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a b s t r a c t

RNA–protein interaction plays an important role in various cellular processes, such as protein synthesis,

gene regulation, post-transcriptional gene regulation, alternative splicing, and infections by RNA

viruses. In this study, using Gene Ontology Annotated (GOA) and Structural Classification of Proteins

(SCOP) databases an automatic procedure was designed to capture structurally solved RNA-binding

protein domains in different subclasses. Subsequently, we applied tuned multi-class SVM (TMCSVM),

Random Forest (RF), and multi-class ‘1/‘q-regularized logistic regression (MCRLR) for analysis and

classifying RNA-binding protein domains based on a comprehensive set of sequence and structural

features. In this study, we compared prediction accuracy of three different state-of-the-art predictor

methods. From our results, TMCSVM outperforms the other methods and suggests the potential of

TMCSVM as a useful tool for facilitating the multi-class prediction of RNA-binding protein domains. On

the other hand, MCRLR by elucidating importance of features for their contribution in predictive

accuracy of RNA-binding protein domains subclasses, helps us to provide some biological insights into

the roles of sequences and structures in protein–RNA interactions.

Published by Elsevier Ltd.
1. Introduction

Regulation of biological processes happens through association
and dissociation of macromolecules, i.e., protein, RNA and DNA.
Furthermore, functional components of cells are frequently complex
assemblies of macromolecules. At the molecular level, RNA–protein
complexes play an important role in various cellular processes, such
as protein synthesis, gene regulation, post-transcriptional gene
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regulation, alternative splicing, and infections by RNA viruses.
Therefore, it is important to understand the principle of
RNA–protein interactions and prediction of RNA-binding proteins
is essential in identifying the cellular processes in which RNA–
protein complexes are involved.

It is commonly accepted that RNA recognition by proteins is
mainly mediated by specific kinds of RNA-binding domains
(RBDs) (Morozova et al., 2006; Shulman-Peleg et al., 2008). The
RBDs can be classified into different subclasses based on their
basic binding motifs, e.g., the KH domain, the double-stranded
RNA-binding domain (dsRBD), and the zinc finger motif (Chen and
Varani, 2005). Although in recent years, new RBDs have been
identified (Parker and Barford, 2006), an increasing amount of
evidence on non-coding RNAs suggest that new RBDs will be
identified (Lingel and Sattler, 2005).

In order to recognize the RNA functional importance in close
relationship with protein in its activities, computational studies
of RNA–protein complexes have been significantly increased
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(Ellis et al., 2007; Jones et al., 2001). Recently, a variety of
approaches have been proposed to study RNA–protein interac-
tions (Lunde et al., 2007). Although some interesting results have
been obtained, the precise details of the RNA–protein interaction
are far from being fully understood. For this reason, it is strongly
recommended to develop reliable computational methods to
accurately predict RNA-binding proteins and analyze important
features in RNA–protein interaction.

Homology-based methods are the most common method to
identify the class of unknown proteins at sequence or structure
level. These methods are limited by the absence of experimentally
annotated homologous proteins in protein databases. Hence it is
strongly encouraged to develop computational tools to identify
RNA-binding proteins (RBPs) using sequence- and structure-
derived features. Most of previous investigations, predict RBPs
using sequence-derived features (Han et al., 2004; Shao et al.,
2009; Yu et al., 2006). In addition to sequence-based methods, up
to now, only one investigation by Shazman and Mandel-
Gutfreund (2008) developed a structural-based method to predict
RBPs. Shazman and Mandel-Gutfreund developed a multiSVM-
based method using four subgroups of features including:
(i) largest patch parameters (such as patch size and patch surface
accessibility), (ii) protein parameters (such as molecular weight)
(iii) cleft/patch parameters (such as the overlap between the
largest, second largest, and third largest clefts, and largest patch),
and (iv) parameters related to other surface patches (such as
number of residues in the lysine out patch and in the negative
patch), to describe the global composition of each protein. Using
the jackknife test, they reported a 75.61% accuracy of prediction
for three subclasses of RBPs; tRNA-, rRNA-, and mRNA-binding
proteins. In comparison with our work, it is limit to three classes
of RBPs, and they have done a non-accurate manually data
collection. Despite the availability of several methods, identifica-
tion of RBPs using sequence information with high accuracy is
still a major challenge.

Here we present a comprehensive performance evaluation of
some state of the art predictor methods on an important problem,
i.e., classifying RBDs using sequence- and structure-derived informa-
tion. Combining a diverse set of features, we developed three
different methods including; tuned multi-class SVM (TMCSVM),
Random Forest (RF), and Multi-class ‘1/‘q-regularized logistic regres-
sion (MCRLR). By applying these methods, we have shown that we
can classify RBDs based on their RNA target (7S, double-stranded,
GOA database in
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Fig. 1. The proposed automatic pro
tRNA, rRNA, or mRNA). In all of five different subclasses of RBPs, no
exclusive RNA-binding motif is present. However, in such cases in
addition to successful classifying RBPs, we discovered dissimilar
sequence and structural features.
2. Materials and methods

2.1. Automatic dataset harvesting

Based on the fact that most of similar works on prediction of
RNA-binding proteins, manually collected and annotated datasets,
in this work, in order to do a more accurate and automated data
harvesting we constructed a dataset of non-redundant RNA-bind-
ing protein domains using two main datasets including: (i) Gene
Ontology Annotated (GOA) database, available at http://www.ebi.
ac.uk/GOA/, which cover �2.5 million reports of associated protein
chains with Gene Ontology (GO) terms, and (ii) 40% non-redundant
set of Structural Classification of Proteins (SCOP) 1.75 from ASTRAL
website. Based on GO classification, RNA binding root involves 28
leaves. Our first step of automatic procedure was one by one search
for RNA binding subclasses GO IDs in GOA database to find
associated protein chains to each subclass of RNA binding GO
IDs. Briefly, GO is a major bioinformatics tool for the unification of
biology. More specifically, one of the aims is annotation of genes
and gene products. GO contains three ontologies that describe the
molecular functions, biological processes, and cellular components
of proteins (Ashburner et al., 2000). For more details and compre-
hensive discussion we refer to the paper (Chou and Shen, 2006), as
well as the discussions as elaborated in Chou and Shen (2008).
The second step was search across SCOP 1.75 to capture non-
redundant RNA binding protein domains in different subclasses
(Fig. 1). We eliminated protein domains, which associated to more
than one RNA binding subclass.

