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Abstract

We study evolutionary dynamics in a population whose structure is given by two graphs: the interaction graph determines who plays

with whom in an evolutionary game; the replacement graph specifies the geometry of evolutionary competition and updating. First, we

calculate the fixation probabilities of frequency dependent selection between two strategies or phenotypes. We consider three different

update mechanisms: birth–death, death–birth and imitation. Then, as a particular example, we explore the evolution of cooperation.

Suppose the interaction graph is a regular graph of degree h, the replacement graph is a regular graph of degree g and the overlap

between the two graphs is a regular graph of degree l. We show that cooperation is favored by natural selection if b=c4hg=l. Here, b and

c denote the benefit and cost of the altruistic act. This result holds for death–birth updating, weak-selection and large population size.

Note that the optimum population structure for cooperators is given by maximum overlap between the interaction and the replacement

graph (g ¼ h ¼ l), which means that the two graphs are identical. We also prove that a modified replicator equation can describe how the

expected values of the frequencies of an arbitrary number of strategies change on replacement and interaction graphs: the two graphs

induce a transformation of the payoff matrix.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Evolutionary game theory is a general description of
evolutionary dynamics whenever the fitness of individuals
is not constant but frequency dependent (Maynard Smith,
1982; Nowak and Sigmund, 2004; Nowak, 2006). Many
concepts of evolutionary game theory have their equi-
valent formulations in mathematical ecology (May, 1973;
Hofbauer and Sigmund, 1998). The classical approach to
evolutionary game dynamics is given by the replicator
equation, which describes deterministic evolutionary
dynamics in infinitely large populations (Taylor and
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Jonker, 1978; Hofbauer et al., 1979; Zeeman, 1980;
Weibull, 1995; Hofbauer and Sigmund, 1998, 2003; Nowak
and Sigmund, 2004). More recently there have been many
investigations into stochastic evolutionary game dynamics
of finite populations (Nowak et al., 2004; Taylor et al.,
2004; Wild and Taylor, 2004; Imhof et al., 2005; Traulsen
et al., 2005; Antal and Scheuring, 2006; Antal et al., 2006;
Imhof and Nowak, 2006; Traulsen et al., 2006a–c;
Fudenberg et al., 2006; Traulsen et al., 2007).
Evolutionary graph theory (Lieberman et al., 2005;

Ohtsuki et al., 2006) is a powerful new method to study the
effect of population structure or social networks on
evolutionary dynamics. This approach is based on the
long standing interest of how spatial effects influence
evolutionary and ecological dynamics (Levin and Paine,
1974; Nowak and May, 1992; Ellison, 1993; Durrett and
Levin, 1994; Hassell et al., 1994; Killingback and Doebeli,
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1996; Nakamaru et al., 1997, 1998; Tilman and Karieva, 1997;
Szabó and Töke, 1998; van Baalen and Rand, 1998; Eshel et
al., 1999; Liggett, 1999; Irwin and Taylor, 2001; Hauert et al.,
2002; Szabó and Hauert, 2002; Le Galliard et al., 2003;
Hauert and Doebeli, 2004; Ifti et al., 2004; May, 2006). Spatial
games can lead to evolutionary kaleidoscopes, deterministic
chaos as well as the stable coexistence of cooperators and
defectors in the Prisoner’s Dilemma (Nowak and May, 1992,
1993). For games on graphs we have found a very simple rule
that specifies evolution of cooperation: if the benefit-to-cost
h = 2
g = 4
l = 2

h = 3
g = 3
l = 1

a

b

Fig. 1. Possible graph layouts: (a) case when h ¼ l ¼ 2 and g ¼ 4. The

interaction graph H corresponds to the cycle drawn with thick orange

lines. The overlap graph L (drawn with thin blue lines) corresponds to the

same cycle (full overlap, L ¼ H). Finally, the replacement graph G adds to

the overlap graph the links drawn with thick blue lines, resulting in a

regular graph with g ¼ 4 (thin and thick blue lines). (b) the lower panel

shows an example in which all graphs are homogeneous random graphs

such that h ¼ g ¼ 3 and l ¼ 1. We use the same color codes as before.

Since graphs G and H are both connected, exchanging their roles leads to

another possible construction which, as discussed in the main text, leads to

the same results for DB updating in what concerns the fixation probability

of a given trait in this population structure (h ¼ g), as opposed to the

graphs in (a), where the exchange of G and H would lead to different

theoretical predictions (hag), as nicely demonstrated in Figs. 2 and 3

below.
ratio of an altruistic act exceeds the average number of
neighbors, b=c4k, then selection on graphs favors coopera-
tors (Ohtsuki et al., 2006). This phenomenon is called
‘network reciprocity’.
Here we extend our investigations of evolutionary graph

theory by placing the members of a population on the
vertices of two graphs. The interaction graph, H, deter-
mines who-meets-whom in an evolutionary game. The
replacement graph, G, specifies evolutionary updating.
Both graphs have the same vertices. Each vertex is
occupied by one individual. There are no empty vertices.
The population size and therefore the number of vertices of
each graph is given by N. The graphs H and G may differ in
their edges. For the analytic calculations we only consider
(random) regular graphs, which are defined by the property
that all vertices have the same degree ( ¼ number of
edges). The degrees of H and G are, respectively, given by h

and g. For analytical treatment we require gX3 throughout
the paper.
The intersection of the sets of edges of graphs H and G

defines the graph L. We only consider situations where L is
again a random regular graph. The degree of L is given by
l. Note that l cannot be larger than h or g. Therefore, we
have lpminfh; gg. Fig. 1 shows two examples.
Note that our analytic methods can only deal with

regular graphs. Therefore, in this paper we restrict our
attention to regular graphs. In a previous study, however,
we have observed that the analytic results for regular
graphs are also good approximations for non-regular
graphs, such as random graphs and scale-free networks
(Ohtsuki et al., 2006).
This paper is organized as follows. Section 2 describes

our basic model. In Section 3 we study stochastic game
dynamics on replacement and interaction graphs for finite
populations and show numerical simulations for the
Prisoner’s Dilemma. These simulations further validate
the nature of the approximations used in our analytical
treatment. Section 4 investigates replicator dynamics on
these graphs, which can be obtained by taking the infinite-
population limit. Discussion and conclusions are provided
in Section 5.

