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b CESAME, Université Catholique de Louvain, 4-6 avenue G. Lemaı̂tre, 1348 Louvain-la-Neuve, Belgium
c Laboratoire de Biotechnologies de l’Environnement, INRA, Avenue des étangs, 11100 Narbonne, France
a r t i c l e i n f o

Article history:

Received 12 June 2008

Received in revised form

7 October 2008

Accepted 18 November 2008
Available online 6 December 2008

Keywords:

Chemostat

Competition

Persistence

Slow–fast dynamics
93/$ - see front matter & 2008 Elsevier Ltd. A

016/j.jtbi.2008.11.015

s work has been achieved within the INRA-IN

esponding author.

ail address: rapaport@supagro.inra.fr (A. Rapa

onorary Research Director FNRS, Belgium.
a b s t r a c t

In this work we analyze the transient behavior of the dynamics of multiple species competing in a

chemostat for a single resource, presenting slow/fast characteristics. We prove that coexistence among a

subset of species, with growth functions close to each other, can last for a substantially long time. For

these cases, we also show that the proportion of non-dominant species can be increasing before

decreasing, under certain conditions on the initial distribution.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A popular concept in microbial ecology is the competitive
exclusion principle (CEP) which expresses the fact that when two
or more microbial species grow on the same substrate in a
chemostat, at most one species, i.e. the species that has the best
affinity with the limiting substrate, will eventually survive. This
concept has been first introduced by Hardin (1960) and has been
widely mathematically studied in the literature since (e.g. Aris
and Humphrey, 1977; Stephanopoulos et al., 1979; Armstrong and
McGehee, 1980; Butler and Wolkowicz, 1985). However coex-
istence of multiple species in chemostat is largely encountered in
practical situations. Many efforts have been done to emphasize
mathematically such coexistence behavior, either via periodic
inputs (e.g. Smith, 1981; Butler et al., 1985) or via model rewriting
(e.g. Cenens et al., 2000 that considers the filamentous backbone
theory to emphasize the coexistence of flocks and filaments, or
Lobry et al., 2004; Lobry and Harmand, 2006; Lobry et al., 2006
where the specific growth rate models are also dependent on the
biomass, via in particular ratio dependence).

One should have in mind that the CEP characterizes an
asymptotic property of the system, but does not provide any
information on the transient dynamics, that has not yet been
thoroughly investigated, to our knowledge. In the present paper,
we propose to study the transient dynamics of multiple species
ll rights reserved.

RIA project ‘MERE’.

port).
growing on the same substrate, depending on the initial species
distribution. When some of the species have close growth
functions, on may observe a practical coexistence in the following
sense: even if the species with best affinity will finally be the only
surviving one, the transient stage before the other species have
almost disappeared may eventually be substantially long. It
appears that the different species may coexist for a long time
before the competitive exclusion practically applies. More pre-
cisely, some of species may be first increasing (before finally
decreasing) depending on the initial distribution.

The motivation of considering many species with close growth
functions comes from the observations made by recent molecular
approaches. In microbial ecosystems, thousands of species are
present whereas the number of functions is limited (Curtis and
Sloan, 2004; Pace, 1997). Moreover, the structural instability of
microbial communities shows that same function can be carried
out by several different species (Zumstein et al., 2000). It is also
well known that constant mutation rates lead to occurring new
individuals with different traits and with different but close
growth functions, that can be consider as new species from the
modeling point of view. In chemostat-like systems, the main
function under consideration is usually the degradation of a given
substrate, which is measured by the growth functions of
each species. But only about 1% of the overall micro-organisms
observed in real ecosystems can be isolated and cultivated
in laboratory (Amann et al., 1995). Thus micro-organisms
whose growth functions can be clearly identified represent only
a tip of the iceberg and it is most probable that among a huge
number of species, many should have growth functions close to
each other.

www.sciencedirect.com/science/journal/yjtbi
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Our analysis is based on a slow–fast characterization of the
system dynamics, and provides an estimation of bounds from
below of the times at which each species stops increasing and
therefore starts decreasing. The slow–fast technique consists in
approximating the fast variables by ‘‘quasi-stationary’’ equilibria.
Nevertheless, the validity of such an approximation has to be
checked, proving the attractivity of the slow manifold (see for
instance Tikhonov’s theorem in Khalil, 1996), as we do in this paper.
We believe that a slow–fast analysis of the chemostat model with
many close growth functions has not yet been addressed in the
literature, and brings a new message for biologists.