2.2. Feature generation

In this study a combination of sequence- and structure-
derived features were used for prediction of RNA-binding protein
domains. Our representation of the protein sequence in this study
is a general form of Chou’s pseudo amino acid composition (Chou,
2011). Indeed, to avoid losing many important information
hidden in protein sequences, the pseudo amino acid composition
cluding  
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(PseAAC) was proposed (Chou, 2001; Chou, 2005) to replace the
simple amino acid composition (AAC) for representing the sample
of a protein. For a summary about its recent development and
applications, see a comprehensive review (Chou, 2009). Ever since
the concept of PseAAC was proposes by Chou in 2001, its has
rapidly penetrated into almost all the fields of protein attribute
prediction (Chen et al., 2009; Ding et al., 2009; Esmaeili et al., 2010;
Georgiou et al., 2009; Guo et al., 2011; Hayat and Khan, 2012;
Hu et al., 2011; Li et al., 2012a, b; Lin, 2008; Liu et al., 2012; Mei,
2012; Mohabatkar, 2010; Mohabatkar et al., 2011; Nanni et al.,
2012; Qin et al., 2012; Qiu et al., 2009; Qiu et al., 2011; Yu et al.,
2010; Zhang and Fang, 2008; Zhao et al., 2012; Zou et al., 2011).
According to Eq. (6) of a recent comprehensive review (Chou,
2011), the form of PseAAC can be generated and formulated as

P¼ c1c2. . .cu. . .cO
� �T

ð1Þ

where T is a transpose operator, while the subscribe O is an integer
and its value as well as the components c1, c2, y will be defined
by a series of feature extractions as elaborated below.

In addition to sequence-derived features, structure-derived
features were generated in this study. Totally, 267 different
sequence- and structure-derived features were generated using
several information sources, which can be classified into six major
subgroups including:
(1)
 Sequence-derived features including: (i) composition of all 20
amino acids (20 features), (ii) composition of amino acids in
9 different physicochemical groups including tiny, small,
aliphatic, aromatic, polar, non-polar, charged, acidic, and basic
amino acids groups (9 features), (iii) pI, the isoelectric point
(1 feature), (iv) molecular weight (1 feature), and (v) number
of residues and number of atoms (2 features). This subgroup
of features was generated using seqinr package (version 3.0-3)
in R environment.
(2)
 Secondary structure features including: (i) composition of all
20 amino acids and composition of amino acids in physico-
chemical groups, within three different secondary structures,
i.e., helix, sheet and random coil (87 features), and (ii)
composition of 6 different secondary structures, i.e., H (a-helix),
G (310 helix), E (extended b-strand), B (isolated b-bridge),
T (turn), and S (bend) (6 features). Secondary structure para-
meters in each protein domain were computed using the output
of the program DSSP (Kabsch and Sander, 1983). In order to
calculate secondary structures in three different secondary
structures, the six structures were reduced into three classes
(H,G-H, E-E, all other states to C).
(3)
 Solvent accessibility features including: composition of all 20
amino acids and composition of amino acids in physiochem-
ical groups, within three different solvent accessibility states,
i.e., buried, intermediate, and exposed (87 features). Based on
the standard ranges of solvent accessibility values (SAV),
three kinds of solvent accessibility states are defined. Buried
state, B, is endowed to residues having 0rSAVr0.16, inter-
mediate state, I, to residues having 0.16oSAVr0.36, and
exposed state, E, to residues having 0.36oSAVr1. Solvent
accessibility values of residues were computed using ASAView
program (Ahmad et al., 2004).
(4)
 Hydrogen bonds features: the hydrogen bond from the back-
bone CO (i) to the backbone NH (iþN), is expressed by the
symbol H-bond (i, iþN). In this study we computed frequen-
cies of H-bond (i, iþN) for N¼�5,�4,�3,y, 3, 4, 5. Further-
more, total hydrogen bonds, parallel- and anti-parallel
hydrogen bonds were computed. The values of these features
were divided by length of protein domains. The output of the
program DSSP (Kabsch and Sander, 1993) was used to gen-
erate these features (13 features).
(5)
 Electrostatic properties features: eight electrostatic properties
features including net molecular charge, net molecular charge
per atom, overall molecular dipole moment in debyes, net
molecular dipole moment per atom, number of positively
charged residues, and number of negatively charged residues
were calculated using the Protein Dipole Moments Server
(http://bip.weizmann.ac.il/dipol/).
(6)
 Patch features: main, second and third patch sizes, main
patch’s molecular weight, composition of all 20 amino acids
and composition of amino acids in physico-chemical groups,
within the main patch were calculated (33 features). In order
to extract all continuous positive patches on the proteins
surface the PatchFinder algorithm (Stawiski et al., 2003) was
used. The patches were sorted based on the number of grid
points contained within the patch, and the largest three
patches were selected.
2.3. Predictor methods

In this study, we used three different predictor methods
including tuned multi-class SVM (TMCSVM), Random Forest
(RF), and multi-class regularized logistic regression (MCRLR) to
classify RBDs to three and five subclasses. The jackknife test was
used to training and testing on databases. Through the jackknife
test, one case is removed from the database and training is done
using the remaining cases; then testing is done using the removed
case. This procedure is repeated until all cases are tested.
Although this method is time-consuming, it is more useful for
the small databases such as ours. In addition to jackknife we also
used self-consistency test to evaluate the prediction results. Both
of jackknife and self-consistency are thought to be the most
rigorous and objective methods for evaluation of prediction.

Among the independent dataset test, sub-sampling (e.g., 5 or
10-fold cross-validation) test, and jackknife test, which are often
used for examining the accuracy of a statistical prediction method
(Chou and Zhang, 1995), the jackknife test was deemed the least
arbitrary that can always yield a unique result for a given
benchmark dataset, as elucidated in (Chou and Shen, 2008) and
demonstrated by Eqs. (28)–(32) of (Chou, 2011). Therefore, the
jackknife test has been widely recognized and increasingly used
by investigators to test the power of various prediction methods
(see, e.g., (Chen et al., 2009; Chou et al., 2011; Chou et al., 2012;
Ding et al., 2009; Esmaeili et al., 2010; Georgiou et al., 2009;
Gu et al., 2010; Jiang et al., 2008; Lin, 2008; Li and Li, 2008; Lin et al.,
2008; Lin and Wang, 2011; Li et al., 2012; Mei, 2012; Mohabatkar,
2010; Mohabatkar et al., 2011; Qiu et al., 2010; Wu et al., 2011;
Xiao et al., 2011a, 2011b; Xiao et al., 2012; Yu et al., 2010; Zeng
et al., 2009; Zhang and Fang, 2008; Zhang et al., 2008; Zhou et al.,
2007)).

