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a b s t r a c t 

Bacteriophage proteins are viruses that can significantly impact on the functioning of bacteria and can 

be used in phage based therapy. The functioning of Bacteriophage in the host bacteria depends on its 

location in those host cells. It is very important to know the subcellular location of the phage proteins 

in a host cell in order to understand their working mechanism. In this paper, we propose iPHLoc-ES, a 

prediction method for subcellular localization of bacteriophage proteins. We aim to solve two problems: 

discriminating between host located and non-host located phage proteins and discriminating between the 

locations of host located protein in a host cell (membrane or cytoplasm). To do this, we extract sets of 

evolutionary and structural features of phage protein and employ Support Vector Machine (SVM) as our 

classifier. We also use recursive feature elimination (RFE) to reduce the number of features for effective 

prediction. On standard dataset using standard evaluation criteria, our method significantly outperforms 

the state-of-the-art predictor. iPHLoc-ES is readily available to use as a standalone tool from: https:// 

github.com/swakkhar/iPHLoc-ES/ and as a web application from: http://brl.uiu.ac.bd/iPHLoc-ES/ . 

© 2017 Elsevier Ltd. All rights reserved. 

1

 

t  

c  

g  

c  

g  

(  

o  

p  

p  

o  

a  

(  

n  

r  

2

S

D

 

t  

t  

h  

o  

b  

c  

o  

o  

i  

o  

p  

o  

m  

t  

H  

e

 

h

0

. Introduction 

The term ‘bacteriophage’ means ‘bacteria eaters’ in Latin. Bac-

eriophage or informally called phage proteins are viruses that

an kill the bacteria by infection and replication. History of phage

oes back 100 years back in 1910s when phages were used to

ure dysentery ( Keen, 2012; Lederberg, 1996 ). With the emer-

ence of antibiotics, phage therapy somehow lost its popularity

 Keen, 2012 ). However, in recent years due to continuous abuse

f anti-bacterial drug by inappropriate prescription practices and

oor drug access control ( Liljeqvist et al., 2012 ) and evolving ca-

ability of the microbes, the commercial viability of new antibi-

tics is in decline ( Hughes, 2011 ). The overuse of antibiotics have

lso been detrimental to the communities of beneficial bacteria

 Buffie et al., 2012 ). In contrast, the phages are very precise in

ature and the scientists are again looking back to these bacte-

iophages to treat the intractable bacterial infections ( Deresinski,

009; Sorokulova et al., 2014 ). 
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An injected bacteriophage transcribed by host cell polymerase

ypically has two life cycles: lytic and lysogenic. In lysogenic or

emperate phase, the phage continues replication along with the

ost cell. However, lysis instigated typically by enzymes breaks

pen the host cell membrane and destroys it ( Sass and Bier-

aum, 2007 ). Phage proteins are either extra-cellular or not lo-

ated in host cells or located in host cells. Extra cellular phages

ften take help of receptor for adsorption whose location are piv-

tal among other factors ( Rakhuba et al., 2010 ). Subcellular local-

zation of phage proteins are mostly distributed in host membrane

r in host cytoplasm. Knowledge of the location of bacteriophage

roteins are fundamental to the understanding of the mechanism

f the virion and development of anti-bacterial therapy. Electron

icroscopy is generally used to find the locations of phage pro-

eins in host cell ( Altman et al., 1985; Casjens and Hendrix, 1988 ).

owever, the experimental methods are still time consuming and

xpensive. 

Many computational methods have been developed to study

nd analyze phage proteins ( Cheng et al., 2017a; 2017c; Chou and

hen, 2006; Ding et al., 2014; 2016a; 2016b; Khan et al., 2017; Se-

uritan et al., 2012; Shen and Chou, 20 07a; 20 07b; 20 09; 2010a;

010b; Wu et al., 2012; Xiao et al., 2011a; 2011b; Zhou et al.,

011 ). PHAST was introduced in Zhou et al. (2011) to identify and
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Fig. 1. System flowchart of iPHLoc-ES. 

Table 1 

Summary of bacteriophage protein dataset for pH vs non- 

PH prediction. 

Phage Type Number of Samples 

Host-Located Proteins (PH) 144 

Extra-Cellular Proteins (non-PH) 134 
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annotate prophage sequences within bacterial genomes. Among

other phage finding tools are PHASTER ( Arndt et al., 2016 ),

Phage_finder ( Fouts, 2006 ). Another successful phage prediction

tool was PhiSpy ( Akhter et al., 2012 ) that used similarity and com-

position based strategies. 

