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The study of animal growth is a longstanding crucial topic of theoretical biology. In this paper we

introduce a new class of stochastic growth models that enjoy two crucial properties: the growth path of

an individual is monotonically increasing and the mean length at time t follows the classic von

Bertalanffy model. Besides the theoretical development, the models are also tested against a large set of

length-at-age data collected on Atlantic herring (Clupea harengus): the mean lengths and variances of

the cohorts were directly estimated by least squares. The results show that the use of subordinators can

lead to models enjoying interesting properties, in particular able to catch some specific features often

observed in fish growth data. The use of subordinators seems to allow for an increased fidelity in the

description of fish growth, whilst still conforming to the general parameters of the traditional von

Bertalanffy equation.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The modelling of growth and the analysis of intra-population
pattern of size variability through time are the central topics
in animal population biology, since the internal size structure
of populations can have a decisive influence on the population
dynamics (DeAngelis et al., 1993; Imsland et al., 1998; Uchmanski,
2000; Kendall and Fox, 2002; Fujiwara et al., 2004). In general, the
von Bertalanffy growth function (VBGF, von Bertalanffy, 1957)
is the best acknowledged and used relationship to describe the
growth of fish and other animals. This equation states that the size
of an individual increases in time according to the equation

xt ¼ L1 1� e�kðtþt0Þ
� �

, (1.1)

where L1 is the extremal length that is attained as time goes to
infinity, �t0 is the time of conception, at which the size should be
0 and k is a parameter that gives the speed of the process:
the larger the value of k, the quickest the growth. The VBGF is
most commonly used as a descriptive model of size-at-age
data (Essington et al., 2001). Nevertheless, Eq. (1.1) describes the
relationship between age and mean length of a population,
ll rights reserved.
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whereas the variability among individuals of the same age
(e.g. the variance or even the distribution of each cohort) is not
included.

The popular assumption of Gaussianity (Imsland et al., 1998) is
clearly a first (rough) approximation in this direction. A natural
approach to the problem of determining the appropriate form of
the probability distribution for a population at a given time t is to
model first the growth process of the individuals (individual-
based models, IBM). Nowadays, in both ecological (Arino et al.,
2004), evolutionary (Conover and Munch, 2002; Ernande et al.,
2004) and management (Caswell, 2001) contexts, one of the
challenges of the researcher is to model how the size of an
individual changes in time and to deduce from the growth model
which kind of probability distribution models the size of fish at a
given age (Lv and Pitchford, 2007; Fujiwara et al., 2004).

A suitable model of growth should account for both individual
and environmental variability. In fish, as in other animals, the first
source of variability is rooted in the physiological processes and
is the net result of two opposing processes, catabolism and
anabolism (von Bertalanffy, 1938). The inter-individual variability
in growth is the result of several internal (genetic) and external
(environmental) factors which affect these physiological pro-
cesses. In fact, whilst each individual is born with a personal
genetic architecture which primarily determines his growth
profile, a number of physical and biological factors, such as water
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temperature (Sumpter, 1992), dissolved oxygen (Brett, 1979),
photoperiod (Imsland et al., 2002), and the availability of
appropriate food sources (Rilling and Houde, 1999), have been
shown to affect growth rates. In order to take into account these
aspects as well as individual variability, a class of IBM was
developed (Lv and Pitchford, 2007; Sainsbury, 1980; Mulligan and
Leaman, 1992; Wang and Thomas, 2003; Imsland et al., 2002;
Wang, 1999; Gudmundsson, 2005).

These models can be classified into two main categories.
The first comprises those which consider the inter-individual
variability as a stochastic factor to be added to the general growth
curve of the population. The distribution of this factor is the same
for all the individuals. In the most recent approaches of this kind
(Gudmundsson, 2005; Lv and Pitchford, 2007; Wang, 1999) some
individual-based stochastic models of growth are proposed using
a stochastic differential equations. These models take the general
form

dLt ¼ f ðLt ; tÞ þ aðLt ; tÞdBðtÞ. (1.2)

Here Lt is the size at time t, f ðLt ; tÞ characterizes the deterministic
intrinsic growth (drift coefficient) of the individual (the same for
all individuals); aðLt ; tÞ gives the magnitude of the random
fluctuations (diffusion coefficient) and BðtÞ is a standard Brownian
motion, or Wiener process, which is commonly used to model a
variety of background and environmental fluctuations in physical,
financial and biological contexts (see, e.g. Karlin and Taylor, 1981).

