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a b s t r a c t

Mutualism is a mechanism of cooperation in which partners that differ help each other. As such,

mutualism opposes mechanisms of kin selection and tag-based selection (for example the green beard

mechanism), which are based on giving exclusive help to partners that are related or carry the same

tag. In contrast to kin selection, which is a basis for parochialism and intergroup warfare, mutualism

can therefore be regarded as a mechanism that drives peaceful coexistence between different groups

and individuals. Here the competition between mutualism and kin (tag) selection is studied. In a model

where kin selection and tag-based selection are dominant, mutualism is promoted by introducing

environmental fluctuations. These fluctuations cause reduction in reproductive success by the

mechanism of variance discount. The best strategy to counter variance discount is to share with agents

who experience the most anticorrelated fluctuations, a strategy called bet hedging. In this way, bet

hedging stimulates cooperation with the most unrelated partners, which is a basis for mutualism.

Analytic results and simulations reveal that, if this effect is large enough, mutualistic strategies can

dominate kin selective strategies. In addition, mutants of these mutualistic strategies that experience

fluctuations that are more anticorrelated to their partner, can outcompete wild type, which can lead to

the evolution of specialization. In this way, the evolutionary success of mutualistic strategies can be

explained by bet hedging-based cooperation.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

A mechanism of cooperation based on the differences between
two partners is called mutualism. This can take the form of
interspecific mutualism, which is important e.g. in ecology, and
intraspecific mutualism, which is important in e.g. the human
economy (Trivers, 1971; Herre et al., 1999; Clutton-Brock, 2002;
Bergstrom and Lachmann, 2003; Ferriere et al., 2002; Sachs et al.,
2004; Foster and Wenseleers, 2006; Bronstein, 2009; Weyl et al.,
2010). A general characteristic of mutualism is that the partners
are mutually dependent because they are specialized. For instance,
professional people or enterprises are specialists that have mutua-
listic interactions with customers and suppliers (Trivers, 1971;
Boyd and Richerson, 1988). In the animal world, queen bees and
fighter ants are specialists that have mutualistic interactions
with their colonies (Sachs et al., 2004; Nowak et al., 2010; West,
2010). Specialists are defined as being able to do a few things well,
in contrast to generalists, who can do many things poorly (Wilson
and Yoshimura, 1994). Interestingly, in the evolution of the
mutualism, specialists have increased their fitness in the context
ll rights reserved.
of the group, at the cost of decreasing fitness in isolation. Most
modern professionals or queen bees would not survive long with-
out their group. Because mutualism causes partners to become
increasingly dependent on each other, it is a basis for peaceful
coexistence in societies (Clutton-Brock, 2002).

In promoting peaceful coexistence, mutualism is antagonized
by kin selection (Zahavi, 1995; Clutton-Brock, 2002). Whereas
mutualism is based on cooperation with non-related individuals,
kin selection and the related inclusive fitness theory are based on
cooperation with related partners (Hamilton, 1964). Associated
with kin selection are so-called mechanisms of tag-selection. If
a single gene or meme is considered, then all partners with a
different allele can be called non-kin, and all partners with a
similar allele kin. At the same time, if the allele is associated with
a recognizable tag, preferential collaboration with kin amounts to
preferential collaboration with tag-carriers. Important examples
of tag selection mechanisms are the green beard, beard chromo-
dynamics, and ‘phenotypic similarity’ (Dawkins, 1976; Riolo et al.,
2001; Nowak and Sigmund, 2005; Nowak, 2006; Janssen and van
Baalen, 2006; Antal et al., 2009). In short, both kin selection and
tag-based selection oppose mutualistic strategies that promote
cooperation with non-related and non-tagged partners. Consis-
tently, it has been shown that kin and tag-based selection are a
theoretical basis for parochialism, war and other attempts to
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damage non-kin, because those behaviours lead to enhanced
survival of kin (Hamilton, 1964; Bernard et al., 2006; Choi and
Bowles, 2007; Efferson et al., 2008).

Compared to hunter-gatherer societies, modern society is
characterized by a relative absence of intergroup warfare, and
by tolerance and non-violence to strangers (Sober and Wilson,
1998; Bowles, 2006). This behaviour is stimulated in many moral
systems, where it has been summarized as the golden rule (‘love
your neighbour as yourself’, Armstrong, 2007). Therefore, it
appears as if, historically, mutualism has gained the upper hand
over kin selection and parochialism (Choi and Bowles, 2007).
However, this dominance of mutualism is not completely under-
stood. It is known that mutualism can be modelled by a Prisoner’s
Dilemma (PD) (Trivers, 1971), and that tit-for-tat-like strategies
can sustain mutualistic cooperation in presence of cheaters
(Frank, 1994; Doebeli and Knowlton, 1998; Bergstrom and
Lachmann, 2003; Yamamura et al., 2004). However, this does
not explain how mutualism can outcompete kin selection (for
reviews on cooperation see Fehr and Fischbacher, 2003; Nowak
and Sigmund, 2005; Nowak, 2006).

Partner selection is an important factor in mutualism (Sachs
et al., 2004; Foster and Wenseleers, 2006), and the boundary with
kin selection can be understood in terms of selection of a non-
related or a related partner. A related partner brings the inherent
genetic advantages of kin selection, but a non-related partner can
be preferred if she gives access to exclusive resources. Never-
theless, in simulations where, a tag-based strategy was introduced
in a group of freely sharing tit-for-tat players (Uitdehaag, 2009),
this resulted in tag-carriers exploiting the untagged players until
the latter were extinct. This showed that, under equal payoffs, a
strategy that selects related partners dominates more freely shar-
ing and more mutualistic strategies. The central question of this
work is therefore: which level of mutualistic advantages can beat
kin selection. In other words: how can a player, if he has a choice,
be triggered to cooperate with non-kin instead of kin?

The question is approached here by introducing an opportu-
nity for mutualism in situations where kin selection and tag-
based strategies are dominant. This is done by introducing a
stochastically varying environment, which allows some indivi-
duals to obtain resources at a time when other individuals are
lacking resources. Evolution in such a varying environment is the
domain of bet hedging theory (Lewontin and Cohen, 1969;
Philippi and Seger, 1989; Frank and Slatkin, 1990; Grafen, 2000;
Kussell and Leibler, 2005; Roff, 2008; Ellner, 2009) and therefore
relations from that field can be used to describe cooperation and
mutualism. This gives new insight into how mutualism can
stabilize groups, under which conditions it can outcompete kin
selection, and how an initial mutualistic relation can evolve to
generate specialized partners.
Variance discount

First, the theory of evolution in a varying environment and bet
hedging statistics need to be briefly introduced. It is well-known
that if random variations in the environment lead to random
variations in offspring, this leads to substantially fewer total
offspring after t generations than without such variation. Suppose
a species produces 2, 2, 2, 2, 2 and 2 offspring in successive years
and another species produces 3, 1, 3, 1, 3 and 1 offspring. Then the
first species ends up with 2�2�2�2�2�2¼64 members, and
the second species with only 3�1�3�1�3�1¼27 members.
Nevertheless, all individuals of species 1 and 2 have invested
equal effort: the original founding members both have raised
2þ2þ2þ2þ2þ2¼3þ1þ3þ1þ3þ1¼12 young. Solely by
spreading its offspring, species 1 has more successfully
proliferated itself. As the difference between 64 and 27 shows,
the effects can be quite large.

More formally, suppose a player A exist for a t number of
events i, where i is e.g. a generation or a season (iAN, all i span
equal timeframes). In each event i, the player produces li off-
spring. If li fluctuates with a variation di around the arithmatic
average l, one can define li¼lþdi, where l¼ ð1=tÞUSi ¼ t

i ¼ 1li.
Because di is a variation: Si ¼ t

i ¼ 1di ¼ 0. The total amount of descen-
dants after t events, for player A, is then

NA
total,t ¼

Yi ¼ t

i ¼ 1

li ¼
Yi ¼ t

i ¼ 1

ðlþdiÞ ð1Þ

Under the above restrictions, NA
total,t maximizes if (lþd1)¼

(lþd2)¼(lþd3)¼y¼(lþdt), which only occurs if di¼0 for every
i. We will call this the maximum offspring condition. Proofs for
this can be found in the evolution literature (Yoshimura and
Jansen, 1996), and in statistical mechanics. NA

total,t therefore
maximizes with zero variation, and any variation will reduce
the amount of offspring.

The exact reduction in total offspring, due to variations in
offspring, can be quantified for the case of di5 li (small variation)
(Lewontin and Cohen, 1969; Yoshimura and Jansen, 1996). If the
variance in the dataset {l1, y, lt} is defined as sA

2 ¼ ð1=tÞSi ¼ t
i ¼ 1d

2
i ,

then

NA
total,t � l 1�

sA
2

2l2

� �� �t

ð2Þ

Eq. (2) is known as the variance discount equation, it states
that the total offspring NA

total,t is always less than lt, because l is
reduced by the variance discount factor in the inner brackets.
2. Bet hedging based sharing is an evolutionarily stable
strategy

If variation reduces proliferative success, reducing variation is
a way of increasing fitness. Such a strategy is known as bet
hedging (Philippi and Seger, 1989; Ellner, 2009). Its role in
cooperation has remained unexplored, although there is interest
in variation as cooperation-enhancing mechanism (Wagner,
2003; McNamara et al., 2004; Helbing and Yu, 2009; Santos
et al., 2008).

