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H I G H L I G H T S

� Noise in biological systems is stu-
died by discrete stochastic differen-
tial equations.

� Biological systems are modeled by
birth-death type systems with or
without a buffer.

� Noise is described by the variance of
the number of molecules at constant
mean.

� Noise is increased or decreased
according to the type of system/
buffer correlation.

� In general noise is reduced upon
connecting positively correlated
birth-death systems.
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a b s t r a c t

Cell systems consist of a huge number of various molecules that display specific patterns of interactions, which
have a determining influence on the cell's functioning. In general, such complexity is seen to increase with the
complexity of the organism, with a concomitant increase of the accuracy and specificity of the cellular
processes. The question thus arises how the complexification of systems –modeled here by simple interacting
birth-death type processes – can lead to a reduction of the noise – described by the variance of the number of
molecules. To gain understanding of this issue, we investigated the difference between a single system
containing molecules that are produced and degraded, and the same system –with the same average number
of molecules – connected to a buffer. We modeled these systems using Itō stochastic differential equations in
discrete time, as they allow straightforward analytical developments. In general, when the molecules in the
system and the buffer are positively correlated, the variance on the number of molecules in the system is found
to decrease compared to the equivalent system without a buffer. Only buffers that are too noisy themselves
tend to increase the noise in the main system. We tested this result on two model cases, in which the system
and the buffer contain proteins in their active and inactive state, or protein monomers and homodimers. We
found that in the second test case, where the interconversion terms are non-linear in the number of molecules,
the noise reduction is much more pronounced; it reaches up to 20% reduction of the Fano factor with the
parameter values tested in numerical simulations on an unperturbed birth-death model. We extended our
analysis to two arbitrary interconnected systems, and found that the sum of the noise levels in the two systems
generally decreases upon interconnection if the molecules they contain are positively correlated.
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1. Introduction

Biological systems involve large amounts of different molecules
that are closely packed in a relatively small area—the cell and the
intercellular medium. These molecules are located in some specific
regions of space—inside or outside the cell, inside or outside the
nucleus, etc—or move from one region to another. They interact in
a specific manner to form transient or permanent complexes that
perform the biological activity. These highly complex systems are
moreover very sensitive to the environment (presence of other
molecules) and external conditions (temperature, pH, salt concentra-
tion, etc). It is obviously impossible to take all these degrees of
freedom into account. Therefore deterministic models can only
reproduce the average of variables involved in biological processes.
To gain insight into the actual time evolution of an individual process,
stochastic models must be used, such as stochastic differential
equations (SDE) or the master equation formalism.

In spite of their highly complex and stochastic behavior,
biological systems work very precisely and efficiently and perform
their activity quite specifically, with a surprisingly low level of
error. A striking observation is that while the overall complexity of
the cellular processes (for example the transcription machinery)
tends to increase with the complexity of the organisms (for
example prokaryotes versus higher eukaryotes), the specificity
and accuracy of these processes appear in general to increase too.
In other words, the noise at the molecular and cellular levels tends
to decrease when the number of degrees of freedom and thus the
complexity of the organism increases.

Note however that this overall tendency is not always true:
some noise is not detrimental to biological systems. Sometimes it
can create the diversity needed for cellular adaptation to, for
example, different environments thereby generating new gene
expression patterns or phenotypes (Samoilov et al., 2006; Thattai
and van Oudenaarden, 2004). Also, cell differentiation has been
suggested to be noise-driven (Hoffmann et al., 2008; Forde, 2009).

