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H I G H L I G H T S

� We present a simple stochastic model of the cell cycle.
� We derive an analytical expression for the distribution of intermitotic times.
� We test the model's ability to describe heterogeneous intermitotic distributions.
� We use the model to explain heterogeneity in response to drug-treatment.
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a b s t r a c t

Experiments have shown that, even in a homogeneous population of cells, the distribution of division
times is highly variable. In addition, a homogeneous population of cells will exhibit a heterogeneous
response to drug therapy. We present a simple stochastic model of the cell cycle as a multistep stochastic
process. The model, which is based on our conception of the cell cycle checkpoint, is used to derive an
analytical expression for the distribution of cell cycle times. We demonstrate that this distribution
provides an accurate representation of cell cycle time variability and show how the model relates drug-
induced changes in basic biological parameters to variability in response to drug treatment.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cancer is a result of uncontrolled cellular proliferation. Our
understanding of the molecular underpinnings of cancer initiation
and progression has burgeoned with the dawn of molecular
biology, yet our understanding of how the complex system of
molecular interactions and processes acts in concert to regulate
the cell cycle remains incomplete. However, recent technological
advances which enable biologists to track and record individual
mitotic events within a large population of cells have begun to fill
this gap (Tyson et al., 2012). In particular, we now know that, even
among cells of the same lineage, there is marked variability, not
only in the time it takes an individual cell to divide, but also in the
response to drug treatment (Kar et al., 2009; Tyson et al., 2012).
What can this variability teach us about the proliferative process?

In the present paper, we address this question by constructing and
analyzing a simple stochastic model of the cell cycle. The model is
mechanistic, in the sense that it is motivated by our current
understanding of cell cycle control, yet simple enough that it can
be used to derive an analytical expression for the distribution of
intermitotic times. We use this distribution to validate the model's
ability to provide a more accurate description of cell cycle
variability and show how the model can be used to relate
variability in response to drug treatment to changes in funda-
mental (albeit abstract) biological parameters.

The cell cycle is divided into two main phases: S phase, when
DNA replication (synthesis) occurs, and the M phase, when mitosis
occurs; M and S phases are separated by gap phases (G1 occurs
before S phase and G2 occurs before M phase) during which the
cell senses sufficiency of mitogenic stimuli, oxygen, nutrients, and
physical space. Progression from one part of the cell cycle to the
next requires the temporal control of specialized molecules
including cyclins, and cyclin dependent kinases (CDKs). In general,
distinct cyclins and CDKs are activated in sequence to control the
transversal of distinct checkpoints (Vermeulen et al., 2003; Kastan
and Bartek, 2004), with the activation of one CDK promoting that
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of another. In transitioning from one phase to the next, a cell
undergoes a discrete and irreversible phenotypic change.

Our model assumes that the cell cycle is controlled by multiple
checkpoints which are transversed in sequence. Each checkpoint is
associated with an abstract internal state that determines if the
cell will proceed toward division (for example, the internal state
might represent the cellular protein content and/or the concen-
tration of a specific CDK or transcription factor). The value of each
internal state is given by a random variable. The cell passes a
checkpoint when the associated random variable reaches a critical
threshold value. The problem of determining the time it takes the
cell to pass a checkpoint can be interpreted as a first exit time
problem where exit occurs at checkpoint passage. The distribution
of times spent in one part of the cell cycle corresponds to the
probability density of the first exit time.

