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Highlights

Bifurcation and sensitivity analysis reveal key drivers of multistability in a model of macrophage
polarization

Anna S Frank,Kamila Larripa,Hwayeon Ryu,Ryan G Snodgrass,Susanna Röblitz

• We identify multistable dynamics within a two-dimensional ordinary differential equation (ODE) macrophage polar- 5

ization model.

• Global sensitivity and bifurcation analysis reveal that the intrinsic macrophage pathways are equally important for

macrophage fate decisions as external stimuli.

• We formulate hypotheses to guide the conduction of future laboratory experiments.
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A B S T R A C T

In this paper, we present and analyze a mathematical model for polarization of a single macrophage

which, despite its simplicity, exhibits complex dynamics in terms of multistability. In particular,

we demonstrate that an asymmetry in the regulatory mechanisms and parameter values is important

for observing multiple phenotypes. Bifurcation and sensitivity analyses show that external signaling

cues are necessary for macrophage commitment and emergence to a phenotype, but that the intrin-

sic macrophage pathways are equally important. Based on our numerical results, we formulate hy-

potheses that could be further investigated by laboratory experiments to deepen our understanding of

macrophage polarization.

1. Introduction10

Monocytes are immune cells that circulate in the blood

and are recruited to (cancer) tissue (Orekhov et al. (2019)),

where they differentiate into macrophages. Macrophages

are highly versatile immune cells which, among other roles,

eliminate pathogens and damaged cells through phagocyto-15

sis. They play a critical role in innate immunity and help to

initiate the adaptive immune response through antigen pre-

sentation and cytokine signaling. Due to their diverse func-

tions and plasticity, macrophages are able to exhibit markedly

different phenotypes, depending on the external signals they20

receive, e.g., microbial products, damaged cells, or cytokines.

For example, based on cytokines stimulation, macrophages

will polarize into different phenotypes, which can be acti-

vated (e.g., M1 or M2) or non-activated (e.g., M0) (Orekhov

et al. (2019)). The continuum of macrophage activation and25

the diverse spectrum of pro- and anti-inflammatory pheno-

types result in nuanced immune regulations (Mosser and Ed-

wards (2008)).

A conceptual framework has been developed for the de-

scription of macrophage activation with two polar extremes30

being the most widely studied and best understood. On one

end of the phenotype spectrum, M1-like macrophages are

classically activated by the cytokine interferon 
 (IFN
) or

by an endotoxin directly (Medzhitov (2008)). Once acti-

vated, M1-like macrophages release cytokines that inhibit35

the proliferation of nearby cells (including cancer cells) and

initiate inflammation and an immune response.

At the other extreme, M2-like macrophages are induced

∗Corresponding author

Anna-Simone.Frank@uib.no (A.S. Frank);

kamila.larripa@humboldt.edu (K. Larripa); hryu@elon.edu (H. Ryu);

snodgrass@biochem.uni-frankfurt.de (R.G. Snodgrass);

Susanna.Roblitz@uib.no (S. Röblitz)

ORCID(s): 0000-0002-3728-3476 (A.S. Frank); 0000-0002-2713-3095

(K. Larripa); 0000-0002-2975-2391 (H. Ryu); 0000-0001-9896-5297 (R.G.

Snodgrass); 0000-0002-2735-0030 (S. Röblitz)

by the interleukins (IL)-4 and -13, cytokines secreted by ac-

tivated Th2 cells (Gordon (2003)). They tend to dampen in- 40

flammation and promote tissue remodeling and tumor pro-

gression, for example through pro-angiogenic properties (Brown

et al. (2017)), immunosuppression (e.g., IL-10 expression)

(Kuang et al. (2009)), remodeling of the extracellular ma-

trix, or promotion of metastasis (Lin et al. (2001)). 45

Mixed phenotypes also exist, which share some (but not

all) significant features with the M1- or M2-like phenotypes

(Biswas and Mantovani (2010)). The existence of mixed

phenotypes has been particularly demonstrated in the tumor

microenvironment (Umemura et al. (2008)). 50

Macrophage polarization is mediated in part, through the

canonical Janus- or TYK2-kinases (JAK)-Signaling signal

transducers and activators of transcription (STAT) signaling

pathway. Activation of STATs is primarily driven by ligand-

stimulated cytokine receptors whereby STATs become phos- 55

phorylated at a critical tyrosine residue leading to their re-

lease from the receptor complex where they then cross the

nuclear membrane and reach chromatin. There they bind

specific cognate DNA elements and participate in complex

gene regulation processes. STAT phosphorylation kinetics 60

have been extensively investigated in myeloid cells includ-

ing macrophages. Following stimulation with cytokine sig-

nals, STAT phosphorylation, nuclear localization and DNA

binding occur Dickensheets et al. (1999); Namgaladze et al.

(2015); Goenka and Kaplan (2011); Kovarik et al. (1999). 65

The balance between activation of STAT1 and STAT6 tightly

regulates macrophage polarization and activity Wang et al.

(2014).

Therefore, the phenotype expressed by a macrophage is

identified through the specific STAT activation. M1 polar- 70

ization is associated with STAT1 activity, whereas M2 po-

larization is associated with STAT6 activity (Martinez and

Gordon (2014)).

The M1 and M2 polarization process is dynamic and can
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be reversed under certain conditions. Individual macrophages75

can change their phenotype in response to local signaling

cues (Wang et al. (2014); Lawrence and Natoli (2011); Zheng

et al. (2017)). This can be especially pronounced in the tu-

mor microenvironment and manifests in tumor associated

macrophages, which can demonstrate both pro-tumoral and80

anti-tumoral activities (Saccani et al. (2006)).

Therefore, a better understanding of the polarization pro-

cess of macrophages has the potential to guide the develop-

ment of targeted cancer therapy to redirect the polarization

towards a tumor suppressing microenvironment (Williams85

et al. (2016); Zheng et al. (2017); Cheng et al. (2019)).

Mathematical modeling is a useful tool to better under-

stand macrophage polarization by validating or testing hy-

pothesis, and making predictions about possible dynamics.

To our knowledge, three previous studies based on ordinary90

differential equations (ODEs) have modeled macrophage po-

larization and plasticity (Smith et al. (2016); Nickaeen et al.

