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Tissue geometry is an important influence on the evolution of many biological tissues. The local curvature
of an evolving tissue induces tissue crowding or spreading, which leads to differential tissue growth rates,
and to changes in cellular tension, which can influence cell behaviour. Here, we investigate how directed
cell motion interacts with curvature control in evolving biological tissues. Directed cell motion is
involved in the generation of angled tissue growth and anisotropic tissue material properties, such as tis-
sue fibre orientation. We develop a new cell-based mathematical model of tissue growth that includes
both curvature control and cell guidance mechanisms to investigate their interplay. The model is based
on conservation principles applied to the density of tissue synthesising cells at or near the tissue’s moving
boundary. The resulting mathematical model is a partial differential equation for cell density on a moving
boundary, which is solved numerically using a hybrid front-tracking method called the cell-based particle
method. The inclusion of directed cell motion allows us to model new types of biological growth, where
tangential cell motion is important for the evolution of the interface, or for the generation of anisotropic
tissue properties. We illustrate such situations by applying the model to simulate both the resorption and
infilling components of the bone remodelling process, and to simulate root hair growth. We also provide
user-friendly MATLAB code to implement the algorithms.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction and curvature-dependent tissue surface tension influencing cell
Understanding the mechanisms controlling the generation of
biological tissue is an important challenge in biomechanics and
mechanobiology (Ambrosi et al., 2019) with key applications in tis-
sue engineering and developmental biology (O’Brien, 2011; Dzobo
et al., 2018). Tissue geometry influences the generation of new tis-
sue, particularly the rate of tissue growth and the organisation of
tissue material (Curtis and Varde, 1964; Dunn and Heath, 1976;
Kollmannsberger et al., 2011). Several tissue growth experiments
show that the rate of tissue progression is strongly dependent on
tissue curvature. These findings apply to bioscaffold pore infilling
(Bidan et al., 2015; Bidan et al., 2016; Guyot et al., 2014;
Ripamonti and Roden, 2010), wound healing (Poujade M., 2007;
Rolli et al., 2012), tumour growth (Lowengrub et al., 2010), and
bone remodelling (Martin, 2000; Alias, 2018). This proportionality
of growth rate and curvature may be caused by the crowding and
spreading of cells and tissue material due to spatial constraints,
proliferation rates (Nelson et al., 2005; Rumpler et al., 2008;
Haeger et al., 2015; Alias, 2017; Buenzli et al., 2020).

In addition to the collective influence of curvature on tissue
progression, other factors such as mechanical or chemical cues in
the environment as well as cell-scale geometrical features can
induce individual cell responses including directed cell migration.
Mechanical cues include viscoelasticity (Chaudhuri et al., 2016),
surface stiffness (Pelham and Wang, 1997; Lo et al., 2000;
Discher et al., 2005; Engler et al., 2006), or surface mechanical
stretch (Trepat et al., 2007; Bouchbinder et al., 2014). Chemical
cues include signalling molecules inducing attractive or repulsive
chemical gradients (Haeger et al., 2015), and cell-scale geometrical
cues include geometrical guidance such as curvotaxis (Callens
et al., 2020) and surface roughness gradients (Martin et al., 1995;
Deligianni and Katsala N.D., 2001). While the collective influence
of curvature on tissue growth and the effects of environmental
cues on cell guidance mechanisms are well studied in isolation,
how these processes interact during the generation of new biolog-
ical tissue remains poorly understood.
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Fig. 1. Tangential cell movement in tissue growth. (a) Shells grow by secretion of new tissue at their base (mantle) at an angle to create spiralling structures (reproduced with
permissions from Goriely (2017)). (b) In lamellar bone, successive tissue layers possess different collagen fibril orientations which suggest changes in the tangential motion of
osteoblasts during bone formation (reproduced with permissions from Pazzaglia et al. (2012) and Schrof et al., 2014). (c) Resorption cavities during bone resorption maintain
a stable resorption front shape at the tip. Since the dissolution process of bone by osteoclasts is expected to occur in the normal direction, this suggests osteoclasts are subject
to cell guidance signals toward the cavity centerline. An example of the serial section of a cutting cone, immunostained (black) for an osteoclastic marker, obtained from
Lassen et al. (2017) and schematic of an evolving Haversian system, after Jaworski and Hooper (1980).

Fig. 2. Schematic illustrating the crowding and spreading effect of curvature and
the influence of tangential motion for tissue material properties; (a) shows only
movement in the normal direction and the resulting changes in density; (b)
includes both curvature control and cell guidance, meaning the cells crowd and
spread and also undergo directed motion, creating anisotropies in tissue material
properties (thin orange lines).
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In this work we develop a new mathematical model which
explicitly includes both the collective influence of curvature and
directed cell guidance mechanisms. The addition of directed cell
guidance allows us to model new types of biological growth, which
cannot be generated by existing mathematical models where the
tissue interface progresses in the normal direction only (Bidan
et al., 2015; Guyot et al., 2014; Alias, 2017; Callens et al., 2020).

Indeed, the growth of several tissues involves directed cell
motion where cells move tangentially along the tissue surface
(Fig. 1). For example, shells, horns, and tusks with a spiralling
structure are generated by tissue being secreted at an angle to
the base membrane (Fig. 1a) (Skalak et al., 1982; Skalak et al.,
1997). Tangential cell velocity may also be responsible for the gen-
eration of anisotropies in tissue material properties by aligning tis-
sue fibrils with respect to the cells motion (Fig. 2). In lamellar bone,
the so-called twisted plywood structure of collagen fibrils may be
due to the osteoblasts (bone secreting cells) changing direction of
motion during bone infilling (Martin et al., 2004) (Fig. 1c). Finally,
tangential cell motion is suspected to occur in bone resorption to
keep osteoclasts at the front of the resorption cone (Fig. 1c).