2. The basic model

Let us consider a 2� 2 game with two pure strategies, A

and B. The payoff matrix of the game is given by

A B

A

B

a b

c d

� �
: (1)

The entries represent the payoffs for the row player. Each
individual uses either strategy A or B. We do not consider
mixed strategies.
Individuals play the game with all of their h neighbors in

the interaction graph, H. These interactions determine the
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total payoff, P, of each player. The fitness is given by

F ¼ 1� wþ wP. (2)

Here, 0pwp1 represents the relative contribution of the
game to fitness. If w ¼ 1 then the payoff is equal to fitness.
This is the case of ‘strong selection’. If w ¼ 0 then the game
is irrelevant to fitness; all players have the same fitness.
This is the case of ‘neutral drift’. Throughout this paper we
study the case w51, which is the limit of ‘weak-selection’
(Nowak et al., 2004).

Studying this limit can be justified in two different ways.
First, in most real life situations we are involved in many
different games, and each particular game only makes a
small contribution to our overall performance. Second,
weak-selection leads to analytic insights which are not
possible for strong selection. Numerical simulations
suggest that these results are usually good approximations
for larger values of w (Ohtsuki et al., 2006). When studying
finite populations in Section 3, we require that the
population size, N, fulfills the inequalities Nbmaxfh; gg
and N51=w (Traulsen et al., 2006b). For infinite popula-
tions, studied in Section 4, we take the limit N !1,
keeping w fixed (w51).

The evolutionary dynamics are determined by the
‘update-rules’ which govern how the population changes
over time. As in previous papers (Ohtsuki et al., 2006;
Ohtsuki and Nowak, 2006a, b), we consider three different
update rules:
�
 Birth–death (BD) updating: An individual is chosen for
reproduction proportional to fitness; the offspring
replaces at random one of the g neighbors on the
replacement graph.

�
 Death–birth (DB) updating: A random individual is
chosen to die; the g neighbors of the replacement graph
compete for the empty site proportional to their fitness.

�
 Imitation (IM) updating: A random player is chosen for
updating his strategy; he either adopts a strategy of one
of the g neighbors in the replacement graph or remains
with his own strategy, proportional to fitness.

An elementary step of updating is an event where an
individual is potentially replaced by another individual (or
where an individual potentially changes his strategy).
Reproduction can be genetic or cultural (Cavalli-Sforza
and Feldman, 1981; Boyd and Richerson, 1985). Strategies
breed true: we do not explicitly consider mutations. But we
calculate the probability that a resident population is
invaded and replaced by a mutant strategy.

The evolutionary outcomes are dependent on the
updating rules. Our three updating rules are only a small
subset of the possible dynamics on graphs. For example,
some rules might use synchronous updating but others
asynchronous updating (Nowak and May, 1992, 1993;
Nowak et al., 1994). The BD, DB, and IM updating rules
assume ‘fertility-selection’ where the payoffs of the game
affect the fertility (reproductive success) of players.
However, one can also imagine ‘viability-selection’ where
the payoffs affect the survival of players. For instance, in
the score-dependent viability model of Nakamaru et al.
(1997, 1998) and Nakamaru and Iwasa (2005, 2006), an
individual is chosen to die according to his payoff (strictly
speaking, a candidate is randomly chosen and he can die
according to his payoff) and then one of the neighbors
takes over the vacancy at random (while their so-called
‘score-dependent fertility model’ corresponds to our DB

updating). This subtle change can lead to very different
dynamics on graphs. We will discuss the effect of different
updating rules in Section 5.

3. Fixation probabilities for games on replacement and

interaction graphs

One of the most important quantities in stochastic game
dynamics is the fixation probability, defined as the
probability that a mutant invading a population of N � 1
resident individuals will produce a lineage which takes over
the whole population (Nowak et al., 2004; Taylor et al.,
2004; Imhof and Nowak, 2006). We denote the fixation
probability of strategy A in a B-population by rA.
We denote the fixation probability of strategy B in an
A-population by rB.
The fixation probability of a neutral mutant is given by

the inverse of the population size, 1=N. If rA41=N, then
natural selection favors the fixation of strategy A.
In frequency dependent selection, rA41=N does not

necessarily imply that rBo1=N (Nowak et al., 2004). We
are also interested in deriving conditions for rA4rB, which
means that the fixation of A is more likely than the fixation
of B. Under recurrent but rare mutations, if rA4rB then
strategy A dominates the population more often than
strategy B (Fudenberg et al., 2006).
To estimate the fixation probabilities we use diffusion

theory (Kimura, 1962; Crow and Kimura, 1970; Ewens,
2004). For analytical convenience we assume that the
population size, N, satisfies Nbmaxfh; gg and N51=w,
where w51 is the intensity of selection. Let xX denote the
global density of strategy X (¼ A or B). Let TþA (T�A) be the
probability that the number of A-strategists increases
(decreases) by one in an elementary step of updating.
These probabilities are defined as

TþA ¼ Prob DxA ¼
1

N

� �
; T�A ¼ Prob DxA ¼ �

1

N

� �
.

(3)

We assume that N updating steps occur per unit time
(Dt ¼ 1=N). In this sense, the unit of time is considered to
be one generation. The probability fAðyAÞ that strategy A

ultimately takes over the whole population, when its initial
frequency is yA, is given as the solution of the following
backward Kolmogorov equation (Ewens, 2004)

0 ¼ mðyÞ
dfAðyÞ

dy
þ

vðyÞ

2

d2fAðyÞ

dy2
. (4)
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Here, the mean of the increment of xA per unit time, mðxAÞ,
is given by

mðxAÞ ¼
E½DxA�

Dt

¼
E½DxA�

1=N

¼ N
1

N

� �
Prob DxA ¼

1

N

� ��

þ �
1

N

� �
Prob DxA ¼ �

1

N

� ��
¼ TþA � T�A . ð5Þ

The variance of the increment of xA per unit time, vðxAÞ, is
given by

vðxAÞ ¼
Var½DxA�

Dt

¼
E½ðDxAÞ

2
� � ðE½DxA�Þ

2

1=N

� N � E½ðDxAÞ
2
� ðsince ðE½DxA�Þ

2
¼ Oðw2ÞÞ

¼ N
1

N

� �2

Prob DxA ¼
1

N

� �(

þ �
1

N

� �2

Prob DxA ¼ �
1

N

� �)

¼
TþA þ T�A

N
. ð6Þ

From Eq. (4), the fixation probability is calculated as
rA ¼ fAð1=NÞ. Hence, we need to calculate TþA and T�A .

However, the state of the population cannot be fully
described by global densities of strategies, xA and xB. A
particular configuration of the population corresponds to a
two-coloring of the vertices. Each vertex can be occupied
either by an A or a B individual. There are 2N possible
configurations on a graph, which is a huge number for
large N. Therefore, in order to calculate TþA and T�A , we
must make approximations. Here, we adopt the pair-
approximation method (Matsuda et al., 1987; Nakamaru
et al., 1997, 1998; Keeling, 1999; Haraguchi and Sasaki,
2000; van Baalen, 2000) in order to describe the local
configurations of strategies on graphs. Pair-approximation
considers not only frequencies of strategies, but also
frequencies of (connected) strategy-pairs which enables us
to estimate the correlation of strategies in two adjacent
nodes. We must take into account that we have three
different types of pairs: pairs connected only through the
replacement graph, those connected only through the
interaction graph, and those connected through both
graphs. We label each of them (G), (H), or (L), respectively.