(2019); Zhao et al. (2019)). While the authors in Nickaeen

et al. (2019) showed bistable dynamics of macrophage phe-

notypes when exposed to external signaling cues, the au-95

thors in Smith et al. (2016) could show that after initial dif-

ferentiation into M1 and M2, the M2 phenotype was ulti-

mately dominating. Finally, the authors in Zhao et al. (2019)

used a systems-level approach to present the complexity of

signaling pathways and intracellular regulation which de-100

scribe macrophage differentiation under IFN-
 , IL-4 signal-

ing, and cell stress (hypoxia). With their model, the authors

in Zhao et al. (2019) could replicate experimental results on

macrophage phenotype markers and transcription factor reg-

ulations upon external perturbations, also for the tumor mi-105

croenvironment.

All three models are built using generic formulations of

self-stimulation and mutual inhibition, which are also com-

mon building blocks in immune cell differentiation mod-

els (Callard (2007); Yates et al. (2004)). Similar modelling110

approaches as for T-cell differentiation have been used for

macrophages in e.g., Nickaeen et al. (2019); Smith et al.

(2016), as T-helper cells differentiate in a similar manner

(Luckheeram et al. (2012); Martinez and Gordon (2014)).

Our goal is to use mathematical modeling to shed light115

on the polarization and regulatory signaling dynamics re-

lated to activation of macrophage phenotypes by specifically

tracking STAT 1 and STAT 6 activation levels as proxies for

M1 and M2 polarization, respectively. We aim to build a

simple model, which includes less parameters than the pre-120

vious models, but which shows similar complex dynamics.

We aim for simplification in model formulation both biolog-

ically and mathematically. For the biological aspect, we aim

at a simplified circuitry, as opposed to other ODE models

that consider more pathways, e.g. Smith et al. (2016); Zhao125

et al. (2019), or that consider impact from other cells sig-

naling in the immune system and cancer cells (Morales and

Soto-Ortiz (2018)). We have consolidated a number of path-

ways in our model and are viewing macrophages in isolation

other than an input signal. From a mathematical point of130

view, we present a 2-dimensional ODE model that is math-

ematically simpler than other non-ODE models with more

complexity in their formulation, such as an agent-based ap-

proach (Nickaeen et al. (2019)).

The relatively low dimension of our ODE model allows 135

us to conduct bifurcation and stability analyses to study its

dynamical diversity, and to relate these dynamics to biolog-

ical observations. In addition, Sobol’s method is employed

to i) guide the model reduction and ii) to identify the most

sensitive drivers of the system dynamics. Finally, sensitive 140

parameters are altered to study their effect on the dynamics.

For the rest of this paper, Section 2 describes our math-

ematical model in context of macrophage polarization and

Section 3 contains the conduction of the numerical meth-

ods. In Section 4, our main results, consisting of bifurcation 145

analysis (Sec. 4.1), GSA (Sec. 4.2) and perturbation anal-

ysis based on GSA results (Sec. 4.3), are presented. We

conclude with the Discussion in Section 5. The Appendix

section provides more details on numerical analysis and the

applied methodology. 150

2. Mathematical Model

Our mathematical model is based on the interactions spe-

cific to the macrophage lineage commitment signaling net-

work. For this purpose, we simplify the network of macrophage

functions in the liver from Sica et al. (2014), and consider 155

only IFN
 (input signal S1) and IL-4 (input signal S2) as

relevant cytokine signals. The levels of activated STAT1

(variable x1) and STAT6 (variable x2) are used in our model

as proxies for the two macrophage activation states.

A schematic diagram of our model is given in Figure 1.

We model the dynamics of activated STATs with a pair of

coupled nonlinear differential equations, described in equa-

tions in (1)–(2). The equations in (1)–(2) were adapted from

the T-cell model in Yates et al. (2004). They are similar, but

not the same, since the equation for x2 has a different struc-

ture.

d

dt
x1 =

(

a1 ⋅H
+(x1, k1, n1) + S1

)

⋅H−(x2, p2, l2) + b1 − q1x1,

(1)

d

dt
x2 =a2 ⋅H

+(x2, k2, n2) + S2 ⋅H
−(x1, p1, l1) + b2 − q2x2,

(2)

H+(xi, ki, ni) =
xi

ni

xi
ni + ki

ni
(3)

H−(xi, pi, li) =
pi

li

pi
li + xi

li
. (4)

All parameters are assumed to be constant, positive and real160

numbers, except n1,2 and l1,2, which are integers.

The description of all model parameters is provided in

Table 1.

2.1. Model formulation
The equation for x2 is based on the assumption that both165

type I and type II interferons inhibit IL-4-induced STAT6 ac-
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x1

b1

q1

b2

q2

x2

a1, k1, n1 a2, k2, n2

S1 S2

p1, l1

p1, l1

p2, l2

Figure 1: Schematic Diagram of Mathematical Model in equations (1)–(2). Self-
stimulation of x1 and x2 are represented via the orange arrows, while processes of mutual-
inhibition are shown by red and green inhibiting arrows. The incoming blue arrows depict
x1,2 activation at basal rates (also in the absence of cytokine signaling), while the incoming
black arrows represent the respective activation of x1 and x2 via cytokines (Si). Deacti-
vation of x1,2 is illustrated by the outgoing black arrows. Note the asymmetry in that x2

(STAT2) inhibits both the input signal and self-stimulation, but x1 (STAT1) affects only
the input signal.

Parameter Description

a1,2 Strength of self-stimulation (1/day)
b1,2, Basal activation rates (1/day)
n1,2 Exponents in the Hill functions for self-stimulation
k1,2 Thresholds in the Hill functions for self-stimulation
l1,2 Exponents in the Hill functions for mutual inhibition
p1,2 Thresholds in the Hill function for mutual inhibition
q1,2 Deactivation rates (1/day)
S1,2 Input signal strength (1/day)

Table 1

Model Parameters in equations (1)–(2). Physical units for
non-dimensionless parameters are given in parentheses.