In the human setting many variations occur that can be
alleviated through cooperation. For instance, when a successful
hunter has caught more than she can eat, this is a positive
variation. If she has no success, this is a negative variation. If a
group of hunters with varying success are sharing meat, they are
in fact bet hedging. Other examples are: care for the sick and
mending damage on capital goods. Interestingly these situations
were also mentioned in relation to Prisoner’s Dilemma (PD)
payoff structures (Trivers, 1971, 2006; Boyd and Richerson,
1988; Frean, 1991; Nowak and Sigmund, 1994). Bet hedging is
therefore an elegant underlying mechanism to explain the payoffs
in the PD, on of the most intensely studied cooperative settings.
Otherwise, these payoffs are merely assumed (Boyd and
Richerson, 1988).

To further show that bet hedging is a basis for cooperation, a
previously published computational model was adapted (Uitdehaag,
2009), in which a population plays an alternate repeated PD game
(Trivers, 1971). In this model, the cooperative tit-for-tat strategy
(Axelrod and Hamilton, 1981) is evolutionarily stable if players are
allowed to remember, and preferentially share with, players who
previously shared with them. It is known that memory is important
for cooperation (Milinski and Wedekind, 1998). Furthermore, it is a
fixed population model, in which a certain fraction of players dies,
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and is replaced by offspring of more successful strategies (for model
details see Appendix A). This is a difference with the analytical result
Eq. (2) that assumes a growing population. The simulations there-
fore test if bet hedging can also be a basis for cooperation in a fixed
population.

The simulations were first run in the absence of reciprocal
sharing, with players experiencing variation in offspring levels. In
this setting, it is confirmed that a mutant with decreased levels of
variation is able to dominate the wild type population, even from
a small starting population (not shown). In a next step, reciprocal
sharing was introduced, and the cooperative tit-for-tat strategy
was allowed, which quickly outcompetes the non-sharing strat-
egy (Fig. 1A). This confirms the dominance of tit-for-tat in a PD
game (Axelrod and Hamilton, 1981). More interestingly, however,
through sharing the invading strategy manages to reduce the
effective level of variation (Fig. 1B). The tit-for-tat strategy there-
fore behaves as a bet-hedging strategy.
3. The fluctuations of optimal sharing partners need to be
anticorrelated

As a next step, the optimal partners for sharing are investi-
gated. Bet hedging based sharing requires a donor with a surplus
and a receiver in need. Moreover, two players can only develop a
cooperative relationship if their status of donor and receiver
alternates in time (Nowak and Sigmund, 1994). Therefore, only
partners who experience fluctuations that are out of phase can
productively share.

Let us define player B as partner to player A. At event i, B has
offspring mi which varies with ei around the arithmetic average Z:

Z¼ 1

t

Xi ¼ t

i ¼ 1

mi and
Xi ¼ t

i ¼ 1

ei ¼ 0

Let A and B engage in a sharing relationship in which they
share an amount that allows si offspring. In order not to confound
the argument, it is assumed that sharing is cost-free, and that the
value of the share is absolute (meaning that it varies not with
player perspective: ðdli=dsiÞ ¼ ðdmi=dsiÞ). In this way, the effects of
the timing of sharing can best be illustrated. The offspring of A
Fig. 1. Sharers dominate non-sharers in a game with varying individual yields. (A)

before (‘friends’) or, if there is no friend available, a random player. This strategy resem

sharing. (B) The result of sharing is a lower average standard deviation which results in

per strategy over the first 400 rounds.
and B can be expressed as

li ¼ lþdi�si and mi ¼ Zþeiþsi ð3Þ

If the share si has a positive value, player A donates a share to
B. If si has a negative value, B donates a share to A. Both players
will not want to be net payers after t events, so

Xi ¼ t

i ¼ 1

si ¼ 0, which leads to
Xi ¼ t

i ¼ 1

ðdi�siÞ ¼ 0,and also
Xi ¼ t

i ¼ 1

ðeiþsiÞ ¼ 0

The total offspring after t events is:

NA
total, t ¼

Yi ¼ t

i ¼ 1

ðlþdi�siÞ and NB
total, t ¼

Yi ¼ t

i ¼ 1

ðZþeiþsiÞ ð4Þ

When the maximum offspring condition is imposed, then

NA
total,tand NB

total,t maximize, respectively, if di�si¼0 and eiþsi¼0,

for every i. Therefore

si ¼ di ¼�ei ð5Þ

Eq. (5) states that bet-hedging based sharing works optimally
if the offspring fluctuations of A and B are perfectly anticorrelated,
and both sides hand out all surplus above their average l or Z.
This assumes that A and B can perfectly assess the value of the
surplus di or ei (see below). However, the conclusion is general:
whenever A has a good time, B has to have a bad time.

In order to realize the condition of Eq. (5), A and B can follow
the most simple, but also the most complete, sharing arrange-
ment: both pool their surpluses, and both take half of the pool.
This leads to the following expression for their offspring produc-
tion,

li ¼ lþ1
2ðdiþeiÞ ð6Þ

mi ¼ Zþ1
2ðdiþeiÞ ð7Þ

The new variation 1=2(diþei) can be substituted for di in the
variance discount Eq. (2), and it can be investigated under which
conditions A and B, through sharing, are better off (see Appendix B.1).
This leads to the following condition:

sAB

s2
o1 ð8Þ

Here, sAB is the covariance between the fluctuations of A
and B, sAB ¼ ð1=tÞSi ¼ t

i ¼ 1diei. In addition, the simple sharing
Sharers follow the strategy of giving surpluses to players that they received from

bles generous tit-for-tat (Nowak, 2006). Non-sharers follow the strategy of never

better survival. Standard deviations were calculated over the yields of all players
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arrangement between A and B works only if their variances are
equal (see Appendix B.1). Therefore: s2 � s2

A ¼ s2
B where

s2
B ¼ ð1=tÞSi ¼ t

i ¼ 1e2
i .

Eq. (8) says that A and B can only productively share if the
covariance of the fluctuations they experience is smaller than
their variance. Eq. (8) is nothing more than a Pearson correlation
coefficient rAB, and Eq (8) can therefore also be written as rABo1.
The smaller the covariance term (the more anticorrelation), the
more the variance discount is dampened, and the more produc-
tive the collaboration is. Eq. (8) is a general condition for bet-
hedging induced cooperation between A and B.

A few expansions of Eq (8) are worthwhile mentioning.
First, under the simplified conditions above, a mutant A0 has
more fitness than A if its covariance with B is smaller (see
Appendix B.2)

sA0BosAB ð9Þ

Secondly, if A and B are allowed to only to share a portion si of
their surpluses, instead of pooling them fully, a stable cooperative
relationship can also be formed if sA

2asB
2, for which the condi-

tions are somewhat more complex (see Appendix B.3)
Thirdly, if cooperation is considered in a group of more

than two players, the fluctuations can be reformulated as a
cooperation matrix. This leads to the result that for a stable group
of sharers, the trace of the matrix of shares and variations is
ideally zero. This has interesting implications for group diversity
(see Appendix C).
4. Bet hedging based sharing is a basis for mutualism

The source of environmental fluctuations is partly stochastic,
for instance the weather could influence offspring levels. How-
ever, another part results from the response of the individual to
these fluctuations. For instance, the impact of a period of food-
shortage will be less for individuals with a low metabolism than
for individuals with a high metabolism. In this manner, the
offspring fluctuations are related to an individual’s geno- or
memotype, and in this way Eq. (8) can be applied to mutualism.

It needs to be noted that, if some genotype would be better
adapted than average to a particular fluctuation in the environ-
ment, this would simply be a competitive advantage, and not a
basis for mutualism. What is also needed, is that the same
genotype does worse at other events, so it needs help in those
conditions. For mutualism requiring help is just as essential as
contributing meaningfully. Therefore, particularly geno- or mem-
otypes that are a specialization are suitable to engage in mutua-
listic interactions.