Mathematically, the evolution of smooth interfaces can be
described by the normal velocity of the interface only (Sethian,
1999). However, biological tissue interfaces may develop cusps
2
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and sharp edges (Skalak et al., 1997; Alias, 2017; Goriely, 2017).
When these move at an angle to their base, one is required to con-
sider a more general tissue interface velocity that includes a tan-
gential component to avoid the emergence of singularities in the
governing equation for tissue growth velocity (Skalak et al., 1997).

Many existing models of geometric control of tissue growth
consider the geometry of the tissue substrate only, so that cell
guidance mechanisms and cell crowding effects are not modelled
explicitly (Skalak et al., 1982; Skalak et al., 1997; Rumpler et al.,
2008; Bidan et al., 2012; Bidan et al., 2015; Gamsjäger et al.,
2013; Guyot et al., 2014; Goriely, 2017; Ehrig et al., 2019). Here,
we consider the cell-based mathematical model of Alias (2017),
which explicitly accounts for curvature-induced cell crowding
and spreading, and we generalise this model to allow for tangential
cell motion. We derive the model from general conservation prop-
erties imposed on cells, which allows us to explicitly include cell
behaviours. To our knowledge, no mathematical model currently
includes both the effect of curvature on collective cell crowding
and spreading and tangential cell motion mechanisms.

The model of Alias (2017) is also extended to three dimensions
and the governing equations are derived in covariant form. The
model derived is a partial differential equation (PDE) for the den-
sity of cells to be solved on a moving boundary, which represents
the evolving tissue surface. This problem is numerically solved to
explore several situations in which tangential cell guidance mech-
anisms are added. We demonstrate that with the addition of tan-
gential cell advection, new biologically relevant tissue growth
phenomena can be modelled, such as bone resorption, the genera-
tion of different fibre orientations in lamellar bone, and root hair
growth.

2. Description of the model

Tissue growth usually occurs by cells synthesising new tissue
close to the tissue’s interface. To determine general evolution
equations for the density of tissue-synthesising cells subject to
normal and tangential motion, we consider the case where the
tissue-synthesising cells are attached to the tissue interface and
described by a surface density, q (number of cells per unit surface).
The motion of the interface transports the cells in space and the
cells may additionally move laterally with respect to the material
points of the surface. The motion of the interface is considered to
be due to new tissue being synthesised in the wake of these
surface-bound cells (Fig. 2). This situation occurs for example in
wound healing, bone remodelling, bioscaffold pore infilling, and
tumour growth (Guyot et al., 2014; Bidan et al., 2015;
Fig. 3. (a) Schematic of two dimensional surface portion being considered. The curve
dimensional schematic of portion of interface being examined. The normal and tangenti
Illustrative cells are included in orange, with the tangential flux of cells into dS annotat
trajectories and normal trajectories are also annotated.
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Lowengrub et al., 2010; Poujade M., 2007; Rumpler et al., 2008)
where tissue-synthesing cells are located at or near the tissue
interface. The normal velocity of the tissue interface, unn where
n is the outward-facing unit surface normal, is given by

un ¼ kq; ð1Þ
where k is the tissue-synthesising cells’ secretory rate (volume of
new tissue synthesised per unit time per cell) (Buenzli, 2015). Tis-
sue resorption can also be modelled by assuming k to be negative.
Although in this derivation we take q to denote the density of
tissue-secreting cells, other situations can be modelled if q is taken
as the density of other surface-bound tissue-secreting entities, such
as secretory vesicles (see Section 3.4).

During the evolution of the tissue, the interface may stretch
locally depending on its curvature (Fig. 2a), and this will induce
changes in cell density. Convex areas of the tissue substrate result
in cells spreading whereas concave areas of the tissue substrate
result in cells crowding. In addition, cell guidance mechanisms
superimpose lateral cell motion with respect to the tissue inter-
face. Directional tissue growth may therefore result from a combi-
nation of interface motion and lateral cell motion (Figs. 2b and 3).

The tangential velocities of both the interface and the cells can
be chosen to describe multiple biological tissue evolution scenar-
ios. The tangential velocity of the cells, vS, can represent for exam-
ple epithelial cells moving with respect to a basal membrane which
may itself be transported in space with velocity u. Biological situ-
ations where cells are not physically transported by a moving tis-
sue interface may be modelled by assuming that there is no
tangential movement of the interface (uS ¼ 0, where uS is the tan-
gential component of u) while cells may still have tangential veloc-
ity (vS – 0). This can occur in the case of bone resorption for
example, where material points of the bone interface do not move
laterally but osteoclasts living on the interface may (Lassen et al.,
2017). It is important to note that although the velocity of the tis-
sue surface and the cells may not be distinguishable for modelling
the evolution of the tissue interface and changes in cell density, the
distinction between these velocities can be important for mod-
elling the tissue material properties produced (Fig. 2b, Buenzli
(2016)), as we will illustrate in our application of the model to
bone formation (see Section 3.2).