Several classification algorithms are used to predict phage or

phage locations including Artificial Neural Network (ANN) ( Galiez

et al., 2015; Seguritan et al., 2012 ), Support Vector Machine (SVM)

( Ding et al., 2016b ), Random Forest (RF) ( McNair et al., 2012 ) and

Naive Bayesian Classifier (NBC) ( Feng et al., 2013 ). Subcellular lo-

calization of proteins ( Emanuelsson et al., 20 0 0 ) and bacterio-

phages ( Chou and Shen, 2007; Ding et al., 2014 ) are of interest

for a long time in the research field. In a very recent work, a pre-

diction methodology was proposed to identify phage locations in

protein in Ding et al. (2016a ) using feature selection method. They

have used Support Vector Machine (SVM) classifier to solve two

subcellular localization problems on a verified benchmark dataset. 

In this paper we tackle two types of localization problems. The

first problem we denote as PH vs non-PH discrimination problem,

where the aim is to classify whether a given phage protein is a

host located phage (PH) or a extra-cellular phage (non-PH). The

second problem is denoted by PHM vs PHC classification where

the aim is to classify between two types of host located phages,

whether they are located in cell membrane (PHM) or in cell cy-

toplasm (PHC). We propose iPHLoc-ES for prediction of subcellular

locations of phage proteins. iPHLoc-ES is also able to discriminate

between host located phages and extra-cellular phages. Our pre-

dictor is based on extracting a set of evolutionary and structural

features and using a Support Vector Machine (SVM) classifier along

with recursive feature elimination (RFE) as feature selection tech-

nique. On the standard benchmark dataset of phage proteins our

method significantly outperforms the state-of-the-art predictor. We

have also made iPHLoc-ES available as a stand-alone tool that is

freely available to use ( https://github.com/swakkhar/iPHLoc-ES/ ).

We have also made it available as a web application from: http:

//brl.uiu.ac.bd/iPHLoc-ES/ . 

In this paper, we follow the guidelines in compliance with

Chou’s 5-step rule ( Chou, 2011 ) to establish a useful statistical

predictor for a biological system. The rest of the paper is orga-

nized accordingly: (a) description of the benchmark dataset and

construction of train and test sets for the predictor; (b) mathe-

matical formulation of the biological sequence samples that can

reflect their intrinsic correlation with the target to be predicted;

(c) a powerful model for feature selection and classification algo-

rithm; (d) proper experimentation with cross-validation tests; (e) a

user-friendly web-server for the predictor that is accessible to the

public. 

2. Materials and methods 

In this section, we describe the materials and methods required

to develop iPHLoc-ES. We call our system i dentification of bacte-

rio PH age protein Loc ations using E volutionary and S tructural Fea-

tures (iPHLoc-ES). A system flow-chart of our prediction model is

given in Fig. 1 . 

Phage protein sequences from the benchmark dataset are first

fed to PSI-BLAST ( Altschul et al., 1997 ) and SPIDER2 ( Heffernan

et al., 2015; Yang et al., 2017 ). PSI-BLAST produces a position spe-

cific scoring matrix (PSSM) file and SPIDER2 predicts structural in-

formation and generates a SPD file that is used by the feature gen-

eration module to generate a set of features. Features are gener-

ated belonging to three different groups: composition based evolu-

tionary features, PSSM based evolutionary features and SPD based

structural features. After the feature generation a feature selection

method selects only a small subset of features to train the dataset.

With the help of this selected small set of features the original
ataset is transformed and trained using a classification model.

e used Support Vector Machine (SVM) ( Cortes and Vapnik, 1995 )

n this paper due to superiority over other methods ( Ding et al.,

016b ). The trained model is saved for prediction phase. Whenever

 new sequence is given, it goes through the same process and

iven the instance with selected features, the trained model pre-

icts its label. For both of the problems (PH vs non-PH and PHM

s PHC), we follow the same procedure. 

.1. Benchmark dataset 

The description of the datasets used in this paper for pH

s non-PH problem is given in Table 1 . There are total 278 in-

tances out of which 144 are positive instances or host-located

roteins and 134 are extra-cellular proteins or negative samples.

his dataset is similar to the one used in Ding et al. (2016a ).

ll the protein sequences are collected from UniProt Database

 Consortium, 2014 ). All these subcellular locations are experimen-

ally validated. Subphages that are part of other phage proteins or

he phages with non-standard amino-acids were discarded to gen-

rate the dataset. This dataset excludes the redundant sequences

ith similarity threshold set to 30%. 