2.3.1. Tuned multi-class support vector machine

Basically, support vector machine (SVM) is a kind of learning
machines based on statistical learning theory. They have three
remarkable characteristics including: the absence of minima, the
sparseness of the solution, and implementation using the kernel
Adatron algorithm. The kernel Adatron maps inputs to a high-
dimensional feature space, and then optimally separates data into
their respective classes by isolating those inputs which fall close
to the data boundaries. Therefore, the kernel Adatron is especially
effective in separating sets of data which share complex bound-
aries. Because of seeking a global optimized solution and avoiding
over-fitting in the SVM training process, dealing with a large

http://bip.weizmann.ac.il/dipol/


Table 1
Summarized RNA binding domains in our dataset.

No. Protein
domain

GO term Class Fold Superfamily Family Domain Species

1 d1914a1 7S_RNA_binding aþb SRP9/14 SRP9/14 SRP9/14 SRP9 Mouse

2 d1914a2 7S_RNA_binding aþb SRP9/14 SRP9/14 SRP9/14 SRP14 Mouse

3 d1hq1a_ 7S_RNA_binding a SPBD SPBD SPBD SSBP Ffh EC

4 d1jida_ 7S_RNA_binding aþb SRP19 SRP19 SRP19 SRP19 Human

5 d1kvva_ 7S_RNA_binding aþb SRP19 SRP19 SRP19 SRP19 AAF

6 d1lnga_ 7S_RNA_binding aþb SRP19 SRP19 SRP19 SRP19 AMJ

7 d1ls1a1 7S_RNA_binding a FHUDB D-SRP/SRP receptor

G-proteins

D-SRP/SRP receptor

G-proteins

SSBP Ffh TA

8 d1ls1a2 7S_RNA_binding a/b P-loop NTP hydrolases P-loop NTP hydrolases Nitrogenase iron

protein-like

GTPase domain of

SSBP Ffh

TA

9 d1qb2a_ 7S_RNA_binding a SPBD SPBD SPBD SRP54M Human

10 d1qzxa2 7S_RNA_binding a SPBD SPBD SPBD SSBP Ffh ASS

11 d1di2a_ DS_RNA_binding aþb dsRBD-like dsRBD-like dsRBD dsRBD A XL

12 d1ekza_ DS_RNA_binding aþb dsRBD-like dsRBD-like dsRBD Staufen, domain III DM

13 d1o0wa1 DS_RNA_binding a RNase III domain-like RNase III domain-like RNase III catalytic

domain-like

RNase III ECD TM

14 d1o0wa2 DS_RNA_binding aþb dsRBD-like dsRBD-like dsRBD RNase III, C-terminal

domain

TM

15 d1t4oa_ DS_RNA_binding aþb dsRBD-like dsRBD-like dsRBD RNase III, C-terminal

domain

SC

16 d1uhza_ DS_RNA_binding aþb dsRBD-like dsRBD-like dsRBD staufen homolog 2 Mouse

17 d1uila_ DS_RNA_binding aþb dsRBD-like dsRBD-like dsRBD ATP-dep RNA helicase

A, Dhx9

Mouse

18 d1whna_ DS_RNA_binding aþb dsRBD-like dsRBD-like dsRBD Dus2l Mouse

19 d1whqa_ DS_RNA_binding aþb dsRBD-like dsRBD-like dsRBD ATP-dependent RNA

helicase A, Dhx9

Mouse

20 d1�47a1 DS_RNA_binding aþb dsRBD-like dsRBD-like dsRBD Dgcr8 protein Human

21 d1�48a1 DS_RNA_binding aþb dsRBD-like dsRBD-like dsRBD dsRNA-dependent

protein kinase pkr

Mouse

22 d1�49a1 DS_RNA_binding aþb dsRBD-like dsRBD-like dsRBD dsRNA-dependent

protein kinase pkr

Mouse

23 d2dixa1 DS_RNA_binding aþb dsRBD-like dsRBD-like dsRBD Interferon -ids RNA

DPK activator A

Human

24 d2dmya1 DS_RNA_binding aþb dsRBD-like dsRBD-like dsRBD Spermatid perinuclear

RBP

Human

25 d2nuga1 DS_RNA_binding a RNase III domain-like RNase III domain-like RNase III catalytic

domain-like

RNase III ECD AA

26 d2nuga2 DS_RNA_binding aþb dsRBD-like dsRNA-binding

domain-like

dsRBD RNase III, C-terminal

domain

AA

27 d1afwa1 mRNA_binding a/b Thiolase-like Thiolase-like Thiolase-related Thiolase SC

28 d1j1ja_ mRNA_binding a a-a superhelix Translin Translin Translin Human

29 d1kvka1 mRNA_binding aþb RP S5 domain 2-like RP S5 domain 2-like GHMP Kinase, N-terminal

domain

Mevalonate kinase RN

30 d1kvka2 mRNA_binding aþb Ferredoxin-like GHMP Kinase,

C-terminal domain

Mevalonate kinase Mevalonate kinase RN

31 d1l5ja1 mRNA_binding a a–a superhelix Aconitase B,

N-terminal domain

Aconitase B, N-terminal

domain

Aconitase B,

N-terminal domain

EC

32 d1l5ja2 mRNA_binding a/b The ‘‘swiveling’’ b/b/a
domain

LeuD/IlvD-like LeuD-like Aconitase B, second

N-terminal domain

EC

33 d1l5ja3 mRNA_binding a/b Aconitase iron–sulfur

domain

Aconitase iron–sulfur

domain

Aconitase iron–sulfur

domain

Aconitase B,

C-terminal domain

EC

34 d1p5fa_ mRNA_binding a/b Flavodoxin-like Class I glutamine AM-

like

DJ-1/PfpI DJ-1 Human

35 d1q67a_ mRNA_binding b PH domain-like barrel PH domain-like Dcp1 Dcp1 SC

36 d1xlya_ mRNA_binding a RNA-binding protein

She2p

RNA-binding protein

She2p

RNA-binding protein

She2p

RNA-binding protein

She2p

SC

37 d3gcba_ mRNA_binding a/b Cysteine proteinases Cysteine proteinases Papain-like Bleomycin hydrolase SC

38 d1a32a_ rRNA_binding a S15/NS1 RNA-binding

domain

S15/NS1 RNA-binding

domain

RP S15 RP S15 BST

39 d1diva1 rRNA_binding aþb RP L9 C-domain RP L9 C-domain RP L9 C-domain RP L9 C-domain BST

40 d1dmga_ rRNA_binding a/b RP L4 RP L4 RP L4 RP L4 TM

41 d1egaa2 rRNA_binding aþb a-lytic protease

prodomain-like

Prokaryotic type KH

domain

Prokaryotic type KH

domain

GTPase Era C-terminal

domain

EC

42 d1feua_ rRNA_binding b RP L25-like RP L25-like RPL25-like RP TL5 (general stress

protein CTC)