2. Models of cell cycle progression

A discrete model of cell cycle progression: Underlying each of the
stochastic models below is a discrete model. In the discrete model
the value of an abstract internal state is given by a variable, ŷt ,
which is subject to positive and negative regulations. It is assumed
that ŷ0 ¼ 0, and when ŷt ¼M the cell passes a checkpoint that is
determined by the state. In addition we assume that over a short
period of time Δt, ŷ may increase by one unit with probability
bΔt, decrease by one unit with probability dΔt or remain the
same. If we define yt ¼ ŷt=M then y0 ¼ 0, exit occurs at yt¼1, and
over a short period of time Δt, Δy is governed by the probabilities
given in Table 1 yt ¼ ŷt=M. This model is equivalent to the first in
that the two models share the same probability density of exit
times. This discrete stochastic model leads to a certain stochastic
differential equation (Allen, 2007) which has approximately the
same probability distribution as the discrete stochastic model. This
Itô stochastic differential equation (SDE) has the form

dyðtÞ ¼ μ dtþσ dWðtÞ; ð1Þ
where t40, μ¼ ð1=MÞðb�dÞ and σ2 ¼ ð1=M2ÞðbþdÞ, and W(t) is a
standard Wiener process.

Different interpretations or variations of stochastic model (1)
lead to three simple but biologically reasonable probability dis-
tributions for cell intermitotic time. In the simplest interpretation,
it is hypothesized that the dynamics of the cell cycle can be
approximated by a single phase. In the second two models, it is
hypothesized that the dynamics of the cell cycle can be approxi-
mated by two phases with different characteristics.

Model 1: The first model assumes that after exiting from
mitosis the cell monitors an internal state, the value of which is
given by a random variable y(t). As explained above, we assume
that y(t) evolves according to the following SDE:

dyðtÞ ¼ μ dtþσ dWðtÞ; ð2Þ
where t40, μ¼ ð1=MÞðb�dÞ and σ2 ¼ ð1=M2ÞðbþdÞ, and W(t) is a
standard Wiener process. For this model, division (exit) occurs
when yðtÞ ¼ 1. For this simple SDE model, an analytical expres-
sion for the probability density of cell exit times has the form

(De-La-Peña et al., 2009; Scheike, 1992; Tuckwell and Wan, 1984):

pðt; a; cÞ ¼ affiffiffiffiffiffiffiffiffiffi
2πt3

p exp
�ðctþaÞ2

2t

 !
ð3Þ

where c¼ �μ=σ and a¼ 1=σ. This probability density is simple
and it follows from reasonable biological assumptions.

Model 2: In the second model, it is assumed that the cell cycle
is separated into two phases. After exiting mitosis, the cell
monitors an internal state, the value of which is given by a random
variable y(t). After y(t) reaches a threshold value, the cell passes a
checkpoint and commits to divide. The duration of the remaining
part of the cell cycle is determined by a parameter, τ, i.e. it is
deterministic.

In particular, we assume that y(t) satisfies the same SDE as for
model 1, i.e., y(t) satisfies a stochastic differential equation of the
form:

dyðtÞ ¼ μ dtþσ dWðtÞ;

where t40, yð0Þ ¼ 0, μ¼ ð1=MÞðb�dÞ and σ2 ¼ ð1=M2ÞðbþdÞ and
W(t) is a standard Wiener process. For this model checkpoint
passage (exit) occurs when yðtÞ ¼ 1. Under these assumptions, an
analytical expression for the probability density of cell exit times
has the form

pðt; a; c; τÞ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðt�τÞ3

q exp
�ðcðt�τÞþaÞ2

2ðt�τÞ

 !

for t4τ where c¼ �μ=σ and a¼ 1=σ. This probability density is
simple, it has only three parameters, and it follows from reason-
able biological assumptions.

Model 3: The third model also separates the cell cycle into two
parts. However, unlike the previous model, the duration of both
parts of the cell cycle are associated with a random variable. In
particular, the model assumes that two distinct random variables
must reach threshold values in sequence before division can occur.

After exiting mitosis, the cell enters the first part of the cell
cycle, the duration of which is determined by a random variable z
(t) that satisfies an SDE of the form

dzðtÞ ¼ μz dtþσz dWðtÞ;

where 0otoτ, zð0Þ ¼ 0, μz ¼ ð1=MzÞðbz�dzÞ, σ2
z ¼ ð1=M2

z ÞðbzþdzÞ
and W(t) is a standard Wiener process. Checkpoint passage (exit)
occurs at τ such that zðτÞ ¼ 1.