The paper is organized as follows. Section 2 is dedicated to
some preliminaries about the system dynamics and the CEP.
Section 3 concentrates on the slow–fast description of the system
dynamics. A reduced order model is deduced from the slow–fast
system characterization in Section 4, where the analysis provides
elements for the practical coexistence of multiple species with
closed growth functions. Finally the proposed results are
illustrated via numerical simulations in Section 5.
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Fig. 1. Illustration of Assumption A2 and numbers Z, g.
2. Preliminaries

Let us consider the chemostat model with one limited resource
and m species

_xi ¼ miðsÞxi � Dxi; i ¼ 1; . . . ;m;

_s ¼ �
Pm
i¼1

miðsÞ

yi

xi þ DðSin � sÞ:

8><
>: (1)

The growth functions mið�Þ are assumed to be C1 non-negative
functions such that mið0Þ ¼ 0.

Without any loss of generality, we shall assume in the
following that all yield factors yi have been taken equal to one
(one can easily check that this amounts to replace xi by xi=yi or to
change the unit measuring each stock xi). Let us first recall the
following lemma.

Lemma 2.1. The domain

D ¼ ðx; sÞ 2 Rmþ1
þ

Xm

i¼1

����� xi þ spSin

( )

is invariant and attractive by dynamics (1) in the non-negative cone

Rmþ1
þ .

Proof. When xi ¼ 0, one has _xi ¼ 0. Consequently, the trajectories
cannot cross the axes xi ¼ 0.

When s ¼ 0, one has _s ¼ DSin40. The trajectories cannot

approach the axis s ¼ 0.

From these two facts, one concludes that Rmþ1
þ is an invariant

domain. Consider now the variable

z ¼
Xm
i¼1

xi þ s,

which is solution of the ordinary differential equation
_z ¼ DðSin � zÞ. One immediately concludes that the domain D ¼

Rmþ1
þ \ fzpSing is invariant and attractive. &

Let us now introduce the following assumption.

Assumption A0. Functions mið�Þ are increasing for any i ¼ 1; . . . ;m.

Under Assumption A0, it is usual to define the break-even
concentrations:

liðDÞ ¼
si such that miðsiÞ ¼ D;

þ1 if miðsÞoD for any sX0

����� (2)
for each i ¼ 1; . . . ;m. Let us recall the CEP (first proved for general
response functions in Armstrong and McGehee, 1980; see also
Smith and Waltman, 1985, Theorem 3.2), for which the following
assumption is required.

Assumption A1. There exists an unique i% 2 f1; . . . ;mg such that

li% ðDÞ ¼ min
i¼1;...;m

liðDÞ.

Proposition 2.1 (CEP). Under Assumptions A0 and A1, any trajec-

tory of (1) with initial condition in the non-negative cone such that

xi% ð0Þ40 fulfills the following properties:
�
 the substrate concentration sð�Þ converges asymptotically toward

the steady state value:

s% ¼ minðli% ðDÞ; SinÞ,
�
 the species concentration xi% ð�Þ converges asymptotically toward

Sin � s% and
�
 any species concentration xið�Þ with iai% converges asymptoti-

cally toward zero.

Corollary 2.1. When s%oSin, the convergence given by Proposition

2.1 is exponential.

Proof. One can easily check the mþ 1 eigenvalues of the Jacobian
matrix at the non-null equilibrium are �Do0, �m0

i%
ðs%ÞðSin �

s%Þo0 and miðs
�Þ � Do0 for any iai%. &

The CEP provides information about the asymptotic behavior of
solutions of (1). In the present work, we rather focus on transient
stages of the trajectories of system (1), when some of the
functions mið�Þ are close to each other.

In the following, we shall assume that A0 and A1 are fulfilled
with s%oSin.
3. A slow–fast characterization

We assume that the m species are numbered such that the
following assumption is fulfilled (see Fig. 1 for a graphical
interpretation of this condition).