.

tivation in human monocytes in a SOCS-1-dependent man-

ner (Dickensheets et al. (1999)), and therefore differs from

the model formulation in Yates et al. (2004). This change re-

sults in an asymmetry in our equations in that STAT6 inhibits170

both the input signal and self-stimulation, but STAT1 affects

only the input signal (Venkataraman et al. (1999)). Further-

more, we reduced model complexity by fixing the Hill coef-

ficient in equation (4) to 1. Also, the signal input function

in Yates et al. (2004) was simplified to a single parameter175

(S1, S2, respectively) for each phenotype in our model.

In our model equations, the parameters ai represent the

maximal activation rate of STAT due to self-stimulation. STATs

are, however, also activated at low background levels (bi) in

the absence of cytokine stimulation (Dempoya et al. (2012)).180

STATs are also inactivated by dephosphorylation, and we as-

sume this rate is linear (terms qixi in the equations).

The fact that STAT1 and STAT6 are autocrine (Yarilina

et al. (2008); Goenka and Kaplan (2011)), is captured by the

stimulating Hill functions in the model equations (1)–(2). Fi-185

nally, we assume respective activation of STAT1 and STAT6

via IFN
 (S1) and IL-4 (S2) (Ohmori and Hamilton (1997)).

We use stimulating (equation (3)) and inhibiting (equa-

tion (4)) Hill functions to describe STAT self-stimulation

and mutual inhibition (Tyson and Novák (2010)), respec-190

tively. The rationale behind the choice of these generic func-

tions is that self-stimulation and inhibition are complex, non-

linear processes, which consist of several individual steps.

For example, in the process of self-stimulation, cytokines

from the macrophage are secreted to stimulate helper T-cell 195

differentiation (Lee (2019)). Differentiated helper T-cells

then secrete cytokines which in-turn stimulate the macrophage

differentiation. However, detailed knowledge about these in-

dividual steps is unknown, which makes it difficult to derive

mathematical equations for each step. In addition, we as- 200

sume that the response in self-stimulation is sigmoidal, de-

pending on the “dose” of input signals. Therefore, the Hill

function is used and replaces the need to model the steps in-

dividually (Tyson and Novák (2010)). A similar argument

was used for the inhibitory Hill function. 205

In the Hill function of equation (3), ki represents the sig-

naling level at which STAT stimulation is half-maximal and

the Hill coefficient ni governs the steepness of the Hill func-

tion in that as this value grows, the function becomes more

switch-like. For the inhibitory Hill function, the parameters 210

play a similar role.

3. Numerical Methods

In this section we provide the detailed description of nu-

merical methods we employed.

3.1. Selection of model parameters 215

We explore parameter variations and analyze how the

different parameter sets affect variability in the system states

by using three parameter sets: the initial set�0, and two vari-

ation sets, �1 and �2. The parameters in the initial set �0

are adapted from Yates et al. (2004), while the variation sets 220

�1 and �2 are derived using nullclines.

Parameter sets �0 and �1 are justified, because (i) the

model formulation is very similar to the one in Yates et al.

(2004), (ii) macrophage and T-cell immune responses are

connected with respect to, e.g., cytokine signaling Lee (2019), 225

and (iii) both immune response processes occur in the cell

micro-environment. Given the preceding arguments, the same

parameter units as in Yates et al. (2004) apply here. Since

A.S. Frank et al.: Preprint submitted to Elsevier Page 3 of 13
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Set a1 a2 b1 b2 n1 n2 k1 k2 l1 l2 p1 p2 q1 q2 S1 S2

�0 5 5 0.05 0.05 6 6 1 1 1 1 0.5 1 5 5 3.75 3.75

�1 5 5 0.05 0.05 6 6 1 1 1 1 0.5 1 5 5 4 4

�2 15 8 0.05 0.05 22 6 1 1 1 1 0.5 1 5.8 5.8 5 5

Table 2

Parameter sets for numerical scenarios. The initial set �0 is adapted from Yates et al.
(2004). In the two variation sets �1,2, bold numbers indicate the variations made compared
to the initial set �0.

parameter set �2 was derived from �0 and �1 by exploring

the numerical properties of the macrophage model, we con- 230

sider this parameter set also as biologically valid. All three

parameter cases are presented in Table 2.

The only difference between �0 and �1, is the input sig-

nal values representing cytokine signal concentrations (Si =

3.75 vs. Si = 4 for i = 1, 2). The increase in Si values from235

�0 to �1 could resemble a change in environmental condi-

tions, in which input signal strength increases. Also, this

change is made based on the nullclines using �0 so that the

set �1 results in qualitatively different model dynamics.

Given the model results from �1, we further make pa-240

rameter variations for�2. Specifically, we increase the strength

of self-simulation, ai, and degradation rate qi for each vari-

able. The last change is in the parameter n1 that has been

substantially increased to incorporate the enhanced self-stimulating

effect for x1.245

Finally, recall that the Hill exponents li are set to 1 for

all three parameter sets considered. This choice is based on

global sensitivity analysis, in which those coefficients are

not shown as sensitive parameters to the model dynamics.

Moreover, due to the asymmetry in the model equations, an250

exponent of one in the Hill functions representing mutual

inhibition is sufficient to cause multistability, in contrast to,

e.g., the Collins toggle switch model (Gardner et al. 2000),

which requires Hill exponents larger than one for bistability.

3.2. Bifurcation and stability analysis255

We expect our model, for all three case scenarios, �0,1,2,

to exhibit at least bistable dynamics, similar to the original

model. Thus, we first conduct bifurcation analysis to further

investigate the impact of different parameter sets on model

dynamics.260

Bifurcation analysis aims to detect critical points of the

bifurcation parameters, where the system dynamics change

qualitatively in the long-term (Gul and Bernhard (2018)).

Given the biological importance of external signaling cues

(INF-
 and IL-4) in the macrophage polarization process265

(Wang et al. (2014)), we are primarily interested in determin-

ing how the system dynamics change based on varying input

signals (i.e., S1 and S2). We therefore consider S1 and S2 as

main bifurcation parameters, with the other parameters set to

their values in Table 2. The bifurcation diagrams from equa-270

tions (1)–(2) were obtained using the software package XP-

PAUT (Ermentrout (2001)). Details on numerical settings to

draw bifurcation diagrams can be found in Appendix A.1.