Intrinsic noise reduction in biological systems has been inves-
tigated earlier by combinations of analytical and numerical
approaches. In particular, in the framework of gene expression
networks, it has been shown that negative feedback can drama-
tically reduce the variability in gene expression (Gardner and
Collins, 2000; Becskei and Serrano, 2000; Paulsson, 2004; Yi et al.,
2008). Actually, negative translational feedback appears to have a
much greater efficiency at reducing stochasticity than negative
transcriptional feedback (Swain, 2004). Also, complex promotor
architectures are suggested to make gene expression regulation
more precise (Müller and Stelling, 2009). In contrast, in a genetic
switch model consisting of a single gene with positive autoregula-
tion, larger numbers of activator sites appear to lead to less
accurate delays (Albert and Rooman, 2012); the effect of coopera-
tive binding of activators has also been studied and the level of
noise seems to increase with the interaction energy (Gutierrez et al.,
2009). Furthermore, cell–cell communication appears to lead in
some (but not all) cases to decreased noise, due to the summation
of the effects of all cells of the population (Tanouchi et al., 2008;
Weber and Buceta, 2011; Koseska et al., 2009). Finally, at the protein
level, noise control is achieved through oligomerization (Ghim and
Almaas, 2008; Bundschuh et al., 2003) or through the interaction
between proteins and background molecules (Morishita and Aihara,
2004).

To gain understanding of these issues, which are central for
elucidating the basis of biological evolution but also for engineer-
ing novel cells in the framework of synthetic biology, we studied
analytically a simple system containing molecules that are pro-
duced and degraded and compared it with the slightly more
complex system in which the original system is connected to a
second system—called buffer. The system-buffer pair may be

viewed as representing molecules that go from one region to the
other, for example, from the cytoplasm to the nucleus and back.
Also, molecules in the main system can be considered as being in
their inactive state and those in the buffer in their active state due
to their binding to a ligand. Alternatively, the molecules in the
main buffer can be protein monomers and those in the buffer
homomultimers.

Our goal here is to compare the variance of the number of
molecules—that represents the noise—of a system with and with-
out a buffer. We would like to emphasize that this comparison is
performed for an equal average number of molecules in the main
system (excluding the buffer). We indeed assume that a biological
system needs a fixed mean number of molecules to function
correctly, whether or not a buffer is present.

We modeled the systems using discrete-time stochastic differen-
tial equations (SDE), in which the stochasticity is reproduced through
Wiener processes. This formalism has the advantage of allowing easy
analytical developments, which allow gaining basic understanding of
the reasons underlying the noise reduction upon increase of com-
plexity. For the sake of completeness, the link between this type of
formalism and the Fokker–Planck equation and with the master
equation is recalled explicitly. This clarifies the significance of the
parameters that enter in the two approaches.

2. Stochastic system without a buffer

Consider first a simple biological system consisting of mole-
cules of type ~y which are produced at some rate ~P and eliminated
at some other rate ~D (see Fig. 1(a)). These molecules may for
example be viewed as proteins that enter the system after
translation from RNA and leave it due to degradation, transforma-
tion or interaction with other biomolecules. They may also be seen
as proteins that enter and leave a given cell or cell compartment.
As biological processes are inherently stochastic, the amount of
molecules, denoted by ~Y , and their production and degradation
rates are taken as stochastic processes, defined on some prob-
ability space and indexed by a parameter t that represents the time
and varies over the interval [0, T]. A natural model for the time
evolution of such a system consists of an Itō stochastic differential
equation in continuous time of the following form (see for
example Allen, 2007):

d ~Y ðtÞ ¼ d ~P ðtÞ�d ~DðtÞ; ð1Þ
where we assume that the production and degradation rates are
each expressed as the sum of a deterministic term with drift
coefficient denoted by pðmÞ and dðmÞ, respectively, and of a stochas-
tic term with diffusion coefficient

ffiffiffiffiffiffiffi
pðvÞ

p
and

ffiffiffiffiffiffiffi
dðvÞ

p
(where the

superscripts m and v stand for “mean” and “variance”):

d ~P ðtÞ ¼ ~pðmÞðt; ~Y Þ dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~pðvÞðt; ~Y Þ

q
d ~ηðtÞ;

d ~DðtÞ ¼ ~d
ðmÞðt; ~Y Þ dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d
ðvÞðt; ~Y Þ

q
d ~χ ðtÞ; ð2Þ

~ηðtÞ and ~χ ðtÞ stand for two independent Wiener processes.
Remember that, by definition, ~ηð0Þ ¼ 0 and ~χ ð0Þ ¼ 0, and that both
~ηðtÞ� ~ηðt0Þ and ~χ ðtÞ� ~χ ðt0Þ follow a N ð0; t�t0Þ distribution for all
t; t0. Note also that the Wiener process has continuous-valued

Fig. 1. Representation of a system without a buffer ðaÞ, and with a buffer ðbÞ.
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realizations and is thus appropriate when ~Y represents concentra-
tions of molecules, or when the number of molecules is large
enough to be approximated as a continuous variable, whereas
Poisson processes would be better suited when ~Y represents small
numbers of molecules. We will consider here for simplicity only
Wiener processes, with ~Y taking positive real values and corre-
sponding to large numbers of molecules (Allen, 2007).