As illustration, assume that under the metabolism phenotype
above lies a gene for muscle development. One allele M codes for
increased muscularity, which does well in times of abundant
wildlife, because it leads to increased hunting success. However,
the allele concomitantly increases metabolism of the carrier,
because of the energy requirement of the muscle. Now, another
allele S of the same gene codes for decreased muscularity, and
thus less hunting success, but also decreased energy use. The
advantage of this allele is that it increases stamina in times of
food shortage. Because both alleles have pros and cons, carrier AM

of allele M would do well to collaborate with a carrier BS of allele
S. In times of abundant game, AM would catch so much there
would be enough to share with BS. In times of food shortage, the
sickly AM could be cared for by BS. Both would benefit more than
if AM would collaborate with another carrier of M (M-type), or if
BS would collaborate with another carrier of S (S-type), and thus
AM and BS have a mutualistic relation.
5. Mutualism can dominate kin selection

Next, the antagonism between mutualism and kin selection is
studied (Clutton-Brock, 2002). In kin selection, the fitness effects
of helping others are proportional to the relatedness to the
partner (Hamilton, 1964). In mutualism, fitness is expected to
be inversely proportional to relatedness. As pointed out above, it
would be extremely be interesting to see if (and when) mutualism
can prevail over kin selection.

The mathematical treatment of kin selection is terms of
inclusive fitness explicitly lists the relatedness R (Hamilton,
1964; Grafen, 2006; van Veelen, 2007; Fletcher and Doebeli,
2009; Nowak, 2010). Starting from this equation, it is possible
to incorporate the impact of variance discount on inclusive fitness
(see Appendix D.1). The variance, in turn, can be split into
stochastic and genetic components, and for this latter component,
the variance discount penalty minimizes if there is cooperation
with dissimilar partners (Appendix D.2). If the specific example of
mutualism between the S and M alleles is then taken (Appendix
D.3), this leads to the following condition under which the
benefits of variance reduction outweigh the cost of missed
inclusive fitness

sabos02�s2
P

DR

RM
ð10Þ

Here sab is the covariance between the genetically encoded
offspring fluctuations of AM and BS. s02 is the genetically encoded
variance of an individual player, and s2

P is the stochastic variance
that can be dampened even when collaborating with kin (see
Appendixes D.2 and D.3). DR is the difference in relatedness
between AM and BS, and RM is the relatedness between AM and
another M-type player.

Basically, Eq. (10) is an extension of Eq. (8). If S- and M-types
are equally related, then DR¼0, and Eq. (10) reverts to Eq. (8). If
DR40, the inequality of Eq. (10) is harder to satisfy, and this is
the inclusive fitness penalty of cooperating with non-related
partners. However, if the variance s02is sufficiently large, and
the covariance sabsufficiently low, then Eq. (10) can be satisfied,
and mutualism can overcome inclusive fitness.

In addition to this theoretical result, the dominance of mutu-
alism over kin selection can be shown in the computational
model. Let us return to the example of S and M alleles. It is
well-known that, if some players in a group carry an altruistic
gene that allows alternate sharing with a tit-for-tat strategy, this
gene will spread until the whole group consists of sharers
(Nowak, 2006). Such a group is present in the simulation of
Fig. 1. Although in the evolutionarily stable situation, all members
of the group carry the altruistic gene, they can be otherwise
genetically diverse. For example population members can be a
mixture of lean and muscular people.

Now let us show how kin selection can dominate in the above
population (see also Uitdehaag, 2009). Suppose that a mutant
altruistic gene arises in a carrier of the muscularity allele M. This
mutant is more self-selecting and induces players to share only
with other muscular people (carriers of M). Within a few genera-
tions, this will result in the whole population being dominated by
M-types that follow the self-selecting strategy. This resembles a
green beard mechanism (Dawkins, 1976; Riolo et al., 2001; Jansen
and van Baalen, 2006). Because all muscular people are kin, with
respect to gene M, it is also a kin-selection mechanism. Here, the
stable population consists solely of muscular people.

In the simulations, this mechanism is modelled by allowing a
new mutant strategy share-only-with-kin, which follows the rule
that it shares exclusively with players with a share-only-with-kin

strategy, but accepts shares from any player (see Fig. 2 for exact
strategy definitions). From Fig. 2A and earlier work (Uitdehaag,



Fig. 2. Kin selection is outcompeted by neutral sharers when variation has a large genetic contribution. Players were divided into six different families. Three families

(red/orange/yellow) followed a share-only-with-kin strategy, in which they donate shares to friendly players, but only if they are from their own family, otherwise they

decline to share (they accept shares from anyone). This earlier defined strategy (Uitdehaag, 2009) is a form of kin-selection. Three other families (shades of blue) followed a

share-with-all strategy, in which they share with anyone, as outlined in Fig. 1A. (A) Outcome when variation is for 90% related to player number, and 10% related to family

number (gencontr¼0.1, see Appendix A). (B) Outcome when variation is for 70% related to player number, and for 30% related to family number (gencontr¼0.3). In this case

the share-with-kin strategy dies out because it cannot reduce variation optimally, as it is committed to sharing with players that have the same family number. Now two

share-with-all families develop a mutualistic relationship. As control, these simulations were also performed including families that follow a non-sharing strategy, as

defined in Fig. 1. This leads to quick extermination of the non-sharing strategy in all cases, because of its higher variation (not shown). (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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2009), it is evident that this strategy evolutionarily dominates
more freely sharing strategies (share-with-all), confirming the
dominance of kin selection.

In the example, the tag is not an arbitrary marker (such as
beard colour), but muscularity because the next step in the
analysis requires a functional marker. Suppose carriers of allele
S, who are more lean, are also present in the population. Now
sustained collaboration between muscular people would be at a
disadvantage compared to sustained collaboration between mus-
cular and lean people, because of variance discount. Suppose a
new mutant altruistic gene appears, that induces collaboration
between lean and muscular players, then this allele will now
evolutionarily dominate the self-selecting mutant. The popula-
tion, after equilibrium has been established, will be a mix of
muscular and lean people.

In the simulations, this case was modelled by splitting the
fluctuations in two components: an individual random compo-
nent varind, and a tag-associated random component vargenet

(here the tag is a family number). This means that all players with
the same family number, on top of individual variation varind,
will experience a joint variation vargenet. The relative proportions
of the varind and vargenet terms are tuned by a factor gencontr

(see Appendix A for details). Fig. 2A shows that with a small
contribution of vargenet, the share-only-with-kin strategy is domi-
nant, but if the vargenet contribution is increased, the share-with-

all strategy emerges again as evolutionarily most successful. The
final result is that two families survive, who are locked in a
mutualistic relationship (Fig. 2B). This proves that, once environ-
mental fluctuations are considered, sharing with and protecting
‘others’ can indeed be rational behaviour.
6. The evolution of bet hedging based cooperation can lead to
specialization

Once a bet-hedging based relation has formed, its evolution
can go two ways. First an individual can adapt in such a way that
its own offspring variation is reduced, leading to more fitness, and
also a reduced dependence on collaboration to dampen fluctua-
tions. The second, and more interesting way, is that an individual
can increase its level of collaboration, in which case it could even
bear increased individual variance, as long as it is dampened by
collaboration. This is a path of specialization.

Let us illustrate specialization in the model example. Suppose
that the gene variant S can evolve to S’, yielding even less muscle,
at the benefit of even lower metabolism. Now an S0-type will
never be able to catch game. However, it is conceivable that the
collaboration between S0 and M is more productive than between
S and M. For instance, the lower food intake of S0 could mean that
more is left for M in times of food shortage. In this case, as long as
M and S-types remain cooperative, evolution will lead to forma-
tion of S0.

The mutation of S into S0 is a case of specialization, since an
S0-type is even more fit than S in times of food shortage, and even
less fit in times of abundant game. The S0-type can do one thing
(surviving scarcity) even more well (Wilson and Yoshimura,
1994). Paradoxically, the S0-type has decreased overall fitness in
isolation. This can be measured by its increased variance discount.
The pair of S0 and M-types is therefore only more fit than S and M,
if S0 and M can buffer their increased variation by sharing. This can
be measured by a lower fluctuation covariance of the mutant pair
(Eq. (9)). The bet hedging context therefore allows a logical
description of the evolution towards the specialized S0 and M pair.

As an illustration, consider a very simple case in which there
are only two events possible, 1 (hunting season) and 2 (scarcity)
which generate genotype-dependent responses of a1 and a2, for
player A, and b1 and b2 for player B. These variables fluctuate
around an average of 0 and assume the following values:

Before sharing A : a1 ¼�2 a2 ¼ 2

B : b1 ¼ 4 b2 ¼�4

s2
a ¼

1
2 ðð�2Þ2þ22

Þ ¼ 4, kks2
b ¼

1
2ð4

2
þð�4Þ2Þ ¼ 16,

sab ¼ 1
2ð�2� 4þð2��4ÞÞ ¼�8

After sharing A : a1 ¼ 1 a2 ¼�1

B : b1 ¼ 1 b2 ¼�1

s1 ¼�3 s2 ¼ 3

s2
a ¼

1
2 ð1

2
þð�1Þ2Þ ¼ 1, s2

b ¼
1
2ð1

2
þð�1Þ2Þ ¼ 1,

sab ¼ 1
2ð1� 1þð�1��1ÞÞ ¼ 1

(Note that A and B both profit from the cooperation, even though
both have different fitness, which relates to the discussion in
Appendix C).