We define states of STAT activation based on model-

specific thresholds. An activation level is defined as low,275

if S1,2 ≤ 1.0, and as high, if S1,2 > 1.0. It is then the

ratio of STAT1 to STAT6 activation, that characterizes a

macrophage phenotype. The threshold levels are chosen to

allow a consistent classification of phenotype cases in our

model, although they only represent relative levels. 280

Stability analysis was performed by numerical simula-

tions in Matlab.

3.3. Sensitivity analysis
We perform sensitivity analysis to identify parameter sets

that have the greatest influence on the model outputs (e.g., 285

STAT1 and STAT6 activation), and act as key drivers of

macrophage polarization. Local sensitivity analysis quan-

tifies changes in the model with respect to perturbation of a

single parameter at-a-time in the parameter space (Zi (2011)).

In contrast to local sensitivity, Global Sensitivity Analysis 290

(GSA) methods explore the effects of large variations of pa-

rameter values on model outcome by varying all parameters

simultaneously. This difference makes GSA methods more

applicable in cellular environments, where it is possible that

multiple input parameters vary simultaneously within a large 295

parameter range. We chose Sobol’s method (Sobol (2001))

because it makes no assumptions about the relationship be-

tween model inputs and outputs in contrast to, for example,

the Partial Rank Correlation Coefficient method, which re-

quires monotonicity. Additionally, Sobol’s method consid- 300

ers interactions between parameters. A detailed description

of Sobols method can be found in Appendix A.2.

We implemented Sobol’s sensitivity analysis using the

SALib package (Herman and Usher (2017)). We varied pa-

rameters 15% in each direction from their baseline values 305

(i.e., parameter sets �0,1,2 in Table 2). We consider these

scenarios separately. In all cases, we generated 300, 000 pa-

rameter set samples. The selected outcome of interest for the

analysis is the ratio of STAT1 to STAT6 activation, which is

responsible for macrophage polarization to specific pheno- 310

types.

3.3.1. Perturbation in sensitive parameters

Based on results of the GSA, we explore the effect of

perturbations in sensitive parameters on macrophage polar-

ization dynamics. Firstly, to give an illustrative example, 315

we will only consider perturbations in the most sensitive pa-

rameter (q2) on case �0. Understanding the effect of de-

phosphorylation on system dynamics is especially important

as deactivation rates change often in biological settings (ten
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Hoeve et al. (2002)). We change q2 and keep all other pa-320

rameters fixed. This demonstrates the parameter’s individ-

ual effect on the relation between external input signals and

activation of transcription factors. Secondly, since there ex-

ists a biochemical difference in STAT1 de-/phosphorylation

compared to STAT6 (Droescher et al. (2011); Begitt et al.325

(2011)), we will model faster STAT1 deactivation rates (q1)

and investigate their effect on model dynamics.

4. Model Results

The results of the numerical simulations are presented in

this section.330

4.1. Bifurcation and stability analysis reveal

multistable macrophage phenotypes
We observe bistability, tristability, and quadstability for

different combinations of the S1 and S2 based on the three

parameter cases �0,1,2, respectively.335

4.1.1. Bistable case

With the initial parameter set �0 we observe two sta-

ble fixed points, exhibiting bistable behavior. These steady

states represent state variable ratios (x1∕x2) with i) high/low

and ii) low/low levels.340

Detailed bifurcation diagrams are presented in Figure A.1

in Appendix A.3. We validate this bistable behavior by nu-

merically solving equations (1)–(2) with the parameter set

�0. The most interesting behavior observed is that x1 and

x2 go through a switch before converging to their respec-345

tive stable fixed points, as shown in Figure 2(a). The solu-

tion trajectory of this switch behavior (in solid black) in the

phase plane is provided in Figure 2(b). Note that only two

fixed points are present even though there seems to be an-

other fixed point on the upper left part in the phase plane 350

because of the proximity of the x1- and x2-nullclines. The

bistable behavior is further confirmed by the basin of attrac-

tion shown in Figure 2(c).

4.1.2. Tristable case

With parameter set�1, three stable steady states of (x1∕x2) 355

are observed with i) high/low, ii) low/low, iii) low/high, lev-

els. The third state represents a situation where STAT6 is

presented at high levels, while STAT1 is present at low lev-

els.

Numerical solutions that converge to different stable fixed 360

points are shown in Figures 3(a)–(c). The respective solution

trajectories in the phase plane are shown in Figure 3(d).

Because of the increased values S1 = S2 = 4 for this

case, there are two additional intersections between the x1
and x2-nullclines compared to the bistable case, as can be365

seen in the phase plane of Figure 3(d). This results in the

addition of two fixed points, one of which is stable and the

other is unstable. Thus, if we start with the same initial con-

dition used in Figure 2(a), the trajectory converges to the

new stable fixed point with high x2/low x1, which was not370

observed in the bistable case. As further confirmed by the

basin of attraction of Figure 3(e), the other two stable fixed

0 10 20 30 40

t

0

0.5

1

1.5

2
x

1

x
2

(a) Switch Behavior

0 0.5 1 1.5 2

x
1

0

0.5

1

1.5

2

x
2

Direction field

Nullcline for x
1

Nullcline for x
2

(b) Phase Plane with Trajectory

0 0.5 1 1.5 2
x
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0

0.5

1

1.5

2

x
2

(0.5952, 0.3545)

(1.3152, 0.2166)

(c) Basin of Attraction

Figure 2: (a): Numerical solution that converges to low/low
steady state after switch with initial condition (x1, x2) =

(1.2, 2); (b): its corresponding trajectory (in solid black) in
the phase plane; (c): the basin of attraction for both stable
fixed points.

points remain as before. Bifurcation diagrams are presented

in Figure A.2 in Appendix A.3.

It is the ratio of STAT1 (x1) to STAT6 (x2) activation375

levels that defines the polarization of a macrophage into the

M1 or M2 phenotype (Wang et al. (2014); Nickaeen et al.