An analytical expression for the probability density of cell exit
times from the first part of the cell cycle has the form

p1ðt; az; czÞ ¼
azffiffiffiffiffiffiffiffiffiffi
2πt3

p exp
�ðcztþazÞ2

2t

 !

where cz ¼ �μz=σz and az ¼ 1=σz . We let τ be the exit time from
the first part of the cell cycle, where τ is a random variable
satisfying probability density p1.

After exiting from the first part of the cell cycle the cell enters
the second part of the cell cycle, the duration of which is
determined by another random variable y(t) that satisfies an SDE
model of the form

dyðtÞ ¼ μy dtþσy dWðtÞ;

where t4τ, yðτÞ ¼ 0, μy ¼ ð1=MyÞðby�dyÞ, σ2
y ¼ ð1=M2

yÞðbyþdyÞ and
W(t) is a standard Wiener process. Division (exit) occurs when
yðtÞ ¼ 1.

For a particular value of the exit time, τ, from the first part of
the cell cycle, an analytical expression for the probability density

Table 1
Discrete probabilities: equivalent model.

Δy Probability

1
M

bΔt

�1
M

dΔt

0 1�bΔt�dΔt
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of cell exit times from the second part of the cell cycle is given by

p2ðt; ay; cy; τÞ ¼
ayffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðt�τÞ3
q exp

�ðcyðt�τÞþayÞ2
2ðt�τÞ

 !

for tZτ where cy ¼ �μy=σy and ay ¼ 1=σy. Therefore, the prob-
ability density of intermitotic times from the entire cell cycle has
the form

pðt; ay; cy; az; czÞ ¼
Z t

0
p1ðτ; az; czÞp2ðt; ay; cy; τÞ dτ:

This model has four parameters ay; cy; az; and cz.
EMG model: Previously, distributions of intermitotic times have

been fit with exponentially modified Gaussian probability distri-
butions (Golubev, 2010, 2012). In this model, intermitotic time is
divided into two parts. It is assumed that the duration of the first
part is normally distributed while the duration of the second part
is exponentially distributed, so that the distribution of intermitotic
times is the convolution of a Gaussian and an exponential
distribution (Golubev, 2010). Mechanistically, it is assumed that
the duration of the first part is determined by numerous tasks that
occur in sequence, while that of the second part is generated by a
dominant rate-limiting event that corresponds to the passage of a
checkpoint (Golubev, 2012). Previously the Gaussian part of the
cell cycle has been identified with G2, S, M, and the majority of G1,
while the exponential part of the cell cycle has been identified
with the G1/S checkpoint (Golubev, 2010). Like the stochastic
model 2, the EMGmodel has three parameters. The first parameter
of the EMG distribution, λ, is the rate at which cells exit from the
second part of the cell cycle. The second two parameters, σ and μ,
are the standard deviation and the mean of the normal distribu-
tion of exit times from the first part of the cell cycle respectively.

3. Analysis

In this section, we examine data on intermitotic time (IMT)
distributions in order to evaluate each model. In particular,
maximum likelihood estimation (MATLAB, mle) is used to fit the
model parameters to IMT distributions for cancer cells treated
with DMSO (343 observations), Erlotinib (267 observations), and
CHX (164 observations). Best fit parameters are used to evaluate
each model's ability to represent the data and to explain drug-
induced changes in the distribution of IMTs. For each distribution
and model we present the maximum likelihood estimates of the
parameters in Tables 2–5. All the models provide close approx-
imations of the data. As the number of parameters varies between
models, we use the Akaike information criterion with correction
for finite size (AICc) to compare them (Burnham and Anderson,
2002):

AICc¼ 2k�2 lnðMLÞ�2kðkþ1Þ
n�k�1

; ð4Þ

where k is the number of parameters in the model and ML is the
maximum likelihood of the model. Models with lower AICc values
are considered as superior representations of the data, and the
quantity, expððAICcmin�AICcÞ=2Þ, represents the relative probabil-
ity such that a given model provides a better representation of the

data than the model with the lowest AICc value. Results are
presented in Tables 6–8.