In general, the drift and diffusion coefficients may depend on ~Y .
It has been shown that the Fokker–Plank equation for a production
process corresponds to an Itō SDE with drift and diffusion
coefficients independent of ~Y , whereas for a degradation process
the drift coefficient is proportional to ~Y and the diffusion coeffi-
cient to ~Y

1=2
(Allen, 2007). Hence, we naturally set:

d ~PðtÞ ¼ ~pðmÞ dtþ
ffiffiffiffiffiffiffiffi
~pðvÞ

q
d ~ηðtÞ;

d ~DðtÞ ¼ ~d
ðmÞ ~Y ðtÞ dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d
ðvÞ ~Y ðtÞ

q
d ~χ ðtÞ: ð3Þ

We assumed here that the production and degradation parameters
are time independent. This makes the subsequent calculations
simpler but is actually unnecessary; we only have to assume that
these parameters allow for a long-time limit as t-1. Note that we
chose to model our system using Itō SDEs rather than Stratonovich
SDEs because of the similarities of the former with the Fokker–
Planck equation (see e.g. Allen, 2007; Allen et al., 2008), known to
yield relevant descriptions of biological systems.

For the simplicity of the subsequent calculations, we approx-
imate the continuous SDE given by Eq. (1) by a discrete-time SDE,
where the time interval [0,T] is subdivided in N equal-length
intervals 0¼ t0o⋯otN ¼ T , with tn ¼ nΔt and Δt ¼ T=N. Using
Milstein's discretization method (Milstein and Tretyakov, 2004),
we get

~Ynþ1 ¼ ~Y nþΔ ~Pn�Δ ~DnþΔ ~Mn; ð4Þ
for all positive integers nA ½0;N�, where the discretized production
and degradation rates, and the Milstein term ΔMn, are given by

Δ ~Pn ¼ ~pðmÞΔtþ
ffiffiffiffiffiffiffiffi
~pðvÞ

q
Δ ~ηn;

Δ ~Dn ¼ ~d
ðmÞ ~Y nΔtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~d
ðvÞ ~Yn

q
Δ ~χ n;

Δ ~Mn ¼ �1
4
~d
ðvÞððΔ ~χ nÞ2�ΔtÞ; ð5Þ

with ~ηn ¼ ~ηðtnÞ and Δ ~ηn ¼ ~ηnþ1� ~ηn, so that in particular ~η0 ¼ 0,
EðΔ ~ηnÞ ¼ 0 and VarðΔ ~ηnÞ ¼Δt, and similarly for ~χ . Owing to the

Milstein termΔ ~Mn, the mean square error between ~Y n and ~Y ðtnÞ is
of the order of ðΔtÞ2 (see e.g. Allen, 2007; Milstein and Tretyakov,
2004). The Milstein method is thus more accurate than the Euler–
Maruyama method in which Δ ~Mn is set to 0, and where the mean
square error is of the order of Δt. Note that EðΔ ~MnÞ ¼ 0 and
VarðΔ ~MnÞ ¼ OðΔtÞ2, so that this correction term will not appear in
our final results. It is, however, important for numerical simulations.