TT

43 d1i4ja_ rRNA_binding aþb RP L22 RP L22 RP L22 RP L22 TA

44 d1i6ua_ rRNA_binding aþb RP S8 RP S8 RP S8 RP S8 AMJ

45 d1iqva_ rRNA_binding a Ribosomal protein S7 RP S7 RP S7 RP S7 APH

46 d1loua_ rRNA_binding aþb Ferredoxin-like RP S6 RP S6 RP S6 TT

47 d1n0ua1 rRNA_binding b R/I/E factor common

domain

Translation proteins EF eEF-2, domain II SC

48 d1n0ua2 rRNA_binding a/b P-loop NTP hydrolases P-loop NTP hydrolases G proteins eEF-2, N-terminal

(G) domain

SC

S. Jahandideh et al. / Journal of Theoretical Biology 312 (2012) 65–7568



Table 1 (continued )

No. Protein
domain

GO term Class Fold Superfamily Family Domain Species

49 d1n0ua3 rRNA_binding aþb RP S5 domain 2-like RP S5 domain 2-like TMC eEF-2, domain IV SC

50 d1n0ua4 rRNA_binding aþb Ferredoxin-like EF-G C-terminal

domain-like

EF-G/eEF-2 domains III

and V

eEF-2 SC

51 d1n0ua5 rRNA_binding aþb Ferredoxin-like EF-G C-terminal

domain-like

EF-G/eEF-2 domains III

and V

eEF-2 SC

52 d1pkpa1 rRNA_binding aþb RP S5 domain 2-like RP S5 domain 2-like TMC RP S5, N-terminal

domain

BST

53 d1pkpa2 rRNA_binding aþb dsRBD-like dsRBD-like RP S5, N-terminal domain RP S5, N-terminal

domain

BST

54 d1rl6a1 rRNA_binding aþb RP L6 RP L6 RP L6 RP L6 BST

55 d1rl6a2 rRNA_binding aþb RP L6 RP L6 RP L6 RP L6 BST

56 d1seia_ rRNA_binding aþb RP S8 RP S8 RP S8 RP S8 BST

57 d1vmba_ rRNA_binding aþb Ferredoxin-like RP S6 RP S6 RP S6 TM

58 d1vqoa1 rRNA_binding b SH3-like barrel TP SH3-like domain C-terminal domain of RP

L2

C-terminal domain of

RP L2

AHM

59 d1vqoa2 rRNA_binding b OB-fold Nucleic acid-binding

proteins

Cold shock DNA-binding

domain-like

N-terminal domain of

RP L2

AHM

60 d1wf3a1 rRNA_binding a/b P-loop NTP hydrolases P-loop NTP hydrolases G proteins GTPase Era,

N-terminal domain

TT

61 d1wf3a2 rRNA_binding aþb a-lytic protease

prodomain-like

Prokaryotic type KH

domain

Prokaryotic type KH

domain

GTPase Era C-terminal

domain

TT

62 d1whia_ rRNA_binding b RP L14 RP L14 RP L14 RP L14 BS

63 d2cqla1 rRNA_binding aþb RP L6 RP L6 RP L6 RP L6 Human

64 d2j5aa1 rRNA_binding aþb Ferredoxin-like RP S6 RP S6 RP S6 AA

65 d2v3ka1 rRNA_binding a/b a/b knot a/b knot EMG1/NEP1-like EMG1 SC

66 d3bbda1 rRNA_binding a/b a/b knot a/b knot EMG1/NEP1-like RBP NEP1 MJ

67 d1dm9a_ SS_ RNA_binding aþb a-L RNA-binding

motif

a-L RNA-binding

motif

Heat shock protein 15 kD HSP 15 Kd EC

68 d1d7qa_ TFA_

RNA_binding
b OB-fold Nucleic acid-binding

proteins

Cold shock DNA-binding

domain-like

eIF1a Human

69 d2if1a_ TFA_

RNA_binding
aþb eIF1-like eIF1-like eIF1-like eIF- 1 (SUI1) Human

70 d1a6fa_ tRNA_binding aþb RP S5 domain 2-like RP S5 domain 2-like RNase P protein RNase P protein BSU

71 d1dj0a_ tRNA_binding aþb Pseudouridine

synthase

Pseudouridine

synthase

Pseudouridine synthase I

TruA

Pseudouridine

synthase I TruA

EC

72 d1fl0a_ tRNA_binding b OB-fold Nucleic acid-binding

proteins

Myf domain EMAP II Human

73 d1gd7a_ tRNA_binding b OB-fold Nucleic acid-binding

proteins

Myf domain TRBP111 homolog

CsaA

TT

74 d1jjca_ tRNA_binding aþb Class II aaRS and

biotin synthetases

Class II aaRS and

biotin synthetases

Class I A-tRNA S- like,

catalytic domain

PheRS alpha subunit TT

75 d1nz0a_ tRNA_binding aþb RP S5 domain 2-like RP S5 domain 2-like RNase P protein RNase P protein TM

76 d1ou5a1 tRNA_binding a Poly A PCT region-like Poly A PCT region-like Poly A PCT region-like tRNA CCA-adding E,

C-terminal domains

HM

77 d1ou5a2 tRNA_binding aþb Nucleotidyltransferase Nucleotidyltransferase Poly A polymerase head

domain-like

tRNA CCA-adding E,

head domain

HM

78 d1pyba_ tRNA_binding b OB-fold Nucleic acid-binding

proteins

Myf domain TRBP111 AA

79 d1r6la1 tRNA_binding aþb RP S5 domain 2-like RP S5 domain 2-like Ribonuclease PH domain

1-like

Ribonuclease PH,

domain 1

PseA

80 d1r6la2 tRNA_binding aþb RPH domain 2-like RPH domain 2-like Ribonuclease PH domain

2-like

Ribonuclease PH,

domain 2

PseA

81 d1rqga1 tRNA_binding a ABD of a subclass of

class I AA-tRNA-S

ABD of a subclass of

class I AA-tRNA-S

ABD of a subclass of class I

AA-tRNA-S

MetRS PA

82 d1rqga2 tRNA_binding a/b AN-a hydrolase-like Nucleotidylyl

transferase

Class I A-tRNA S, catalytic

domain

MetRS PA

83 d2c5sa1 tRNA_binding a/b AN-a hydrolase-like AN-a hydrolase-like ThiI-like TBP ThiI, N-ter D BA

84 d2c5sa2 tRNA_binding aþb THUMP domain THUMP domain-like THUMP domain TBP ThiI, N-ter D BA

85 d2iy5a1 tRNA_binding a Long alpha-hairpin tRNA-binding arm PheRS PheRS TT

DS_RNA_binding: double-stranded_RNA_binding, SS_RNA_binding: single-stranded_RNA_binding, TFA_RNA_binding: translational_factor_activity_RNA_binding, SRP:

Signal recognition particle alu RNA binding heterodimer, SPBD: Signal peptide-binding domain, FHUDB: Four-helical up-and-down bundle, P-loop NTP hydrolases:

P-loop containing nucleoside triphosphate hydrolases, R/I/E factor common domain: Reductase/isomerase/elongation factor common domain, RP: Ribosomal protein, Class

II aaRS and BS: Class II aaRS and biotin synthetases, Poly A PCT region-like: Poly A polymerase C-terminal region-like, RPH domain 2-like: Ribonuclease PH domain 2-like,

ABD of a subclass of class I AA-tRNA-S: Anticodon-binding domain of a subclass of class I aminoacyl- tRNA synthetases, AN-a hydrolase-like: Adenine nucleotide alpha

hydrolase-like, TP SH3-like domain: Translation proteins SH3-like domain, D-SRP/SRP receptor G-proteins: Domain of the SRP/SRP receptor G-proteins, Class I glutamine

AM-like: Class I glutamine amidotransferase-like, AAF: Archaeon Archaeoglobus fulgidus, TT: Thermus thermophiles, BA: Bacillus anthracis, PA: Pyrococcus abyssi, PseA:

Pseudomonas aeruginosa, AA: Aquifex aeolicus, TM: Thermotoga maritime, AMJ: Archaeon Methanococcus jannaschii, MJ: Methanococcus jannaschii, SC: Saccharomyces

cerevisiae, BST: Bacillus stearothermophilus, EC: Escherichia coli, BSU: Bacillus subtilis, AHM: Archaeon Haloarcula marismortui, APH: Archaeon Pyrococcus horikoshii,

TA:Thermus aquaticus, TM: Thermotoga maritime, HM: Human mitochondrial, RN: Rattus norvegicus, DM: Drosophila melanogaster, XL: Xenopus laevis, ASS: Archaeon

Sulfolobus solfataricus; SSBP: Signal sequence binding protein Ffh, RNase III ECD: RNase III endonuclease catalytic domain, PheRS: Phenylalanyl-tRNA synthetase, TBP ThiI,

N-ter D: Thiamine biosynthesis protein ThiI, N-terminal domain, MetRS: Methionyl-tRNA synthetase, TRBP: tRNA-binding protein, tRNA CCA-adding E: tRNA CCA-adding

enzyme, PheRS: Phenyl-tRNA synthetase, HSP: Heat shock protein, RBP: Ribosome biogenesis protein, EMG: Essential for mitotic growth, RNase III ECD: RNase III

endonuclease catalytic domain, Interferon-ids RNA DPK activator A: Interferon-inducible double stranded RNA-dependent protein kinase activator A, Dus: dihydrouridine

synthase, TMC: Translational machinery components.
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number of features is possible. SVMs can only be used for
classification, not for function approximation. The theory and
algorithms of SVMs can be found in Vapnik (1995, 1998).

In this study, we applied the tune function using e1071-package
of R environment (version 2.11-1) to develop our multi-class SVM
based method. Multi-class SVM in e1071 uses the ‘‘one-against-
one’’ strategy, i.e., binary classification between all pairs, followed
by voting. On the other hand, the tune function uses Grid Search
to find the best functions. Using the tune function through
jackknife procedure, it provides as many simulations as the
number of cases in databases to select optimum structure each
time.
Table 2
Indicating ten top selected features between three RNA-binding domain

subclasses by using ANOVA analysis.

Number Feature P-value
2.3.2. Random Forest

Random Forest (RF) was developed by Breiman, 2001 (Vapnik,
1998). The RF classification extends the concept of decision trees
and has been successfully used in various biological problems
(Dudoit et al., 2002; Statnikov et al., 2008; Jia and Hu, 2011;
Kandaswamy et al., 2011; Lin et al., 2011; Pugalenthi et al., 2012;
Qiu and Wang, 2011; Shameer et al., 2011). RF is a collection of
decision trees instead of one tree, where each tree is trained using
a bootstrap sample from the training dataset. The trees are then
grown using a randomly selected subset of predictors at each
node. After constructing all trees, a new object can then be
classified based on the class label with the most votes, where
every vote is decided by every tree in the forest. Finally, predictive
performance is estimated using the observations left out of the
bootstrap sample, termed the out-of-bag (OOB) observations.
An appeal of RF is that the forest of trees contains a large amount
of information about the relationship between the variables and
observations. This information can be used for prediction, cluster-
ing, imputing missing data, and detecting outliers. The RF algo-
rithm was implemented by the randomForest (version 4.6-2) R
package (Liaw, 2002). We used tune randomForest (tuneRF)
function. The number of trees and stepFactor were set to 1000
and 2, respectively. However, there are default values for different
features, which are provided by the program and we used in
this work.
1 Number of Arg in intermediate regions 2.0E�04

2 Molecular weight of RBDs 5.0E�04

3 Number of Ser in buried regions 7.0E�04

4 Number of Cys in main patch 0.001

5 Number of basic amino acids in sequence 0.0012

6 Number of Glu in sheet 0.0026

7 Number of charged amino acids in sequence 0.003

8 Number of Arg in exposed regions 0.0034

9 Number of charged amino acids in sheet 0.0039

10 Isoelectric point 0.0041

Table 3
Indicating ten top selected features between five RNA-binding domain subclasses

by using ANOVA analysis.

Number Feature P-value

1 Dipole 4.00E�10

2 Total number of residues 8.00E�10

3 Total number of atoms 1.40E�09

4 Total number of negative residues 7.40E�09

5 Total number of positive residues 4.93E�08

6 Number of Lys in main patch 8.92E�08

7 Molecular weight of RBDs 8.55E�07

8 RM 2.18E�06

9 Number of small amino acids in main patch 1.50E�05

10 Number of Ala in buried regions 4.62E�05
2.3.3. Multi-class ‘1/‘q-regularized logistic regression

A multi-class ‘1/‘q-regularized logistic regression model that
we used in this study is a generalization of the ‘1-regularization
logistic regression. Development of such strong theoretical guar-
antees, and great empirical success method is from recent studies
in areas such as machine learning, statistics, and applied mathe-
matics (Bach, 2008; Duchi and Singer, 2009; Kowalski, 2009;
Negahban et al., 2009; Yuan and Lin, 2006).