(2019)). In our results, a high level of activated STAT1 in

presence of low activated STAT6 levels defines the M1 phe-

notype (Fraternale et al. (2015)), while low levels of acti-380

vated STAT1 and high levels of activated STAT6 define the

M2 phenotype. Low STAT1 and STAT6 activation levels

represent a “hyporesponsive” phenotype that has not been

described in the current literature. This phenotype might

however have biological relevance (e.g., for cancer therapy),385

as an intermittent phenotype between M1 and M2. For ex-

ample, recent studies by Bronte and Murray (2015); Cas-

tiglione et al. (2016); Linde et al. (2012) have shown that tu-

mors are initially characterized by M1 or an intermittent phe-

notype state, while advanced cancer is defined by M2 phe-390

notype. It is therefore possible that this “hyporesponsive”

phenotype describes another intermittent phenotype that ap-

pears during this transition.

4.1.3. Quadstable case

Using the last parameter set �2, our model demonstrates 395

quadstable behavior. The detailed bifurcation diagrams are

provided in Figure 4, where red solid lines represent sta-

ble fixed points, and black solid lines represent both unsta-

ble fixed points and saddle-nodes. Three of the stable fixed

points, i.e., low/low, high/low and low/high, (in Figures 4(a)– 400

(d)) are qualitatively the same as those in the tristable case.
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(c) Tristability: High x1/Low x2
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Figure 3: (a)–(c): Numerical solutions that converge to
three different stable steady states with initial conditions (a)
(x1, x2) = (1.2, 2), (b) (x1, x2) = (1.2, 1.2), and (c) (x1, x2) =

(2, 1); (d): their corresponding trajectories (in solid black) in
the phase plane; (e): the basin of attraction for each stable
fixed point.

The situation where both STAT1 and STAT6 have high

activation status is, however, unique to the quadstable case.

High activation of both STAT1 and STAT6 shows the exis-

tence of an intermittent phenotype (Biswas and Mantovani 405

(2010)), which bears characteristics of both the M1 and M2

types. Several of such intermittent states have been identi-

fied, for example, M2a, M2b, M2c and M2d (Palma et al.

(2018)). The intermittent phenotype can also represent a

transformation state, in which M1 branches to M2, and vice 410

versa (Das et al. (2015)).

To understand how a varying input signal changes the

activation of STAT1 and STAT6, we illustrate, based on Fig-

ures 4(b)–(c), how one should read the bifurcation diagram:

Figures 4(b)–(c) have to be read simultaneously, starting from 415

S1 = 0 and then increasing the S1 value while following the

bifurcation trend. Note that while S1 is varied, all other pa-

rameters values are kept unchanged. By varying S1 from 0

to around 12, x1 is on the lowest stable branch while x2 is

(a) Quadstability: x1 vs S2 (b) Quadstability: x2 vs S1

(c) Quadstability: x1 vs S1 (d) Quadstability: x2 vs S2

Figure 4: The bifurcation diagrams for varying input signals
(S1 and S2) against the state variables x1 and x2 show quad-
stable dynamics (with the set �2). The red solid lines repre-
sent stable fixed points, while the black solid lines represent
unstable fixed points and saddle-nodes. The blue dashed line
represents the situation where S1 = 0.

on the highest stable branch. Increasing S1 input signal be- 420

yond 12, x1 and x2 will follow the bifurcation trend up and

down, respectively, to the next stable branch with x1 acti-

vation level between 1 and 2.2, and x2 activation level be-

tween 1.8 and 1.3. To reach the third stable branch, input

signal S1 is decreased (to follow the bifurcation trend) un- 425

til x1 and x2 jump from the second red branch to the third

branch. The third branches spans values between 0.3 and 1

for x1, and values between 0.3 and 0.7 for x2. When on the

third branch, S1 input signal will be increased again, at an

input signal of around 7, both x1 and x2 will jump onto the 430

respectively highest and lowest branch. Figures 4(a)–(d) can

be read similarly.

In Figures 4(b)–(c), we observe furthermore that for high,

S1 > 18 levels, the state variables x1 and x2 are committed

to highest and lowest activation levels, respectively. 435

It is interesting that in the case of quadstability, the sys-

tem is committed to the high/low state (see Figures 4(b)–

(c)) for high S1 values, while this could not be observed for

bistable or tristable situations. Biologically, an irreversible

switch into the M1 phenotype means that the macrophage 440

will no longer be able to change its phenotype when exposed

to changing input signals. This suggests that for high self-

stimulation in the presence of high INF
 and low IL-4 sig-

nals, the system can commit to M1 phenotype and stay re-

versible for the M2 phenotype. In parameter set �2, STAT1 445

has higher self-stimulation than STAT6, i.e., a1 > a2 and

n1 > n2. This might be a crucial driver for the commitment
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(a) Quadstability: High x2/Low x1
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(b) Quadstability: Low x1∕x2
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(c) Quadstability: Medium x1∕x2
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(d) Quadstability: High x1/Low x2
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Figure 5: (a)–(d): Numerical solutions that converges to
four different stable steady states with initial conditions (a)
(x1, x2) = (1, 3), (b) (x1, x2) = (0.8, 0.8), (c) (x1, x2) = (3, 3),
and (d) (x1, x2 = (2, 1); (e): their respective solution trajec-
tories (in solid black) in the phase plane; (f): the basin of
attraction for quadstable dynamics.

in the quadstable case, and the emergence of the intermittent

phenotype.

Numerical solutions that converge to different stable points450

are shown in Figures 5(a)–(d). Their respective solution tra-

jectories are presented in Figure 5(e). The basin of attrac-

tion of Figure 5(f) shows the total of four stable fixed points,

which indicates the quadstable dynamics.

4.2. Identification of key drivers of macrophage455

dynamics through global sensitivity analysis
We applied Sobol’s method to the model output to iden-

tify the most sensitive parameters in our system. Because

our goal is to identify phenotype committment, and because

we use STAT1 and STAT6 as proxies for the M1 and M2460

phenotype, respectively, our model outcome of interest is the

ratio of STAT1 and STAT6 at steady state: f (x) =
x1

x2
when

dx1∕dt = dx2∕dt = 0. Details of the implementation are

included in Appendix A.2. The most sensitive parameters

(a) Bistable Case (b) Tristable Case

(c) Quadstable Case

Figure 6: Sobol Sensitivity Indices where outcome of inter-
est is the ratio of STAT1 activation to STAT6 activation at
steady state. This used baseline parameter values which give
(a) bistable, (b) tristable and (c) quadstable dynamics. In all
instances, the parameter q2 has the highest total sensitivity
index. The cases of bistability and tristability have the same
most sensitive seven parameters q2, q1, k2, S1, k1 a2, S2 with
only the ordering of the last three altered. For the quadstable
case, q2 is also the most sensitive, with k2 and a2 moving up
in the ordering compared to the previous two cases.

for the bistable case using total sensitivity as a metric are, in465

descending order, q2, q1, k2, S1, k1, a2, S2 (see Figure 6(a)).