From the host located protein dataset, a second dataset was de-

ived for PHC vs PHM problem. The description is given in Table 2 .

n total, 68 phages are location in cell membrane and 76 phages

re located in cell cytoplasm. 

https://github.com/swakkhar/iPHLoc-ES/
http://brl.uiu.ac.bd/iPHLoc-ES/
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Table 2 

Summary of host located bacteriophage protein 

dataset for PHC vs PHM prediction. 

Location Type Number of Samples 

Cell Membrane (PHM) 68 

Cell Cytoplasm (PHC) 76 
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.2. Feature generation 

Various types of feature extraction techniques are used in the

iterature for subcellular localization of protein and particularly

hage proteins. Among them are PSSM-based features ( Sharma

t al., 2015; Wang et al., 2017 ), g-gap dipeptide composition

 Ding et al., 2016a ), gene ontology based features ( Wang et al.,

016 ), pseudo amino acid composition ( Chen et al., 2016 ), physico-

hemical based features ( Dehzangi et al., 2015 ) etc. 

With the explosive growth of biological sequences in the post-

enomic era, one of the most important but also most difficult

roblems in bioinformatics and system biology is how to express a

iological sequence with a discrete model or a vector, yet still keep

onsiderable sequence-order information or key pattern character-

stic. This is because all the existing machine-learning algorithms

an only handle vector but not sequence samples, as elucidated

n a recent review ( Chou, 2015 ). However, a vector defined in a

iscrete model may completely lose all the sequence-pattern in-

ormation. To avoid completely losing the sequence-pattern infor-

ation for proteins, the pseudo amino acid composition was pro-

osed ( Chou, 20 01; 20 04 ). Ever since then, the approach of PseAAC

as penetrated into nearly all the computational proteomics ( Chou,

017; Khan et al., 2017; Meher et al., 2017; Nanni et al., 2012;

ahimi et al., 2017 ). Because it has been widely and increas-

ngly used, recently three powerful open access soft-wares, called

PseAAC-Builder’, ‘propy’, and ‘PseAAC-General’, were established:

he former two are for generating various modes of Chou’s spe-

ial PseAAC; while the 3rd one for those of Chou’s general PseAAC

 Chou, 2009 ), including not only all the special modes of feature

ectors for proteins but also the higher level feature vectors such

s “Functional Domain” mode, “Gene Ontology” mode, and “Se-

uential Evolution” or “PSSM” mode. Encouraged by the successes

f using PseAAC to deal with protein/peptide sequences, similar

eb-servers ( Chen et al., 2014 ) were developed for generating vari-

us feature vectors for DNA/RNA sequences as well. Particularly, an

xtremely powerful web-server called Pse-in-One ( Liu et al., 2017 )

nd its very recently updated version Pse-in-One 2.0 ( Liu et al.,

017 ) have been established that can be used to generate any de-

ired feature vectors for protein/peptide and DNA/RNA sequences

ccording to the need of users’ studies. 

In this study, we have used three types of features. They are

mino-acid sequence based features, PSSM based features and

tructure based features. First, the PSSM files generated for the

hage sequences by PSI-BLAST are used to create a consensus

equence that contains evolutionary information ( Sharma et al.,

015 ). Then, other set of features are extracted from the PSSM file

nd the SPD file generated by SPIDER. This section presents a brief

verview of the features. A summary of all the features used in

his paper is given in Table 3 . 

.2.1. Sequence based features 

A consensus sequence generated by the multiple sequence

lignment by PSI-BLAST is used to generate this features. The first

roup is called the amino-acid composition which is the count or

requency in the given consensus sequenced normalized by the
ength of the protein. Formally, 

AC (i ) = 

1 

L 

L ∑ 

j=1 

c i j , 1 ≤ i ≤ 20 (1)

Here, L is the length of the protein and 

 i j = 

{
1 , if s j = a i 
0 , else 

here s j is an amino acid in the protein sequence and a i is one of

he 20 different amino-acid symbols ( Dehzangi et al., 2014b ). An-

ther group of features called Dubchuck features ( Dubchak et al.,

999 ) are also generated using this sequence based information

epending on the physico-chemical properties of the amino acids

esidues, such as polarity, solvability, hydro-phobicity etc. 