Let qX jY denote the conditional probability that the focal
node is occupied by strategy X (¼ A or B) given that
strategy Y (¼ A or B) occupies an adjacent node. This
conditional probability depends on the type of edges
connecting X and Y. Therefore, we need to distinguish
q
ðGÞ
X jY , q

ðHÞ
X jY , and q

ðLÞ
X jY . In the weak-selection limit, we expect

these ‘local’ frequencies to equilibrate much faster than
global frequencies of strategies, xX . Hence, we are able to
decouple the dynamics of local frequencies and that of
global frequencies. In other words, the system reaches a
local steady state while the global frequencies remain
constant.
We first derive differential equations for the local

frequencies, qX jY . In order to do so, we count the increase
and/or decrease of the number of X � Y pairs for each
type of edges, (G), (H), and (L). Eqs. (A.1) in Appendix A

show the dynamics of q
ðGÞ
X jY , q

ðHÞ
X jY , and q

ðLÞ
X jY for BD

updating. For DB and IM updating we have the same
equations as Eqs. (A.1) except for different constants in
front of the equation, which does not change the position
of equilibrium. Hence from Eqs. (A.1), the steady state
values of the local frequencies are given by

q
ðGÞ
AjA ¼ q

ðLÞ
AjA ¼

g� 2

g� 1
xA þ

1

g� 1
; q

ðHÞ
AjA ¼ xA,

q
ðGÞ
BjA ¼ q

ðLÞ
BjA ¼

g� 2

g� 1
xB; q

ðHÞ
BjA ¼ xB,

q
ðGÞ
AjB ¼ q

ðLÞ
AjB ¼

g� 2

g� 1
xA; q

ðHÞ
AjB ¼ xA,

q
ðGÞ
BjB ¼ q

ðLÞ
BjB ¼

g� 2

g� 1
xB þ

1

g� 1
; q

ðHÞ
BjB ¼ xB (7)

for all three updating mechanisms.
An intuitive interpretation of Eqs. (7) is as follows. It is

obvious that correlations between two adjacent nodes build
up only through reproduction, and not through interac-
tion. Consequently, we obtain no local correlations
through interaction—only edges, (H). Hence, the local

frequency of strategy X, q
ðHÞ
X jY , is equal to its global

frequency, xX . Regarding the other edges, (G) and (L),
with probability 1=ðg� 1Þ a player shares a common
ancestor with his neighbor. With the remaining probability,
ðg� 2Þ=ðg� 1Þ, his neighbor is a random individual.
Assuming that local frequencies are at steady state, we

can now calculate the dynamics of global frequencies: that
is, we can calculate TþA and T�A . The details of the
calculation are shown in Appendix A. Then by solving
Eq. (4) we derive the fixation probabilities, rA and rB. For
BD updating we obtain

rA41=N () ðghþ lÞða� cÞ4ð2gh� lÞðd � bÞ (8)

and

rA4rB () aþ b4cþ d. (9)

For DB updating we obtain

rA41=N()g2hðaþ 2b� c� 2dÞ

þ glð2a� 2bþ c� dÞ

þ lða� b� cþ dÞ40 ð10Þ
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and

rA4rB () ðghþ lÞða� dÞ4ðgh� lÞðc� bÞ. (11)

For IM updating we obtain

rA41=N()ðgþ 2Þghðaþ 2b� c� 2dÞ

þ glð2a� 2bþ c� dÞ

þ 3lða� b� cþ dÞ40 ð12Þ

and

rA4rB () ðghþ l þ 2hÞða� dÞ4ðgh� l þ 2hÞðc� bÞ.

(13)

All results hold for weak-selection, w51, and large
population size, Nbh,gXl. Moreover, we need Nw51.
Note that we always have gX3.

There is an exceptional case in which we do not require
Nw51 for the results (8)–(13) to hold. We show in
Appendix A that if a� c ¼ b� d holds then Eqs. (8)–(13)
remain true for any values of Nw as long as w51 and
Nbh,gXl are satisfied. The condition a� c ¼ b� d is
called ‘equal gains from switching’ (Nowak and Sigmund,
1990).
3.1. The limit of well-mixed populations

Nowak et al. (2004) studied evolutionary game dynamics
in finite and well-mixed populations. For the 2� 2 game
given by Eq. (1), they found that for large population size
and weak-selection, the following results hold:

rA41=N () aþ 2b4cþ 2d, (14)

rA4rB () aþ b4cþ d. (15)

These results, which hold for the well-mixed population,
are obtained from our results for the three different update
rules on replacement and interaction graphs (8)–(13) in
three different limiting cases: (i) gbh; (ii) hbg, and (iii)
l ! 0. All three update rules, BD, DB, and IM, lead to the
results of the well-mixed population (14) and (15) for any
of the three limits (i)–(iii). Therefore, the population
becomes essentially well-mixed if the degree of the overlap,
l, becomes small relative to either h or g.
3.2. The Prisoner’s Dilemma

As a particular example, we explore the interaction
between cooperators and defectors. Let us study a
simplified Prisoner’s Dilemma given by two parameters.
A cooperator, C, pays a cost c for every edge, and the
partner of this edge receives a benefit b. Defectors, D, pay
no cost and distribute no benefits. We assume b4c

otherwise cooperation has no net benefit. The payoff
matrix becomes

A B

A

B

a b

c d

� �
!