We note that stochastic model 3 has the lowest AICc value for
each data set. In particular, model 3 is much superior to any of the
other models at describing the DMSO and Erlotinib data. Hence
this analysis supports our hypotheses that cell cycle is a multistep
stochastic process.

The best fits of model 3 and the EMG model are shown in
Figs. 1–3. In Tables 9–11, the expected durations of each part of the
cell cycle are presented for stochastic models 2 and 3 and for the
EMG model.

Table 2
Log maximum likelihood parameter estimates (Model 1).

Drug μ σ Log-likelihood

DMSO .0725 .0425 �746.83
erlot .0516 .0868 �881.90
CHX .0445 .0408 �468.90

Table 3
Maximum likelihood parameter estimates (Model 2).

Drug μ σ τ Log-likelihood

DMSO .2013 .1926 8.829 �699.61
erlot .1071 .3116 10.03 �822.61
CHX .1130 .1765 13.64 �453.91

Table 4
Maximum likelihood parameter estimates (Model 3).

Drug μz σz μy σy Log-likelihood

DMSO .0789 .0237 .8898 2.2098 �665.78
erlot .0821 .0276 .1396 .5999 �816.85
CHX .0551 .0248 .2298 .5041 �451.94

Table 5
Maximum likelihood parameter estimates (EMG).

Drug λ σ μ Log-likelihood

DMSO .5163 .7670 11.86 �683.04
erlot .1335 .6526 11.87 �825.36
CHX .2335 1.6051 18.21 �453.60

Table 6
AICc (DMSO).

Model Log-likelihood AICc expððAICcmin�AICcÞ=2Þ

Model 1 �746.83 1497.7 0
Model 2 �699.61 1405.3 0
Model 3 �665.78 1339.7 1
EMG �683.04 1372.2 0

Table 7
AICc (erlot).

Model Log-likelihood AICc expððAICcmin�AICcÞ=2Þ

Model 1 �881.90 1767.8 0
Model 2 �822.61 1651.3 .0088
Model 3 �816.85 1641.9 1
EMG �825.36 1656.7 .0006

Table 8
AICc (CHX).

Model Log-likelihood AICc expððAICcmin�AICcÞ=2Þ

Model 1 �468.90 941.8745 0
Model 2 �453.91 913.9700 .3988
Model 3 �451.94 912.1316 1
EMG �453.60 913.3500 .5438

R. Leander et al. / Journal of Theoretical Biology 359 (2014) 129–135 131



Next we consider how model parameters change with drug
treatment in order to see if drug-induced changes in the models'
mechanistic parameters can be reconciled with a drug's mechan-
isms of action and our knowledge of cell cycle control. In perform-
ing this analysis it is important to note that stochastic models 1–3
assume that the duration of the cell cycle is determined by one or
two abstract internal states, the biological identity of which may
vary with the experimental conditions. Furthermore, although
stochastic model 3 and the EMG model divide the cell cycle into
two parts that occur in sequence, the associated IMT distributions
are invariant with respect to the order in which the two parts occur.
Hence, although we have designated the phases of the cell cycle as
Part 1 and Part 2, the order in which the two phases occur is, in fact,
undetermined.

In gathering the experimental data, dimethyl sulfoxide (DMSO)
was used to dilute the drugs. Hence the DMSO data is treated as a
control. In addition, cells were treated with Erlotinib, which
interferes with mitotic signaling through the EGFR, and CHX
which inhibits protein biosynthesis. Since protein synthesis is

necessary for CDK activation, cell growth, and DNA replication;
multiple processes can limit the proliferation of CHX treated cells.