.2.2. PSSM based features 

PSSM files were generated using three iterations of the PSI-

LAST Algorithm ( Altschul et al., 1997 ) using the non-redundant

atabase (nr) provided by NCBI. The threshold cut-off value of E

as set to 0.001. PSSM file returns the log-odds of the substitu-

ion probabilities of a given protein at each position for all possible

mino-acid symbols after the alignment ( Chou and Shen, 2007 ).

his is a L × 20 matrix which we refer in this paper as PSSM ma-

rix . We first normalize the pssm matrix using the same technique

s proposed in Sharma et al. (2015) . After normalization, we gen-

rated five groups of features from the normalized PSSM matrix.

e will denote the normalized matrix throughout this section as

 which is a two dimensional matrix of dimension L × 20. They are

numerated as bellow: 

1. PSSM Bigram: Bigram features from PSSM matrix are well used

in the literature of subcellular localization Sharma et al. (2013) ;

2015 ) and defined as below: 

PSSM-bigram (k, l) = 

1 

L 

L −1 ∑ 

i =1 

N i,k N i +1 ,l (1 ≤ k ≤ 20 , 1 ≤ l ≤ 20) 

(2) 

2. PSSM 1-lead Bigram: PSSM 1-lead bigram is defined in a simi-

lar way to PSSM bigram: 

PSSM-1-lead-bigram (k, l) = 

1 

L 

L −2 ∑ 

i =1 

N i,k N i +2 ,l 

(1 ≤ k ≤ 20 , 1 ≤ l ≤ 20) (3) 

3. PSSM Composition: PSSM composition is created by taking the

normalized sum of the column wise values in the PSSM matrix

Sharma et al. (2015) . It is defined as: 

P SSM − Composition (k, l) = 

1 

L 

L −1 ∑ 

i =1 

N i, j (1 ≤ j ≤ 20) (4)

4. PSSM Auto-Covariance: Auto-Covariance of PSSM is a feature

Dehzangi et al. (2014a ); Sharma et al. (2015) depending of a

distance factor, DF as parameter. In this study we used, DF =
10. The feature is formally defined as: 

PSSM-Auto-Covariance (k, j) = 

1 

L 

L −k ∑ 

i =1 

N i, j N i + k, j 

(1 ≤ j ≤ 20 , 1 ≤ k ≤ DF ) (5) 

5. PSSM Segmented Distribution: 

Previously, the segmented distribution of the PSSM ma-

trix proposed in Dehzangi and Phon-Amnuaisuk (2011) was

used as feature for subcellular localization of proteins in

Dehzangi et al. (2015) . The idea is to find the distribution
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Table 3 

Summary of evolutionary and structural features used. 

Feature group Number of features Reference 

Amino-acid composition 20 Sharma et al. (2015) 

Dubchuck features 105 

PSSM bigram 400 Sharma et al. (2015) 

PSSM 1-lead bigram 400 Dehzangi and Phon-Amnuaisuk (2011) 

PSSM composition 20 Sharma et al. (2015) 

PSSM auto-covariance 200 Sharma et al. (2015) 

PSSM segmented distribution 200 Dehzangi et al. (2015) 

Secondary structure occurence 3 This paper 

Secondary structure composition 3 

Accessible surface area composition 1 

Torsional angles composition 8 

Structural probabilities composition 3 

Torsional angles bigram 64 

Structural probabilities bigram 9 

Torsional angles auto-covariance 80 

Structural probabilities auto-covariance 30 

Total 1546 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the values in the PSSM matrix column wise by calculat-

ing the partial sums column wise starting from the first row

and the last row and iterating until the partial running sum

is F p % of the total sum. The details of the procedure for

this feature generation can be found in Dehzangi et al. (2013) ;

2015 ), Dehzangi and Sattar (2013) . In this paper, we used F p =
5 , 10 , 25 . 

2.2.3. Structure based features 

We hypothesize that along with the sequential and evolutionary

information, structural information also can affect the subcellular

localization of phage proteins. Therefore, we extract a novel set of

features generated using the SPD files produced by SPIDER2 soft-

ware ( Heffernan et al., 2015; Yang et al., 2017 ). The SPD files gen-

erated by SPIDER2 contains, secondary structural motif and their

probabilities, accessible surface area and torsional angles for each

amino-acid residue. All the feature groups generated from SPIDER2

are enumerated here: 

1. Secondary structure occurence: This feature is the count

or frequencies of the structural motifs present in amino-acid

residue positions. There are three types of motifs: α-helix (H),

β-sheet (E) and random coil (C). 

2. Secondary structure composition: This feature is the normal-

ized secondary structure occurrence by the length of the phage

protein length. This is similar to the amino-acid composition

except that here we are taking the count of motif symbols in

stead of amino-acid symbols. 