Assumption A2. There exists n 2 f1; . . . ;mg and positive numbers
Z, g such that

l̄ðDÞpliðDÞ � Z; 8i4n, (3)
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and

mðsÞ4max
i

miðsÞ þ g; 8s 2 l̄ðDÞ;max
i4n

liðDÞ

� �
, (4)

where l̄ðDÞ is the break-even concentration associated to the
average growth function m̄ð�Þ:

m̄ðsÞ ¼ 1

n

Xn

i¼1

miðsÞ.

Under Assumption A2, define the number

� ¼ max
ipn

max
s2½0;Sin �

jmiðsÞ � m̄ðsÞj. (5)

Note that � is positive under Assumption A1 with s%oSin

(functions mið�Þ cannot coincide on the whole interval ½0; Sin�Þ.
Then, consider the C1 functions

niðsÞ ¼
miðsÞ � m̄ðsÞ

�
ði ¼ 1; . . . ;nÞ. (6)

Growth functions mið�Þ can then be expressed as follows:

miðsÞ ¼ m̄ðsÞ þ �niðsÞ ði ¼ 1; . . . ;nÞ.

Let us now consider the total biomass b of the first n species, and
their proportions pi, defined as follows:

b ¼
Xn

i¼1

xi; pi ¼
xi

b
.

Then the dynamics of the variables b, xi ði4nÞ, s and pi ðipnÞ are
given by the following equations:

_b ¼ m̄ðsÞb� Dbþ �
Pn
i¼1

niðsÞpi

 !
b;

_xi ¼ miðsÞxi � Dxi ði4nÞ;

_s ¼ �m̄ðsÞb�
Pm

i¼nþ1

miðsÞxi þ DðSin � sÞ � �
Pn
i¼1

niðsÞpi

 !
b;

_pi ¼ �
Pn
j¼1

ðniðsÞ � njðsÞÞpj

 !
pi ði ¼ 1; . . . ;nÞ:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(7)

Remark 3.1. If n ¼ m, we simply omit, by writing convention,
variables xi in expression (7).

Let us consider the change of time variable t ¼ �t. System (7)
can then be equivalently written as follows:

�
db

dt ¼ m̄ðsÞb� Dbþ �
Pn
i¼1

niðsÞpi

 !
b;

�
dxi

dt ¼ miðsÞxi � Dxi ði4nÞ;

�
ds

dt ¼ �m̄ðsÞb�
Pm

i¼nþ1

miðsÞxi þ DðSin � sÞ � �
Pn
i¼1

niðsÞpi

 !
b;

dpi

dt
¼

Pn
j¼1

ðniðsÞ � njðsÞÞpj

 !
pi ði ¼ 1; . . . ;nÞ:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(8)

When � is small, i.e. the first n growth functions mið�Þ are all
close to the average m̄ð�Þ, system (8) is in the form of ‘‘slow–fast’’
dynamics. The vector

x ¼

b

xnþ1

..

.

xm

s

0
BBBBBBB@

1
CCCCCCCA
corresponds to the ‘‘fast’’ variables, and the ‘‘boundary-layer’’
dynamics is given by the system:

_̃b ¼ m̄ðs̃Þb̃� Db̃;
_̃xi ¼ miðs̃Þx̃i � Dx̃i ði4nÞ;
_̃s ¼ �m̄ðs̃Þb̃�

P
i4n

miðs̃Þx̃i þ DðSin � s̃Þ:

8>>><
>>>:

(9)

Note that system (9) has exactly the structure of (1) but in
dimension m� nþ 2. Denote l̄ð�Þ the break-even concentration
associated to function m̄ð�Þ and s̄ ¼ l̄ðDÞ.

Remark 3.2. Note that one has necessarily s̄Xs%, due to the
monotonicity of the growth functions mið�Þ.

Consider the following hypothesis.

Assumption A3. s̄oSin.

Under Assumptions A1–A3, dynamics (9) admits the equili-
brium

E ¼

Sin � s̄

0

..

.