The tissue interface is denoted by SðtÞ and qðrS; tÞ denotes the
surface density of the tissue-synthesising cells, at position rS on
SðtÞ. We formally define qðrs; tÞ by considering an infinitesimal ele-
ment of surface dS at position rs of SðtÞ, and the number of cells liv-
ing on this area, dN. It is important to choose dS small enough to
capture heterogeneous densities but large enough to contain a suf-
C surrounding dS is illustrated as well as its outward facing normal t̂. (b) One
al components of the surface velocity are annotated in blue and green respectively.
ed in orange. The grey arrows indicate the material trajectories of the surface. Cell
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ficient number of cells to define a continuous surface density of
cells, such that

q ¼ dN
dS

: ð2Þ

We now derive a conservation law for the surface density of
cells living on the evolving surface as the tissue evolves. To do
so, we consider the material derivative of q following the material
trajectories, rSðtÞ, of the surface SðtÞ, defined as

@q
@t

� �
m
¼ d

dt
q rSðtÞ; tð Þ:

The material derivative obeys standard rules of differentiation,
so that differentiating Eq. (2) gives

@q
@t

� �
m
¼ 1

dS
@dN
@t

� �
m
� q
dS

@dS
@t

� �
m
: ð3Þ

The first term on the right hand side of Eq. (3) corresponds to
changes in density induced by changes in the number of cells
residing in dS. The second term on the right hand side of Eq. (3)
describes changes in cell density due to local changes in the area
of the portion of interface dS during its evolution. In the first term,
the number of cells may change due to proliferation, death, or net
transport from the surrounding portions of the surface. The change
in cell number due to proliferation and elimination can be
expressed by ðP � AÞdNðtÞ where P is the per capita proliferation
rate, and A is the per capita cell elimination rate. The cell elimina-
tion rate may model cell death (apoptosis), detachment from the
surface (for example anoikis), or embedment into the tissue. To
describe the influence of tangential motion of the cells on cell den-
sity changes at position rs, we introduce the tangential flux of cells,
JðrS; tÞ. This cell flux is measured with respect to material points of
the surface, which are themselves transported in space. It repre-
sents the number of cells crossing the boundary C of dS per unit
length per unit time (Fig. 3a). The total number of cells leaving
and entering dS is thus calculated by the line integral of the flux
of cells along C, where C is the curve surrounding dS, with unit nor-
mal given by t̂ (Fig. 3a). Therefore, the total rate of change of cell
number in dS is

@dN
@t

� �
m
¼ �

I
C
J � t̂dlþ ðP � AÞdNðtÞ: ð4Þ

Since dS is a small element of surface, the line integral in Eq. (4)
can be written in terms of the surface divergence of J, which can be
formally defined as

rS � J ¼ 1
dS

I
C
J � t̂dl; as dS ! 0 ð5Þ

(Arnoldus, 2006). Thus, in the limit of an infinitesimally small
area of the interface dS, the change in density due to the change
in number of cells in dS in Eq. (3) is given by

1
dS

@dN
@t

� �
m
¼ �rS � Jþ ðP � AÞq: ð6Þ

Eq. (6) represents the fact that the surface divergence of the flux
on a curved manifold is related to local changes in surface density
(Arnoldus, 2006), much like, in the Euclidean space, the divergence
of the flux is related to local changes in volumetric density.

To evaluate the second term of on the right hand side of Eq. (3),
we examine the rate at which dS changes following the material
trajectories of SðtÞ. This depends on the local mean curvature,

j ¼ rS � n; ð7Þ
and is given by
@ðdSÞ
@t

� �
m
¼ dS unjþrS � uSð Þ: ð8Þ
4

where uS is the tangential component of the surface velocity and u
(Fig. 3). Eq. (8) is derived using the equation for the change of a
material area element over time from Batchelor (1967), see A for
details. In our notation, j is defined such that j < 0 indicates con-
cavity and j > 0 indicates convexity.

Substituting Eqs. (6) and (8) into Eq. (3), we find that the evolu-
tion of the surface density of cells following material trajectories of
the interface is governed by

@q
@t

� �
m
¼ �rS � J� qunj� qrS � uS þ ðP � AÞq: ð9Þ

If cell migration includes advection and diffusion, the tangential
flux of cells can be written as

J ¼ qvS � DrS q; ð10Þ
where vS is the tangential velocity of the cells with respect to the
surface and �DrS q corresponds to lateral diffusive flux along the
curved interface where rS is the surface gradient of q, that is the
derivative of q on the manifold SðtÞ (Pressley, 2010). In this case,
the evolution of the surface density of cells, Eq. (9) becomes

@q
@t

� �
m
¼ Dr2

Sq�rS � ðqvSÞ � qrS � uS � qunjþ ðP � AÞq: ð11Þ

It is possible to determine the rate of change of cell density fol-
lowing other trajectories than the material points of the interface.
The evolution equation for cell density takes a particularly conve-
nient form when expressed following trajectories normal to the
interface at each time (Fig. 3). We can relate the derivatives of q
along the normal and material trajectories by

@q
@t

� �
n
¼ @q

@t

� �
m
� us � rSq ð12Þ

where ð@=@tÞn represents the time derivative along the normal tra-
jectories, that is trajectories perpendicular to the surface at all times
(Wong et al., 1996). Substituting Eq. (11) into Eq. (12) gives

@q
@t

� �
n
¼ Dr2

Sq�rS � ðqðvS þ uSÞÞ � qunjþ ðP � AÞq: ð13Þ

The first term on the right hand side of Eq. (13) is the Laplace–
Beltrami operator applied to the surface density of cells and
describes the tangential diffusion of cells along the curved tissue
surface (Berger, 2003). The second term describes the influence
of tangential velocities of the cells vS and of the tissue surface uS,
respectively. The fourth term encapsulates the collective cell
crowding or spreading effect of curvature, and the last term
describes the gain or loss of cells from the group of tissue-
synthesising cells. Eqs. (11) and (13) are general conservation
equations for cells moving by advection and diffusion with respect
to a surface which is itself moving and deforming. In B, we show
that these equations are a generalisation of similar conservation
equations of surface-bound quantities derived in the literature
without tangential advection.