SS-Composition (i ) = 

1 

L 

L ∑ 

j=1 

c i j , 1 ≤ i ≤ 3 (6)

here, L is the length of the protein and 

c i j = 

{
1 , if SS j = f i 
0 , else 

where SS j is the structural motif at position j of the protein se-

quence and f i is one of the 3 different motif symbols. 

3. Accessible surface area composition: The accessible surface

area composition is the normalized sum of accessible surface

area defined by: 

ASA-Composition = 

1 

L 

L ∑ 

i =1 

ASA (i ) (7)

4. Torsional angles composition: For four different types of tor-

sional angles: φ, ψ , τ and θ we first convert each of them into
radians from degree angles and then take sign and cosine of

the angles at each residue position. Thus we get a matrix of di-

mension L × 8. We denote this matrix by T is this section for

torsional angles. Torsional angles composition is defined as: 

Torsional-Angles-Composition(k) = 

1 

L 

L ∑ 

i =1 

T i,k (1 ≤ k ≤ 8) (8)

5. Structural probabilities composition: Structural probabilities

for each position of the amino-acid residue are given in spd3

file as a matrix of dimension L × 3. We denote it by P . Struc-

tural probabilities composition is defined as: 

Structural-Probabilities-Composition(k) = 

1 

L 

L ∑ 

i =1 

P i,k (1 ≤ k ≤ 3)

(9)

6. Torsional angles bigram: Bigram for the torsional angles is

similar to that of PSSM matrix and defined as: 

Torional-angles-bigram (k, l) = 

1 

L 

L −1 ∑ 

i =1 

T i,k T i +1 ,l 

(1 ≤ k ≤ 8 , 1 ≤ l ≤ 8) (10)

7. Structural probablities bigram: Bigram of the structural prob-

abilities is similar to that of PSSM matrix and defined as: 

Structural-Probabilities-bigram (k, l) = 

1 

L 

L −1 ∑ 

i =1 

P i,k P i +1 ,l 

(1 ≤ k ≤ 3 , 1 ≤ l ≤ 3) (11)

8. Torsional angles auto-covariance: This feature is also derived

from torsional angles and defined as: 

Torsional-Angles-Auto-Covariance (k, j) = 

1 

L 

L −k ∑ 

i =1 

T i, j T i + k, j 

(1 ≤ j ≤ 8 , 1 ≤ k ≤ DF ) (12)

9. Structural probablities auto-covariance: This feature is also

derived from structural probabilities and defined as: 

Structural-Probabilities-Auto-Covariance (k, j) 

= 

1 

L 

L −k ∑ 

P i, j P i + k, j (1 ≤ j ≤ 3 , 1 ≤ k ≤ DF ) (13)
i =1 
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.3. Recursive feature elimination 

For both of the problems, the total number of features gen-

rated is higher than the number of instances. This possibly

an lead to the curse of dimensionality ( Friedman, 1997; Keogh

nd Mueen, 2011 ). Therefore, we adopt a feature selection tech-

ique to reduce the number features and avoid potential curse

f dimensionality. Several techniques are reported in the liter-

ture for feature selection or dimensionality reduction for clas-

ification problems ( Saeys et al., 2007 ). Among them are ge-

etic programming ( Nanni and Lumini, 2008 ), recursive feature

limination ( Guyon et al., 2002 ), tree based method ( Deng and

unger, 2012 ), randomized sparse elimination ( Bach, 2009; Mein-

hausen and Bühlmann, 2010 ), and incremental forward selection

lgorithm ( Ding et al., 2016a ). To select the most effective fea-

ure reduction method, we choose several of most popular tech-

iques and compared their performance for our problems. Among

hese methods using recursive feature elimination technique at-

ained better results compared to the other methods. Therefore, we

se this method as our main feature selection scheme. 

Recursive feature elimination (RFE) was first proposed in

uyon et al. (2002) . The idea of the algorithm is depicted as

seudo-code in Algorithm 1 . It starts with a given dataset and iter-

Algorithm 1: RecursiveFeatureElimination( dataset, classifier, k ). 

1 d ataset ′ ← d ataset; 

2 F eatureSet = { Al l f eatures } ; 
3 while | F eat ureSet | < k do 

4 classi f ier.train( dataset ′ ); 
5 F eat ureSet .computeRanks(); 

6 f r ← F eat ureset . selectLowestRank(); 

7 F eatureSet ← F eatureSet − { f r } ; 
8 dataset ′ = transform( dataset , F eat ureSet ); 

9 end 

10 return dataset ′ 

tively classifies the dataset given a classifier and then rank the all

he features following a given criteria. It then removes the feature

ith lowest rank from the feature set and transforms the dataset

ccordingly and continues the whole process again and again until

he dataset is reduced to k features. 