The multi-class ‘1/‘q-regularized logistic regression is an
expression of the form:

min

x

Xk

l ¼ 1

Xm

i ¼ 1

wi‘log 1þexp �yi‘ xT
‘ai‘þc‘

� �� �� �
þlx‘1=‘q

ð2Þ

where aT
i‘ indicates vector of size 1�n, n is the number of features

for i-th protein domain of the ‘-th RBDs subclass, wi‘ is the weight
for aT

i‘ , yi‘ is the response of ai‘ , and c‘ is the intercept for the ‘-th
RBDs subclass. To construct multi-class ‘1/‘q-regularized logistic
regression we used mcLogisticR function of SLEP package (version
4.0) which is written in Matlab. In this function, the elements in y

are required to be a m� k matrix including elements of 1 or �1
(m is the number of protein domains and k is the number of RBDs
subclasses).
3. Results

3.1. Construction of dataset

Constructed dataset cover 7 out of 28 RNA binding subclasses
with at least one protein domain member, including 7S RNA
binding (10 protein domains), double-stranded RNA binding (16
protein domains), mRNA binding (11 protein domains), rRNA
binding (29 protein domains), tRNA binding (16 protein domains),
translational factor activity RNA binding (2 protein domains),
and single-stranded RNA binding (1 protein domain). The RBDs of
our dataset are summarized in Table 1. In construction of
our methods we eliminated subclasses with less than 10 protein
domain. In addition we constructed methods for prediction of five
subclasses (i.e. tRNA-, rRNA-, mRNA-, 7S-, and double-stranded
binding domain subclasses) and three subclasses (i.e. tRNA-,
rRNA-, and mRNA-binding domain subclasses).
3.2. ANOVA analysis for feature selection

In order to consider the effect of number of features on
performance of methods, ANOVA was used to select significantly
different features between three and five RNA-binding protein
domain subclasses. Tables 2 and 3 have shown 10 top features
with the lowest p-values. From ANOVA results, RNA binding
subclasses show an obvious difference in sequence- and struc-
ture-based features. Fig. 2 shows difference of shape, size of RBDs,
size of main patch and frequency of two important charged amino
acids, i.e., Arg and Lys, in five different RBD subclasses. In addition
reduced models were constructed using selected features with
significant level of o0.05, which were 45 and 102 features in
three and five subclasses, respectively.



Fig. 2. Diversity of features between five different RBDs. (A) sample of 7S RBDs (d1914a1), (B) sample of rRNA RBDs (d2v3ka1), (C) sample of double_stranded RBPs

(d1ekza_), (D) sample of mRNA RBDs (d1afwa1), and (E) sample of tRNA RBDs (d1a6fa_). The gray region represents the main patch, blue represents Arg amino acids, and

green represents Lys amino acids. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Indicating average weights of ten top important features computed by MCRLR in the jackknife procedure using all of features for prediction of five RNA-binding domain

subclasses. Positive values show preference of the features in related subclasses and negative values show avoidance of the features in related subclasses.

7s RBD subclass Double-stranded RBD subclass mRNA RBD subclass rRNA RBD subclass tRNA RBD subclass

Feature/Average Value

Number of Met in MP/1.517 Number of basic AAs in MP/0.967 Molecular weight/1.373 Number of His in MP/1.913 Number of Arg in IR/2.004

Number of Met in RC/1.274 Number of Glu in MP/0.900 Number of Ser in BR/1.176 Number of Arg in IR/�1.555 Number of His in sheet/2.003

Number of Cys in sheet/0.998 Dipole/0.900 Number of Cys in MP/1.142 Number of Ile in MP/1.499 Number of Pro in MP/�1.583

Number of His in seq./�0.920 Number of Glu in IR/0.891 Number of Ser in IR/�1.094 Number of Leu in helix/�1.481 Number of Ile in MP/�1.576

Number of Met in ER/0.990 Number of Tyr in MP/0.831 Isoelectric point/�1.007 Number of Met in RC/�1.458 Number of Asp in BR/1.371

Number of Glu in MP/�0.886 Number of Ala in BR/0.811 Number of Cys in RC/0.969 Number of Ser in RC/1.330 Number of Ile in IR/�1.335

Number of Tyr in helix/0.811 Number of Gln in RC/�0.799 Number of charged AAs in

seq./�0.949

Number of Tyr in MP/�1.304 Number of Met in sheet/1.2554

Number of Glu in IR/0.759 Number of Arg in MP/�0.779 Number of Asp in ER/0.934 Number of Val in helix/1.280 Number of Phe in ER/�1.226

Frequency of antiparallel

HB/�0.753

Number of Lys in MP/0.752 Number of Arg in ER/�0.931 Number of His in ER/�1.269 Number of Phe in IR/1.166

Second patch size/�0.729 Number of Asp in MP/0.728 Number of Asp in IR/0.920 Number of Cys in RC/�1.258 Number of Gln in IR/1.114

MP: main patch, RC: randomcoil, ER: exposed regions, IR: intermediate regions, HB: hydrogen bond, AAs: amino acids, BR: buried regions, seq.: sequence.
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3.3. Tuned multi-class support vector machine analysis

We used a tune function to select optimized structure of
TMCSVM through jackknife and self-consistency tests. The most
important parameter of TMCSVM topology is kernel function which
was searched for the best one among four different kernel func-
tions, i.e., linear, polynomial, radial, and sigmoid. Tables 8 and 9
show the highest performance obtained by TMCSVM in overall.
TMCSVM and reduced-TMCSVM show the highest rate of 79.31% in
prediction of rRNA BDs subclass in comparison with the other
methods in five subclasses prediction and also SVM shows the
highest rate of 50% for prediction of tRNA BD subclass in three
subclasses prediction. Our results confirm that although TMCSVM is
a machine learning method, dealing with a large number of features
is possible because of seeking a global optimized solution and
avoiding over-fitting in the SVM training process. However,
obtained results in three subclasses prediction, emphasize that this
ability is diminished to limited range of features/samples ratio.

3.4. Random Forest analysis

R randomForest package was used to construct RF for predic-
tion of RBD subclasses. In order to optimize performance of RF, we
defined cutoffs based on distribution of RBDs in subclasses, i.e.,
number of RBDs in each subclass divided by total number of RBDs.
Obtained results reveal that although RF can predict all of RBDs
correctly through self-consistency, performance of jackknife test
drastically reduced (Tables 8 and 9). However, reduced-RF shows
the highest rate in prediction of 7S RBDs subclass (70%), and
mRNA RBDs subclass (81.82%) in comparison with the other
methods in five subclasses prediction. In addition, RF and
reduced-RF show the highest rate of 81.82% for prediction of
mRNA BD subclass in three subclasses prediction. Furthermore,
from obtained results, it is obvious that number of features in
RF training is an important issue and it is independent of number
of subclasses. Indeed, RF is over-fitting prone when we train it
using large number of features.
3.5. Multi-class ‘1/‘q-regularized logistic regression

We ran a MCRLR method on the dataset in five and three
subclasses using jackknife and self-consistency. MCRLR provides
useful information about preferred and avoided features in each
one of RNA binding subclasses. tRNA BD subclasses shows some
preferred and avoided with higher average values in comparison
with the other subclasses in three- and five subclasses through
jackknife and self-consistency procedures (Tables 4–7). Our
results confirm previous reported unique properties of tRNA BPs
by Shazman and Mandel-Gutfreund (2008).