Fig. 3. A mutant that experiences increased fluctuation covariance to a third partner can replace its mother family. Two families (blue) that follow a share-with-all

strategy (the two surviving families in Fig. 2B, see caption there for strategy definition) are locked in a bet hedging relation. Family 1 experiences gene-related variation

(through variable vargenet) ai, and family 2 variation bi. They are invaded by a mutant of family 2 (green) with variation bi
0 that experiences different covariance sab’ with

family 1. (A) If the ab0covariance is not improved, the mutant cannot replace wild type family 2. The statistics before sharing are: sa2¼0.083, sb2¼0.083, sb’
2
¼0.083,

sab¼�0.007, sab’¼�0.007, sbb’¼0.083, showing that sab’¼sab. (B) If the ab0 covariance is improved, the mutant can take over from wild type family 2. Statistics here are:

sa2¼0.055, sb2¼0.057, sb’
2
¼0.057,sab¼0.0005, sab’¼�0.05, sbb’¼0.0047, so now sab’osab. Simulations were similar to those outlined in Fig. 2B and Appendix A, with the

following changes: a constant value of 0.5 was added to the average yield li (this stabilizes the game by reducing total variance) and this value was also added to the

threshold for death to make it 0.6. Factor gencontr¼0.7. In order to have all families experience similar variances before sharing, and therefore to exclude general variance

discount effects, the factor vargenet is a more complex expression: vargenet(a)¼ fract � rand1þ(1� fract) � rand2, vargenet(b)¼ fract � rand3þ(1-fract) � rand4,

vargenet(b0)¼ fract � rand3þ(1-fract) � (1�rand2), where rand1...rand4 are random numbers between 0 and 1, and where fract assumes values 1.0 and 0.2 in panels A

and B, respectively. Initial population sizes: fam.1: 122, fam. 2: 122, fam. 2 mutant: 11. In panel A, repeated simulations not all result in the same outcome: in 20% of cases,

due to chance, the initial mutualism between family 1 and 2 collapses, resulting in the dominance of wild type family 1 or 2.
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Now suppose a specialized mutant player A0 takes the place
of A. Player A0 has improved fitness at event 2, at expense of
fitness at event 1. For instance A0 has an allele for muscle growth
that is twice as efficient. Now the following values are measured:

Before sharing A : a01 ¼�4 a02 ¼ 4

B : b1 ¼ 4 b2 ¼�4

s2
a0 ¼

1
2 ðð�4Þ2þ42

Þ ¼ 16, s2
b ¼

1
2ð 4

2
þð�4Þ2Þ ¼ 16,

sa0b ¼ 1
2ð�4� 4þð4��4ÞÞ ¼�16,

After sharing A : a01 ¼ 0 a02 ¼ 0

B : b1 ¼ 0 b2 ¼ 0

s1 ¼�4 s2 ¼ 4

s2
a0 ¼ 0, s2

b ¼ 0, sa0b ¼ 0

If player A0 is considered before sharing, the mutation has
clearly been harmful, as A0 suffers from increased variance
compared to player A: sa’

2 4sa2 (1644). However, after sharing
the mutation turns out to be beneficial: sa’

2 osa2(0o1). Note that
also player B, after sharing, profits from the mutation. Because of
these properties, this is a case of a specialization.

The specialist mutation, however, can already be identified
from the statistics before sharing. Appendix B.2 shows that the
relevant condition is s2

a0 þ2sa0bos2
aþ2sabwhich translates in the

above example to 16�2 �16o4�2 �8, or �16o�12, which
indicates that the mutation is favourable. Fluctuation statistics
can therefore predict partnership suitability of a set of players. In
this light, the process of specialization can be defined as one that
increases individual variances, but improves covariance between
partners.

To illustrate this process further, simulations were conducted
with two cooperating families in a randomly fluctuating
environment (similar to the situation in Fig. 2B) to which a
mutant of the second family was introduced. This mutant experi-
ences fluctuations that are more correlated with family 1 (Fig. 3).
The mechanism behind this is not specified, but it could be any
mechanism in which something rare to the partner is increasingly
formed, at the expense of reduced production of something not
rare; for instance, the mutant for surviving scarcity described
above. The total variance experienced by mutant and wild type
before sharing was kept constant. Indeed, when the mutant
experiences sufficiently correlated fluctuations, it can dominate
family 2, from which it originated (Fig. 3B). This is also described
by Eq. (9). The mutant has adapted itself to family 1. In short,
evolutionary pressure on variance reduction, in combination with
a stable sharing relationship, can lead to adaptation to partners
and the evolution of a specialization.
7. Discussion

In this work, bet hedging in a variable environment is
presented as a model for cooperation, and a basis for mutualism.
The model is based on partners who reduce offspring variations in
time (fluctuations) by alternate sharing of surpluses. Interest-
ingly, the model can also be transferred to other mutualistic
arrangements, for instance the case in which partners simulta-
neously share exclusive resources (Sachs et al., 2004; Foster and
Wenseleers, 2006). The basis of such a mutualism is that both
organisms need a spectrum of nutrients in order to grow (e.g. a
plant needs phosphate, nitrate, water, sunlight, etc.), of which
some resources are provided by the partner, in return for a
donation of excess resources of another type (for a review see
Bronstein, 2009). Whereas the alternate sharing in the bet hed-
ging model can be modelled by the alternate PD (Nowak and
Sigmund, 1994), this new situation is now based on the simulta-
neous sharing of different resources, and can be modelled by the
simultaneous PD (Axelrod and Hamilton, 1981). Both forms of PD
have been shown to favour similar strategies (Frean, 1991; Nowak
and Sigmund, 1994; Uitdehaag, 2009). For the ‘simultaneous’
mutualism, any deviations from the ideal nutrient spectrum could
be captured in a variance, which would be a measure for the
growth-retarding effects of a suboptimal nutrient supply. In other
words, also here a variance discount would apply. The most
productive mutualisms would then involve partners with the
lowest covariance between their nutrient spectra. In this analysis,
the time axis would be replaced by a nutrient-type axis. In short,
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it is likely that many of the results of this work would also be
valid for the mutualism that simultaneously shares resources,
which would show that bet hedging can be a general concept in
mutualism.

In general, the bet hedging view of mutualism gives interesting
insights in group stability and cooperation. Eq. (8) suggests that
variations in the response to living conditions of two organisms
could be measured, and a correlation coefficient rAB calculated.
This predicts if these organisms are theoretically able to have a
mutualistic relationship. Moreover, Eq. (9) predicts which mutants
will be able to invade that mutualism. In addition, if it is assumed
that players have to guess their surpluses before sharing with their
partner, then their guessing error might explain supercooperation,
a hitherto enigmatic experimental phenomenon (Appendix C;
Guth et al., 1982; Forsythe et al., 1994; Nowak, 2006).

An important reason to develop the bet hedging model for
mutualism, was to investigate if a mutualistic strategy could beat
parochial strategies such as kin selection and tag-based selection,
which remained unbeaten in theoretical work (Fehr and
Fischbacher, 2003; Nowak and Sigmund, 2005; Nowak, 2006;
Fletcher and Doebeli, 2009). Here it is confirmed that, whereas kin
selection and inclusive fitness benefits increase with relatedness
to a partner, bet hedging benefits decrease with relatedness (Eq.
10). The reason for this is that more distantly related partners
experience more dissimilar fluctuations (if fluctuations are
coupled to genotypes). In general, mutualism dominates kin
selection if the covariance of the partner fluctuations is smaller
than the individual partner variances (Eq. (10)).

The dominance of mutualism is supported by simulations,
which show that more mutualistic strategies dominate kin
selective strategies if fluctuations are sufficiently high (Fig. 2).
In contrast to the analytical results, the simulations assume a
fixed population. Therefore, it would be interesting to also
analytically study the impact of bet hedging in a fixed population.
For this, it is necessary to replace the reproductive rate in Eq. (1)
as fitness measure by the expected-lifetime-production-of-off-
spring, which combines reproductive rate with the individual
death rate (Mylius and Diekman, 1995). In this measure, bet
hedging will both affect reproductive and death rates (see also
Appendix A), and a new relation for variance discount effects on
fitness will have to be derived. Another interesting extension will
be evaluating the competition between mutualism and kin selec-
tion in other well-characterized numerical models such as the
Moran process (Nowak et al., 2004), which is also based on the
PD, but is more parameter-free. In all these cases, it is predicted
that in a varying environment, there is a clear limit to kin
selection as a successful strategy.

As shown, mutualism can also dominate tag-based selection. If
tags are associated with an occasionally advantageous phenotype,
such as in the example of a gene for muscularity, it pays to
cooperate with dissimilar tags, rather than similar tags. Impor-
tantly, this reasoning requires functional tags (see above). This is
a more narrow range of possibilities than for mechanisms of tag-
based selection, which generally can use arbitrary tags (Riolo
et al., 2001; Jansen and van Baalen, 2006; Antal et al., 2009).
However, in practice, group formation is much promoted if tags
are associated with functionality (McElreath et al., 2003; Efferson
et al., 2008), making it reasonable to assume a role for
functional tags.