In our applications, for simplicity in the numerical solution, we
will look at two dimensional problems where the interface is
described by a one-dimensional tissue interface, that is, a curve
in two-dimensional space. In these situations, Eq. (13), can be writ-
ten as

@q
@t

� �
n
¼ D

@2

@l2
q� qunj� @

@l
qðvS þ uSÞð Þ: ð14Þ

where @=@l is the derivative with respect to the arc length of the
surface, which is the one dimensional equivalent of the surface
divergence and surface gradient (Redžić, 2001). In the applications
presented in Section 3, we solve the coupled Eqs. (1) and (14),
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where the tangential cell velocity is given various forms and the
ensuing behaviour is analysed.

2.1. Numerical method

Solving Eqs. (1) and (14) requires solving a PDE on a moving
boundary where the boundary motion is coupled with the PDE
solution. To achieve this, we use an efficient hybrid computational
method, the cell-based particle method (CBPM), developed in
Leung and Zhao (2009), Leung et al. (2011) and Hon et al. (2014).
In this method, the interface is represented by Lagrangian marker
particles which are each associated with a grid cell of an underly-
ing Eulerian grid with grid cell length Dx. The grid is used to redis-
tribute the particles along the moving interface to maintain quasi-
uniform sampling. Furthermore, scalar quantities, such as cell den-
sity, can be associated directly with the marker particles (Leung
and Zhao, 2009). This is an advantage over level-set like methods,
which require additional scalar fields similar to the level-set func-
tion to represent surface-bound quantities (Alias and Buenzli,
2019). The interface is evolved over discretised timesteps Dt by
advecting the marker particles according to a velocity field. Local
quadratic least squares interpolation of the interface and of the
surface density of cells is then used to estimate the interface curva-
ture and to evaluate spatial derivatives. The reader is referred to
the Supplementary Information, Leung and Zhao (2009), Leung
et al. (2011), Hon et al. (2014) and Hegarty-Cremer (2020) for more
details.

3. Results

We now apply our mathematical model to cases of tissue
growth where the inclusion of tangential cell advection allows us
to model new biologically relevant situations. First, we validate
the numerical method by solving simplified equations which test
the two migration mechanisms of Eq. (14), that is tangential cell
advection and diffusion, as well as the crowding and spreading
effect of curvature. These solutions are compared with analytic
solutions. Then we model bone pore infilling and explore the gen-
eration of different orientations of collagen fibrils in infilled
osteons, as illustrated in Fig. 1b. We also model bone resorption,
where osteoclasts tunnel through old bone tissue and investigate
the influence of tangential cell velocity for the stability of
travelling-wave-like resorption fronts observed during the resorp-
tion of cortical bone. Finally, we model the apical growth of root
hairs and compare cell membrane trajectories and membrane cur-
vature maps to experimental data (Shaw et al., 2000; Goriely,
2017).

3.1. Validation of the numerical method

To validate our implementation of the CBPM for solving Eq.
(14), we compare numerical simulations to analytical solutions in
a simple setting where the governing equations are non-
dimensionalised. To simplify the problem, the density is decoupled
from the normal speed of the interface, that is we replace Eq. (1)
with un ¼ c, where c is a constant. We also set D ¼ 0 and choose
a circular initial interface with initial radius R0. In this case, the
interface remains a circle at all times and it expands in the normal
direction with radius RðtÞ. We parameterise the circle using the arc
length l and solve for q on the domain �p < l < p. The governing
equations become

dR
dt

¼ c ð15Þ
@q
@t

þ vS
@q
@l

¼ @vS

@l
q� qcj: ð16Þ
5

We assume an arbitrary initial cell density distribution
qðl;0Þ ¼ q0ðlÞ and an initial radius Rð0Þ ¼ R0, and impose periodic
boundary conditions qð�p; tÞ ¼ qðp; tÞ. The solution for RðtÞ is
RðtÞ ¼ ct þ R0; ð17Þ
so that jðtÞ ¼ 1=ðct þ R0Þ. To test the advection term in Eq. (14), we
assume that cells are subject to the tangential cell velocity field
vS ¼ �alwhere a is constant. The governing equation for q becomes
a quasilinear advection equation, which can be solved using the
method of characteristics (Evans, 2010), giving

qðl; tÞ ¼ q0ðleatÞR0eat

ct þ R0
: ð18Þ

We test numerically both dilution of cells without advection,
a ¼ 0, and dilution of cells with advection, a – 0. Fig. 4 compares
this analytical solution to the numerical solution obtained using
the CBPM. In Fig. 4, the initial condition for density is piecewise
constant such that q ¼ 0:5 when p=8 < jlj < 3p=8 and q ¼ 0 else-
where. There is excellent alignment between the analytic solution
in Eq. (18) and the one obtained by the CBPM both with and with-
out tangential velocity. The small discrepancies are due to some
degree of smoothing of the numerical solution, which originates
from the local interpolation step of the CBPM. As expected, if the
numerical discretisation is refined, the match improves. Conver-
gence graphs can be found in the Supplementary Information,
Figure S1.