The stochastic component of these models is intended to
account for both the environment and the inter-individual
variability. It should be stressed, however, that (as already
remarked in Gudmundsson, 2005) the solution of an equation as
Eq. (1.2) cannot be monotonically increasing and therefore
appears to be unsuitable to model the evolution of the size
of an individual. Stochastic models like the one of Eq. (1.2)
are conversely well suited in order to model quantities, as prices
in financial markets, that are characterized by an oscillating
and therefore non-monotonic behaviour. This aspect seems to
be a drawback for a growth model of several animals like fish. In
fact, for fish and other vertebrates, the physiological mechanism
of growth in length (i.e. the addition of bone material to the axil
unit of the skeleton that is the vertebra) leads to a pattern in
which the size of an individual is necessarily increasing in time
(Weatherley and Gill, 1987). Let us point out that there exist no
Gaussian process which is increasing. Therefore, modelling size
variability through an individual growth process cannot give rise
to a Gaussian distribution.

Closely related to the models (Eq. (1.2)) are those introduced in
Gudmundsson (2005) where it is the derivative of the growth
process that is the solution of a stochastic equation. It is possible
in this way to obtain a stochastic process that is increasing. These
models are interesting and deserve to be tried by testing against
real data. Remark, however, that the mean size at time t of a
population following such a model does not follow a VBGF.

The second category of stochastic models suggested so far
comprises non-deterministic models in which the individuals of a
fish population have different parameters of the VBGF. In this way,
each individual has its own triplet ðL1; t0; kÞ, which is retained
throughout its life (Sainsbury, 1980). Considering the length to age
relationship, the length Xt at age t of the ith individual with the
parameters triple ðLi; t0;i; kiÞ is given by

Xt;i ¼ Li 1� e�kiðtþt0;iÞ
� �

. (1.3)

This model displays a monotonic behaviour and considers the
inter-individual variability of growth parameters, but does not
account for the randomness coming from the environment, which
can be seen as a limitation of the model.
Finally, it should be considered that individual growth is a
complex energetic process. Individual length increases only when
enough energy from food is available for growth. On the other
hand the lack of food does not usually lead to a reduction in
length, because organisms can lose body mass without shrinking
in length (Kooijman, 2000) which also because of the presence of
a skeleton. Energy may also be allocated to storage for future use,
producing ‘‘memory’’ in growth dynamics. Individual organisms
encounter and ingest food, which is then assimilated. Assimilated
food is transformed into reserve material such as protein and fat.
A fixed fraction of the energy from the reserve is used for both
metabolic maintenance and growth, and the rest is used for
reproduction. Looking at the length of an individual, we suggest
that this process determines a pattern in which periods of no
growth (determined by scant energy inlet) are separated by
periods of growth. If the periods of growth are short, the growth
process could be well described by a model allowing for
discontinuities, i.e. for instantaneous increases of the length
(jumps). This idea is consistent with several observations reported
for fish in general and for the species we are going to study
(Hinrichsen et al., 2007).

In this paper we introduce two classes of stochastic models
of growth that attempt to overcome the drawbacks pointed out
above. The main idea developed in this paper is to model the
growth process as the solution of a stochastic equation of the form

dXt ¼ ðL1 � Xt�ÞdZt ,

where ðZtÞt is a subordinator. These are a class of stochastic
processes that are strictly increasing and the solution ðXtÞt turns
out to be increasing also. These models enjoy a certain number of
desirable features, namely
�
 they take into account both the individual and the environ-
mental sources of randomness;

�
 they are increasing;

�
 the mean size at time t follows a VBGF.

In Section 2 we make a quick review on the topics of
subordinators upon which our models are built. In Sections 3
and 4 some models are developed, attempting to answer to the
points exposed above. Finally in Section 6 we apply the proposed
models to a large set of length-at-age data of Atlantic herring
Clupea harengus, presented in Section 5.
2. Subordinators

A subordinator is a stochastic process ðZtÞt such that
�
 Z0 ¼ 0;

�
 its paths are right continuous and increasing almost surely;

�
 has independent and stationary increments.

This means in particular that the distribution of Ztþh � Zt is
independent of t for every hX0 and that Zt � Zs and Zv � Zu are
independent r.v.’s for uovpsot. Also the increments Ztþh � Zt

must be stationary, in the sense that their distribution depends
on h only and not on t. The characterization of such processes
(that are particular instances of Lévy processes) has received
much attention in time and it is characterized in terms of the
Laplace transform of Zt . It is immediate that if

MtðyÞ ¼ Eðe�yZt Þ; yX0 (2.1)

then M is of the form

MtðyÞ ¼ etfðyÞ, (2.2)