Another important reason to develop the bet hedging model
for mutualism, is to study specialization. Specialization differs
from an evolutionary track that increases fitness by reducing an
individual’s variance discount, which leads to less need for
cooperation. In contrast, specialization increases fitness by
increased cooperation, which compensates increased individual
variance discount. Bet hedging analysis gives a quantitative
condition under which specialization can be evolutionary suc-
cessful: the covariance of a mutant with its partner, added to the
increased variance of the mutant, needs to be lower than the
similar sum for wild type (above and Appendix B.2). In this way,
evolution can follow a track that leads to increased mutual
dependency.

Continuing specialization can lead to ever increasing mutual
dependency to the point where survival alone is impossible.
Because the group as a collective gets more evolutionarily fit,
but the individuals in isolation less fit, this generates the appear-
ance as if individuals sacrifice fitness in favour of group fitness. In
other words, as if group evolution is taking place (Sober and
Wilson, 1998; Nowak, 2006; Bowles, 2006; Wild et al., 2009;
Salomonsson, 2010). However, what happens is that the indivi-
duals adapt to the microcosmos of the group.

If the bet hedging model is extended to a group of cooperators,
Eq. (C.4) shows that a stable group is defined by a maximally
dampened collective fluctuation (Appendix C). Such a group is
more stable than a group that splits wealth evenly, because no
group members are net payers, and such a group can also accept
members that contribute relatively little (Appendix C). The group
has a natural group size, determined by the number of individuals
needed to dampen out the entire collective fluctuation (Eq. (C.4),
see also van Veelen et al., 2010 on cooperative level and group
size). Moreover, if variance discount is the only fitness factor, such
a ‘perfect’ group of diverse mutualistic individuals has a higher
collective reproductive rate than any other collective. From the
viewpoint of a group selection process (Nowak, 2006;
Salomonsson, 2010; van Veelen et al., 2010), the diverse, mutua-
listic group will be able to dominate a group of related individuals
(kin) that behaves equally altruistic. Therefore, also from a
multilevel selection perspective, mutualism can dominate kin
selection.

In short, bet-hedging based cooperation provides a natural
setting in which mutualism can evolutionary dominate parochial
strategies such as kin selection and tag-based selection. Further-
more, it can be shown that the evolution of a mutualism can lead
to specialization. Such insights lead to increased understanding of
human behaviour, ecological diversity and the organization of
labour. Bet hedging based sharing is therefore a very useful
concept in the study of cooperation.
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Appendix A. Model

The simulations are extensions of an earlier model (Uitdehaag,
2009). In short: in a Microsoft Excel worksheet, 255 players are
divided into families. Within a family, all players follow the same
strategy. Players of the same family are 100% kin, as they are
genetically and behavourially indistinguishable. Each round a
player harvests an amount li¼lþdi, where l¼0 and
di¼(1�gencontr) �varindþ(gencontr) �vargenet. The variable var-

ind is an individual random amount between 0 and 1, and
vargenet is a random amount between 0 and 1 that is similar
for all individuals sharing the same family number. The variable
gencontr serves to weigh these two sources of individual and
family-associated variation.
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Players have the option to share with other players. An
evolutionarily stable tit-for-tat like setup is used (Axelrod and
Hamilton, 1981; Nowak, 2006) (Fig. 2) in which players can
remember a limited list of players from whom they received
shares before. The longer this list, the more robustly cooperative
players can distinguish defecting players, but also the less flexibly
they can outcast players that have switched strategy. The opti-
mum memory for cooperative strategies to dominate in the
described setup is 4 (Uitdehaag, 2009), which is the value used
in all simulations.

The most recent partner from the memory list is given a share
if three conditions are met: (1) it fits in a player’s strategy, (2) a
surplus is harvested this round (defined as li—0.5) and (3) this
surplus exceeds the surplus of the sharing partner. A share
consists of half the difference in surpluses (this is equivalent to
the partners pooling li and each taking half). After harvesting and
sharing a net share of si, a new yield is determined l0i¼ liþsi.

In the simulation, a fixed cutoff is used for players who had
poor harvests and did not get enough shares: they die if l0 io0.1 in
all simulations. Thus about 10% of the population is refreshed
each generation. Increasing this number will lead to more rapid
strategy changes. Decreasing will lead to longer times before the
competing strategies are in equilibrium (Uitdehaag, 2009). The
empty places that result from the deaths are filled with offspring
from successful players. The production of offspring is random,
with a chance proportional to a player’s total yield l0i that round.
This cycle is iterated over 1000–4000 rounds i (generations or
events). At the start of any simulation, all families have equal
starting populations, unless otherwise indicated. Family numbers
are randomly assigned to players, as are initial lists of friends. All
simulations were repeated over ten times, and in all cases the
same strategies went extinct or survived, unless otherwise
indicated (Fig. 3A). The simulations differ from the mathematical
model in the text in that it has a fixed population. Therefore in the
simulation evolutionary success is not only dependent on the
amount of offspring, but also on the avoidance of death.
Appendix B

Appendix B.1. Correlation statistics between collaborators

The main text defines that if A and B share fully each round,
then A and B dampen their yields to

li ¼ lþ1
2ðdiþeiÞ ðB:1Þ

mi ¼ Zþ1
2ðdiþeiÞ ðB:2Þ

Now player A improves his offspring if

NA
total,new,t 4NA

total,t ðB:3Þ

Using the approximation for variance discount Eqs. (2) and
(B.3) can be rewritten as

1�
1
4S

i ¼ t
i ¼ 1ðdiþeiÞ

2

2l2
41�

Si ¼ t
i ¼ 1d

2
i

2l2

3
Xi ¼ t

i ¼ 1

ðdiþeiÞ
2o4

Xi ¼ t

i ¼ 1

d2
i

3
Xi ¼ t

i ¼ 1

ðd2
i þe

2
i þ2dieiÞo4

Xi ¼ t

i ¼ 1

d2
i

3
Xi ¼ t

i ¼ 1

ðe2
i þ2dieiÞo3

Xi ¼ t

i ¼ 1

d2
i ðB:4Þ
If the following variances and covariances are defined

1

t

Xi ¼ t

i ¼ 1

e2
i ¼ s

2
B,

1

t

Xi ¼ t

i ¼ 1

d2
i ¼ s

2
A,

1

t

Xi ¼ t

i ¼ 1

diei ¼ sAB

then Eq. (B.4) can be transformed into

3s2
Bþ2sABo3s2

A3s2
Bþ2sAB�3s2

Ao0 ðB:5Þ

For player B, the same analysis applies, because B also needs to
benefit from the sharing. This leads to an additional requirement
of

3s2
Aþ2sABo3s2

B3s2
Aþ2sAB�3s2

Bo0 ðB:6Þ

If (B.5) and (B.6) are solved for the case that their left hand side
equals 0, this leads to

s2
A ¼ s

2
B � s

2 and
sAB

s2
¼ 1 ðB:7Þ

Throughout this work, it is assumed that all variances are
greater than zero. Combining Eq. (B.7) with inequalities (B.5) and
(B.6) leads to

sAB

s2
o1 ðB:8Þ
Appendix B.2. Evolutionary success conditions for a mutant player A0

Suppose players A and B are cooperating on a bet-hedging
basis, as in the situation outlined above. Now suppose a mutant
player A0 arises with variation di

0, which has an equal ability to
cooperate with B. This mutant then has more fitness, compared to
player A, if

NA0

total,t 4NA
total,t ðB:9Þ

Xi ¼ t

i ¼ 1

ðd0iþeiÞ
2o

Xi ¼ t

i ¼ 1

ðdiþeiÞ
2

ðB:10Þ

3
Xi ¼ t

i ¼ 1

d02i þ2d0ieio
Xi ¼ t

i ¼ 1

di
2
þ2diei

3s2
A0 þ2sA0BosA

2þ2sAB ðB:11Þ

In the case outlined above, sA
2
¼sA0

2
¼sB

2
�s2

3sA0BosAB ðB:12Þ
Appendix B.3. Correlation statistics when there is partial sharing

Suppose that A and B no longer pool and divide their entire
surpluses, but that they exchange a share si which is a portion of
their surplus. Their offspring yields are then formulated as