C D

C

D

b� c �c

b 0

� �
: (16)

For BD updating, we find from Eqs. (8)–(9) that for any
b and c we have rCo1=N and rCorD. Therefore, selection
never favors cooperators.
For DB updating, we find from Eq. (10) that rC41=N if

b

c
4

hg

l
. (17)

The same condition implies that rC4rD.
For IM updating, we find from Eq. (12) that rC41=N if

b

c
4

hðgþ 2Þ

l
. (18)

The same condition implies that rC4rD.
Inequalities (17) and (18) suggest that the optimum

configuration for evolution of cooperation is h ¼ g ¼ l.
The degree l of the overlap should be as large as possible,
while the degrees h and g should be as small as possible.
This optimum is reached when the replacement graph and
the interaction graph are identical. In this limit we recover
our previous condition, b=c4k (using k ¼ h ¼ g ¼ l)
(Ohtsuki et al., 2006). Any deviation from the identity
between the interaction and the replacement graphs makes
evolution of cooperation more difficult. Note that co-
operation is never favored if the overlap between interac-
tion and replacement graph is empty (l ¼ 0).
Note that for DB updating the critical threshold

condition (17) is symmetric in the degrees of the replace-
ment and interaction graph, g and h. Therefore, a highly
connected replacement graph (large g) and a sparsely
connected interaction graph (small h) have the same
threshold as the reverse situation (for a fixed overlap l).
The symmetry is broken for IM updating. Here it is better
to have a smaller degree for the interaction graph than for
the replacement graph.
For a general 2� 2 game with payoff matrix given by

(1), we can prove that the degrees of the replacement and
interaction graphs play a symmetric role in Eq. (10) for DB

updating if and only if a� c ¼ b� d holds, which is the
condition for ‘equal gains from switching’ (Nowak and
Sigmund, 1990). We can easily confirm that the Prisoner’s
Dilemma game with the payoff matrix (16) satisfies this
condition.
Strictly speaking pair-approximation is only valid for

infinite Bethe lattices (or Cayley trees) where each node has
exactly the same number of links and there are no loops or
leaves. The performance of pair-approximation and its
limitation have been studied by several authors (Matsuda
et al., 1992; Harada and Iwasa, 1994; Nakamaru et al., 1997,
1998; Keeling, 1999; van Baalen, 2000). Under weak-
selection, Ohtsuki et al. (2006) found that pair-approximation
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Fig. 2. Results for the fixation probability under DB-updating. For a

population size of N ¼ 100, and for each combination of values ðh; g; lÞ,
we ran 15 000 000 simulations starting from a single cooperator immersed

in a sea of defectors. We did so for different values of the ratio c=b. For

each value, we computed the fixation probability as the ratio between

those runs in which the system reached 100% cooperators and the total

number of runs. Each symbol represents one such calculation, whereas the

lines provide a guide to the eye. The crossing between the vertical lines

(each with a color corresponding to a different combination of ðh; g; lÞ) and
the horizontal line at p ¼ 1

100
indicate the values associated with the

theoretical predictions. In all cases the numerical results have been

systematically shifted by a constant factor of 0:018 towards higher values

of c=b in order to bring theory and computer simulations into agreement.

This shift depends on the population size, decreasing with increasing N

(see main text for details).

0.05 0.1 0.15

c/b

0

0.001

0.002

0.003

0.004

P
ro

b
a
b
ili

ty
 (

1
5
0
0
0
0
0
0
 r

u
n
s
)

6 6 2 (0.0555)

8 4 2 (0.0625)

4 8 2 (0.0625)

8 6 4 (0.0833)

6 8 4 (0.0833)

5 3 2 (0.1333)

3 5 2 (0.1333)

N = 500
hgl

shift=0.0035

Fig. 3. Results for the fixation probability under DB-updating. This figure

shows the same results as Fig. 2 but for a population size of N ¼ 500. In

all cases the numerical results have been systematically shifted by a

constant factor of 0:0035 towards higher values of c=b in order to bring

theory and computer simulations into agreement. This shift depends on

the population size, decreasing with increasing N (see main text for

details).
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is in excellent agreement with computer simulations for
random regular graphs and other structures.

3.3. Numerical simulations on random regular graphs

We will now test our analytic results with numerical
simulations on random regular graphs. The procedure to
generate those graphs is straightforward: given values of
h; g; l, we start by constructing a random regular graph
(Santos et al., 2005) of degree g, ensuring that it is
connected. Subsequently, we augment this graph by
increasing the connectivity of all nodes by h� l, such that
G has connectivity g, while H has connectivity h and L has
connectivity l. In general, it is not always possible to
generate a graph in this way, due to the stochastic nature of
the construction algorithm. However, the algorithm for
generation of each homogeneous random graph (Santos et
al., 2005) is very efficient, and a few attempts have proven
sufficient for generating the plethora of graphs that we
used to compute the fixation probabilities by means of
numerical simulations.

Players interact on H and reproduce on G. We consider
only two update rules for reproduction: DB and IM, since,
for weak-selection, the BD update rule never provides an
evolutionary advantage for cooperators in the Prisoner’s
Dilemma. The fitness of each individual is related to its
payoff by Eq. (2). In all numerical simulations, we use
w ¼ 0:1. We start by stipulating given values for the
connectivities ðh; g; lÞ, as well as for the cost to benefit ratio
c=b. Subsequently we generate 3000 graphs G and H

compatible with the fixed ðh; g; lÞ, and run 5000 simulations
for each graph, reaching a grand total of 15 000 000
simulations for each set of parameters ðN; h; g; l; b; cÞ.

Simulations always start with a population consisting of
only defectors and a single randomly placed cooperator. Its
location is changing from simulation to simulation. By
changing the initial location of the cooperator and by
changing the specific graph realization for given ðh; g; lÞ, we
compute the average fixation probability of a single
cooperator in a population of defectors. Simulations stop
when one of the two absorbing states is reached: either
100% cooperators (fixation) or 100% defectors (extinc-
tion). We scan regions of the ratio c=b in order to find the
critical value below which cooperators become advanta-
geous mutants. We consider populations of size N ¼ 100
and 500. Therefore, we have Nw ¼ 10 and 50. Remember
that for games of ‘equal gains from switching’, such as the
Prisoner’s Dilemma (16), our analytical predictions
(8)–(13), hence the conditions (17), (18), are valid for any
values of Nw, as long as w51 and Nbh,gXl hold.

The results are shown in Figs. 2 and 3 for the DB-
updating and in Figs. 4 and 5 for the IM-updating.
Excellent agreement with the theoretical predictions is
obtained. In particular, the numerical simulations confirm
the invariance of the condition above for DB-updating
upon exchange of h and g (cf. Fig. 2), showing also how
this symmetry is broken under IM-updating (cf. Fig. 4).
Yet, for IM-updating, new combinations of h and g lead to
the same threshold condition, a feature nicely corroborated
by the results of computer simulations.
A perfect agreement between theory and computer

simulations would imply that the simulation results cross
the 1=N horizontal line exactly at the point where this line
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crosses each appropriate vertical line. What we observe for
N ¼ 100 is a rigid shift of � 0:018 towards lower values of
c=b between the simulation results and the theoretical
predictions (note the numerical shift of data by this amount
in Figs. 2 and 4). This constant shift turns out to be a
population size-effect. For N ¼ 500 (Figs. 3 and 5), we find
an entirely equivalent scenario with a reduced shift of
0:0035.
In other words, as the population size increases, the

agreement between the pair-approximation-based predic-
tions and computer simulations improves in the Prisoner’s
Dilemma (16). For a given finite value of N we need b=c to
be slightly larger than the thresholds (17) and (18).