The four most sensitive parameters for bistable and tristable

cases, shown in Figures 6(a)–(b), respectively, agree and the

next three most sensitive for each case are common (k1, a2,

S2) but reordered. Figure 6(c) shows that the most sensitive 470

parameters in the quadstable case are consistent with results

from the previous two cases.

In terms of the pathways, this indicates that deactivation

rates of both STAT1 and STAT6 (q1 and q2, respectively)

are highly sensitive, as well as the input signal for M1 polar- 475

ization, INF
 (S1). Parameters k2 and k1 are also sensitive,

and both relate to the response of the Hill functions for self-

stimulation. These parameters govern the concentration at

which the switch takes place. In all cases, k2 is more sen-

sitive than k1. Parameters S2 and a2 are the signaling input 480

for M2 polarization (IL-4) and the maximum rate at which

STAT6 stimulates its own activation via a regulative feed-

back mechanism.
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(a) Perturbed q2-value: x1 vs S2 (b) Perturbed q2-value: x2 vs S1

(c) Perturbed q2-value: x1 vs S1 (d) Perturbed q2-value: x2 vs S2

Figure 7: Case �0 for varying q2-values (q2 = 3.8–label 1,
q2 = 4.5–label 2, q2 = 6.9–label 4) with respect to baseline
q2-value (q2 = 5–label 3). The colors, magenta, black, turkeys
and orange represent unstable branches, while blue, red, light
green and dark green represent stable ones.

4.3. Effect of perturbation in deactivation rates q1
and q2 485

Figure 7 illustrates that by perturbing q2 the response of

transcription factors to input signals changes. The change

in response seems to occur with respect to the strength of

the input signal, as well as according to stability. For exam-

ple, in Figures 7(b)–(c), lower q2 values seem to increase the490

number of stable states, and to increase the external stimuli

needed to evoke a fate change. This example indicates that

deactivation rates can contribute to the robustness of the dy-

namical system to variations in external stimuli. In particu-

lar, it illustrates that deactivation of STAT1 and STAT6 plays495

an essential role in macrophage polarization, as deactivation

rates indirectly affect inhibition of external input signals on

the opposite state variable, while self-stimulation affects its

own state variable.

For all three parameter sets (�0,1,2), an increase in the500

deactivation rate for STAT1, q1, leads to a reduction in the

number of steady states. For example, in the quadstable case,

the system shows first tristability, then bistability, and fi-

nally monostability upon an increase of q1, whereby first the

high/high, then the low/high, and finally the low/low steady505

state disappear. Consequently, a system with faster STAT1

deactivation rate tends to polarize more strongly towards the

M2 phenotype.

5. Discussion

In this work, we develop and explore a novel mathemat-510

ical model for the dynamics of macrophage polarization and

identify key parameters of the multi-stable dynamics. We

validate that macrophage polarization is not strictly bipolar,

but can consist of multiple phenotypes. Ours is the first 2-

dimensional macrophage polarization model to show bistable, 515

tristable and quadstable phenotypes. The insight gained from

our model is that asymmetry in the model equations together

with high non-linearity can result in high multi-stability. This

is an important advance as we could validate previous bi-

ological findings on macrophage phenotypes, which so far 520

have only been demonstrated by more detailed, complex and

multidimensional (dimensions> 2) macrophage models e.g., Zhao

et al. (2019); Nickaeen et al. (2019).

We could validate known phenotypes (i.e., M0, M1 and

M2) and have uncovered an unknown, intermittent one (i.e., 525

high/high) with a mixed phenotype expression (Orekhov et al.

(2019)). From a biological perspective, the intermittent phe-

notype might more likely be observed in in vivo settings than

the extreme M1 and M2 cases, which are studied in cell cul-

tures. According to Andrecut et al. (2011), the low/low state 530

is a “metastable state of indeterminicy”, which can switch to

either M1 or M2 dependent on the input signals. This state is

characterized by the fact that both STATs are at low expres-

sion level and is, according to Andrecut et al. (2011), charac-

teristic for multipotent cells. Besides Andrecut et al. (2011), 535

such an undetermined state has been previously described

in Nickaeen et al. (2019) for macrophages and in Yates et al.

(2004) for T-cells. Given the characteristics of the low-low

state, it is represented in a biological context by non-activated

macrophages (Orekhov et al. (2019)). Although, we can- 540

not rule out that there exist more than four different pheno-

types for our system, our findings are supported by those in

Lu et al. (2013), where the authors identified a maximum

of four stable states given a similar model formulation. To

our knowledge, only one previous study by Nickaeen et al. 545

(2019), which studied a more complex model and applied

also two- and three-dimensional bifurcation analyses, could

identify a broader spectrum of known (e.g., M2a and M2b)

and unknown macrophage phenotypes. Our identified un-

known phenotype can however not be compared directly to 550

those in Nickaeen et al. (2019), because the authors clas-

sified STAT activation into high, medium and low levels,

while we only made a distinction between high and low. In

addition, such classification states are model dependent.

Both our work and Yates’ paper Yates et al. (2004) are 555

examples of immune cell polarization modeled through the

STAT pathways (in our case, macrophages, in Yates’ case,

helper T cells). The STAT pathway is a paradigm for mem-

brane to nucleus signaling and has come to explain how a

broad range of soluble factors, including cytokines, mediate 560

cells’ diverse functions, including polarization (Seif et al.

(2017); Leonard (2001); Villarino et al. (2017)). Our model

formulation is specific to what we know and understand about

macrophage polarization in terms of specifically considering

the signals IL-4 and IFN
 , but general STAT pathway mod- 565
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eling could be applicable to a wide variety of immune cells.