Usually an external estimator used used to assign weights to

he features. For example if a linear estimator is used then the

eights are the coefficients of the linear model. 

.4. Support vector machine 

In this study, we use Support Vector Machine (SVM) ( Cortes and

apnik, 1995 ) as classification model for both of the problems: pH

s non-PH and PHC vs PHM. During the last few years, a wide

ange of classification techniques have been used to tackle these

roblems. Among them, SVM attained the best results ( Dehzangi

t al., 2014a; Ding et al., 2016a; Sharma et al., 2015 ). Therefore,

e use this classifier to build our model. SVM is non parametric

lassifier that aims at finding the marginal hyperplane with max-

mum distance from different classes to achieve the lowest error

nd highest generality. A comparison of the performance of our

odel with different classifiers to solve the two problems are pre-

ented in the results section of this paper. 

.5. Performance evaluation 

A wide varieties of comparison matrices has been used in the

iterature of supervised learning to evaluate the performances of
ifferent prediction algorithms Powers . In this paper, we used sev-

ral of them as defined in the following equation: 
 

 

 

 

 

 

 

 

 

 

 

Accuracy = 

T P+ T N 
T P+ T N+ F P+ F N 

Sensit i v it y = 

T P 
T P+ F N 

Speci f icity = 

T N 
T N+ F P 

MCC = 

(T P×T N) −(F P×F N) √ 

(T P + F P )(T P + F N )(T N + F P)(T N + F N ) 

(14) 

For each of the problem, the dataset is considered as a set con-

aining positive and negative samples. 

 = S 
− ∪ S 

+ (15)

In a typical binary classification problem, one of the classes is

onsidered as negative and the other as positive. Now, TP is the

umber of positive examples correctly classified, TN is the num-

er of negative samples correctly predicted, FP is the number of

ositive examples incorrectly classified and FN is the number of

egative examples incorrectly classified examples. 

In addition to these measures, we also used area under Receiver

perating Characteristic (auROC) and area under precision recall

urve (auPR) to measure the performance of the algorithms. The

et of metrics is valid only for the single-label systems. For the

ulti-label systems whose existence has become more frequent

n system biology ( Cheng et al., 2017b; 2017c; 2017d ) and sys-

em medicine ( Cheng et al., 2016; Qiu et al., 2016 ), a completely

ifferent set of metrics as defined in Cheng et al. (2017b ) and

hou (2013) is needed. 

Several sampling methods ( Efron and Gong, 1983 ) are used in

he literature to assess the performance of the classification algo-

ithms for supervised learning. Among them jackknife and cross-

alidation are the most popular ones. In this paper, we employed

oth k -fold cross-validation with k = 10 and jack knife test to be

ble to directly compare our method with the previous studies

ound in the literature. It is very important to test the predictors

sing any of these acceptable sampling methods to tackle the bias-

ariance trade-off ( Friedman, 1997 ). 

. Results and discussion 

In this section, we present the results of the experiments that

ere carried in this study. All the methods were implemented in

ython. Each of the experiments were carried 5 times and only the

verage is reported as results. 

.1. Feature selection method 

The first challenge to solve these two problems were the

arge number of features that we extracted that potentially can

ause curse of dimensionality ( Friedman, 1997; Keogh and Mueen,

011 ). Several candidate feature reduction methods are available

n literature. To see the effect of the different feature selec-

ion methods, we applied them on the dataset for pH vs non-

H problem. Three different methods were tried: recursive fea-

ure elimination (RFE) ( Guyon et al., 2002 ), tree based method

 Deng and Runger, 2012 ) and randomized sparse elimination

 Meinshausen and Bühlmann, 2010 ), Bach, 2009 . For each of these

ethods, we ran the algorithms using 10-fold cross validation on

he dataset. Those results are shown in Table 4 . As it is shown in

able 4 , Recursive feature elimination show superior performance

ompared to other two feature selection methods in terms of all

he measures. We also plot Receiver Operating Characteristic (ROC)

urve to see the effectiveness of the feature selection methods. The

lot of the ROC curve is given in Fig. 2 . The area under ROC curve

alue is maximum for the recursive feature elimination method

hich is 0.9623 with accuracy 89.92%. 
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Table 4 

Comparison of performance of different types of feature elimination techniques on pH vs non-pH 

classification. 

pH vs no-pH Classification 

Method Accuracy Sensitivity Specificity MCC auROC auPR 

RFE 89.92% 0.8805 0.9166 0.8044 0.9623 0.9195 

Tree Based Classifier 66.54% 0.7164 0.6180 0.3548 0.75354 0.6330 

Sparse Elimination 74.10% 0.7462 0.7361 0.4872 0.8010 0.7437 

Fig. 2. Receiver Operating Characteristic curves for different feature selection meth- 

ods. 