4. The replicator equation for games on replacement and

interaction graphs

In the limit of N !1 with w51 held constant, we
obtain deterministic game dynamics on our two graphs.
The key equation will be a replicator equation with a
modified payoff matrix. We note that this deterministic
equation gives a good approximation for the stochastic
process on two graphs with large population size
Nbmaxfh; gg and weak-selection w51 when Nwb1 holds.
Consider a game with n strategies, i ¼ 1; . . . ; n. The

payoff for strategy i versus strategy j is aij . The payoff
matrix is given by A ¼ ðaijÞ. Let xi denote the global
frequency of strategy i. We have

Pn
i¼1 xi ¼ 1. In a well-

mixed population, strategy i meets strategy j with prob-
ability xj . The average payoff of an i-player is given byPn

j¼1 aijxj ¼ ei � Ax, where ei is the ith unit column vector,
x ¼ ðx1; . . . ;xnÞ

T, and the dot denotes inner product. From
this we obtain the replicator equation in a well-mixed
population as

_xi ¼ xiðei � Ax� x � AxÞ. (19)

Here x � Ax ¼
Pn

i¼1 ðei � AxÞxi ¼
Pn

i;j¼1 aijxixj is the aver-
age payoff of the population (Taylor and Jonker, 1978;
Hofbauer and Sigmund, 1998). This equation is defined on
the simplex Sn ¼ fðx1; . . . ;xnÞ jx1 þ � � � þ xn ¼ 1;xiX0g.
Each face of the simplex is invariant under the dynamics.
If, however, the population is structured according to the

two graphs, the probability that strategy i meets strategy j

is no longer equal to xj. We will show that the replicator
equation on graphs has the form:

_xi ¼ xi½ei � ðAþ BÞx� x � ðAþ BÞx�. (20)

The matrix B ¼ ðbijÞ contains the effect of local interac-
tions. The matrix B is calculated from A and satisfies
x � Bx ¼ 0.
Consider the n� n game with payoff matrix A ¼ ðaijÞ.

Each individual plays the game with h neighbors on the
interaction graph, H, and gains a total payoff which
translates into biological fitness by Eq. (2). The reproduc-
tion of strategies occurs on the replacement graph G. We
consider the same update rules as before. We assume that
an individual updates its strategy on average once per unit
time. We also assume weak-selection, w51. We require
gX3 throughout our calculation.
First, we estimate the local frequencies of strategies in a

given environment, using the pair-approximation method.
Let qijj denote the conditional probability that the focal
node is occupied by strategy i given strategy j is in an
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adjacent node. For each of three different types of edges,
(G), (H) and (L), we consider such probabilities, denoted
by q

ðGÞ
ijj , q

ðHÞ
ijj and q

ðLÞ
ijj , respectively. Then the equilibrium

values of these probabilities are calculated as (see
Appendix A)

q
ðGÞ
ijj ¼ q

ðLÞ
ijj ¼

g� 2

g� 1
xi þ

1

g� 1
dij ; q

ðHÞ
ijj ¼ xi. (21)

Here dij is one if i ¼ j and zero otherwise.
Let Tþi (T�i ) denote the probability that the number of i-

strategists increases (decreases) by one in an elementary
step of updating. From

_xi �
E½DxA�

Dt
¼ Tþi � T�i , (22)

we obtain the equations for the rate of change of global
frequencies, which have the form of a replicator equation
on graphs.

For BD updating we obtain

_xi ¼
wðg� 2Þðgh� 2lÞ

gðg� 1Þ
� xi ei � ðAþ BÞx� x � ðAþ BÞx½ �

þ Oðw2Þ, ð23Þ

where B ¼ ðbijÞ is given by

bij ¼
lðaii þ aij � aji � ajjÞ

gh� 2l
. (24)

By re-scaling the time and neglecting w2 and higher order
terms we obtain

_xi ¼ xi ei � ðAþ BÞx� x � ðAþ BÞx½ �. (25)

For DB updating, we also recover this form after neglecting
a constant, but in this case the matrix B is given by

bij ¼
lfðgþ 1Þaii þ aij � aji � ðgþ 1Þajjg

g2h� gl � 2l
. (26)

Similarly, for IM updating the matrix B is given by

bij ¼
lfðgþ 3Þaii þ 3aij � 3aji � ðgþ 3Þajjg

g2h� gl � 6l þ 2gh
. (27)

In each of three different limits: (i) gbh; (ii) hbg, and (iii)
l! 0, the correction term bij in Eqs. (24), (26), (27)
vanishes to zero and we obtain the standard replicator
equation describing a well-mixed population.

4.1. Prisoner’s Dilemma

We study the Prisoner’s Dilemma (16) using the
replicator equation on graphs, (20).

For BD updating, we find that defectors always
dominate cooperators, as predicted for a well-mixed
population. For DB updating, cooperators dominate
defectors if

b

c
4

hg

l
. (28)

In this case, ‘network reciprocity’ favors cooperators over
defectors: the relative abundance of cooperators converges
to unity from any initial fraction. Interestingly, the
condition (28) is exactly the same as the one for rC4
1=N (Eq. (17)).
For IM updating, the equivalent condition is found to be

b

c
4

hðgþ 2Þ

l
(29)

which is the same as Eq. (18).

4.2. The Snow-drift game

The Snow-drift game is given by the payoff matrix

C D

C

D

b�
c

2
b� c

b 0

 !
: (30)

Two drivers are trapped on either side of a snow drift.
Cooperation means getting out of the car and shovel.
Defection means to remain in the car and let the other
driver shovel. The benefit of getting home is b, which is
larger than the cost of shoveling, c. If both cooperate the
cost is halved for each person. If both defect neither can go
home, and both drivers obtain zero payoff (Hauert and
Doebeli, 2004).
In a well-mixed population, the traditional replicator

Eq. (19) predicts stable coexistence of cooperators and
defectors at an equilibrium where the relative abundance of
cooperators is given by x�C ¼ 1� ½c=ð2b� cÞ�.
Let us consider the Snow-drift game played on graphs.