The results of jackknife and self-consistency tests, which
shown in Tables 8 and 9, are obtained according to the output
of the model. High performance measures of MCRLR model
through self-consistency confirm usefulness of defined features
in prediction of RBPs subclasses. Results of jackknife tests show
that performance of reduced-MCRLR drastically decreased espe-
cially in three subclasses prediction using selected features.
Rationale for decrease of MCRLR performance is restriction of
shrinkage ability using limited number of features (N¼45 for
prediction of three subclasses). Indeed, ‘1/‘q-regularized con-
strains the total weight allocated to a set of features, with the
end result that some features received zero weight. Additionally,
MCRLR shows the highest rate in prediction of double-stranded
RBDs in comparison with the other methods.
4. Discussion

Knowledge regarding how bio-macromolecules interact with
each other is essential in the understanding of cellular processes.



Table 5
Indicating average weights of ten top important features computed by MCRLR in the jackknife procedure using selected features by ANOVA analysis for prediction of five

RNA-binding domain subclasses. Positive values show preference of the features in related subclasses and negative values show avoidance of the features in related

subclasses.

7s RBD subclass Double-stranded RBD subclass mRNA RBD subclass rRNA RBD subclass tRNA RBD subclass

Feature/Average Value

Number of Cys in sheet/2.029 Number of Glu in IR/1.675 Number of Ser in IR/�2.051 Number of small AAs in

helix/3.773

Number of Ile in MP/�4.351

Number of Met in MP/2.011 Number of Arg in MP/�1.394 Number of Arg in ER/�2.034 Number of Ser in RC/3.652 Number of Arg in IR/4.083

Number of Met in RC/1.653 Number of Tyr in MP/1.230 Number of Cys in MP/1.976 Number of Ile in MP/3.378 Number of Small AAs in

helix/-3.625

Frequency of antiparallel

HB/�1.54

Dipole/1.160 Number of Ser in BR/1.733 Number of acidic AAs in

ER/3.219

Number of Small AAs in

RC/�3.118

Number of His in seq./�1.370 Number of Gln in RC/�1.070 Molecular weight/1.554 Number of Ser in IR/3.030 Number of His in seq./3.027

Number of Met in ER/1.300 Number of Phe in MP/1.062 Number of small AAs in

BR/1.486

Number of Tyr in MP/�2.954 Number of Phe in IR/2.643

Number of Glu in IR/1.292 Number of Aromatic AAs in

MP/1.047

Number of Arg in IR/1.482 Number of Pro in sheet/2.7428 Number of tiny AAs in

sheet/2.288

Number of Leu in sheet/1.235 Number of Ser in IR/1.036 Number of Glu in IR/�1.363 Number of Met in RC/�2.742 Frequency of iþ3 HB/2.091

Number of Gln in RC/1.231 Number of basic AAs in

BR/�0.989

Isoelectric point/11.319 Number of Arg in IR/�2.588 Number of Small AAs in

MP/�1.816

Second patch size/�1.1781 Number of Met in RC/0.981 Number of Ile in MP/1.317 Number of Glu in IR/�2.458 Number of Phe in RC/�1.790

MP: main patch, RC: randomcoil, ER: exposed regions, IR: intermediate regions, HB: hydrogen bond, AAs: amino acids, BR: buried regions, seq.: sequence.

Table 6
Indicating average weights of ten top important features computed by MCRLR in the jackknife procedure using all of features for

prediction of three RNA-binding domain subclasses. Positive values show preference of the features in related subclasses and

negative values show avoidance of the features in related subclasses.

mRNA RBD subclass rRNA RBD subclass tRNA RBD subclass

Feature/Average Value

Number of charged AAs in seq./�1.337 Number of Arg in IR/�2.794 Number of Arg in IR/2.129

Number of Ser in IR/�1.132 Number of Glu in sheet/1.556 Number of Pro in MP/�1.699

Number of Arg in seq./1.131 Number of Phe in helix/�1.278 Number of Pro in IR/�1.581

Number of Pro in seq./0.953 Number of charged AAs in seq./1.109 Number of Phe in IR/1.339

Number of Glu in sheet/0.949 Number of Phe in MP/1.091 Number of Asn in IR/�1.183

Number of Ser in BR/0.898 Number of Ser in IR/1.021 Number of Val in helix/�1.055

Number of Phe in IR/�0.782 Second patch size/�1.015 Number of Ile in IR/�1.033

Number of Arg in ER/�0.769 Number of Cys in helix/0.954 Number of Phe in helix/0.921

Number of Arg in IR/0.753 Number of His in sheet/�0.930 Number of Cys in helix/�0.790

Number of Cys in RC/0.712 Number of Cys in RC/�0.789 Second patch size/0.766

MP: main patch, RC: randomcoil, ER: exposed regions, IR: intermediate regions, AAs: amino acids, BR: buried regions, seq.: sequence.

Table 7
Indicating average weights of ten top important features computed by MCRLR in the jackknife procedure using selected features by

ANOVA analysis for prediction of three RNA-binding domain subclasses. Positive values show preference of the features in related

subclasses and negative values show avoidance of the features in related subclasses.

mRNA RBD subclass rRNA RBD subclass tRNA RBD subclass

Feature/Average Value

Number of Glu in seq./�3.365 Number of Ala in helix/�4.742 Number of Asn in helix/�5.94

Number of Cys in helix/�3.347 Number of Glu in seq./3.999 Number of Leu in seq./�3.765

Number of Asp in seq./1.950 Number of Leu in seq./2.571 Number of Trp in seq./�2.978

Number of Gln in helix/1.759 Number of Asn in helix/2.481 Number of Ala in helix/2.913

Number of Glu in helix/�1.621 Number of Cys in helix/1.900 Number of Gly in helix/2.386

Number of Val in seq./1.620 Number of Trp in seq/1.837 Number of aliphatic AAs in seq./2.048

Number of Leu in seq./1.570 Number of Lys in seq./�1.712 Number of Lys in seq./1.773

Number of Ala in helix/1.525 Number of Ile in seq./�1.618 Number of Ile in seq./1.567

Number of nonpolar AAs in seq./1.187 Number of Pro in seq./1.551 Number of Pro in helix/1.402

Number of Trp in seq./1.051 Number of nonpolar AAs in seq./�1.355 Number of Met in helix/�1.241
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In this study, we investigated interaction of protein and RNA as an
important interaction in various cellular processes.

According to a recent comprehensive review (Chou, 2011), to
establish a really useful predictor for a protein system, we need to
consider: construct a valid benchmark dataset, formulate the
protein samples with an effective mathematical expression,
develop a powerful algorithm to operate the prediction, evaluate
the anticipated accuracy of the predictor, and establish a user-
friendly web-server, respectively.