By comparing models for different cell types (in which the

models are parameterized with biologically justified values),

a sensitivity analysis could reveal which parameters are most

important for specific cell types. 570

Sensitivity analysis of our model revealed the high im-

pact of the deactivation rates, q2 and q1, on the ratio of STAT1

to STAT6 activation at steady state, used as a proxy for M1

and M2 phenotype, respectively. Parameters k2 and a2 were

also identified as sensitive because both of these parameters575

are related to the self-stimulation of STAT6 activation.

Our most sensitive model parameters are similar to those

identified in Torres et al. (2019); Zhao et al. (2019). The

most sensitive parameters in our model (k1, k2, a2, q1, q2) and

in the models by Torres et al. (2019); Zhao et al. (2019) are580

parameters of activation and deactivation. The agreement

in the sensitive parameters of our model with the previous

models can therefore be considered a validation of the sen-

sitivity analysis results.

These sensitive parameters agree with results of our bi-585

furcation analysis, where parameters of self-stimulation and

deactivation seemed to have a profound impact on the dy-

namics. For example, in the quadstable case, parameters of

self-stimulation might explain the observed system commit-

ment and the emergence of an additional phenotype, while590

results of varying deactivation rates changed the response to

external signaling cues, as can be seen in Figure 7. It should

be noted that the observed commitment to a phenotype is

not specific to this macrophage model, but rather a generic

property of a toggle switch circuit model type, of which the595

macrophage model is a variant. However, our results are

unique in the sense that they identify the parameters that

drive phenotype commitment, and thus might help in repli-

cating macrophage phenotype commitment in, e.g., labora-

tory experiments. The consistency in identifying sensitive600

parameters from bifurcation and sensitivity analyses is how-

ever expected, because a properly designed analysis should

reveal bifurcation parameters to be sensitive Marino et al.

(2008).

In summary, bifurcation and sensitivity analyses showed605

that external signaling cues are necessary for macrophage

commitment and emergence to a phenotype, but that the in-

trinsic macrophage pathway (represented by self-stimulative

factors and deactivation) are equally important (Geeraerts

et al. (2017); Biswas and Mantovani (2012)). It should be610

noted that the intrinsic pathways, which enabled fate com-

mitment in the quadstable situation, are masked by the generic

nature (i.e., Hill function) of our model. Intrinsic pathways

in macrophages are in general variable (Geeraerts et al. (2017)).

Our results support the expectation from the model dia-615

gram (Figure 1) that the system’s outcome also depends cru-

cially on the self-stimulation of x2. Because the equations

are not symmetric (i.e., in the second equation the stimu-

latory and inhibitory Hill functions are additive, not multi-

plicative as in the first equation), the parameters associated620

with STAT6 have a stronger impact on the model outcome.

This observation is also reflected in the asymmetric values

of a1, n1 and a2, n2 in �2. The asymmetry illustrates that

lower values of a2, n2 have the same effect on systems dy-

namics as higher values of a1, n1. The parameters in �0,1625

however are symmetric, because they were adapted from the

mathematical model in Yates et al. (2004), which has a sym-

metric model structure. The need for an asymmetry in self-

stimulation dynamics of STAT1 and STAT6 might be ex-

plained by the experimental finding that the signaling path- 630

way induced by IFN-
 . dominates over the signaling path-

way induced by IL-4, according to the authors in Piccolo

et al. (2017). This explanation is furthermore in accordance

with our finding of an irreversible switch to the M1 pheno-

type for high concentrations of INF-
 . 635

Although our model was build based on the inhibition

of STATs activation via the SOCS inhibitors, we could also

connect our results to the effect of another STAT1 inhibitor,

namely, the SUMO conjugation (Droescher et al. (2011); Be-

gitt et al. (2011)), thanks to the general model formulation. 640

SUMO conjugation leads to the biochemical difference in

STAT1 de-/phosphorylation dynamics compared to STAT6

(Droescher et al. (2011)). We investigated its effect by ana-

lyzing faster STAT1 deactivation rates, which seem to drive

the model dynamics towards the M2 phenotype. 645

Furthermore, we illustrated how STAT deactivation im-

pacts macrophage polarization by influencing the robustness

to external stimuli. The authors in Sridharan et al. (2015)

pointed out that the effects of deactivation are, however, not

well understood for macrophages. Therefore, future experi- 650

ments could aim at inhibiting kinase or phosphatase activity,

in order to quantify the (de-)phosphorylation rates with time

(Gelens and Saurin (2018)). For example, applying the small

molecule inhibitor for SUMOylation, that was recently de-

veloped by Lv et al. (2018), could yield good parameter es- 655

timates and thereby shed further insight through additional

experiments. Finally the knowledge of sensitive parameters

for macrophage polarization might guide the conduction of

future laboratory experiments and thus deepen our under-

standing of macrophage polarization. 660

Recent work O’Neill et al. (2016); Galván-Peña and ONeill

(2014); Kelly and O’neill (2015) indicates a resurgence of in-

terest in immunometabolism and has revealed that through

polarization, macrophages undergo a specific metabolic re-

modeling. M1-like inflammatory macrophages are known to 665

employ a rapid activation of aerobic glycolysis to generate

ATP Ryan and O’Neill (2020). Inhibition of aerobic glycol-

ysis in macrophages blocks the M1-like phenotype even in

the presence of IFN
 Wang et al. (2018). Aerobic glycoly-

sis is of particular importance in the STAT-1 gene transcrip- 670

tion pathway in IFN-
 stimulated macrophages Mills et al.

(2016) due to its production of ATP from glycolytic through-

put Wang et al. (2018). Although glycolysis is not as efficient

at generating ATP as its alternative pathway (oxidative phos-

phorylation), it can be upregulated many-fold and therefore 675

results in a faster production of ATP compared with oxida-

tive phosphorylation Phan et al. (2017).

In sum, we suggest the following hypotheses, which re-

sulted from our analyses, to be tested experimentally:
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H1: The response-time and sensitivity of STATs to cytokine 680

signaling levels can be altered by changing deactiva-

tion rates.

H2: Once macrophages are committed to a phenotype, fur-

ther stimulation via cytokines leaves them unchanged.

H3: Intrinsic pathway characteristics, which correspond to685

aspects of self-stimulation and deactivation, determine

the range and variability of observable macrophage

phenotypes.

H4: There exist intermittent phenotypes with equal STAT

activation levels (i.e., defined by STAT phosphoryla-690

tion levels) in laboratory experiments settings.