Computing the mean and variance of the discretized produc-
tion and degradation rates (5) yields:

EðΔ ~PnÞ ¼ ~pðmÞΔt; VarðΔ ~PnÞ ¼ ~pðvÞΔt;

EðΔ ~DnÞ ¼ ~d
ðmÞ

Eð ~Y nÞΔt; VarðΔ ~DnÞ ¼ ~d
ðvÞ
Eð ~Y nÞΔt; ð6Þ

up to the second order in Δt. It is now clear that the superscripts
m and v refer to the mean and the variance, respectively. The
continuous-time equations (1)–(3) are obtained by taking the limit
Δt-0, i.e. by taking the limit N-1 while keeping T constant. In
what follows, we consider a fixed time-discretization level, which
means that we keep Δt small but constant. Furthermore, we
assume the weak convergence of the system towards a steady
state, ~Y , in the long-time limit, for small discretization step. More
precisely, we assume that, for any sufficiently small fixed Δt, ~YN

converges weakly to some random variable ~YΔt in the limit
T ¼NΔt-1, and that ~YΔt then converges weakly to some
random variable ~Y in the limit Δt-0. In what follows, when
mentioning the steady state limit X of a process Xn when n-1,
we mean the so-defined limit (which we always assume to exist
for the processes we consider—a reasonable assumption in many
cases of interest, excluding however systems having e.g. limit
cycles or oscillatory behaviors). The weak convergence of a process
Xn-X implies the convergence of the moments: EðXp

nÞ-EðXpÞ for
any p40, if the Xn's are bounded by some constant. Given that the
processes Xn considered here represent biomolecules in a biologi-
cal (bounded) system, this is a reasonable assumption.

Let us now compute the mean and variance of the amount of
molecules in the steady state limit. Taking the mean of Eq. (4)
yields:

Eð ~Y Þ ¼ ~pðmÞ

~d
ðmÞ: ð7Þ

Taking the square of both members of Eq. (4) gives the Fano factor
in the steady-state limit:

Varð ~Y Þ
Eð ~Y Þ

¼ 1
2

~d
ðvÞ

~d
ðmÞ þ

~pðvÞ

~pðmÞ

 !
: ð8Þ

By virtue of this relation, the equality of the mean and variance of
the degradation rate and of the production rate (i.e. ~d

ðvÞ ¼ ~d
ðmÞ

and
~pðvÞ ¼ ~pðmÞ) implies the equality of the mean and variance of the
number of molecules in the steady state limit: Varð ~Y Þ ¼ Eð ~Y Þ; the
Fano factor is thus equal to one. As seen in the next section, this
result is actually in agreement with the finding that the master
equation for a simple birth-death process yields a steady-state
probability distribution of the number of molecules that is
Poissonian (Walczak et al., 2012).

3. Relation with the master equation formalism

Before analyzing more complex systems using our discretized SDE
models, it is informative to recall the link between this description
and the often used master equation formalism. For that purpose, first
consider the relation between Itō SDEs, where the stochasticity is
explicitly introduced through Wiener processes, and the Fokker–
Planck equation, which is an equation for the probability density
function (see e.g. Allen, 2007; Friedman, 1975; Gikhman and
Skorokhod, 1972). In particular, the continuous-time version of the
SDE considered here, given by Eqs. (1) and (2), is equivalent (under
mild conditions) to the following Fokker–Planck equation:

∂P
∂t

¼ � ∂
∂ ~y

ðð ~pðmÞ � ~d
ðmÞ

~yÞPÞþ1
2

∂2

∂ ~y2ðð ~p
ðvÞ þ ~d

ðvÞ
~yÞPÞ; t; ~yZ0; ð9Þ

where P � Pðt; ~yÞ is the probability density of the solution to the
considered SDE. This equation resembles a diffusion equation, with
an extra term that corresponds to a deterministic drift. Note that the
parameters pðvÞ and dðvÞ of the Wiener processes in the SDE (1) enter
in the diffusion term of the Fokker–Planck equation (9), whereas the
parameters pðmÞ and dðmÞ occur in the drift term.

