observe that cooperators
favored over defectors for wider range of c for large g for BD
updating. However, the absolute abundance of cooperators is small
(although it is still larger than xD) when g is large, since loners
prevail the population.

8. Conclusion

We have analyzed strategy selection in optional games on
cycles and on complete graphs and found a non-trivial interaction
between volunteering and spatial selection.

For 2�2 games on cycles using exponential fitness, we have
presented a closed form expression for the fixation probability for
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Fig. 10. Abundance xC , xD , and xL vs. c for MP with N¼50 and w¼0.2 for four
different values of g, (a) 0, (b) 0.2, (c) 0.4, and (d) 0.6. Blue plus, red cross, and green
square symbols represent the xC , xD , and xL respectively. Blue, red, and green solid
lines are abundance of Eq. (28). Mutation rate is u¼0.0002. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this article.)
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any intensity of selection and any population size. Using this
fixation probability, we have found the conditions for strategy
selection analytically in the limits of weak intensity of selection
and large population size. We have presented results for two
orders of limits: (i) w-0 followed by N-1 (which we call the
wN-limit) and (ii) N-1 followed by w-0 (which we call the Nw-
limit). In the first case we have wN51; in the second we have

Nwb1. We have also obtained numerical results for finite w in the
low mutation limit.

According to our observations, increasing the number of loner
strategies relaxes the social dilemma and promotes evolution of
cooperation. Increasing the number of loner strategies is equiva-
lent to increasing mutational bias toward loner strategies. More
loner strategies (or equivalently, more bias in mutation toward
loners) favors cooperation by enabling loners to invade defector
clusters and facilitate the return of cooperators. In the limit of an
infinite number of loner strategies the social dilemma is comple-
tely resolved for any selection intensity. For high intensity of
selection ðwb1Þ, the social dilemma can be fully resolved if there
is mutational bias toward loner strategies (or there are more than
one loner strategies).

While optionality of the game and spatial population structures
both support cooperation, we have not found evidence of synergy
between these mechanisms. This lack of synergy appears due to
the fact that these mechanisms act in different ways. Spatial
structure supports cooperation by allowing cooperators to isolate
themselves, while optionality supports cooperation by allowing
loners to infiltrate defectors. Neither mechanism appears to
improve the efficacy of the other. In fact, for strong selection
(the w-1 limit) these mechanisms appear to counteract one
another, in that there are parameter combinations for which
cooperation is favored in the well-mixed population but disfa-
vored for DB updating on the cycle.

We speculate that the role of loner strategies in relaxing social
dilemmas, which we observe in our study, is qualitatively valid for
games on general graphs. Since the population structures in our
study, cycles and complete graphs, are at the two extreme ends of
the spectrum of spatial structures, we expect loner strategies in
optional games on other graphs also to relax social dilemma. The
relaxation effect of volunteering increases as more loner strategies
are available.
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