0

s̄

0
BBBBBB@

1
CCCCCCA

,

which is globally exponentially stable on Rþnf0g �Rm�nþ1
þ (see

Corollary 2.1).
We show now that fixing an arbitrary small neighborhood V

of E and an arbitrary small number t, there exists �̄40 such that
for any �o�̄ the state vector xð�Þ enters and remains in V within
the time t.

Proposition 3.1. Assume that A1, A2 and A3 are fulfilled. For any

initial condition in D with bð0Þ40, there exist positive numbers a, k
and b such that for any �40 sufficiently small, one has

kxðtÞ � Ekpa�þ k e�bt=�; 8tX0. (10)

Proof. Let us fix an initial condition in D with bð0Þ40 and define

vðtÞ ¼
Xn

i¼1

niðsðtÞÞpiðtÞ

along the solution of system (7). Recall from Lemma 2.1 that the
solutions of (7) remain in the bounded domain D, and from
definition (6), one has

max
s2½0;Sin �

jniðsÞjp1; 8ipn,

whatever the value of �. Consequently jvð�Þj is bounded by 1
uniformly in �. Consider variables

m ¼ bþ
X
i4n

xi and z ¼ sþm,

whose time evolutions are solutions of the non-autonomous
dynamics:

_m ¼ ðcðt; z�mÞ � DÞm;

_z ¼ DðSin � zÞ;

(
(11)

where the function cð�Þ is defined as follows:

cðt; sÞ ¼ ðm̄ðsÞ þ �vðtÞÞ bðtÞ

mðtÞ
þ
Xm

i¼nþ1

miðsÞ
xiðtÞ

mðtÞ
.

Note that cð�Þ is bounded by two autonomous functions

c�� ðsÞpcðt; sÞpcþ� ðsÞ; 8tX0; 8s 2 ½0; Sin�
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with

c�� ðsÞ ¼ min m̄ðsÞ � �;min
i4n

miðsÞ

� �
,

cþ� ðsÞ ¼ max m̄ðsÞ þ �;max
i4n

miðsÞ

� �
.

Consider then m�ð�Þ, mþð�Þ solutions of the ordinary differential
equations

_m�ð�Þ ¼ ðc�� ðzðtÞ �m�Þ � DÞm�; m�ð0Þ ¼ mð0Þ,

_mþð�Þ ¼ ðcþ� ðzðtÞ �mþÞ � DÞmþ; mþð0Þ ¼ mð0Þ,

from which one deduces bounds on mð�Þ:

m�ðtÞpmðtÞpmþðtÞ; 8tX0.

Denote s�ðtÞ ¼ zðtÞ �m�ðtÞ and sþðtÞ ¼ zðtÞ �mþðtÞ and note that
variables ðm�; s�Þ and ðmþ; sþÞ are solutions of the dynamical
systems

_m� ¼ ðc�� ðs
�Þ � DÞm�;

_s� ¼ �c�� ðs�Þm� þ DðSin � s�Þ;

(
(12)

_mþ ¼ ðcþ� ðsþÞ � DÞmþ;

_sþ ¼ �cþ� ðsþÞm� þ DðSin � sþÞ:

(
(13)

Systems (12) and (13) are chemostat models of form (1) for a
single fictitious species with monotonic growth function c�� ð�Þ and
cþ� ð�Þ, respectively. Denote l�� ð�Þ, resp. lþ� ð�Þ the break-even
concentrations associated to c�� ð�Þ, resp. cþ� ð�Þ (see Definition 2).
One has clearly lþ� ðDÞol�� ðDÞ and when � is small enough, one
ensures lþ� ðDÞol�� ðDÞoSin. Then Proposition 2.1 gives the asymp-
totic convergence of s�ð�Þ, resp. sþð�Þ toward l�� ðDÞ, resp. l�� ðDÞ,
from any initial condition with mð0Þ40. Corollary 2.1 gives also
the exponential convergence and one can easily check that an
exponential decay is guaranteed uniformly in � sufficiently small.
So, there exist numbers k040 andb040 such that the property

sðtÞ 2 I�ðtÞ ¼ ½l
þ

� ðDÞ � k0 e�b0t ;l�� ðDÞ þ k0 e�b0t�; 8tX0 (14)

is fulfilled for any � small enough. Note that Assumption A2 gives
the equalities

lþ� ðDÞ ¼ l̄ðD� �Þ; l�� ðDÞ ¼ max
i4n

liðDÞ, (15)

when � is small enough, and the existence of T0oþ1 such that
the property

s 2 I�ðtÞ¼)m̄ðsÞXmax
i4n

miðsÞ þ �þ g=2 (16)

is satisfied for any t4T0 and any �og=2 small enough.