We use the replicator equation on graphs (20). From
Eqs. (24), (26), and (27) the matrix B is calculated as

C D

C

D

0 w

�w 0

 !
: (31)

For BD updating, we obtain

w ¼
lð2b� 3cÞ

2ðgh� 2lÞ
. (32)

For DB updating, we obtain

w ¼
lfð2þ 2gÞb� ð3þ gÞcg

2ðg2h� gl � 2lÞ
. (33)

For IM updating, we obtain

w ¼
lfð6þ 2gÞb� ð9þ gÞcg

2ðg2h� gl � 6l þ 2ghÞ
. (34)

We can show that the existence of the fixed point is not
affected by the graph structure, but its location changes.
From Eq. (31) it is obvious that cooperation is favored on
graphs compared to well-mixed populations if and only if w
is positive. For BD updating this condition is b=c43

2
. For

DB and IM updating this condition is always satisfied
whenever gX3 and l40. If there is no overlap between
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Fig. 6. The frequency of cooperators at the equilibrium in the Snow-drift

game played on graphs for (a) BD; (b) DB, and (c) IM updating. The x-

axis represents the benefit-cost ratio of cooperation, b=c. The degrees of

replacement graph and interaction graph are fixed as g ¼ h ¼ 4. We

change the degree of overlap from l ¼ 0 to l ¼ 4. (a) When b=c43
2
graph

structure favors cooperation for increasing overlap l. When b=co3
2
, on the

other hand, the opposite is observed. (b,c) The larger the overlap l between

replacement graph and interaction graph, the more cooperation is favored

in DB and IM updating.
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replacement graph and interaction graph (i.e. l ¼ 0) then w
is equal to zero, which leaves the dynamics unchanged with
respect to that in a well-mixed population.
Figs. 6a–c show the equilibrium-frequency of coopera-
tors over the benefit-to-cost ratio, b=c, for each of three
update rules. We observe that for fixed g and h the effect of
spatial structure becomes more prominent with increasing
degree of overlap, l.
5. Discussion

In the prisoner’s dilemma, BD-updating never confers an
evolutionary advantage to cooperators, even in the imit of
weak-selection. For DB and IM updating, cooperators can
be favored over defectors by ‘network reciprocity’.
Cooperators in clusters earn a higher payoff than defectors,
and therefore the cluster can expand. In Ohtsuki and
Nowak (2006a) an intuitive explanation has been proposed
for the difference in behavior associated with these two
classes of updating, which stems from the fact that both
DB and IM explore a larger neighborhood than BD

updating. In fact, under DB and IM updating the
neighbors of a dying/learning individual, who themselves
are not direct neighbors of each other, compete for
reproduction. This favors the assortative correlation
between cooperators, thereby enhancing the survival
chances of cooperators. In contrast, under BD updating a
player competes against his immediate neighbors with
whom he played the Prisoner’s Dilemma. In this case the
advantage of a cooperator resulting from the assortative-
ness is exactly canceled out by the benefit a defector
receives from the cooperator, thus cooperation never
evolves (see also Taylor, 1992; Wilson et al., 1992).
Nakamaru et al. (1997, 1998) and Nakamaru and Iwasa

(2005, 2006) compared fertility-selection and viability-
selection. In their score-dependent fertility model, a
random death is followed by reproduction with selec-
tion. In their score-dependent viability model, a selective
death is followed by a random birth. For the Prisoner’s
Dilemma on one- and two-dimensional lattices, Nakamaru
et al. (1997, 1998) found that the former is more favo-
rable to cooperation than the latter (we note that
the citation of the results of Nakamaru et al., 1997, 1998
in Ohtsuki and Nowak, 2006a was mistakenly reversed).
The observation by Nakamaru et al. is due to the
same reason as the difference between BD and DB

updating. In the score-dependent fertility model, neighbors
opposite to the empty site compete, while in the score-
dependent viability model only direct neighbors compete
for survival.
In view of this argument, we expect that neither the

order of birth and death nor the distinction between
fertility-selection and mortality-selection yields a critical
difference. We note that in our BD, DB and IM up-
dating rules, and Nakamaru et al’s two selection mecha-
nisms, either birth or death event is under selection and
the other is a random process. A crucial difference
stems from the fact whether the second part of the update
rule is affected by payoff or purely random. Cooperation
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is favored only when a random step is followed by a
selective step.

Recently, we have studied the role of population
structure in finite (Ohtsuki et al., 2006) and infinite
populations (Ohtsuki and Nowak, 2006b), for the case
where k ¼ h ¼ g ¼ l. It is therefore worth investigating
the consequences of the present study in the light of
these previous findings. For DB updating, natural selec-
tion will favor cooperators whenever the condition
b=c4k is satisfied, a result which assumes that graphs
are regular, although numerical simulations have shown
that the applicability of this result extends beyond the
theoretical assumptions (Ohtsuki et al., 2006). In prac-
tice, this rule means that smaller connectivities k favor
cooperators, in the sense that smaller clusters of co-
operators can play a role at the start of the evolu-
tionary process. Interestingly, for the DB updating, our
present results b=c4hg=l show that cooperation is maxi-
mally favored whenever h ¼ g ¼ l ¼ k (since gXl and
hXl, always). In other words, even when we separate
the interaction from the replacement graph, coope-
ration is maximized whenever the two actually coincide,
in which case we recover the b=c4k-rule. In retrospect,
this result is intuitive. For the Prisoner’s Dilemma, the
only means of cooperators to fare better than defec-
tors is to successfully assortate and to use cluster-
ing to collect the benefits from cooperative interactions.
Clearly, assortation is maximal through the repla-
cement graph, since cooperators breed cooperators and
defectors breed defectors. Consequently, in order for
cooperators to benefit from such assortation, the overlap
between H and G has to be maximal, and this leads to
k ¼ h ¼ g ¼ l.

Note that b=c4hg=l is symmetric in g and h. Therefore,
it does not matter whether the interaction graph has high
connectivity and the replacement has low connectivity or
vice versa. This symmetry is broken for IM updating,
which leads to b=c4hðgþ 2Þ=l. This result is also easy to
understand: as opposed to DB updating, for IM updating
the strategy of the focal individual also competes for
‘remaining’ in place. This affects exclusively the replace-
ment graph G. Moreover, one can picture the alluded
competition of the own strategy with the others to remain
‘in place’ as if the replacement graph would exhibit an
additional ‘loop’ emerging from the focal individual and
ending in the same focal individual. This loop, which does
not overlap with H, leads to an effective connectivity of G

which becomes ðgþ 2Þ. Remarkably, this is precisely the
result given by Eq. (18).