ARTICLE IN PRESS

Fig. 1. The graph of the Lévy density h of Eq. (4.7) for a ¼ 300, l ¼ 1:2. The

intensity of small jumps diverges at 0 and h vanishes at 1, so that large jumps are

unlikely or forbidden.
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where the exponent f is characterized by the Lévy–Khintchin
formula (see for the subjects developed in this section and in the
next ones, e.g., Cont and Tankov, 2004; Sato, 1999). More precisely,
the Lévy–Khintchin formula for subordinators states that

fðyÞ ¼ �ygþ
Z þ1

0
ðe�yx � 1Þn ðdxÞ,

where gX0 and n, the Lévy measure, is a positive measure on Rþ

such thatZ þ1
0

x

1þ x
n ðdxÞoþ1. (2.3)

Intuitively a subordinator increases as the superposition of a
deterministic evolution t! gt and of a stochastic process which
only makes jumps. These are made at times governed by a Poisson
process. More precisely, if 0oaob, then nð½a; b�Þ is the intensity of
the Poisson process of the jumps whose size is larger than a and
smaller than b. This means that if t is the (random) time at which
the jump occurs, then the path has, at t, a left limit Xt� and a right
limit Xtþ that are different, with Xt�oXtþ. For our purposes we
shall therefore be much interested in subordinators whose Lévy
measure is large to near 0 and gives a small mass only away
from 0. The resulting process would hence be characterized by
many very small jumps.

As every Lévy process, the independence and stationarity
properties of the increments imply that if Zt has a finite mean,
then

EðZtÞ ¼ mt

for some real number m and if it has a finite variance then

VarðZtÞ ¼ s2t

for some s2
X0.

It is not possible for a general Lévy measure to compute
explicitly the Laplace transform and/or the density at time t of the
associated subordinator. The next examples introduce some
families of subordinators of interest for which these features can
be determined.
�
 The Gamma process, where the distribution of Zt follows
a Gðat; lÞ distribution. Recall that such a distribution has a
density

f ðxÞ ¼
lat

GðatÞ
xat�1 e�lx; x40

and f ðxÞ ¼ 0 for xp0. Of course the increment Zt � Zs, having
the same distribution as Zt�s, has a Gðaðt � sÞ; lÞ distribution.
Its Laplace transform is

MtðyÞ ¼
l

lþ y

� �at

(2.4)

so that fðyÞ ¼ �a log l=lþ y. From the well-known properties
of the Gðat; lÞ distribution the statistical indices of interest of a
Gamma process are: mean ¼ at=l, variance ¼ at=l2, skewness
¼ 2=

ffiffiffiffiffi
at
p

and kurtosis ¼ 3þ 6=ðatÞ.
Here the Lévy measure is

n ðdyÞ ¼
a
y

e�ly dy.

This process therefore gives a high intensity to small jumps
(see Fig. 1).

�
 The inverse Gaussian processes, where Zt is defined as the first

time at which a process of the form
ffiffiffiffirp Bs þ bs crosses level t.

Here ðBtÞt denotes a standard Brownian motion and r; b40. Its
density at time t is, for x40,

f tðxÞ ¼
t ebt=r

ð2prÞ1=2x3=2
exp �

b2

2r x�
t2

2rx

 !
.

It depends on the positive parameters b;r. Its Laplace
transform at time t is

MtðyÞ ¼ exp �t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

r2
þ

2y
r

s
�

b

r

0@ 1A0@ 1A,

from which one can derive the expression of the statistical
indices of interest: mean ¼ t=b, variance ¼ rt=b3, skewness ¼
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðtbÞ

p
and kurtosis ¼ 3þ 15r=ðtbÞ.

The Lévy measure is

n ðdyÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pry3
p e�ð1=2rÞb2y dy. (2.5)

We stress that both the Gamma and the inverse Gaussian
process have a Lévy measure that gives much weight to small
jumps and that decreases fast at infinity.

�
 The a-stable process, 0oao1, whose Laplace transform is

MtðyÞ ¼ e�cyat .

For these processes an explicit expression for the density
does not exist, unless a ¼ 1

2. In this case, for c ¼
ffiffiffi
2
p

, the density
is, for x40,

f ðxÞ ¼
t

ð2pÞ1=2x3=2
e�t2=2x.

Notice that as x!þ1 the density decreases very slowly
and, in particular, both expectation and variance are infinite.
Also the Lévy measure decreases very slowly at infinity,
therefore allowing very large jumps. We shall see that this
model is not well suited for the growth phenomena of interest
and we mention it only for reasons of completeness.

To the previous examples one should add the deterministic
increasing process: Zt ¼ gt. Recall also that the sum of indepen-
dent subordinators is a subordinator itself.
3. Modelling by time change

A first growth model using subordinators can be obtained by
time change. We simply consider that the size of the fish Xt at
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time t is given by

Xt ¼ ZAt
,

where Z is the subordinator and A is the von Bertalanffy type
function

At ¼ 1� e�kðtþt0Þ
� �

.