From equations (7), the dynamics of the proportion variable

q ¼ b=m can be written as follows:

_q ¼ qð1� qÞ m̄ðsðtÞÞ þ �vðtÞ �
X
i4n

miðsðtÞÞ
xiðtÞP
j4nxjðtÞ

 !
.

Then, from (16) one obtains the inequality

_qðtÞX
g
2

qðtÞð1� qðtÞÞ; 8tXT0

for any � small enough. Note that the hypothesis bð0Þ40 implies

qð0Þ40 and consequently qðtÞ40 for any time t. We then deduce

the exponential convergence of the variable q toward 1, or

equivalently the exponential convergence of the concentrations

xi toward 0 for any i4n, i.e. there exists kx40, bx40 such that

xiðtÞpkx e�bxt ; 8tXT0; 8i4n (17)

for any �40 small enough. We also deduce the existence of a finite

time T1XT0 such that

m̄ðsÞqðtÞ þmin
i4n

miðsÞð1� qðtÞÞXm̄ðsÞ � �; 8s 2 I�ðtÞ; 8tXT1
for any � small enough, which implies the inequality

cðt; sÞXðm̄ðsÞ � �ÞqðtÞ þmin
i4n

miðsÞð1� qðtÞÞXm̄ðsÞ � 2�,

8s 2 I�ðtÞ; 8tXT1

to be fulfilled. Then, the following upper bound on the derivative

of s is obtained, for any t4T1 (and �40 small enough):

_s ¼ �cðt; sÞðzðtÞ � sÞ þ DðSin � sÞp� ðm̄ðsÞ � 2�ÞðzðtÞ � sÞ þ DðSin � sÞ.

Recall now from equations (11) that zð�Þ is solution of the

differential equation _z ¼ DðSin � zÞ, independently of the functions

mið�Þ, whose solution is

zðtÞ ¼ Sin þ ðzð0Þ � SinÞ e
�Dt ; 8tX0. (18)

Consequently, one has

_spðD� m̄ðsÞ þ 2�ÞðSin � sÞ � ðm̄ðsÞ � 2�Þðzð0Þ � SinÞ e
�Dt ; 8tXT1,

from which one deduces the existence of k140 and b140 such

that

sðtÞpl̄ðDþ 2�Þ þ k1 e�b1t ; 8tXT1.

With (14) and (15), one obtains more precise bounds on the

variable s

l̄ðD� �Þ � k0 e�b0tpsðtÞpl̄ðDþ 2�Þ þ k1 e�b1t ; 8tXT1. (19)

Then bounds on the variable b are obtained from (17), (18), for any

tXT1 and any � small enough

Sin � l̄ðDþ 2�Þ � z�ðtÞpbðtÞpSin � l̄ðD� �Þ þ zþðtÞ (20)

with

z�ðtÞ ¼ k1 e�b1t þ ðm� nÞkx e�bxt � ðzð0Þ � SinÞ e
�Dt ;

zþðtÞ ¼ k0 e�b0t þ ðzð0Þ � SinÞ e
�Dt :

(

Finally, continuity of l̄ð�Þ and inequalities (17), (19) and (20) give

together the conclusion (10). &

Let p ¼ ðpiÞi¼1;...;n be the vector of the ‘‘slow’’ variables (i.e. the
distribution among the first n species) and consider the reduced
dynamics:

dpi

dt ¼
Xn

j¼1

ðniðs̄Þ � njðs̄ÞÞpj

0
@

1
Api ði ¼ 1; . . . ;nÞ. (21)

In the next section, we shall study the solutions of system (21) and
compare them with the solutions of the original system (8).
4. The reduced dynamics

The reduced dynamical equations (21) of the ‘‘slow’’ part is
given by the bilinear dynamical equation

dpi

dt
¼
Xn

j¼1

Aijpjpi, (22)

where A ¼ ½Aij� is a skew symmetric matrix with Aij ¼ niðs̄Þ � njðs̄Þ.
Let us consider the generic case with the following assump-

tion.