To validate our implementation of the CBPM for problems that
include diffusive transport, we solve the diffusion equation on a
stationary circle using the CBPM. With a sinusoidal initial condi-
tion q0ðlÞ ¼ 0:5þ 0:5 sinðlÞ and periodic boundary conditions the
analytic solution is given by

qðl; tÞ ¼ 0:5þ 0:5 sinðlÞe�4Dt: ð19Þ
The results of the CBPM are compared with this solution at dif-

ferent times in Fig. 5. Again, there is an excellent agreement
between the solutions.

3.2. Circular bone pore infilling

We now consider the case of a circular bone pore being infilled
by a population of osteoblasts distributed uniformly along the
pore’s perimeter. This can be thought of as the infilling of a cortical
bone osteon seen in a transverse cross section. New bone tissue is
gradually produced such that the initial interface is moving
inwards while retaining a circular shape. As infilling proceeds,
the density increases as a result of the systematic effect of curva-
ture (Buenzli et al., 2014; Buenzli, 2016). We examine three cases
of tangential cell velocity: no tangential velocity, constant tangen-
tial cell velocity, and time-dependent tangential cell velocity such
that cells reverse their motion with respect to the interface at
specific times (Fig. 6). By rotation symmetry, in these simulations,
the density remains uniform at all times, but it is time dependent
due to the shrinkage of the bone surface area as infilling proceeds.
The model parameters in Fig. 6 are based on experimental values,
see Alias (2018) for more details.

The evolution of density and interface position is the same
across the three cases (Figs. 6a–c). However, the cell trajectories
in space are distinct, and this creates different tissue material
properties (Figs. 6d–f). To visualise cell trajectories in Figs. 6, d–f,
cells are stained either in blue or in yellow. This is achieved in
the CBPM by assigning a new scalar property to each marker par-
ticle, which is simply advected along the cell trajectories. In Fig. 6d,
cells have no tangential motion hence their trajectories are moving
along straight radial lines. However, in Figs. 6e and 6f, the cells
move tangentially to the surface, thus their trajectories spiral



Fig. 4. Expanding circle with un ¼ 0:035 and with or without tangential velocity: comparison between CBPM simulations and exact solutions. (a) and (b) Solution obtained
using CBPM with vS ¼ 0 and vS ¼ 0:1l, respectively, with interface shown at regular time intervals (DT ¼ 1). (c) and (d) Exact and CBPM solution density representation over
arc length parameter at t ¼ 10 with vS ¼ 0 and vS ¼ 0:1l, respectively. The discretisation used is Dx ¼ 0:01 and Dt ¼ 0:01.

Fig. 5. Analytic (solid line) and CBPM (points) solutions for diffusion around a
stationary circle. The discretisation used is Dx ¼ 0:01 and Dt ¼ 0:01.
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inwards. The results in Fig. 6f illustrate how one may explain a
change in anisotropic tissue material properties. As collagen fibrils
secreted by osteoblasts may be weaved according to the direction-
ality induced by cell migration, the change in cell trajectory orien-
tation could be used to describe the change in collagen fibre
orientation in lamellar bone and the consequent plywood structure
(as illustrated in Fig. 1b).
6

3.3. Bone resorption in basic multicellular units

We now examine the resorption phase of a bone remodelling
event as another example where the tangential velocity of cells
may be important for the evolution of the tissue interface. In bone
resorption, bone tissue is removed by osteoclasts attached to the
bone surface. The resorption of bone matrix by osteoclasts creates
a cavity which maintains consistent cellular organisation and
shape at the resorption front (Fig. 1c) (Jaworski and Hooper,
1980; Ryser et al., 2009; Buenzli et al., 2010; Buenzli et al., 2011;
Buenzli et al., 2014; Buenzli et al., 2012; Lassen et al., 2017). We
apply our tissue growth model to this situation to show that to
maintain this stable travelling resorption front, directed tangential
osteoclast motion is required (Fig. 1c).

Recent works have suggested that osteoclasts at the front of
basic multicellular units may remain at this position for a long per-
iod of time (Lassen et al., 2017), unlike previous suggestions that
osteoclasts move down the cavity walls (Burger et al., 2003;
Buenzli et al., 2012). We show here, based on simple numerical
simulations, that a stable resorption front requires cell guidance
mechanisms to steer osteoclasts back toward the tip of the cavity
(Fig. 1c). Without such directed motion, the cavity rapidly expands
out and osteoclasts move away from each other (Fig. 7a). Figs. 7b
and 7c show numerical simulations where two different types of
signals are used to steer osteoclasts back toward the tip of the cav-
ity. The first signal modelled can be thought of as haptotaxis, which
is a cell guidance mechanism in response to adhesion gradient on
the substrate generated by cell binding to substrate molecules