These hypotheses generate the following suggestions for

biological experiments: (1) One could begin with IL-4 po-

larized macrophages (M2 phenotype) and IFN
 stimulated

macrophages (M1 phenotype), and then stimulate each with695

the opposite cytokine, examining subsequent levels of STAT1/6

phosphorylation in addition to the gene expression of classic

STAT6 target genes as well as IFN-stimulated genes (ISGs).

This experiment could reveal how dominant one stimuli is

compared to the other in terms of re-polarizing cells. Of700

course, this experiment depends on the concentration of the

cytokines, but this can be normalized if one selects concen-

trations that induce equivalent levels of phosphorylation, nu-

clear localization and DNA binding. (2) An additional ex-

periment might involve polarizing näive macrophages with705

mixed concentrations of IL-4 and IFN
 and collecting the

time series data for STAT activation and gene expression of

target genes to determine which stimuli is more dominant.

5.1. Model limitations and future work
A clear advantage of our model is its simplicity and its710

ability to exhibit complex dynamics in terms of multista-

bility. One limitation due to the simplicity is that spatial

distributions or different time-scale factors of each variable

could not be incorporated. In addition, our model describes

only two species as proxies for the two macrophage acti-715

vation states as well as two input signals whereas in real-

ity there might be more important species and input sig-

nals, which need to be considered especially for investigating

macrophage polarization on the population level.

One example is NF-�B, a protein complex which inter-720

acts with type 1 interferons, among other signals (Dorring-

ton and Fraser (2019)). Future work could inspect a more

refined signaling network, based on our model formulation.

(De-)phosphorylation reactions are rapid in comparison

to transcriptional gene activation (Gelens and Saurin (2018)).725

It is therefore relevant for future work to analyze macrophage

polarization in terms of slow-fast dynamics, as well as to in-

vestigate how the effect of rapid on/off dynamics could dis-

tinguish decisions in macrophage activation from the action

of similar developmental circuit models. In addition, given730

the difference between STAT1 versus STAT6 (de-)phosphorylation

reactions, it could be relevant to experimentally estimate de-

phosphorylation rates (qi) for STAT1 and STAT6.

Another limitation of this work is that our model con-

siders a single macrophage whereas in reality there are en- 735

tire populations of macrophages which influence each other.

However, understanding how a single macrophage reacts to

its microenvironment is a first step to understanding popula-

tion level behavior.

Mathematical models are needed to address macrophage 740

polarization on population level and to consider input signals

beyond IFN-
 and IL-4, while incorporating knowledge of

dynamics of a single macrophage.

The primary focus of this manuscript has been to under-

stand the qualitative characteristics of the proposed model. 745

Hence extending the analysis to include empirical data is be-

yond this scope.

Our model represents also a solid first step towards an-

alyzing stochastic gene expression in macrophages. In fu-

ture work, we will make use of the chemical master equation750

and analyze how switching probabilities between different

phenotypes change with variations in extrinsic and intrinsic

noise levels.
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A. Appendix

A.1. Numerical details for bifurcation diagrams
Table 1 shows the numerical details used to calculate the

bifurcation diagrams.

A.2. Sobol’s method 775

Model output f (x) is decomposed into the sums of vari-

ances (Sobol (2001)):

f (x) = f0+

k
∑

i=1

fi(xi)+

k
∑

i

k
∑

j=i+1

fij(xi, xj)+...+f1...k(x1, x2, ..., xk).
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Stability Ntst Nmax Npr Ds Dsmin Dsmax Parmin Parmax
Bi 150 2500 100 0.0001 0.0001 0.01 0 100

T ri 150 500 100 0.001 0.0001 0.02 0 100

QuadS1
15 30000 100 0.0001 0.0001 0.003 −100 200

QuadS2
150 20000 100 0.0001 0.0001 0.0025 0 200

Table 1

Numeric values for drawing bifurcation diagrams in XPPAUT. The column labels represent
settings for numerical parameters in AUTO1.

1 Details can also be found at http://www.math.pitt.edu/~bard/bardware/tut/xppauto.

html

Abbreviations: Ntst, number of mesh intervals for discretization of periodic orbits,
Nmax, maximum number of steps taken along any branch, Npr, give complete info
every Npr steps, Ds, initial step size for bifurcation calculation, Dsmin, minimum step
size, Dsmax, maximum step size, Parmin, left-hand limit of the diagram for principal
parameter, Parmax, right-hand limit of the diagram for the principal parameter

(A.1)

Here, fi is the effect of varying xi alone (first-order sen-

sitivity), and fij is the effect of varying xi and xj simultane-

ously, additional to the effect of their individual variations,

termed a second-order sensitivity. Higher order terms have

analogous interpretations. 780

Assuming that f (x) is square integrable, the functional

decomposition may be squared and integrated and the total

variance D can be defined as

D = ∫ f 2(x) − (f0)
2 dx (A.2)

The partial variances from squaring and integrating the

right hand side of A.1 are of the form

Di1,i2,...ik
= ∫ ⋯∫ f 2(xi1 , x12 ,… , xis

)dxi1dxi2 … dxi,s

(A.3)

These integrals can then be approximated with Monte

Carlo integration, and the Sobol sensitivity indices are cal-

culated by the ratio of partial to total variance, representing

the fraction of total variance which is attributed to individual

model parameters or to combinations of parameters.

Si1i2…is
=

Di1i2…is

D
(A.4)

Furthermore, the total effect sensitivity index was proffered

as an extension of the Sobol sensitivity index to quantify the

overall effect of a parameter alone and in combination with

any other parameters on model output (Homma and Saltelli

(1996)). This is defined to be

STi
= Si + Sci (A.5)

where Sci is the set of sensitivity indices in which parameter

xi appears.

A.3. Bifurcation diagrams for the bistable and

tristable case
Figures A.1 and A.2 show the bifurcation diagrams for785

the bistable and tristable case.

(a) Bistability: x1 vs S2 (b) Bistability: x2 vs S1

(c) Bistability: x1 vs S1 (d) Bistability: x2 vs S2

Figure A.1: The bifurcation diagrams for varying input signals
(S1 and S2) against the state variables x1 and x2 show bistable
dynamics (with the set �0).
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