Models 1, 2, and 3 indicate that Erlotinib lowers μ while
increasing σ2. Since b¼ ðMμþM2σ2Þ=2 and d¼ ðM2σ2�MμÞ=2,
we conclude that Erlotinib increases d, the probability that the
value of the cell's internal state decreases. In other words Erlotinib
promotes processes that inhibit proliferation. This increase in d
could be explained through an Erlotinib-mediated increase in the
activity of the cyclin dependent kinase p-21 (Gartel and
Radhakrishnan, 2005). In addition, model 2 indicates that Erlotinib
lengthens the mean duration of both parts of the cell cycle.
Although EGFR signaling is typically associated with G1 arrest,
and failure to transverse the restriction point in particular, inhibi-
tion of EGFR signaling could also foster G2 arrest (Besson and
WeeYong, 2001; Cariveau et al., 2005; Maeda et al., 2002), or
prevent DNA synthesis (Gartel and Radhakrishnan, 2005) through
p21. Model 3 indicates that Erlotinib increases the duration of Part
2 of the cell cycle. In summary, the Erlotinib-induced changes in
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Fig. 1. The maximum likelihood pdfs derived from the stochastic model 3 and the
EMG were fit to IMT distributions for cells treated with DMSO. (a) Stochastic model
and (b) EMG.
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Fig. 2. The maximum likelihood pdfs derived from the stochastic model 3 and the
EMG were fit to IMT distributions for cells treated with erlot. (a) Stochastic model
and (b) EMG.
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each of the models' parameters are consistent with our knowledge
of cell cycle regulation and Erlotinib's mechanism of action.

Consider how CHX changes the parameters that control cell
cycle progression. Models 1, 2, and 3 indicate that CHX decreases μ
and σ. Hence, we can conclude that CHX decreases b, the prob-
ability that value of the cell's internal state increases. Since protein
synthesis is necessary for the completion of multiple division
related tasks, including cyclin dependent CDK activation
(Vermeulen et al., 2003; Kastan and Bartek, 2004), we see that
the model-driven interpretation of this data is consistent with our
knowledge of cell cycle control and CHX.

4. Conclusions

Several detailed stochastic models of the cell cycle are already
available (Kar et al., 2009; Steuer, 2004; Mur and Csikász-Nagy,
2008; Zhang et al., 2006; Ge et al., 2008; Braunewell and
Bornholdt, 2007; Okabe and Sasai, 2007; Li et al., 2004). These
models, which involve complex networks of cell cycle related
genes and proteins, have been used to study the robustness of the
cell cycle to noise (Zhang et al., 2006; Ge et al., 2008; Braunewell
and Bornholdt, 2007; Okabe and Sasai, 2007; Li et al., 2004), to
better capture experimental dynamics (Steuer, 2004) and to study
cell cycle variability (Kar et al., 2009; Mur and Csikász-Nagy,
2008). In particular, model cell cycle statistics were compared to
experimental statistics in Kar et al. (2009) and Mur and Csikász-
Nagy (2008). In the present paper we take a top-down approach to
modeling stochasticity in the cell cycle. Our simple stochastic
model serves as an explanation for heterogeneity in the distribu-
tion of IMTs and in the response to drug treatment. In particular,
the model is useful in generating a closed form expression for the
distribution of intermitotic times. In addition, because the model
relates changes in the shape of IMT distributions to changes in
basic biological parameters, it can be used as a platform to study
how drug treatment affects the proliferative process. Future work
will be aimed at extending the model to capture the evolution of
IMT distributions through time and at comparing the importance
of genetic heterogeneity and stochasticity in characterizing these
distributions.
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Appendix A

In this work we consider models of cell cycle progression in
which an internal state, y(t), satisfies an SDE of the form:

dyðtÞ ¼ μ dtþσ dWðtÞ; ð5Þ
where t4τ, yðτÞ ¼ y0rymax, W(t) is a standard Wiener process.
Exit occurs when yðtÞ ¼ ymax. For this simple SDE model, an
analytical expression for the probability density of cell exit times
has the form (De-La-Peña et al., 2009, Scheike, 1992, Tuckwell and
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Fig. 3. The maximum likelihood pdfs derived from the stochastic model 3 and the
EMG were fit to IMT distributions for cells treated with CHX. (a) Stochastic model
and (b) EMG.