Fig. 6. Circular pore infilling results with cell secretion rate k ¼ 7:8125e� 06mm=day and with varying tangential cell velocity. In each figure the initial interface is the
outermost ring and the interface is shown at regular time intervals (DT ¼ 3days). The top figures show density and interface position while the bottom figures show cell
trajectory tracking and interface position with a single cell trajectory annotated in orange. (a) Infilling circle without tangential velocity. (b) Infilling circle with tangential
velocity v s ¼ 0:0025mm=day. (c) Infilling circle with tangential velocity v s ¼ 0:0025mm=day when t < 12:5days and v s ¼ �0:0025mm=day when t P 12:5days. The
location of the change of direction is emphasised in a red dashed circle. The discretisation used is Dx ¼ 0:001mm;Dt ¼ 0:075days.
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(Davies, 2013). The second is chemotaxis, which describes cell
guidance through a chemical gradient (Murray, 2002). These sig-
nals inducing cell tangential velocity could originate frommechan-
ical signals, believed to be important in guiding bone remodelling
processes in bone. Around the tip of the resorption cavity, mechan-
ical stresses are increased (Smit and Burger, 2000; Ruimerman
et al., 2005). Osteocytes, which form a network within bone matrix
are able to sense mechanical deformation and transduce these
mechanical variables into molecular signals. These molecular sig-
nals may then diffuse through bone matrix and in the resorption
cavity, where they are sensed by the osteoclasts as a chemotactic
signal. Alternatively, mechanical gradients along the resorption
cavity walls may be felt directly by osteoclasts as a haptotacic
signal.

Osteoclasts work in close contact with other cells lining the cav-
ity walls, called reversal cells, which may provide haptotactic sig-
nals such as receptor activator of nuclear factor kappa-B ligand
(RANKL) (Martin et al., 2004; Lassen et al., 2017). Here we assume
the haptotactic signal induces a tangential velocity to the osteo-
clasts, vs ¼ al, where l is the arc length measured along the cavity
wall from the tip and a is a positive constant. This is similar to Sec-
tion 3.2 where l > 0 on the upper part of the cavity and l < 0 on the
lower part of the cavity. Using this form of tangential cell velocity,
it can be seen from Fig. 7b, that a stable resorption front is formed.
Between t ¼ 0 and approximately t ¼ 3days, there is a transient
period, where the shape of the resorption front evolves until a bal-
ance between the advection-induced crowding and curvature-
induced spreading of the osteoclasts is achieved. After this tran-
sient, the cell density profile and the cavity front shape is main-
tained as it progresses through the bone tissue.

Alternatively, we model chemotaxis by projecting a velocity
gradient field, such as one created by a gradient of chemical con-
7

centration �brC, onto the cavity surface and taking this projection
as the tangential velocity,

vS ¼ �brC � s: ð20Þ
Indeed, active osteoclasts remain bound to the interface, there-

fore they can only explore the tangential component of the chem-
ical gradient field. This gradient could be due to signalling
molecules derived from mechanically-stimulated osteocytes
embedded in bone matrix, that steer osteoclasts toward specific
areas of bone needing repair (Turner et al., 1994; Marotti, 2000;
Ryser et al., 2009; Lerebous and Buenzli, 2016), such as high mobil-
ity group box protein 1 (HMGB1) (Yang et al., 2008) and colony-
stimulating factor 1 (CSF-1) (Harris et al., 2012), or it may be due
to other chemotactic molecules from the bone microenvironment,
such as monocyte chemoattractant protein-1 (MCP-1/CCL2) (Wu
et al., 2013), and the chemorepulsing sphingosine-1-phosphate
(S1P) (Ishii et al., 2010). For the results presented here, we simply
take �brC ¼ ½0;�2:5 sgnðyÞy2�, which is a velocity field in the y
direction with streamlines pointing towards the centerline of the
cavity. Fig. 7c shows that, similarly to the haptotaxis results, stable
resorption front behaviour is obtained after an adjustment period
between t ¼ 0 and t ¼ 3days.

Both forms of cell guidance signal result in stable resorption
fronts, but they lead to different resorption cavity shapes, indicat-
ing that the type of signal is also important for the resorption front.
The chemotactic signal results in a wider distribution of osteoclasts
around the resorption front compared to the haptotactic signal,
which results in a high concentration of cells on a narrow portion
of the interface. Due to coupling, these differences in cell densities
are reflected in the shape of the resorption fronts. However, the
speed of these resorption fronts is comparable, with the haptotac-
tic signal canal reaching x � 0:345mm at t ¼ 12days and the



Fig. 7. Bone resorption results with different forms of tangential cell advection. The time is shown in days and the spatial unit is mm. The resorption rate is 0:025 mm/day
(k ¼ �0:025). (a) Resorption front behaviour with no tangential velocity pulling cells. (b) Haptotactic signal: arc length dependent tangential velocity. The proportionality
constant between the arc length distance and the tangential velocity is a ¼ 0:6. (c) Chemotactic signal: tangential velocity determined by the projection of an external
gradient field on the interface. The discretisation used is Dx ¼ 0:00375;Dt ¼ 0:02.
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chemotactic signal canal reaching x � 0:34mm at t ¼ 12days.
These speeds align well with expected speeds of resorption cavities
(30–40lm=day) (Jaworski et al., 1981; Lassen et al., 2017). A com-
bination of both signals is also possible, and leads to similar con-
clusions (Supplementary Information, Section S2). The effect of
changing parameter values for the haptotactic and chemotactic
signals is also shown in the Supplementary Information (Figure S2).
The diameter of the simulated resorption cavities falls within the
values stated in the analysis of exerimental resorption cavities by
Lassen et al. (2017). In our simulations, the ‘Level 1’ canal diame-
ters (25lm from the front) are 58.8lm for the chemotaxis and
87.7lm for the haptotaxis, and the ‘Level 2’ canal diameters
(325lm from the front) are around 100lm for both chemotaxis
and haptotaxis. The range of diameters found in Lassen et al.
(2017) for Level 1 is 30–180lm with the mean being 80lm and
for Level 2 it is 110–390lm with the mean being 200lm.