A : li ¼ lþðdiþsiÞ

B : mi ¼ Zþðei�siÞ ðB:13Þ

The variance for player A in the new situation (when there is
sharing) is defined as

s2
A,new ¼

1

t

Xi ¼ t

i ¼ 1

ðdiþsiÞ
2
¼

1

t

Xi ¼ t

i ¼ 1

ðd2
i þ2disiþ2s2

i Þ and

s2
A,old ¼

1

t

Xi ¼ t

i ¼ 1

d2
i ðB:14Þ
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Sharing is evolutionarily advantageous if it reduces variance
discount, therefore

s2
A,newos2

A,old3
Xi ¼ t

i ¼ 1

ðd2
i þ2disiþ2s2

i Þo
Xi ¼ t

i ¼ 1

d2
i 3

Xi ¼ t

i ¼ 1

ð2disiþ2s2
i Þo0

ðB:15Þ

Repeating this analysis for player B results in

Xi ¼ t

i ¼ 1

ð�2eisiþ2s2
i Þo0 ðB:16Þ

Redefining s2
sh ¼ ð1=tÞSi ¼ t

i ¼ 1si and sshA ¼ ð1=tÞSi ¼ t
i ¼ 1sidi and sshB ¼

ð1=tÞSi ¼ t
i ¼ 1siei, and combining this with Eqs. (B.15) and (B.16) leads to

new conditions for bet-hedging based sharing

�sshA4s2
sh and sshB4s2

sh ðB:17Þ

In the case of Appendix B.1, in which players A and B pool their
fluctuations, and each take half of the pool, then si ¼ 1=2ðei�diÞ.
When this is substituted in Eq. (B.17), it reverts to Eq. (B.8).
Therefore Eq. (B.8) is a special case of Eq. (B.17).
Appendix C. Correlation between sharer fluctuations in larger
groups

Here the analytical treatment is expanded to a group of more
than two cooperators. Even without resorting to the variance
discount approximation, some interesting results can be obtained.
First it is convenient to introduce matrix notation. Suppose a
group G of collaborating players j. Here j can assume a character
value such as A, B, etc. Let the offspring of player j at event i

(previously li) now be denoted as l(i)j, which is shortened to lj. The
average offspring for j is lj. A share received by player j from
player k is labelled s(i)jk, which is shortened to sjk. If k¼ j, then sjj

denotes the individual variation that is called di above. After
sharing, the total yield at event i then becomes

lj ¼ ljþ
X
kAG

sjk ðC:1Þ

The maximum offspring condition states that in the optimal
case, variations are zero for each player every round:

lj�lj ¼
X
kAG

sjk ¼ 0 ðfor every jÞ ðC:2Þ

If Eq. (C.2) is valid for every j, then the summation over all
players j must also be equal to zeroX
jAG

X
kAG

sjk ¼ 0 ðC:3Þ

The amount that player j gives to k, must be equal to the
amount that k receives from j, therefore sjk¼�sjk. In Eq. (C.3), this
cancels out all diagonal terms, leading toX
jAG

sjj ¼ 0 ðC:4Þ

Eq. (C.4) states that within group G, participants can most
successfully collaborate if their added fluctuations negate each
other every round i. In other words, if the trace of their sharing
matrix is zero. This is a generalization of the result di¼�ei

(Eq. (5)) derived for two players.
An interesting implication of Eq. (C.4) is that it provides an

answer to the question: What kind of new members should be
accepted into a group? Eq. (C.4) states that any new group
member should be accepted who further brings the total group
offspring fluctuation closer to zero, because this benefits the
whole group. The absolute contribution of a new member is less
important than the diversity she brings into the group.
If within the group there is a subgroup that also satisfies Eq.
(C.4), then this subgroup could split off without further variance
discount penalty. So a stable group must also be the minimally
possible group within its participants. This leads to an additional
condition for stability,X
jAG’

sjja0 ðC:5Þ

Here G0 is any subgroup of G. Eq. (C.4) says that in an ideally
stable group, all participants must make a unique contribution.

It is not unlikely that matrix theory or group theory would
allow further exploration of Eqs. (C.4) and (C.5) but this falls
outside the scope of the current work. However, some further
interpretation can be done. From the perspective of an individual
A in a group, it is important to remain in the group, as leaving will
hugely increase fluctuations. In order for A to assure group
membership, it is best to make a unique contribution that
maximally reduces the matrix trace. Player A would fear that
her contribution to the group is no longer unique or useful. Player
A would also fear the emergence of group members that are less
dependent on shares from the others. Therefore, diversity is a
main parameter that binds a bet hedging group.

The Eq. (C.4) also provides a definition of fairness in a group.
What can each member expect to get from a communal effort? It
might seem fair to divide the total yield every round between all n

members (let us call this a ‘full’ share), so everyone is able to
generate an average ð1=nÞSjAGlj offspring. As a result, members
with a high average yield consistently donate resources to
members with low average, and the high-average earners could
be better off leaving the group. However, Eq. (C.4) suggests
another principle. Each group member can expect to get her
environmental fluctuations cancelled (let us call this a ‘fair’
share). In other words: she can expect protection from the group
from natural setbacks. Within such a group, all members retain
their individual average offspring yields lj. This leads to a more
stable group, and is therefore an optimal way of organizing
solidarity.

In a bet hedging group, members will have to estimate their
expected average offspring (lj), and the surplus they can deal out.
If the estimate is too high: not enough favours are built up for
meagre times. If estimated too low, too much wealth is dealt
away. Therefore a player with a positive outlook on the future (a
feeling that lcurrent is above l) will share more than one with a
more negative outlook (a feeling that lcurrent is below l). If
participants in sharing games think they are in wealthy times,
they might donate therefore relatively large portions of wealth to
build up favors for meagre times. This could be the basis of
experimentally observed supercooperation (Guth et al., 1982;
Forsythe et al., 1994; Nowak, 2006).
Appendix D

Appendix D.1. Bet hedging combined with inclusive fitness

In the main text it was shown how bet-hedging based sharing
can counteract kin selection. Below, it is shown how this effect
can be incorporated in Hamilton’s equation for inclusive fitness
(kin selection) (Hamilton, 1964; Grafen, 2006; van Veelen, 2007;
Nowak et al., 2010). This relation was chosen because it is well-
known, although variance discount effects will play a role in any
mechanism of self selection. The inclusive fitness WIF can be
expressed as (Nowak et al., 2010)

WIF ¼
X

j

@

@dsel

@wj

@s�
dsel ¼ 0Rj

�� ðD:1Þ
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The summation is over all individual players j. Rj is the
relatedness between the focal individual and j. The right differ-
ential describes how the strategy s� of the focal player influences
the fitness wj of individual j. The increment dsel in the left
differential is the intensity of selection, and can be seen as the
fraction of s� which is implemented in order to get only weak
selection. (note that dsel and s� have no relation to di and si used
above).

The fitness effect in Eq. (D.1) is originally calculated for a
certain timeframe of t steps, in which the environment is
constant. If now environmental fluctuations are introduced over
this timeframe, variance discount can be applied if di5 li (see
above). This imposes that bet hedging is a weak force in selection,
which fits well with the weak selection assumption in inclusive
fitness. First the fitness effects of variance discount are expressed
as the geometric average of Ntotal,t

wj,discount ¼ ðNtotal,tÞ
1=t
¼Ntotal,i=Ntotal,i�1 � l� 1�

s2

2l2

� �
ðD:2Þ

This can be combined with the fitness effects in absence of
variation (wj)

wj,var ¼wj,discountwj � lj 1�
s2

j

2l2
j

 !
wj ðD:3Þ

If dsel can be interpreted as the (minimal) fraction with which
s� is implemented (Nowak et al., 2010), then the double differ-
ential can be approximated by

@

@dsel

@wj,var

@s�
�
@½ðdselwj,varðs�Þþð1�dselÞwj,varð0ÞÞ�

@dsel

�wj,varðs�Þ�wj,varð0Þ ðD:4Þ

In Eq. (D.4) wj,varðs�Þis the fitness after the focal player’s
strategy s� is applied, and wj,varð0Þ the fitness before. For simpli-
city let s� be the bet hedging component of a total strategy of the
focal individual, and wj be independent of s�: wj(s�)¼wj(0)¼wj. If
s2

j,s� is the variance of individual j after s� is applied, and s2
j,0the

variance before, then Eq. (D.4) can be combined with Eq. (D.3)
into:
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1
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Now the inclusive fitness equation results from combining Eqs.
(D.1) and (D.5).

WIF,var ¼
X

j

1

2lj
ðs2

j,0�s
2
j,s�ÞUwjRj ðD:6Þ

Eq. (D.6) is a general expression for inclusive fitness effects of
variance discount. If strategy s� reduces variance, then the term in
brackets is positive, and contributes positively to WIF,var for
related partners.