From previous reports, it is mentioned that the aminoacyl
tRNA synthetases, and bacterial factors, which mimic tRNA BPs
have highly negatively charged surface (Tworowski et al., 2005;
Nakamura and Ito, 2003). But there is no more information about
variation in feature distribution in different RBPs. In this study, in



Table 8
Results of self-consistency and jackknife tests in prediction of five subclasses.

Test Method Rate of correct prediction for each RBD subclasses Overall rate of accuracy

7 s (%) Double-stranded (%) mRNA (%) rRNA (%) tRNA (%)

Self-consistency RF 100 100 100 100 100 100

Reduced-RF 100 100 100 100 100 100

SVM 100 100 100 100 100 100

Reduced-SVM 100 100 100 100 87.50 97.56

MCRLR 100 100 100 100 100 100

Reduced-MCRLR 100 100 100 100 100 100

Jackknife RF 60.00 81.25 63.64 44.83 37.50 54.88

Reduced-RF 70.00 81.25 81.82 44.83 37.50 58.54

SVM 40.00 87.50 54.55 79.31 50.00 67.07

Reduced-SVM 50.00 87.50 45.45 79.31 43.75 65.84

MCRLR 60.00 100 54.55 65.52 31.25 63.41

Reduced-MCRLR 50.00 87.50 45.45 65.52 43.75 60.98

Table 9
Results of self-consistency and jackknife tests in prediction of three subclasses.

Test Method Rate of correct

prediction for each RBD

subclasses

Overall rate

of accuracy

mRNA

(%)

rRNA

(%)

tRNA

(%)

Self-consistency RF 100 100 100 100

Reduced-RF 100 100 100 100

SVM 100 100 100 100

Reduced-SVM 100 100 100 100

MCRLR 100 100 100 100

Reduced-MCRLR 100 100 100 100

Jackknife RF 81.82 62.07 43.75 60.71

Reduced-RF 81.82 62.07 62.50 66.07

SVM 63.64 82.76 37.50 66.07

Reduced-SVM 63.64 79.31 62.50 71.43

MCRLR 54.55 82.76 62.50 71.43

Reduced-MCRLR 18.18 79.31 37.50 55.36
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addition to multi-class classification of RBDs we tried to do
feature selection. In addition to comparable prediction accuracy
with TMCSVM, a clear variety of feature distributions was
elucidated by using MCRLR. For example, our results demonstrate
exciting diversity in distribution of Lys and Arg, two important
charged amino acids in interaction and catalytic reaction, in
different RBDs subclasses. From our data in tRNA BD subclass,
Lys is preferred in sequence and Arg is preferred in intermediate
regions with high scores (Tables 4–7). In mRNA BDs subclass, Arg
is preferred in sequence, and in double-stranded RBD subclass,
Lys is preferred in main domain while Arg is avoided in main
domain. In addition, in rRNA BD subclass, Lys is avoided in
sequence and it seems that Arg is preferred to be on surface as
it has been determined with negative value of being in inter-
mediate regions. In 7S RBD subclass, Arg and Lys have not been
selected among top preferred or avoided residues. From our
results we can understand that Lys and Arg in tRNA BDs, Arg in
mRNA BDs, Lys in double-stranded RBDs, and exposed Arg in
rRNA BDs are possibly important in RNA–protein interaction and
catalytic reaction of RBDs. Fig. 2 illustrates distribution of Arg and
Lys in main patches of different RBDs subclasses.

These results emphasize that the tRNA BDs have unique local
and global properties that can be utilized for identifying novel
proteins possibly involved in tRNA processing. Moreover, it is
worth to mention that the size of secondary patch show positive
average value in tRNA BDs subclasses and it means secondary
patch may have specific properties as mentioned by Shazman and
Mandel-Gutfreund (2008). Growth of 3D solved protein databases
will be helpful to discover more details about RBDs.

In this study we developed a first of its kind in silico approach
for analysis and prediction of RBDs subclasses in three and five
subclasses using RF, TMCSVM and MCRLR. In overall, TMCSVM
outperforms the other methods, although tuning of SVM is time
consuming. On the other hand, MCRLR shows some advantages
including fast training, report of more important features for RBD
prediction, and detection of avoided and preferred features in
each subclass. In addition, RF shows the worst accuracy among
three predictor methods which means RF is prone to over-fitting
especially when large numbers of features are fed into it.

In conclusion, we used two types of predictor methods
including: (1) MCRLR as a statistical method and (2) RF and
TMCSVM as machine learning methods. Statistical methods are
commonly accepted and popularity of these models may be
attributed to the interpretability of model parameters and ease
of use, although they suffer from their specific limitations. For
example, statistical methods use linear combinations of indepen-
dent variables and, therefore, are not the best adept at modeling
grossly nonlinear complex interactions as has been demonstrated
in biological systems. On the other hand, machine learning
methods are rich and flexible nonlinear systems that show robust
performance in dealing with noisy or incomplete data and have
the ability to generalize from the input data. They may be better
suited than other modeling systems to predict outcomes when
the relationships between the variables are complex, multidimen-
sional, and nonlinear as found in complex biological systems.
Although machine learning methods can give high prediction
accuracy, some problem may be raised in their training. For
example in this study we showed that RF as a well-known
machine learning method is not well suited for our problem and
is prone to over-fitting. ‘‘black box’’ nature, and the empirical
nature of model development are other disadvantages of machine
learning methods (Tu, 1996).
5. Conclusion

A great challenge in classifying ligand binding proteins (such
as RBDs) is to be able to identify to which ligand it will bind. For
this purpose, we applied three different predictor methods to
classify RNA-binding domains using a large number of sequence
and structural features, which was trained on three and five
different subclasses of known RBDs classified according to their
RNA target. From our results TMCSVM shows the highest predic-
tion accuracy in comparison with other methods. Overall, the
results we obtained are encouraging, reinforcing the idea that
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combination of sequence and structural properties of protein
domains can give clues to the protein’s interacting partner.

It is important to note that subclassification of the RBDs to
three and five subclasses using our multiclass approach is only
possible given the prior knowledge that the protein domain binds
RNA. Indeed we have to mention that requiring known protein
domains as RNA binding is a limitation of such predictor models.

Finally, our results showed that, in addition to multi class
prediction, biological diversity of RBD’s subclasses would be
interpretable using state-of-the-art methods like ‘1/‘q-regularized
logistic regression.

Since user friendly and publicly accessible web-servers repre-
sent the future direction for developing practically more useful
predictors (Chou and Shen, 2009), we shall make efforts in our
future work to provide a web-server for the method presented in
this paper.
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