If the subordinator Zt has finite mean, then for some real
number m

EðXtÞ ¼ m 1� e�kðtþt0Þ
� �

and the means follow therefore a VBGF, where m plays the role of
L1 (recall that m ¼ EðZ1Þ).

If in particular Z is a Gamma process, then m ¼ a=l. It is also
immediate that, if Zt has finite variance,

VarðXtÞ ¼ s2 1� e�kðtþt0Þ
� �

(3.1)

for some s240 (s2 ¼ a=l2 if Z is a Gamma process). Recall that
the variance is always increasing in t. This fact makes that the
models obtained by time change of a subordinator are rather rigid
and are in particular unable to account for a non-monotonic
behaviour of the variance, as is often observed in data.
Fig. 2. Behaviour of the variance (Eq. (4.10)) for a ¼ 10, t0 ¼ 0:05 and various

values of l and g. Here we assumed that L1 is a random variable, independent of Z,

with mean ¼ 300 and variance ¼ 60. Note that the trend can be both monotonic or

exhibit one bump.
4. Modelling by Doléans exponential

A more interesting model of growth is given by the process
ðXtÞt which is obtained as the solution of the stochastic equation

dXt ¼ ðL1 � Xt�ÞdZt ,

X�t0
¼ 0, (4.1)

where ðZtÞt is a subordinator. Here �t0 denotes the time of con-
ception, at which the size must be considered equal to 0. If the
subordinator Z has a drift g equal to 0, the solution of Eq. (4.1) is a
process that remains constant between the jumps of Z, whereas it
has an increment of size

ðL1 � Xt�ÞDZt

whenever Z has a jump of size DZt . The quantity Xt� denotes the
value of X just before the jump that occurs at time t. If we define
Yt ¼ L1 � Xt , then Y is the solution of

dYt ¼ �Yt�dZt

Y�t0
¼ L1. (4.2)

Therefore Y is equal to the Doléans exponential of the Lévy
process �Z multiplied by L1. The Doléans exponential of the Lévy
process is a subject that has received much attention and it is
possible to derive an explicit solution of Eq. (4.2), at least if one
makes the assumption that the process Z cannot make jumps
larger than 1 (which is a quite reasonable assumption, in our
case). Under this assumption the solution of Eq. (4.2) is

Yt ¼ L1 e�
eZtþt0 , (4.3)

where eZ is another subordinator whose Lévy measure en and drift eg
are obtained from n and g in an explicit way. More precisely en is
the image of n through the application x! logð1þ xÞ and eg ¼ g.
The solution of Eq. (4.1) is therefore

Xt ¼ L1ð1� e�
eZtþt0 Þ. (4.4)

It is easy to compute the mean EðXtÞ, as the quantity Eðe�
eZtþt0 Þ is

the Laplace transform at y ¼ 1 of the r.v. Ztþt0
, which is easy to

compute thanks to Eqs. (2.1) and (2.2):

EðXtÞ ¼ L1ð1� e�ðtþt0Þ
efð1ÞÞ. (4.5)
Hence also for this model whatever the subordinator that is
chosen (provided its Lévy measure vanishes outside [0,1]), the
mean of the solution of Eq. (4.1) follows a von Bertalanffy-type
equation.

Note 4.1. Recall that the VBGF (Eq. (1.1)) is the solution of Eq. (4.1)
when Z is the deterministic subordinator Zt ¼ kt. Therefore
Eq. (4.1) appears as a natural stochastic extension of the VBGF.

Remark also that some models already present in the literature

are particular instances of Eq. (4.1). It is the case of model (3.4) of

Lv and Pitchford (2007) where the authors actually consider

Zt ¼ rt þ sBt . We point out again that the solution to Eq. (4.1) in

this case does not have paths which are monotonically increasing.

The solution (Eq. (4.4)), however, has a drawback as a growth
model because Xt ! L1 as t!þ1 (unless Zt � 0). This implies
that VarðXtÞ ! 0 as t!þ1, which is not realistic, as it would
imply that all individuals should reach the same limiting size as t

increases. In order to overcome this problem it seems natural to
assume that the extremal size L1 is itself a random variable, thus
accounting for the individual variability. In this way the two
sources of randomness, L1 and ðZtÞt , appearing in Eq. (4.1) have
the meaning of modelling the random individual variability and
the environmental randomness, respectively. It is therefore
natural to assume that L1 and ðZtÞt are independent. In this case
the formula (Eq. (4.5)) remains valid if one replaces L1 by EðL1Þ.
Therefore the expectation EðXtÞ still follows a von Bertalanffy-type
pattern as in Eq. (4.5), but with L1 replaced by EðL1Þ. Similarly it is
easy to compute the variance which is given by