So far we have discussed evolutionary dynamics for the
special case of the Prisoner’s Dilemma. Our results,
however, extend to other 2� 2 games in finite populations,
as well as to n� n games in infinite populations. In this
respect, it is noteworthy that our results, for weak-selection
(for other intensities, cf. Traulsen et al. 2006a, b) also lead
to the so-called 1

3
-rule in appropriate limits (Nowak et al.,

2004). For example, for DB updating the general condition
for rA41=N implies

g2hðaþ 2b� c� 2dÞ þ glð2a� 2bþ c� dÞ

þ lða� b� cþ dÞ40. ð35Þ

Surprisingly, this condition is equivalent to asking that the
abundance of strategy A increases at frequency xA ¼

1
3
in

the replicator equation on graphs, Eq. (20), given the local
configuration of strategies on graphs is at the steady state
given by Eq. (7).
In infinite, structured populations, and in the limit of

weak-selection, strategies evolve according to a replicator
equation. The effect of population structure is to induce a
transformation of the payoff matrix. Once such a
transformation is performed, then evolution proceeds ‘as
if’ the population were well-mixed (unstructured). This
remarkable result also shares many of the peculiarities
already found for the case where the replacement and
interaction graphs are identical (Ohtsuki and Nowak,
2006b). In particular, the transformation of the payoff
matrix is of the form (for the case of 2� 2 games)

A B

A

B

a b

c d

� �
!

A B

A

B

a bþ w

c� w d

 !
: (36)

The specific form of w depends on the update rule (cf. Eqs. (24,
(26), and (27)). Yet, irrespective of the update rule, the
population structure affects only the off-diagonal terms of the
payoff matrix, that is, population structure only affects the
interactions between different strategies. Therefore, a trans-
formed replicator equation can describe evolutionary dy-
namics on replacement and interaction graphs.
In the present paper we have studied fixed regular

graphs. Future directions should include evolutionary
dynamics on graphs of subdivided populations (Maruya-
ma, 1970; Slatkin, 1981; Barton, 1993), heterogenous
graphs (Antal et al., 2006; Santos et al., 2006b), complex
networks (Nakamaru and Levin, 2004; Santos et al.,
2005, 2006a; Santos and Pacheco, 2005; May, 2006),
and dynamic networks (Bala and Goyal, 2000; Mohta-
shemi and Mui, 2003; Pacheco et al., 2006; Santos et al.,
2006c).
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Appendix A

In this Appendix, we study the general case of a n� n

game whose payoff matrix is given by A ¼ ðaijÞ. Subse-
quently, we consider the particular case of n ¼ 2, that is,
2� 2 games, and derive both the replicator equation for the
frequencies of strategies in infinite populations, as well as the
fixation probabilities of strategies for finite populations.

We use the following notations. xi represents the global
frequency of strategy i. xij represents the global frequency

of i–j pairs. Since we have three different types of pairs, (G),

(H), and (L) as in the main text, we must consider x
ðGÞ
ij ,

x
ðHÞ
ij , and x

ðLÞ
ij separately. The conditional probability that

the focal node is occupied by strategy i given strategy j is
next is denoted by qijj. Similarly to pair-frequencies, we

have q
ðGÞ
ijj , q

ðHÞ
ijj , and q

ðLÞ
ijj . In the pair-approximation we

neglect the effect from nodes that are two or more steps
away from the focal one. We shall frequently make use of

the following identities: q
ð�Þ

ijj ¼ x
ð�Þ

ij =xj and xij ¼ xji, where

ð�Þ is a wild-card for (G), (H), and (L).

A.1. BD updating

First we study BD updating. We determine the rate of
change in the number of i–j pairs of the three different
types of pair-frequencies. Using q

ð�Þ

ijj ¼ x
ð�Þ

ij =xj we obtain

dq
ðGÞ
ijj

dt
¼

1

g
2dij þ

X
k

q
ðGÞ
ijk fðg� l � 1Þq

ðGÞ
kjj þ lq

ðLÞ
kjj g

"

þ
X

k

fðg� l � 1Þq
ðGÞ
ijk þ lq

ðLÞ
ijk gq

ðGÞ
kjj � 2gq

ðGÞ
ijj

#
þOðwÞ,

dq
ðHÞ
ijj

dt
¼

1

g

X
k

q
ðHÞ
ijk fðg� lÞq

ðGÞ
kjj þ lq

ðLÞ
kjj g

"

þ
X

k

fðg� lÞq
ðGÞ
ijk þ lq

ðLÞ
ijk gq

ðHÞ
kjj � 2gq

ðHÞ
ijj

#
þOðwÞ,

dq
ðLÞ
ijj

dt
¼

1

g
2dij þ

X
k

q
ðLÞ
ijk fðg� lÞq

ðGÞ
kjj þ ðl � 1Þq

ðLÞ
kjj g

"

þ
X

k

fðg� lÞq
ðGÞ
ijk þ ðl � 1Þq

ðLÞ
ijk gq

ðLÞ
kjj � 2gq

ðLÞ
ijj

#

þ OðwÞ. ðA:1Þ

Here OðwÞ represents terms which scale as wn (nX1). From
Eqs. (A.1) the equilibrium values of conditional probabil-
ities q

ð�Þ

ijj are calculated, leading to Eq. (21).
Let Tþi (T�i ) be the probability that the number of i-

strategists increases (decreases) by one in an elementary
step of BD updating. After some algebra we have

Tþi þ T�i ¼
2ðg� 2Þ

g� 1
xið1� xiÞ þOðwÞ,
Tþi � T�i ¼
wðg� 2Þðgh� 2lÞ

gðg� 1Þ
xi½ei � ðAþ BÞx

� x � ðAþ BÞx� þOðw2Þ, ðA:2Þ

where B ¼ ðbijÞ is given by Eq. (24). In infinite populations
_xi is given by Tþi � T�i . Hence, neglecting higher order
terms with respect to w and re-scaling the time we obtain
the replicator equation on graphs, Eq. (20).
Consider a game with n ¼ 2 strategies in finite popula-

tions (No1). We rename strategies i ¼ 1 and 2, A and B.
For payoffs we substitute a, b, c, and d for a11, a12, a21, and
a22, respectively. From Eq. (A.2) we have

mðxAÞ ¼
EðDxAjxAÞ

Dt
¼ TþA � T�A

¼
wðg� 2Þ

gðg� 1Þ
xAð1� xAÞðaxA þ bÞ þ Oðw2Þ,

vðxAÞ ¼
varðDxAjxAÞ

Dt
¼

1

N
ðTþA þ T�AÞ

¼
2ðg� 2Þ

Nðg� 1Þ
xAð1� xAÞ þOðwÞ, ðA:3Þ

where

a ¼ ðgh� 2lÞða� b� cþ dÞ,

b ¼ laþ ðgh� lÞb� lc� ðgh� lÞd. (A.4)

Solving the backward Kolmogorov equation (4) gives us

fAðyAÞ ¼

R xþðyAÞ

xþð0Þ
e�z2 dz

R xþð1Þ
xþð0Þ

e�z2 dz
.

if a40;

1� e�NwbyA=g

1� e�Nwb=g
if a ¼ 0;R x�ðyAÞ

x�ð0Þ
ez2 dz

R x�ð1Þ
x�ð0Þ

ez2 dz
.

if ao0;

8>>>>><
>>>>>:

(A.5)

where

xþðxÞ 	

ffiffiffiffiffiffiffiffi
Nw

2ag

s
ðaxþ bÞ and x�ðxÞ 	 �

ffiffiffiffiffiffiffiffiffiffiffi
Nw

�2ag

s
ðaxþ bÞ.