Appendix D.2. Bet hedging-based sharing with fluctuations that

associate with genotype

Next it is proven, using Eq. (D.6), that bet hedging can
stimulate cooperation between less related partners. For that a
more detailed model is needed. Assume a freely interacting
society with S-type and M-type players, who differ only in their
alleles for the muscularity gene. Offspring at event i can be
written as
For an S-type: li¼lþdi

For an M-type : mi¼Zþei
Now assume that the variations di and ei are more complex
than assumed earlier, and consist of three additive components: a
response due to carrying S (called ai) or M (called bi,) a response
due to other genes (fi), and a response due to an individual
stochastic factor pi(j), which is related to player number j. Let us
assume that all pi(j) are independently drawn from the same
distribution, and that all components, except ai and bi, are
independent. Because fluctuations are considered, not fitness
advantages, the net sum of all variations must be zero:

Xi ¼ t

i ¼ 1

ai ¼
Xi ¼ t

i ¼ 1

bi ¼
Xi ¼ t

i ¼ 1

fi ¼
Xi ¼ t

i ¼ 1

piðjÞ ¼ 0 ðD:7Þ

Now the fluctuations of types S and M can be written as:

dij ¼ aiþfiþpiðjÞ

eij ¼ biþfiþpiðjÞ ðD:8Þ

Suppose again that players simply share by pooling their
surpluses, and splitting 50:50. This leads to the following com-
mon fluctuations for two partners A and B, if

both are S-types : 1
2 ðdiAþdiBÞ ¼

1
2ð2aiþ2fiþpiðAÞþpiðBÞÞ ðD:9Þ

one is S, the other M : 1
2 ðdiAþeiBÞ ¼

1
2ðaiþbiþ2fiþpiðAÞþpiðBÞÞ

ðD:10Þ

both are M�types : 1
2 ðeiAþeiBÞ ¼

1
2ð2biþ2fiþpiðAÞþpiðBÞÞ ðD:11Þ

Eq. (D.6) can be combined with Eqs. (D.9–D.11). Without loss
of generality, it can be assumed that the focal individual is A, and
an S-type. First, the variances are evaluated before and after
sharing with partner B, when she is the same S-type as the focal
individual

s2
S,0 ¼

1

t

Xi ¼ t

i ¼ 1

d2
iA ¼

1

t

Xi�t

i ¼ 1

ðaiþjiþpiðBÞÞ
2

ðD:12Þ

s2
S,s� ¼

1

t

Xi ¼ t

i ¼ 1

1

2
ðdiAþdiBÞ

� �2

¼
1

4t

Xi�t

i ¼ 1

ð2aiþ2jiþpiðAÞþpiðBÞ
2

ðD:13Þ

The covariances of all terms equal zero, and the pi(A) and
pi(B) have the same variance s2

p leading to

ðs2
S,0�s

2
S,s�Þ ¼

1

t

Xi ¼ t

i ¼ 1

piðBÞ
2
�

1

4
piðAÞ

2
�

1

4
piðBÞ

2
¼

1

2
s2

p ðD:14Þ

Eq. (D.14) is simple but interesting. If it is combined with
Eq. (D.6), it states that also sharing between partners with the
same genotype generates fitness advantages from variance dis-
count. This is because the individual stochastic fluctuations are
dampened.

If partner B is an M-type

s2
M,0 ¼

1

t

Xi ¼ t

i ¼ 1

e2
iA ¼

1

t

Xi�t

i ¼ 1

ðbiþjiþpiðBÞÞ
2

ðD:15Þ

s2
M,s� ¼

1

t

Xi ¼ t

i ¼ 1

1

2
ðdiAþeiBÞ

� �2

¼
1

4t

Xi�t

i ¼ 1

ðaiþbiþ2jiþpiðAÞþpiðBÞÞ
2

ðD:16Þ

Because ai and bi are not independent, this leads to

ðs2
M,0�s

2
M,s�Þ ¼

1

4t

Xi ¼ t

i ¼ 1

4b2
i �a

2
i �b

2
i �2aibi

 !

þ
1

2
s2

P ¼
1

4t

Xi ¼ t

i ¼ 1

3b2
i �a

2
i �2aibi

 !
þ

1

2
s2

P ðD:17Þ
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Eq. (D.17) needs to be positive, otherwise it would be better
not to share at all.

1

4t

Xi ¼ t

i ¼ 1

3b2
i �a

2
i �2aibi4�

1

2
s2

p ðD:18Þ

In addition, a variant of Eq. (D.17) can be constructed from the
perspective of partner B (by switching a and b). Because both
partners need to profit from the sharing relationship, also this
variant needs to be positive, leading to

1

4t

Xi ¼ t

i ¼ 1

3a2
i �b

2
i �2aibi4�

1

2
s2

p ðD:19Þ

If 1=tSi ¼ t
i ¼ 1a2

i ¼ s
2
aand ð1=tÞSi ¼ t

i ¼ 1b
2
i ¼ s2

b then the solution of
the set of Eqs (D.18) and (D.19) requires s2

a ¼ s2
b � s0

2. This
particular condition arises because A and B follow a complete
sharing arrangement, as pointed out above. If this solution is
combined with Eq. (D.17)

ðs2
M,0�s

2
M,s�Þ ¼

1
2ðs0

2�sabþs2
PÞ ðD:20Þ

The use of Eq. (D.20) in Eq (D.6) gives a fitness condition for
heterotypic sharing. It has an extra term s02�sabcompared to
homotypic sharing in Eq. (D.14). If s02 ¼ sab then the fluctuations
experienced by A and B have a similar phase and Eqs. (D.14) and
(D.20) are identical. The term of Eq. (D.20) is greater than that of
Eq. (D.14) if sabos02. In other words: when the fluctuations
mediated by a and b are less than perfectly correlated, there is a
fitness advantage for an S-type to collaborate with an M-type,
rather than a more related S-type.

Appendix D.3. Bet hedging and kin selection inversely depend on

relatedness

Next, fitness is studied in more detail by combining Eqs. (D.14)
and (D.20) with Eq. (D.6). Assume that the society consist of NS

players of type S, and NM players of type M. S and M-types are all
related by descent, but in such a way that S-types are more
related to the S-type focal player: RS¼RMþDR (DR40). In addi-
tion, NO players of type O are present, who are not available for
sharing, and who are not related by descent (RO¼0). If Rj is
defined as a normalized identity by descent, which can be
negative (Grafen, 2006), the pool of O-types serves to ensure that
RS40 and RM40.

Now let the focal player implement her strategy by choosing a
sharing relation with an S-type for fS part of her time, and with an
M-type for an fM part, with fSþ fM¼1. This generates the following
fitness for the focal player from Eqs. (D.6, D.14 and D.20),

WIF ¼
wSNS

4ls
fSs2

PRSþ
wMNM

4lM
fMðs02�sabþs2

PÞRM ðD:21Þ

Let us define
wSNS

4ls
¼w0s and

wMNM

4lM
¼w0M

In Eq. (D.21), for an indiscriminate strategy fS¼ fM , for a self
selective strategy fS¼1, and for a purely heteroselective strategy
fM¼1.

If sabZs02 then Eq. (D.21) maximizes for a self selective
strategy. Kin selection is then dominant. The focal player will
aim for a population that contains only S-types. How does
Eq. (D.21) maximize if sabos02? Interestingly, the outcome of
Eq. (D.21) for fM¼1 can be larger than for fS¼1 if

w0Mðs
02�sabþs2

PÞRM 4w0Ss
2
PRS3sabos02�s2

P

w0SRS

w0MRM
�1

� �
ðD:22Þ

If only fitness differences between S and M are considered that
arise from variance discount and relatedness, all other factors can
be set equal by assuming w0M ¼w0S. Then Eq. (D.22) further
simplifies to

3sabos02�s2
P

DR

RM
ðD:23Þ

If the inequality in Eq. (D.23) is satisfied, then a heteroselective
strategy beats a self selective strategy. If S and M are equally
related, then DR¼0, and Eq. (D.23) reverts to Eq. (8) in the main
text. If DR40, Eq. (D.23) is harder to satisfy, because of inclusive
fitness. However, heterotypic cooperation can still be fruitful if
sab is low enough. Thus, if the anticorrelation between the
fluctuations experienced by an M-type or S-type is sufficiently
negative, then the concomitant DR between S and M is surmoun-
table. In this way, collaborating with less related partners can be
more advantageous than collaborating with more related part-
ners. Due to variance discount, an S-type focal player now has an
incentive to cooperate with M-types.
References

Antal, T., Ohtsuki, H., Wakely, J., Taylor, P.D., Nowak, M.A., 2009. Evolution of
cooperation by phenotypic similarity. Proc. Natl. Acad. Sci. USA 106,
8597–8600.

Armstrong, K.A., 2007. The great transformation. Atlantic Books, London.
Axelrod, R., Hamilton, W.D., 1981. The evolution of cooperation. Science 211,

1390–1396.
Bergstrom, B.T., Lachmann, M., 2003. The red king effect: when the slowest runner

wins the coevolutionary race. Proc. Natl. Acad. USA 100, 593–598.
Bernard, H., Fischbacher, U., Fehr, E., 2006. Parochial altruism in humans. Nature

442, 912–915.
Bowles, S., 2006. Group competition, reproductive leveling, and the evolution of

human altruism. Science 314, 1569–1572.
Boyd, R., Richerson, P.J., 1988. The evolution of reciprocity in sizable groups.