3.4. Root hair growth

We now apply our model to the apical growth of root hairs. Root
hairs have a single tip-growing cell which concentrates secretory
vesicles to the tip of the cell (Miller et al., 1997). To apply our
model to this situation, we take the underlying surface to be the
root hair cell membrane, and the surface density q to represent
the density of secretory vesicles near the root hair cell membrane
(Shaw et al., 2000). We assume that the cell membrane only has a
normal velocity, as described by Eq. 1 and as suggested by experi-
mental observations (Fig. 8c), and that the secretory vesicles have a
8

tangential velocity determined by a haptotatic signal (v s ¼ al). This
tangential velocity allows the position of the vesicles to be main-
tained near the tip of the cell (Shaw et al., 2000). By tracking the
material points of the root hair cell membrane in time in our
model, we see very similar trajectories to those observed in the
growing root hairs analysed in Shaw et al. (2000), where micro-
spheres adhering to the cell membrane were used to track the evo-
lution of its material points (Figs. 8a and c). Without tangential
velocity, the secretory vesicles would also follow these trajectories
and the cell would not grow its tip only in the longitudinal direc-
tion. Furthermore, the curvature of the membrane around the
growing tip reflects the curvature map measured in growing root
hairs (Shaw et al., 2000), where highest curvature if found a small
distance away from the tip centre (Figs. 8b and d). This example
application shows that the addition of tangential velocity to the
tissue growth model allows for multiple different new applications
of tissue growth to be explored.
4. Discussion and conclusion

Tangential cell motion generated by cell guidance mechanisms
is important in several situations of tissue growth, such as growth
occurring at an angle with respect to the tissue surface, and the
generation of anisotropic tissue properties. We have developed a
new mathematical model for tissue growth under collective curva-
ture control to incorporate such directed cell guidance mecha-
nisms by including tangential cell motion. The model is derived
from conservation principles applied to the surface density of



Fig. 8. Apical growth of root hair cells. (a) The numerically simulated root hair cell membrane is shown every 5 min intervals, assuming a secretory rate of 0.1lm/minute.
Material points of the cell membrane are stained in blue or green and their trajectories are highlighted in red. (b) Curvature map along the numerically simulated cell
membranes. (c) Experimental material point tracking results (green) for a 36 min tracking experiment (reproduced with permissions from Shaw et al. (2000)). (d) Curvature
map versus arc distance from the root hair centre over time (reproduced with permissions from Shaw et al. (2000)).
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tissue-synthesising cells. This derivation results in a PDE for cell
density on a moving boundary, which is coupled with the bound-
ary motion. The governing equations are expressed in covariant
form, that is, they are independent of a choice of surface parame-
terisation and coordinate system. We solve the model numerically
using a hybrid front-tracking computational method, the CBPM,
and find good agreement with analytic solutions.

Experimentally, the interaction between curvature control of
tissue growth and directed cell motion is difficult to investigate,
due to the challenge of controlling evolving tissue geometries.
Crowding and spreading effects on rates of tissue progression are
a consequence of space constraints that may be masked by cell
behavioural influences in experiments. The development of math-
ematical models that account for such collective effects can help
disentangle geometric and cell behavioural influences of tissue
growth (Cai et al., 2007; Alias, 2018; Buenzli et al., 2020). The
example of bone tissue resorption developed in this paper
(Fig. 7) illustrates the importance of taking into consideration both
the mechanistic influence of curvature on osteoclast density, and
the tangential motion of osteoclasts with respect to the bone inter-
face. Without accounting for the mechanistic influence of curva-
ture, the presence of a driving force steering osteoclasts toward
the centerline of the resorption cavity would not be highlighted.
Without tangential motion of osteoclasts at the tip of bone resorp-
tion cavities, our results suggest that stable cavity shapes are not
possible.

Our mathematical model describes the joint evolution of the
tissue interface and tissue-synthesising cell density. The example
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of bone pore infilling in Fig. 6 illustrates that directed motion of
cells can generate anisotropies in tissue material properties. While
we did not model tissue generation explicitly, our model may be
coupled with more detailed tissue generation mechanisms that
include creation and destruction of tissue material at moving inter-
faces, as well as tissue maturation mechanisms, based on bulk and
surface mass balance (Cumming et al., 2010; Buenzli, 2015;
Buenzli, 2016). Our model thus provides a basis for further explo-
rations into the relationship between the spatial organisation of
anisotropic tissue material properties, and the dynamics of their
creation. Biological experimental data often takes the form of tis-
sue samples or biopsies representing single snapshots in time of
the state of the tissue. This type of data contains detailed spatial
information about the organisation of a tissue, but it does not offer
a detailed picture of its time evolution. The provision of mathemat-
ical links between features recorded in the state of a tissue and the
dynamics of its formation may allow us to deduce how a tissue has
been produced given an analysis of its material properties. In bone
tissues, for example, several features of bone formation are
recorded, such as osteocyte density (Buenzli, 2015), mineral den-
sity (Buenzli, 2016; Lerebours et al., 2020), and tetracycline labels
and lamellae, which provide information about past location of the
bone interface (Martin et al., 2004; Buenzli et al., 2014; Andreasen
C.M. et al., 2018). This type of information is used in bioarcheology
to estimate archaeological age and activity (Buckberry and
Chamberlain, 2002; Maggiano et al., 2008; Mays, 2010). An analy-
sis of lamellae patterns in bone cross sections could provide more
information about osteoblast behaviour, and provide more insights
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in cases of irregular bone formation patterns such as drifting
osteons (Robling and Stout, 1999; Maggiano, 2012) and bone
disorders.