Fig. 3. Mean accuracy achieved for different number of selected features using dif- 

ferent kernels of SVM using recursive feature selection algorithm. 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Ranking of all 1546 features shown in a color map showing the importance 

of the features, the darker the color is, less important the feature. 
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For the same dataset, we performed another set of experiments

to find the optimal number of features required for the classifica-

tion problem of pH vs non-pH problem. We varied the number of

features to be selected by the RFE algorithm and performed 10-

fold cross fold validation on the data. We tried two different clas-

sifiers in this setting: support vector machine with linear kernel

and sigmoid kernel with the parameters, C = 10 0 0 and γ = 0 . 01 .

Mean accuracy obtained in the experiments are shown in Fig. 3 .

The number of features were exhaustively tried in the range [25,

100]. The highest accuracy was found when the number of features

set in Algorithm 1 was set to 85. 
Color map of the rankings of the features as ranked by the RFE

lgorithm is given in 4 . This map shows the distribution of selected

eatures over all the features. Selected features include Dubchuck

eatures, PSSM bigram, PSSM Auto-Covariance, PSSM 1-lead bigram

nd PSSM segmented distribution from the evolutionary group of

eatures extracted for PSSM and the rest of the features were struc-

ural features generated by SPIDER3. It reveals the importance of

oth type of features: evolutionary and structural. We used the

ame number and set of features also for the PHM vs PHC problem.

he selected features are given as supporting information with the

aper. 

.2. Classifiers 

To see the effect of the different classification algorithms, we

pplied different types of supervised learning algorithms on the

ataset of pH vs non-pH classification problem. We tried six clas-

ifiers in our experiments. They were: Support Vector Machine

ith linear kernel, Support Vector Machine with rbf kernel, Sup-

ort Vector Machine with sigmoid kernel, Random Forest Classi-

er, Naive Bayes Classifier and Logistic Regression Classifier. We

sed 10-fold cross validation in the experiments and mean values

f performance metrics are reported in Table 5 . 

From the values reported in Table 5 , it is clearly noticed that

he best classification algorithm for the pH vs non-pH problem is

VM with linear kernel. In this experiments, we used the same

eatures that were selected in the feature selection phase using

FE algorithm. Logistic Regression algorithm was the second best

ith 85.97% accuracy and auROC value of 0.9326. We have also
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Table 5 

Comparison of performance of prediction of different types of classification algorithms. 

Classifier Accuracy Sensitivity Specificity MCC auROC auPR 

SVM (linear kernel) 89.92% 0.8805 0.9166 0.8044 0.9623 0.9195 

SVM (rbf kernel) 79.13% 0.8134 0.7708 0.5896 0.8641 0.7779 

SVM (sigmoid kernel) 57.91% 0.5671 0.5902 0.1571 0.6351 0.5925 

Random Forest 69.06% 0.7388 0.6458 0.4034 0.7764 0.6589 

Naive Bayes 59.35% 0.4626 0.7152 0.2054 0.6708 0.7249 

Logistic Regression 85.97% 0.8582 0.8611 0.7267 0.9326 0.8752 

Fig. 5. Receiver Operating Characteristic curves for different classification algo- 

rithms. 

Table 6 

Comparison of results achieved by iPHLoc-ES with other predictors. 

PH vs non-PH PHM vs PHC 

Method Name Accuracy auROC Accuracy auROC 

PHPred 84.2% 0.872 92.4% 0.970 

iPHLoc-ES (10-fold) 89.92% 0.962 100% 0.994 

iPHLoc-ES (Jack Knife) 88.48% 0.952 100% 0.992 
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lot the Flase Positive Rate vs True Positive Rate or Receiver Op-

rating Characteristic (ROC) curve for all these classifiers on the

ataset. The plot is given in Fig. 5 . From this analysis we selected

he SVM classifier for our predictor with linear kernel. 