(A.6)

From rA ¼ fAð1=NÞ we obtain rA. For Nw51, Eq. (A.5) is
simplified to

fAðyAÞ � yA þ
Nw

6g
yAð1� yAÞðaþ 3bþ ayAÞ. (A.7)

We can calculate rB in a similar manner. Assuming Nw51,
from Eq. (A.7) we obtain

rA �
1

N
þ

wðN � 1Þ

6Ng
aþ 3bþ

a
N

� �
,

rA

rB

� 1þ
wðN � 1Þh

2
ðaþ b� c� dÞ. ðA:8Þ

Therefore we obtain Eqs. (8), (9) in the main text.
From Eq. (A.5), we see that when a ¼ 0, or equivalently

when a� c ¼ b� d, the inequalities rA41=N and rA4rB

hold for any values of Nw if and only if b40. Therefore, if
a� c ¼ b� d holds, Eqs. (8), (9) are valid not only for
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Nw51 but also for any Nw values. Note that we always
need weak-selection, w51, and large population size,
Nbh,gXl.
A.2. DB and IM updating

Next we study DB and IM updating. For convenience we
herein introduce an updating rule called ‘generalized
imitation (GIM)’ updating with resistance rX0. This is a
generalization of DB and IM updating in the main text.
Under this rule a random player is chosen for updating her
strategy, and she either adopts a strategy of one of her g

neighbors connected via the replacement graph or remains
with the same strategy, proportionally to fitness with her
own payoff weighted as r, whereas all her neighbours have
their payoffs weighted with weight 1. Without resistance
(r ¼ 0) we recover the original DB updating. Choosing r ¼

1 gives us the IM updating. Below we will study this GIM

updating with resistance r.
As in calculations for BD updating, we first explore the

dynamics of local frequencies of strategies. The resulting
equations turn out to be the same as Eq. (A.1) except that
1=g’s in the r.h.s’s of Eq. (A.1) has to be replaced by
1=ðgþ rÞ’s. As a result, we recover Eq. (21) as defining the
equilibrium local frequencies.

Given this fact, we can calculate Tþi and T�i as follows:

Tþi þ T�i ¼
2gðg� 2Þ

ðgþ rÞðg� 1Þ
xið1� xiÞ þOðwÞ,

Tþi � T�i ¼
wðg� 2Þfg2h� gl � 2l þ 2rðgh� 2lÞg

ðgþ rÞ2ðg� 1Þ

�xi½ei � ðAþ BÞx� x � ðAþ BÞx� þOðw2Þ,

ðA:9Þ

where B ¼ ðbijÞ is given by

bij ¼
lfðgþ 1þ 2rÞaii þ ð1þ 2rÞaij � ð1þ 2rÞaji � ðgþ 1þ 2rÞajjg

g2h� gl � 2l þ 2rðgh� 2lÞ
.

(A.10)

In infinite populations _xi ¼ Tþi � T�i holds. By neglecting
higher order terms with respect to w and by re-scaling the
time, we obtain the replicator equation on graphs as in the
main text.

For finite populations, let us study the 2� 2 game with
strategies A and B with payoff matrix given by Eq. (1).
From (A.9) we obtain

mðxAÞ ¼ TþA � T�A ¼
wðg� 2Þ

ðgþ rÞ2ðg� 1Þ
xAð1� xAÞ

�ða0xA þ b0Þ þOðw2Þ,

vðxAÞ ¼
1

N
ðTþA þ T�A Þ ¼

2gðg� 2Þ

Nðgþ rÞðg� 1Þ

�xAð1� xAÞ þOðwÞ, ðA:11Þ
where

a0 ¼ fg2h� gl � 2l þ 2rðgh� 2lÞgða� b� cþ dÞ,

b0 ¼ ðgl þ l þ 2rlÞaþ fg2h� gl � l þ 2rðgh� lÞgb

� ðl þ 2rlÞc� fg2h� l þ 2rðgh� lÞgd. ðA:12Þ

Solving the backward Kolmogorov equation (4) gives us

fAðyAÞ ¼

R xþðyAÞ

xþð0Þ
e�z2 dz

R xþð1Þ
xþð0Þ

e�z2 dz
.

if a040;

1� e�Nwb0yA=gðgþrÞ

1� e�Nwb0=gðgþrÞ
if a0 ¼ 0;R x�ðyAÞ

x�ð0Þ
ez2 dz

R x�ð1Þ
x�ð0Þ

ez2 dz
.

if a0o0;

8>>>>>><
>>>>>>:

(A.13)

where

xþðxÞ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nw

2a0gðgþ rÞ

s
ða0xþ b0Þ and x�ðxÞ

	 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nw

�2a0gðgþ rÞ

s
ða0xþ b0Þ. ðA:14Þ

From rA ¼ fAð1=NÞ we obtain rA. For Nw51, Eq. (A.13)
is approximated by

fAðyAÞ � yA þ
Nw

6gðgþ rÞ
yAð1� yAÞða

0 þ 3b0 þ a0yAÞ.

(A.15)

We can calculate rB in a similar manner. Assuming Nw51,
from Eq. (A.15) we obtain

rA �
1

N
þ

wðN � 1Þ

6Ngðgþ rÞ
a0 þ 3b0 þ

a0

N

� �
,

rA

rB

� 1þ
wðN � 1Þ

2ðgþ rÞ

�½ðghþ l þ 2rhÞða� dÞ � ðgh� l þ 2rhÞðc� bÞ�.

ðA:16Þ

Hence for GIM updating with resistance r we have

rA41=N () ðgþ 2rÞghðaþ 2b� c� 2dÞ

þ glð2a� 2bþ c� dÞ

þ ð1þ 2rÞlða� b� cþ dÞ40 ðA:17Þ

and

rA4rB () ðghþ l þ 2rhÞða� dÞ4ðgh� l þ 2rhÞðc� bÞ.

(A.18)

By substituting 0 or 1 for r we obtain results for DB or IM
updating, Eqs. (10)–(13).
From Eq. (A.13), it is easy to see that when a0 ¼ 0, or

equivalently when a� c ¼ b� d, the inequalities rA41=N

and rA4rB hold for any Nw if and only if b040. Thus, if
a� c ¼ b� d holds, Eqs. (A.17), (A.18) remain true for
any Nw values. We note that we always need weak-
selection, w51, and large population size, Nbh,gXl.
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