VarðXtÞ ¼ Varð1� e�
eZtþt0 ÞE½L2

1� þ VarðL2
1ÞE½1� e�

eZtþt0 �2

¼ ðe�ðtþt0Þ
efð2Þ � e�2ðtþt0Þ

efð1ÞÞE½L2
1�

þ VarðL2
1Þð1� e�ðtþt0Þ

efð1ÞÞ2. (4.6)

Notice that VarðXtÞ appears as the sum of two terms. As bothefð1Þ and efð2Þ are positive, the first term vanishes at �t0 and at
þ1 and it is easy to see that (unless Zt � 0) it increases at first
and then decreases. The second one conversely is increasing in t.
Therefore the variance of Xt , according to different values of the
parameters, can exhibit two possible behaviours:
�
 increasing or

�
 first increasing and then decreasing.
See Fig. 2 for an illustration of this typical behaviour.
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Fig. 3. The graph of the density (Eq. (4.11)) for different values of the age. The

parameters here are a ¼ 1:3, l ¼ 15, g ¼ 0:1, t0 ¼ 0:072 and L1 ¼ 297:2.

T. Russo et al. / Journal of Theoretical Biology 258 (2009) 521–529 525
The non-monotonic behaviour of the variance is an interesting
feature that is enjoyed also by some of the models proposed by
Gudmundsson (2005) and Lv and Pitchford (2007). This is not
surprising as the computation above only makes use of the fact
that ðXtÞt is the solution of Eq. (4.1) with a driving process ðZtÞt

which is a Lévy process, possibly a Brownian motion as it happens
to be the case for the models of the authors above.

Note 4.2. In Section 6 we adapt the models of this section and
of Section 3 to a population of herrings. It is fair, however, to
point out a limitation that arises when trying to model real
populations with processes driven by subordinators. Recall that
the driving subordinator is meant to model the randomness of the
growth process arising from the environment. The assumption of
independence and stationarity of the increments of the subordi-
nator implies the assumption that the environment remains
stable and stationary in time, which is a feature that can be
expected to hold in real world only for a short span of time, as the
effect of season and of other sources of modification of the natural
habitat should introduce a time-dependent effect. It is clear,
however, that more realistic models would be far more compli-
cated and, possibly, intractable in practice. The same observation,
by the way, applies to the VBGF, which is an equation that is
derived under the assumption of stationarity of the environment.

In the rest of this section we give more details in two particular
cases, making assumptions on Z that imply that eZ is either a
Gamma or an inverse Gaussian process.

Assume that the Lévy measure n of Z has a density h with
respect to the Lebesgue measure. h must be X0, must vanish on
½1;þ1½ and be such thatZ 1

0
yhðyÞdyoþ1.

Then �Z has a drift ¼ �g and a Lévy measure n given by the
density

hðyÞ ¼ hð�yÞ.

The image of the measure hðyÞdy by y! logð1þ yÞ is

ehðyÞ ¼ e�yhð1� e�yÞ.

Example 4.1. (The Gamma process). Let us assume that

hðyÞ ¼
a

� logð1� yÞ
ð1� yÞl�1 (4.7)

for 0oyp1 and hðyÞ ¼ 0 for y41, where a40, l40. With this
choice we obtain

ehðyÞ ¼ a
y

e�ly,

which is the Lévy measure of a Gamma process. Hence if
we choose a driving subordinator Z with a Lévy measure as in
Eq. (4.7) and drift g, the solution of Eq. (4.1) is

Xt ¼ L1ð1� e�gt�eZtþt0 Þ, (4.8)

where eZ is a Gamma process with parameters a and l and drift g.
Thanks to Eqs. (4.1) and (2.4), for this model the mean is equal to

EðXtÞ ¼ EðL1Þ 1� e�gðtþt0Þ
l

lþ 1

� �aðtþt0Þ
 !

, (4.9)

which, as already noted, is a von Bertalanffy equation with
k ¼ gþ a logððlþ 1Þ=l). The variance of Xt is also easily computed
using Eq. (4.6):

VarðXtÞ ¼ E½L2
1� e

�2gðtþt0Þ
l

lþ 2

� �aðtþt0Þ

�
l

lþ 1

� �2aðtþt0Þ
" #

þ VarðL1Þ 1� egðtþt0Þ
l

lþ 1

� �aðtþt0Þ
" #2

. (4.10)

It is also possible to compute the density of Xt , conditioned to
the value of L1 ¼ l, which is given by

f ðxÞ ¼
laðtþt0Þðl� xÞl�1

Gðaðt þ t0ÞÞl
l � log 1�

x

l

� �
� gðt þ t0Þ

� �aðtþt0Þ�1

elgðtþt0Þ

(4.11)

for lð1� e�gðtþt0ÞÞpxpl and f ðxÞ ¼ 0 otherwise. The graph
of this density for different values of t is produced in Fig. 3.
See in Fig. 4 the graph of some simulated paths of ðXtÞt with
g ¼ 0.