Table 9
Expected duration of cell cycle parts (Model 2).

Drug Part 1 Part 2

DMSO 8.83 4.97
Erlot 10.03 9.34
CHX 13.64 8.85

Table 10
Expected duration of cell cycle parts (Model 3).

Drug Part 1 Part 2

DMSO 12.67 1.12
Erlot 12.18 7.16
CHX 18.15 4.35

Table 11
Expected duration of cell cycle parts (EMG).

Drug Part 1 Part 2

DMSO 11.86 1.94
Erlot 11.87 7.49
CHX 18.21 4.28
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Wan, 1984):

pðtÞ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðt�τÞ3

q exp
�ðcðt�τÞþaÞ2

2ðt�τÞ

 !
ð6Þ

for tZτ where c¼ �μ=σo0 and a¼ ðymax�y0Þ=σ40. The prob-
ability density, p(t), is an inverse Gaussian probability density with
many well-known properties (Tweedie, 1957).

It is also useful to know the moments of the probability density.
These moments provide a simple means of parameter estimation
and can be used to initialize the maximum likelihood routine.
Although the moments of the probability density (6) are known
(Tuckwell and Wan, 1984; Tweedie, 1957), it is interesting to see
how the moments can be obtained indirectly through the theory
developed for stochastic differential equations. In the present
investigation, it is useful to have analytic expressions for the first,
second and third moments of first-exit times for the probability
density. For convenience, these moments are found when τ is set
equal to zero. The mean first-exit time is then increased by τ for a
nonzero value of τ.

A backward Kolmogorov equation is associated with SDE (5)
whose solution is the reliability function Rðy; tÞ (Langtangen, 1994;

Roberts, 1986). Specifically, Rðy; tÞ satisfies
∂Rðy; tÞ

∂t
¼ μ

∂Rðy; tÞ
∂y

þσ2

2
∂2Rðy; tÞ

∂y2
ð7Þ

with Rðymax; tÞ ¼ 0. The probability density of first-exit times
satisfies pðtÞ ¼ py0 ðtÞ ¼ �∂Rðy0; tÞ=∂t where y0 is the initial value
of the internal state. In addition, moments of the exit time satisfy

EðtrÞ ¼ τry ¼ �
Z 1

0
tr
∂Rðy; tÞ

∂t
dt ð8Þ

for r¼ 0;1;2;3;… with τrymax
¼ 0. Integrating over (7) and applying

(8), the moments satisfy the second-order ordinary differential
equation (Allen and Allen, 2003; Langtangen, 1994)

�rτr�1
y ¼ μ

dτry
dy

þσ2

2
d2τry
dy2

ð9Þ

with τrymax
¼ 0. Eq. (9) can be solved recursively for the moments

for r¼ 1;2;…. Solving Eq. (9) for the first three moments about the
mean results in

EðtÞ ¼ ymax�y0
μ

;

VarðtÞ ¼ Eððt�τ1y0 Þ
2Þ ¼ σ2ðymax�y0Þ

μ3 ;

Eððt�τ1y0 Þ
3Þ ¼ 3σ4ðymax�y0Þ

μ5 ; ð10Þ

with EðtÞ ¼ τ1y0 .
Finally, in terms of probability density (6), since c¼ �μ=σ,

a¼ ðymax�y0Þ=σ, and τ40, the moments about the mean directly
implied by (10) are given by

EðtÞ ¼ �a
c

þτ;

VarðtÞ ¼ Eððt�τ1y0 Þ
2Þ ¼ �a

c3
;

Eððt�τ1y0 Þ
3Þ ¼ �3a

c5
: ð11Þ

The moments of the data and the maximum likelihood fits of
models are shown in Tables 12–16. Here n denotes the size of the
data set.
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