.3. Comparison with other methods 

In this section, we analyze the performance of our method with

hat of the other state-of-the-art prediction PHPred ( Ding et al.,

016a ). For a fair comparison, we performed jack knife test on our

atasets and reported mean accuracy and mean area under ROC

urve in Table 6 . We have used the selected features and the clas-

ification algorithm from the previous experiments and applied it

n both of the problems and the respective datasets. In case of

he pH vs non-PH problem, the jack knife test was able to pro-

uce results with 88.48% accuracy and area under ROC curve of

.952 compared to the accuracy of PHPred of 84.2% and area un-

er ROC curve of 0.872. Evaluating our results using 10-fold cross

alidation, we achieved similar and slightly better results for our

rediction algorithm iPHLoc-ES. 

In the case of PHM vs PHC classification, our algorithm was able

o predict all the subcellular localization of host located proteins

orrectly. The accuracy was perfect (100%) with area under ROC

alue 0.994 compared to the 92.4% accuracy and 0.970 area under
OC curve value of PHPred. Thus, for both of the problems and

heir datasets, iPHLoc-ESis able to significantly outperform PHPred,

hich is the current best known predictor for the problem. 

.4. Discussion 

In this study, We have developed a method named iPHLoc-ES

hat significantly outperformed the previously proposed methods

or prediction of subcellular localization of bacteriophage proteins.

he performance of iPHLoc-ES was superior than PHPred as the

ost accurate predictor that was recently developed in terms of all

he comparison metrics used in this paper. The accuracy of the first

roblem of discrimination of host located phage proteins from the

xtra-cellular phage proteins (PH vs non-PH) was improved from

4% accuracy to 88.48% accuracy using jack knife test. The im-

rovement in the other problems ware even higher. We achieved

he classification accuracy of 100% compared to that of 92.4% for

HPred. Similar improvements are noticed in Table 6 for other

etrics as well. 

The receiver operating characteristic graph which is a plot of

alse positive rate against true positive rate is very important when

onsidered balanced data. In terms of imbalanced data, often area

nder Precision-Recall Curve and balanced accuracies are often

onsidered for performance consideration. In our case, the datasets

ere quite balanced as shown in Tables 1 and 2 . Hence the mea-

ure of area under ROC curve is sufficient to compare the perfor-

ance of the algorithms or methods. At the same time iPHLoc-ES

chieve very high sensitivity and specificity as well. For the second

roblem we achieve to 100% prediction performance. Note that we

dmit that the number of samples present in the dataset is very

mall which may cause very high performance and hard to gener-

lize. However, this is due to the lack of experimentally validated

hage locations available. Moreover, a number of phages were dis-

arded for several reasons including sequence similarity and oth-

rs. We aim at employing iPHLoc-ES for larger benchmarks as soon

t is made available. 

One of the main success of iPHLoc-ES is due to the efficient

eature selection. It is important to note that most of the features

ere previously used in the literature for protein subcellular local-

zation except the structural features. It was very important to re-

uce the number of features and remove the curse of dimensional-

ty and hence select only effective and discriminatory features for

lassification. It is also important to note that logistic regression

lassifier and SVM with linear kernel were among the best per-

orming classification algorithms. 

.5. Web server implementation 

To make our method available as a web application we imple-

ented an web application and made it publicly available from:

ttp://brl.uiu.ac.bd/iPHLoc-ES/ . The web application was developed

sing PHP and python language. It is very simple to use. This pre-

ictor can be used to find two types of prediction results: pH vs

on-PH and PHM vs PHC. This can be selected using the option

utton. For the prediction one need to provide two files to the

http://brl.uiu.ac.bd/iPHLoc-ES/
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Fig. 6. Screen shot of the web application implemented for the iPHLoc-ES predictor. 
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predictor: a pssm file generated from PSI-BLAST and a SPD file gen-

erated from SPIDER2 software. After that one might expect an in-

stantaneous prediction of the location of the given protein based

on the option. A typical screen shot of the system in given in Fig. 6 .

4. Conclusion 

In this paper, we have proposed a prediction method for sub-

cellular localization of bacteriophage proteins. Two problems were

addressed in this regard on an experimentally validated dataset.

The features generated from the phage protein sequences were

based on evolutionary and structural information and were proven

to be successful in predicting locations of phage proteins in the

host cell. We also used Recursive feature selection to reduce the

number of features and that drastically improved the performance

of the classifier. Furthermore, we implemented our model (iPHLoc-

ES) as a publicly available web server. However, one limitation to

the proposed work is that the dataset is small. All these sample

phage proteins are taken from latest protein database. However,

since the field of phage therapy is getting popular day by day,

we believe the number of experimentally validated phage locations

will be increased and hence prediction models will be enhanced. 
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