Example 4.2. (The inverse Gaussian process). Let us assume that
Z is a Levy process such that eZ is an inverse Gaussian process with
drift g. If the Lévy measure of Z has a density

hðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffi

2pr
p

ð� logð1� xÞÞ3=2
ð1� xÞðb

2=2rÞ�1

for 0oxo1 and hðxÞ ¼ 0 elsewhere, then it turns out that eZ is an
inverse Gaussian process with parameters b and r. The density of
Xt ¼ L1ð1� e�

eZt�gtÞ given L1 ¼ l is straightforward to compute
and is

f tðxÞ ¼
t ebt=rffiffiffiffiffiffiffiffiffiffi

2pr
p � log 1�

x

l

� �� ��3=2

1�
x

l

� �ðb2=2rÞ�1

exp
t2r

2 log 1�
x

l

� �
0B@

1CA
for 0oxol and f tðxÞ ¼ 0 otherwise.

One could also think of eZ as a stable process with exponent
a ¼ 1

2. This choice, however, does not seem really suitable. Indeed
in this case it is also possible to compute the density, as the same
type of computation produces in this case the density, conditional
on L1 ¼ l,
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Fig. 5. Means and error bars for the seven cohorts with the fitted von Bertalanffy
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(with g ¼ 0). The expression of this density suggests that the use
of stable subordinators is inappropriate in order to model fish
growth, as gðxÞ ! þ1 as x! l�, for every value of t.

The model based on the Doléans exponential (Eq. (4.1))
appears to enjoy many interesting features. It is fair, however,
to point out that in order to take advantage of it there remains
the question of determining an appropriate distribution for the
maximal length L1. It also appears difficult to find a distribution
such that the density distribution of the length of the individuals
of a given time t, L1ð1� e�Ztþt0 Þ has an explicit analytic
expression. This density can be computed numerically, but it
may be impossible to use statistical methods based on maximum
likelihood.

The question of determining a good candidate of distribution
has already been tackled in Sainsbury (1980), where the author
suggested a Gamma distribution.
function. Notice that the curve overestimates the mean of the fifth and sixth

cohorts.
5. The dataset

The data used in this study were collected as part of the
EU FP5 project ‘‘HERGEN’’ (Mariani et al., 2005; Ruzzante et al.,
2006), and include a homogeneous collection of genetically and
phenotypically characterized North Sea Autumn Spawning herring
(Clupea harengus L., 1758), from ICES areas zones IVa, IVb and IVc.
Herring is the dominant converter of zooplankton production,
using the biomass of copepods, mysids, euphausids in the pelagic
environment of the northern hemisphere (Winters and Wheeler,
1987). Additionally, herring is a central prey item for higher
trophic levels. The spawning period of this species in the western
North Sea is September/October.
Fig. 4. A sample of paths of the solutions of Eq. (4.1), with a eZ which is a Gamma

process with a ¼ 4, l ¼ 12, g ¼ 0, t0 ¼ 0:072, L1 ¼ 297:2 (deterministic) and

k ¼ 0:59. The process of growth is decomposed in stable step (corresponding to no

growth) followed by jump of variable intensities. It is quite apparent that the

variance is largest for intermediate values of time.

Table 1
Summary of the ages and abundances of the herring dataset.

Cohort Age (years) No. of specimens

1 0.66 92

2 1 186

3 3 369

4 3.8 254

5 4.8 300

6 5.8 28

7 6.8 26
The samples were collected east of the Shetland Islands in July
2005. At that moment, fish were located in that area to feed
(summer feeding aggregation). Aging was performed by counting
the otolith (sagitta) winter rings, following standard procedures
(Ruzzante et al., 2006; AA. VV, 2007). This method was validated
and tested for reliability following the procedure reported in
Beverton et al. (2004). The dataset is composed by 1255 speci-
mens belonging to seven cohorts. The abundances and the ages of
these cohorts are shown in Table 1. The values of the empirical
means and variances of the cohorts can be found in Fig. 5.
6. Analysis of the herring dataset

In order to apply the models developed in Sections 3 and 4 to
the analysis of a dataset as the herring one described in the
previous section, one is confronted with two kinds of problems.

The first one is the determination of the appropriate driving
subordinator. Actually subordinators form a large family, every
Lévy measure on Rþ satisfying Eq. (2.3) being associated to a
corresponding subordinator. This is therefore a non-parametric
problem and it appears very difficult to determine this Lévy
measure starting from data in the form of cohorts, as is the case
for the herring dataset.

The second order of problems comes from the fact that these
models are to be considered only approximatively correct, as they
do not take into account the time variability of the environment
(see Note 4.2).