Discretising PDEs on moving boundaries is a challenging prob-
lem of applied mathematics. In this paper, we restricted our model
to two dimensional applications for simplicity. Clearly, applica-
tions of our model to three-dimensional tissue growth are of inter-
est (Fig. 1) (Guyot et al., 2014; Goriely, 2017; Ambrosi et al., 2019;
Ehrig et al., 2019). Sophisticated techniques have been developed
to simulate the evolution of interfaces in three-dimensional com-
plex systems (Sethian, 1999; Tryggvason et al., 2001; Glimm
et al., 1999; Shin and Juric, 2002; Osher and Fedkiw, 2003; Du
et al., 2006; Leung and Zhao, 2009; Hon et al., 2014). While the
level-let-like method developed in (Alias and Buenzli, 2019) for
curvature-controlled tissue growth may be suitably adapted to
include tangential cell velocity, the CBPM of Hon et al. (2014) used
in this work is also applicable to three-dimensional interfaces.

CRediT authorship contribution statement

Solene G.D. Hegarty-Cremer: Conceptualization, Methodology,
Writing - review & editing, Writing - original draft, Software, Val-
idation, Formal analysis, Investigation, Visualization. Matthew J.
Simpson: Conceptualization, Methodology, Formal analysis, Writ-
ing - review & editing, Supervision, Project administration, Funding
acquisition. Thomas L. Andersen: Resources, Methodology, Formal
analysis, Writing - review & editing, Funding acquisition. Pascal R.
Buenzli: Conceptualization, Methodology, Formal analysis, Writing
- review & editing, Supervision, Project administration, Funding
acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work is supported by the Australian Research Council
(DP180101797, DP200100177), the Centre for Biomedical Tech-
nologies, Queensland University of Technology (QUT), and the
Institute of Health and Biomedical Innovation (IHBI), QUT, as well
as the VELUX foundation (Project No. 25723). We thank the three
anonymous referees for their helpful comments.

Appendix A. Evolution of local surface area

We start with the equation for the rate of change of a vector
area element (dS ¼ ndS) of a material surface from Batchelor
(1967),

@ðdSÞ
@t

� �
m
¼ ðr � uÞdS� ðruÞTdS; ðA:1Þ

where ru is the Jacobian matrix of u. Following Stone (1990), we
take the inner product with n, to obtain an expression for the
change in local surface area, dS, over time,
@ðdSÞ
@t

� �
m
¼ dS r � u� nTðruÞ n� �

: ðA:2Þ

The right hand side of Eq. (A.2) corresponds to subtracting to
the total divergence of u, that is, to the trace of the Jacobian matrix

of u, the normal component of the trace, nTðruÞ n ¼ nTðruÞT n.
This gives the surface divergence operator of u, so that
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@ðdSÞ
@t

� �
m
¼ dSrS � u ðA:3Þ

Decomposing u into its tangential and normal components,
u ¼ unnþ uS, one gets

@ðdSÞ
@t

� �
m
¼ dS rS � ðunnÞ þ rS � uSð Þ ¼ dS unjþrS � uSð Þ ðA:4Þ

where the second equality in Eq (A.4) uses the fact that the surface
divergence of the unit normal vector is the mean curvature of the
surface, j ¼ rS � n (Goldman, 2005), and that the surface gradient
is perpendicular to n, so that n � rSun ¼ 0.
Appendix B. Comparison with the literature

In multiphase physico-chemical systems, similar evolution
equations to Eq. (11) are derived for the surface transport of surfac-
tants at the interface between two phases (Stone, 1990; Wong
et al., 1996; Xu and Zhao, 2003). A difference between such phys-
ical systems and the biological systems we are modelling is the
coupling between the surface velocities and the cell density via
Eq. (1). Cell density affects interface evolution, whereas in multi-
phase physico-chemical systems, surface evolution is usually
assumed to be independent of surfactant density. Furthermore
physico-chemical system models do not consider the tangential
velocity of a surfactant with respect to the surface.

In Stone (1990), surfactant mass balance equations are derived,
however the nature of the time derivative of surfactant density is
unclear (Wong et al., 1996). Time derivatives in Stone (1990)
implicitly represent changes following paths normal to the inter-
face. The surfactant mass balance results obtained in Wong et al.
(1996) make the nature of the time derivative explicit by being
derived using an explicit parameterisation of the interface. The
parameterisation is general in the sense that the coordinate system
is not necessarily bound to the material points of the interface. If
we set vS ¼ 0;A ¼ P ¼ 0 in Eq. (13), we fall back on Eq. (7) from
Stone (1990) following normal trajectories, and Eq. (5b) from
Wong et al. (1996) equation if the timelines of their parameterisa-
tion are taken to be following the normal trajectories of the
surface.

Neither the equations in Wong et al. (1996) nor Stone (1990)
include coupling between the interface speed and density of cells
nor tangential velocity. The derivation in Alias (2017) includes cou-
pling between cell density and interface speed, but the cells have
no tangential advection, that is, their only lateral motion is diffu-
sive. To compare our model with that in Alias (2017), the cell
velocities in Eq. (13) must be chosen such that the cells move along
the normal trajectories of the interface. Therefore, if we set
vS ¼ �uS, the governing equations agree.
Appendix C. Supplementary data

Supplementary data associated with this article can be found, in
the online version, athttps://doi.org/10.1016/j.jtbi.2021.110658.
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