J. Theor. Biol. 132, 337–356.
Bronstein, J.L., 2009. The evolution of facilitation and mutualism. J. Ecol. 97,

1160–1170.
Choi, J-K., Bowles, S., 2007. The coevolution of parochial altruism and war. Science

318, 636–640.
Clutton-Brock, T., 2002. Breeding together: kin selection and mutualism in

cooperative vertebrates. Science 296, 69–72.
Dawkins, R., 1976. The Selfish Gene. Oxford University Press, Oxford.
Doebeli, M., Knowlton, N., 1998. The evolution of interspecific mutualisms. Proc.

Natl. Acad. Sci. USA 95, 8676–8680.
Efferson, C., Lalive, R., Fehr, E., 2008. The coevolution of cultural groups and

ingroup favouritism. Science 321, 1844–1849.
Ellner, S.P., 2009. Draft chapters for lectures on theoretical biology. Chapter 2: bet

hedging. /www.eeb.cornell.edu/EllnerS.
Fehr, E., Fischbacher, U., 2003. The nature of human altruism. Nature 425,

785–791.
Ferriere, R., Bronstein, J.L., Rinaldi, S., Law, R., Gauduchon, M., 2002. Cheating and

the evolutionary stability of mutualisms. Proc. R. Soc. Lond. B 269, 773–780.
Fletcher, J.A., Doebeli, M., 2009. A simple and general explanation for the evolution

of altruism. Proc. R. Soc. Lond. B 276, 13–19.
Forsythe, R., Horowitz, J.L., Savin, N.E., Setton, M., 1994. Fairness in simple

bargaining experiments. Game Econ. Behav. 6, 347–369.
Foster, K.R., Wenseleers, T., 2006. A general model for the evolution of mutualisms.

J. Evol. Biol. 19, 1283–1293.
Frank, S.A., Slatkin, M., 1990. Evolution in a variable environment. Am. Nat. 136,

244–260.
Frank, S.A., 1994. Genetics of mutualism: the evolution of altruism between

species. J. Theor. Biol. 170, 393–400.
Frean, M.R., 1991. The prisoner’s dilemma without synchrony. Proc. R. Soc. Lond. B

257, 75–79.
Guth, W., Schmittberger, R., Schwarze, B., 1982. An experimental analysis of

ultimatum bargaining. J. Econ. Behav. Organ. 3, 367–388.
Grafen, A., 2000. Development of the Price equation and natural selection under

uncertainty. Proc. R. Soc. Lond. B 267, 1223–1227.
Grafen, A., 2006. Optimization of inclusive fitness. J. Theor. Biol. 238, 541–563.
Hamilton, W.D., 1964. The genetical evolution of social behaviour. J. Theor. Biol. 7,

1–16.
Helbing, D., Yu, W., 2009. The outbreak of cooperation among success-driven

individuals under noisy conditions. Proc. Natl. Acad. Sci. USA 106, 3680–3685.
Herre, E.A., Knowlton, N., Mueller, U.G., Rehner, S.A., 1999. The evolution of

mutualisms: exploring the paths between conflict and cooperation. Trends
Ecol. Evol. 14, 49–53.

Jansen, V.A.A., van Baalen, M., 2006. Altruism through beard chromodynamics.
Nature 440, 663–666.

Kussell, E., Leibler, S., 2005. Phenotypic diversity, population growth, and informa-
tion in fluctuating environments. Science 309, 2075–2078.

www.eeb.cornell.edu/Ellner
www.eeb.cornell.edu/Ellner
www.eeb.cornell.edu/Ellner
www.eeb.cornell.edu/Ellner


J.C.M. Uitdehaag / Journal of Theoretical Biology 280 (2011) 76–87 87
Lewontin, R.C., Cohen, D., 1969. On population growth in a randomly varying
environment. Proc. Natl. Acad. Sci. USA 62, 1056–1060.

McElreath, R., Boyd, R., Richerson, P.J., 2003. Shared norms can lead to the

evolution of ethnic markers. Curr. Anthropol. 44, 122–129.
McNamara, J.M, Barta, Z., Houston, A.D., 2004. Variation in behaviour promotes

cooperation in the prisoner’s dilemma game. Nature 428, 745–748.
Milinski, M., Wedekind, C., 1998. Working memory constrains human cooperation

in the prisoner’s dilemma. Proc. Natl. Acad. Sci. USA 95, 13755–13758.
Mylius, S.D., Diekman, O., 1995. On evolutionarily stable life histories, optimiza-

tion and the need to be specific about density dependence. Oikos 74, 218–224.
Nowak, M.A., Sigmund, K., 1994. The alternating prisoner’s dilemma. J. Theor. Biol.

168, 219–226.
Nowak, M.A., Sasaki, A., Taylor, C., Fudenberg, D., 2004. Emergence of cooperation

and evolutionary stability in finite populations. Nature 428, 647–650.
Nowak, M.A., Sigmund, K., 2005. Evolution of indirect reciprocity. Nature 437,

1291–1298.
Nowak, M.A., 2006. Five rules for the evolution of cooperation. Science 314,

1560–1563.
Nowak, M.A., Tarnita, C.E., Wilson, E.O., 2010. The evolution of eusociality. Nature,

1057–1062 and supplemental data.
Philippi, T., Seger, J., 1989. Hedging one’s evolutionary bets revisited. Trends Ecol.

Evol. 4, 41–44.
Riolo, R., Cohen, M.D., Axelrod, R., 2001. Evolution of cooperation without

reciprocity. Nature 414, 441–443.
Roff, D.A., 2008. Defining fitness in evolutionary models. J. Genet. 87, 339–348.
Sachs, J.L., Mueller, U.G., Wilcox, T.P., Bull, J.J., 2004. The evolution of cooperation.

Q. Rev. Biol. 79, 135–160.
Salomonsson, M., 2010. Group selection: the quest for social preferences. J. Theor.

Biol. 264, 737–746.
Santos, F.C., Santos, M.D., Pacheco, J.M., 2008. Social diversity promotes the
emergence of cooperation in public goods games. Nature 454, 213–216.

Sober, E., Wilson, D.S., 1998. Unto Others: the Evolution and Psychology of
Unselfish Behaviour, Cambridge MA. Harvard University Press.

Trivers, R.L., 1971. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57.
Trivers, R.L., 2006. Reciprocal altruims, 30 years later. In: Kappeler, P.M., van

Schaik, C.P. (Eds.), Cooperation in Primates and Humans: Mechanism and
Evolution. Springer, Heidelberg, pp. 67–83.

Uitdehaag, J.C.M., 2009. The dependency game: multiperson reciprocal sharing
leads to stable cooperation which can evolve into group formation. J. Theor.
Biol. 260, 253–260.

van Veelen, M., 2007. Hamilton’s missing link. J. Theor. Biol. 246, 551–554.
van Veelen, M., Garcı́a, J., Avilés, L., 2010. It takes grouping and cooperation to get

sociality. J. Theor. Biol. 264, 1240–1253.
Wagner, A., 2003. Risk management in biological evolution. J. Theor. Biol. 225,

45–57.
West, S.A., 2010. Altruism, spite and greenbeards. Science 327, 1341–1344.
Weyl, E.G., Frederickson, M.E., Yu, D.W., Pierce, N.E., 2010. Economic contract

theory tests models of mutualism. Proc. Natl. Acad. Sci. USA 107,
15712–15716.

Wild, G., Gardner, A., West, S.A., 2009. Adaptation and the evolution of parasite
virulence in a connected world. Nature 459, 983–986.

Wilson, D.S., Yoshimura, J., 1994. On the coexistence of specialists and generalists.
Am. Nat. 144, 692–707.

Yamamura, N., Higashi, M., Behera, N., Wakano, J.Y., 2004. Evolution of mutualism
through spatial effects. J. Theor. Biol. 226, 421–428.

Yoshimura, J., Jansen, V.A.A., 1996. Evolution and population dynamics in stochas-
tic environments. Res. Popul. Ecol. 38, 165–182.

Zahavi, A., 1995. Altruism as a handicap. The limits of kin selection and reciprocity.
J. Avian Biol. 26, 1–3.


	Bet hedging based cooperation can limit kin selection and form a basis for mutualism
	Introduction
	Variance discount
	Bet hedging based sharing is an evolutionarily stable strategy
	The fluctuations of optimal sharing partners need to be anticorrelated
	Bet hedging based sharing is a basis for mutualism
	Mutualism can dominate kin selection
	The evolution of bet hedging based cooperation can lead to specialization
	Discussion
	Acknowledgements
	Model
	Appendix B
	Correlation statistics between collaborators
	Evolutionary success conditions for a mutant player Aprime
	Correlation statistics when there is partial sharing

	Correlation between sharer fluctuations in larger groups
	Appendix D
	Bet hedging combined with inclusive fitness
	Bet hedging-based sharing with fluctuations that associate with genotype
	Bet hedging and kin selection inversely depend on relatedness

	References