Assumption A4. For any iaj, one has niðs̄Þanjðs̄Þ.

Without any loss of generality, we can assume that the n species
are numbered such that

nnðs̄Þ4nn�1ðs̄Þ4 � � �4n1ðs̄Þ.
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Let us then define numbers Bi ¼ Ani, where

B14B24 � � �4Bn�14Bn ¼ 0. (23)

Since
P

jpj ¼ 1, one hasX
j

Aijpj ¼
X

j

ðni � njÞpj ¼ �nn þ ni þ
X

j

ðnn � njÞpj ¼ �Bi þ
X

j

Bjpj,

and one can write equivalently the dynamical equations (22) as
follows:

dpi

dt
¼ �Bi þ

Xn

j¼1

Bjpj

0
@

1
Api; i ¼ 1; . . . ;n. (24)

Remark 4.1. Under Assumptions A3 and A4, one has lnðDÞ ¼ s%

for � small enough. In accordance with the CEP, the n-th species
asymptotically wins the competition because it has the (unique)
smallest break-even concentration.

Under Assumption A4, system (24) admits exactly n distinct
equilibria, which are exactly the vertexes of the simplex:

S ¼ p 2Rn
þ

Xn

i¼1

����� pi ¼ 1

( )
.

One can easily check that S is invariant by dynamics (24) and the
eigenvalues of the Jacobian matrix at an equilibrium p̄ 2S such that
p̄i ¼ 1 are Bi and Bj � Bi for jai. Consequently one obtains
immediately the following properties for the dynamics defined on S:
�
 when p̄1 ¼ 1, p̄ is a source,

�
 when p̄n ¼ 1, p̄ is a sink and

�
 when p̄i ¼ 1 with i 2 2; . . . ;n� 1, p̄ is a saddle point with a

stable manifold of dimension i� 1 contained in the face:

Fi ¼ p 2S
Xi

j¼1

������ pj ¼ 1

8<
:

9=
;.

Note that solutions qið�Þ of dynamics _qi ¼ �Biqi ði ¼ 1; . . . ;nÞ
fulfill ðd=dtÞq̄i ¼ ð�Bi þ

P
jBjq̄jÞq̄i with q̄i ¼ qi=

P
jqj. We deduce

that the solutions of system (24) are given by the analytical
formula:

piðtÞ ¼
pið0Þ e

�BitPn
j¼1pjð0Þ e

�Bjt
; i ¼ 1; . . . ;n. (25)

Let p% be the equilibrium ð0; . . . ;0;1Þ0 2S. Its stability property
is given by the lemma.

Lemma 4.1. For any initial condition pð0Þ 2S with pnð0Þ40, the

solution pð�Þ of the reduced dynamics (24) converges exponentially

toward the equilibrium p%.

Proof. From equations (25), one has pnðtÞ ! 1 and piðtÞ ! 0 for
any i ¼ 1; . . . ;n� 1, when t!þ1. The linearized dynamics of
(22) about p% is simply _pi ¼ �Bipi ði ¼ 1; . . . ;nÞ. Consequently,
each component pi for ion converges exponentially toward 0 and
pn ¼ 1�

P
ionpi converges exponentially toward 1. &

Let us now compare the distribution pð�Þ of the reduced dynamics
(22) with p�ð�Þ of the original dynamics (8), when � is small. When
xnð0Þ40, we already know from Corollary 2.1 and Lemma 4.1 that
both pð�Þ and p�ð�Þ converge exponentially toward p%. We give now a
result that compares these distributions during their transient stage.