In this section we produce the results obtained fitting the
models of Sections 3 and 4 to the herring dataset. In both cases
we decided to work with the Gamma model, as it seemed to give
better results than the inverse Gaussian.

In order to have a benchmark for the analysis of the dataset, we
shall first adapt a normal Gaussian model inside each cohort. This
is the default choice in the literature (Imsland et al., 1998). Given
the age ti, the length Xti

is assumed to be normally distributed
with mean L1ð1� e�kðtiþt0ÞÞ and variance s2

i (different cohorts are
allowed to have different variances). This model requires therefore
a number of parameters that is equal to 3þ the number of cohorts.

It is worth noting that this is not a mixture model, as we
are able to assign every individual to its class. Recall also that, as
stated in the introduction, this is not an IBM.

The normal and time change models have been estimated
by means of maximum likelihood, which appears to be the most
natural method for them. As already pointed out in Section 4, for
the Doléans exponential model, which is the most promising, the
maximum likelihood method is inapplicable, as the distribution
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Table 2
Summary of the estimates obtained with the different models.

Model Empirical Normal benchmark Time change Doléans

L̂1 – 289.19 291.52 297.28

k̂ – 0.67 0.64 0.63

t̂0 – 0.046 0.047 0.072

m̂1 99.59 98.22 107.39 100.88

m̂2 130.29 136.37 142.96 136.32

m̂3 250.31 249.06 250.53 244.20

m̂4 267.01 266.20 267.56 266.87

m̂5 275.55 277.41 278.94 278.63

m̂6 278.03 283.15 284.91 284.74

m̂7 293.69 286.09 288.05 287.91

ŝ2
1

37.28 37.27 80.65 172.16

ŝ2
2

220.52 220.56 107.35 186.22

ŝ2
3

123.19 123.42 188.14 162.28

ŝ2
4

164.93 164.92 200.92 160.41

ŝ2
5

152.96 153.37 209.46 162.96

ŝ2
6

197.96 198.05 213.95 166.52

ŝ2
7

177.21 177.21 216.31 169.41

Fig. 6. Kernel estimate (in red) and Doléans exponential model (based on a

Gamma subordinator) (in blue) densities for the different cohorts. (For interpreta-

tion of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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of the maximal size L1 is not known. We therefore resorted to the
least squares method in order to fit the moments.

The estimates obtained with different models are shown in
Table 2.

It is apparent that the normal model has a good agreement
with the data, which is not surprising, given also the availability of
many parameters.

6.1. Time change model

As already hinted in Section 3 this kind of models shows a
certain rigidity. We give the estimates obtained using it for
completeness sake only. Assuming that the lengths at time ti

follow a Gðað1� e�kðtiþt0ÞÞ; lÞ distribution, we have a model with
four parameters (whatever the number of cohorts). The estimated
values are a ¼ 388:2, l ¼ 1:33, k ¼ 0:64 and t0 ¼ 0:047. From this
we deduce L̂1 as the ratio â=l̂ (see Table 2). Estimates of the
means and variances are obtained using Eq. (3.1).

Notice that the estimated means are very close to the empirical
means (with the exception of cohort 1). However, it is clear that
this model cannot accommodate the variances. Recall that for this
model the variances are necessarily increasing with time, at a
difference with the behaviour of the empirical variances.

As already mentioned above, the model based on time change
is a particularly parsimonious explanation of the data in terms of
the number of parameters, but has limited capacities of catching
some relevant features.

6.2. Doléans exponential

We tried a model based on the solution of Eq. (4.1) with respect
to a Gamma process, as in Example 4.1.

According to this model, the density of the observations
follows a distribution, given L1 ¼ l, that is given in Eq. (4.11).
Noting that the mean values of the lengths of the different
cohorts must lie on the VBGF, we decided to perform a two-stage
method of moments, in which, at first, the empirical means
are interpolated by a VBGF function (Eq. (1.1)), therefore esti-
mating the parameters EðL1Þ, k and t0. In the second stage, we
interpolated the empirical variances with the function (Eq. (4.10)).
In this way we obtained estimates of a, l, g together with an
estimate of s2

L1
¼ VarðL1Þ. Recall that the quantities k and a, l, g

are related by the constraint k ¼ gþ a logððlþ 1Þ=l). For both
stages we used a least squares method in order to fit the
moments.

See Fig. 5 for the graph of the fitted von Bertalanffy function
and the empirical means with error bars.