Corollary 4.1. Assume that A3 and A4 are fulfilled. For any initial

condition of (1) in D with xnð0Þ40 and any T40, there exists �̄40
such that

�o�̄) pðtÞ � p�ðtÞ ¼ Oð�Þ uniformly for t4T. (26)
Proof. Recalling the facts:
1.
 the equilibrium Ē of the boundary layer dynamics (9) is
exponentially stable (Corollary 2.1) and
2.
 the equilibrium p% of the reduced dynamics (22) is exponen-
tially stable (Lemma 4.1),

the Tikhonov’s theorem (see for instance Khalil, 1996, Theorem
9.4) gives the conclusion (26) for any initial condition close to
ðĒ; p%Þ in Rm�n

þ �S, and then extended to larger initial conditions
by Proposition 3.1. &

Consider now the time function:

pðtÞ ¼
Xn

j¼1

BjpjðtÞ.

The transient behavior of the solutions of (7) can be characterized
by pð0Þ, as described by the following result.

Proposition 4.1. Under Assumption A4, for any initial condition pð0Þ
in S, the solution pð�Þ of (7) fulfills the following properties:
�
 for indexes i such that pð0ÞpBi, pið�Þ is decreasing and
�
 for indexes i such that pð0Þ4Bi, pið�Þ is increasing up to Ti such

that piðTiÞ ¼ Bi and is then decreasing. Furthermore, one has

TiXTi ¼
1

B1
log

pð0ÞðB1 � BiÞ

BiðB1 � pð0ÞÞ
. (27)

Proof. One has immediately

dp
dt
¼ �

Xn

j¼1

B2
j pj þ

Xn

j¼1

Bjpj

0
@

1
A2

¼ �
Xn

j¼1

fðBjÞpj þ f
Xn

j¼1

Bjpj

0
@

1
A,

(28)

where fð�Þ is the square function. fð�Þ being a convex function, one
deduces that dp=dtp0. The function t/pðtÞ is non-increasing.
Note that one has also

dpi

dt
¼ ð�Bi þ pðtÞÞpi.

Consequently, the function t! piðtÞ is always decreasing when
pð0ÞpBi. Otherwise, t! piðtÞ is increasing up to Ti such that
pðTiÞ ¼ Bi and then decreasing.

From (28), one can derive the inequality:

dp
dt
¼ p2 � B1pþ

Xn

j¼1

BjpjðB1 � BjÞXp2 � B1p,

and deduce an estimation from below of the function pð�Þ:

pðtÞXp�ðtÞ; tX0,

where p�ð�Þ is solution of the differential equation:

dp
dt

�

¼ p�2 � B1p�; p�ð0Þ ¼ pð0Þ.

It is straightforward to check that p�ð�Þ is given by the following

expression:

p�ðtÞ ¼ pð0ÞB1

pð0Þ þ ðB1 � pð0ÞÞeB1t
. (29)

Let us fix an initial condition p1ð0Þ; . . . ; pnð0Þ and consider i0 the

smallest index i ¼ 1; . . . ;n such that Biopð0Þ. Note that inequality

B14pð0Þ is fulfilled exactly when i0pn� 1. For i0pn� 1, the
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following bound from below of time Ti is obtained from (29):

TiX
1

B1
log

pð0ÞðB1 � BiÞ

BiðB1 � pð0ÞÞ
: &

Remark 4.2. Note that t/p1ðtÞ is always a non-increasing
function, and the function t/pnðtÞ is always non-decreasing.

Let i0 be the smallest index in 1; . . . ;n such that Biopð0Þ. One
has necessarily Ti0oTi0þ1o � � �oTn�1. From expression (27), one
can deduce the following qualitative properties:
(i)
D

when pð0Þ is close to B1 (i.e. species 1 is majority at initial
time), all the species concentrations, except for the species 1,
are increasing for a long time and
(ii)
 when pð0Þ is close to Bi with i41, the concentrations of
species j for jpi are rapidly decreasing.
0.3

0.4

0.5

0.6
5. Simulation results

Numerical simulations have been performed in order to
illustrate the concepts developed here above. We have considered
10 species (i.e. m ¼ 10) among two families, whose specific
growth rates are depicted in Fig. 2. For each family, specific
growth rates are been chosen closed to each other, in terms of
Monod analytic functions

mi ¼
mmax;i s

Ks;i þ s
, (30)

where mmax;i and Ks;i are the maximum specific rate ðh�1
Þ and the

affinity constant (g/l) associated to each species xi, respectively.
Numerical values of the parameters are given in the following
table.
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0.1
mmax;i
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
Ks;i
 1.02
 1.01
 1
 0.99
 0.98
 2.04
 2.02
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 1.98
 1.96
1
0.0

2 3 4 5 6 7 8 9 10

Fig. 3. Initial distribution of the biomass.
The operating conditions of the chemostat have been selected
as follows:

D ¼ 0:1 h�1; sin ¼ 5 g=l. (31)
5.0
Moreover, we have considered, for the sake of simplicity, yield
coefficients yi equal to 1. The next table gives the numerical values
of the break-even concentrations defined in (2).
0
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10
 20
 30

Fig
40
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60
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70
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80
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Species 1
 2
 3
 4
 5
 6
 7
 8
 9
 1
0
liðDÞ 0
.2550 0
.2525 0
.2500 0
.2475 0
.2450 0
.5100 0
.5050 0
.5000 0
.4950 0
.4900
The CEP (Proposition 2.1) tells us that species 5 asymptotically
wins the competition. Let us consider the following non-uniform
initial distribution of the biomass (see Fig. 3).
Species 1
 2
 3
 4
 5
 6
 7
 8
 9
 1
0
xið0Þ 0
.1015 0
.0068 0
.0076 0
.0081 0
.0085 0
.0087 2
.4357 2
.0298 0
.0091 0
.0092
The simulation given in Fig. 4 shows that the total biomass b

and the substrate s get very close to their steady state in about 100
time steps. If one looks at the biomass distribution between both
families, one faces the classical CEP situation. The first family wins
100
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Fig. 5. Mid-run simulation.
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Fig. 6. Mid-run simulation.
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Fig. 7. Long run simulation.
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Fig. 8. Species distribution among the first family (reduced dynamics in dashed

line).
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Fig. 9. Time evolution of the Simpson’s index.
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the competition over the second one (see Fig. 5), and less than 200
time steps is required for both biomass to reach an almost
stationary state. If one looks now at the individual concentrations
of each species on the same time interval, one might believe that
species 1 is the winner (see Fig. 6). But it turns out that more than
10 times of this interval length is necessary for the species 5 to
significantly takes the leadership over all the other species (see
Fig. 7).

For n ¼ 5, one can easily compute l̄ ¼ 0:24996 and check that
Assumption A2 is fulfilled with Z ¼ 0:24. Furthermore, one has

� ¼ 2:5� 10�3.

We illustrate in Fig. 8 that reduced dynamics whose solution given
by the explicit formula (25) is a good approximation of the
dynamics of the species distribution among the first family.

As predicted by the theory, the proportions pið�Þ are increasing
and then decreasing, or monotonic with respect to time. The next
table shows that the lower estimates on times Ti, provided by
formula (27), give a relevant information, to be compared to the
times that maximizes the proportions of each species (computed
on the original dynamics (7)).
Species
 1
 2
 3
 4
 5
Ti
 �1
 188
 531
 874
 þ1
argmaxtpiðtÞ
 0
 231
 684
 1161
 þ1
Finally, we have represented the time evolution of the
Simpson’s diversity index

sðtÞ ¼ 1�
X10

i¼1

p2
i ðtÞ,
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which is commonly used to measure the diversity of an
ecosystem. Fig. 9 shows its non-monotonic behavior, that can
be explained in the present situation by the exchange of
leadership between species 5 and 1 that increases temporarily
the diversity, and the relatively long time before approaching
zero.
6. Conclusions

In this paper we have studied the behavior of multiple species
competing for the same substrate in a chemostat, when initial
conditions can substantially modify the transient behavior of the
system. We have shown in particular by considering slow–fast
dynamics that intermediate species can survive for a substantially
long time before starting to decrease and leave the room for the
species that has the best affinity with the nutrient. Moreover, we
give the explicit solution of a reduced dynamics, that can be easily
computed even when the size of the system is too large to be
solved numerically, and that gives a good prediction of the time
evolution of the distribution between species. This formalizes the
practical situation when coexistence of multiple species can last
for long time before substantial decrease of the non-dominant
species takes place. The results have been illustrated in numerical
simulation.
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