This method produces an estimate of the mean and variance
of L1 without assuming any distribution for L1. The estimates
are a ¼ 1:3, l ¼ 15, g ¼ 0:55, k ¼ 0:63, t0 ¼ 0:072, EðL1Þ ¼ 297:3
and s2

L1
¼ 160. Finally, in order to obtain a concrete and visually

appreciable estimate of the density of each cohort, we computed
it numerically assuming for L1 a Gamma distribution having
parameters matching the estimated mean and variance, which is
with parameters a0 ¼ 552:34 and l0 ¼ 1:86. Fig. 6 produces a
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comparison between the density obtained as described above
from the model and an empirical density, produced from the data
with a usual kernel estimator. Taking into account the limited
number of parameters employed by this model one can appreciate
the nice fit for some of the cohorts. Discrepancies can be found for
the first two cohorts and for the sixth one. For the fifth one there
is an evident discrepancy: notice, however, that, as pointed out in
Fig. 5, also the estimated VBFG curve that fits the mean of this fifth
cohort. At this point, one should keep Note 4.2 in mind.
7. Discussion

Although several stochastic models are available in the literature
in order to compute the time evolution of the distribution of the size
of a population, a certain number of drawbacks still remain, leading
to the need of a more appropriate formulation that is able to take
into account some key aspects of animal growth.

These aspects basically concern the inclusion of the different
sources of variability in growth rate among individuals, which
directly determine the size density observed at different ages, and
the property of the growth process of being increased. In this work
we developed two models based on the use of subordinators as
driving processes. Our aim was to provide a new stochastic model,
mainly of theoretical interest for the description of the growth
process for a large class of organisms. It turns out that one of
them, the model based on the Doléans exponential giving rise to a
Gamma process, is also able to produce an appreciable fit with the
data. In particular it is able to reproduce the non-monotonic trend
of the variance, which is the measure of intra-cohort variability of
size. This is an important feature: a reduction of the demographic
variance starting at some time is often observed in data (e.g.
Gudmundsson, 2005).

In general, the variability in individual size increases within
the same cohort through time when the individual growth rate is
positively correlated with itself in time (Gudmundsson, 2005).
This phenomenon is called ‘‘growth depensation’’.

Conversely, a reduction of the cohort variance (the so-called
‘‘growth compensation’’) has been up to now explained with the
fact that the survival of individuals is not independent and
identically distributed (Kendall and Fox, 2002). In other words,
there needs to be some systematic structure in the population.
Common biological mechanisms that can produce a reduction of
demographic variance are contest competition (including terri-
toriality), long-lived individuals with lifetime demographic traits
(‘‘individual heterogeneity’’), maternally imposed variation, and
directional or balancing selection.

Observe, however, that our model explains this typical
behaviour of the variance without introducing an explicit
selection mechanism related to some size-dependent mortality.
By this we do not claim that such a mechanism does not exist (and
we think that it might be natural to devise a more sophisticated
model including this feature), but simply that it is not necessary in
order to explain the observed behaviour of the empirical
variances.

The possibility to model and predict this aspect of fish growth
seems to be of great importance in both theoretical studies
and fishery management applications. This is particularly true if
referred to the increasing use of measurement of the growth
pattern of organisms (like fish) as an ecological indicator (Bennett
et al., 1995). Further, the assessment of growth pattern, combined
with other measurement of physiological condition, has the
potential to yield information on the history of environmental
stress (e.g. from contaminants) or selective pressures (e.g.
fisheries) and adaptation to environmental change (Jorgensen
et al., 2007). In fact, the statistical analyses of long-term data from
some exploited fish stocks have revealed evolutionary changes in
reaction norms (Ernande et al., 2004). Accuracy of the growth
model at the basis of these analyses obviously affects the results,
so that the development of sound approach to model and predict
size distribution is the main target.

A future direction will concern the assessment of the effect of
the aging error on the estimates obtained using our model. Even if
the aging method is reliable, it seems that errors in aging young
cohorts can significantly affect the estimates. This is due to the
fact that both VBGF and the variance function converge with age.

The present work represents a first attempt to apply the Lévy
processes to the subject. We think that these and the ideas
developed in this paper can be adapted to introduce stochasticity
into more complex models of growth (see Edwards et al., 2007).
8. Conclusion

The aim of the present work was the development of a
stochastic model of growth, and therefore an IBM for the
distribution of data, that is compatible with the von Bertalanffy
function and might be able to catch more of the features
empirically observed.

The model developed in relation with the Doléans exponential
shows interesting features. As other models already in the
literature (Wang, 1999; Gudmundsson, 2005; Lv and Pitchford,
2007) it is able to explain the observed non-monotonic behaviour
of the variances. However, it is the first stochastic model
producing paths that are increasing, thus giving a realistic random
model of individual growth.

Our main objective was mainly theoretical, but we think that
the models developed in Section 4 can be of interest for practical
applications such as stock assessment and forecasting. In this
direction, however, some questions require a deeper investigation.

These are
�
 the determination (elicitation) of a suitable distribution for the
maximal size L1;

�
 the determination of the appropriate subordinator.
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