The relation between the Fokker–Planck equation (where the
number of particles is continuous) and the master equation (where it
is discrete) is well known and easy to obtain. In particular, the
Fokker–Planck equation (9) corresponds to the following master
equation:

∂P ~y

∂t
¼ g ~y�1P ~y�1þr ~yþ1P ~yþ1�ðg ~y þr ~y ÞP ~y ; tZ0; ~yAN0; ð10Þ

where P ~y ðtÞ is the probability distribution obtained from Pðt; ~yÞ
through a discretization of the values ~y of the number of molecules.
Note that this formalism is valid even for a small number of particles,
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whereas the Fokker–Planck equation is a good approximation only
when the number of particles is large enough. The production rate g ~y

and the degradation rate r ~y are given in terms of the parameters of
the original SDE (1) as

g ~y ¼ 1
2 ð ~p

ðvÞ þ ~pðmÞÞþ1
2 ðð ~d

ðvÞ � ~d
ðmÞÞ ~yÞ;

r ~y ¼ 1
2 ðð ~d

ðvÞ þ ~d
ðmÞÞ ~yÞþ1

2 ð ~p
ðvÞ � ~pðmÞÞ: ð11Þ

In a simple birth-death process, we have g ~y ¼ g and r ~y ¼ r ~y, which

amounts to setting ~pðvÞ ¼ ~pðmÞ ¼ g and ~d
ðvÞ ¼ ~d

ðmÞ ¼ r. The number of
molecules ~Y is in this case known to follow a Poisson distribution
(Walczak et al., 2012). In particular, this implies Varð ~Y Þ ¼ Eð ~Y Þ, which
is in agreement with the result (8) obtained with discretized SDEs.

When ~pðvÞa ~pðmÞ and/or ~d
ðvÞ
a ~d

ðmÞ
, the production and/or

degradation rates contain two terms, one ~y�dependent and the
other ~y-independent. The SDE of Eq. (1) does not describe a simple
birth-death process in this case. The extra terms can be inter-
preted as representing an external perturbation that the system
undergoes, due e.g. to interactions with other molecules in the
neighborhood.

In the case ~pðvÞ4 ~pðmÞ and ~d
ðvÞ
4 ~d

ðmÞ
, the coefficients of the

Wiener processes in the SDE (1) are increased compared to the
simple, unperturbed, birth-death process and thus the noise level
is increased. This larger noise is also reflected in the inequality
Varð ~Y Þ4Eð ~Y Þ, which follows from Eq. (8). In contrast, when

~pðvÞo ~pðmÞ and ~d
ðvÞo ~d

ðmÞ
, the coefficients of the Wiener processes

are decreased and thus the noise level is reduced. We have in this
case the inequality Varð ~Y Þo ~Y .

At the limit of vanishing noise, i.e.when ~pðvÞ ¼ 0 and ~d
ðvÞ ¼ 0, we

obtain g ~y ¼ �r ~y ¼ 1
2ð ~p

ðmÞ � ~d
ðmÞ

~yÞ, so that the diffusion term in the
Fokker–Planck equation (9) vanishes, and so do the coefficients of
the Wiener processes in the SDE (1). The model is thus no longer
stochastic but becomes purely deterministic, with Varð ~Y Þ ¼ 0. The
master equation becomes simply a first-order differential equa-
tion: ∂tP ~y ¼ g ~y�1P ~y�1�g ~yþ1P ~yþ1, which is solved by P ~y ¼ δ ~y ;Eð ~Y Þ,

implying ~Y ¼ ~pðmÞ= ~d
ðmÞ

almost surely, under the condition that

~pðmÞ= ~d
ðmÞ

is an integer.
In summary, when considering a pure birth-death process, the

parameters in the SDE (1) (or in its discretization (4)) must satisfy

the relations ~pðvÞ ¼ ~pðmÞ and ~d
ðvÞ ¼ ~d

ðmÞ
. Other parameter values

describe systems undergoing external perturbations that do not
occur in the most simple model. This may be the case for example
when the molecules are produced or degraded through a process
that involves other molecules, which are not taken into account
explicitly in the model, but whose effect is encoded in effective
production and degradation parameters. This point will be further
discussed in Section 6. In what follows, we do not impose any
restrictions on the parameter values, and state that larger var-

iances (i.e. ~pðvÞ4 ~pðmÞ and ~d
ðvÞ
4 ~d

ðmÞ
) define more noisy production

and degradation gates, while smaller variances (i.e. ~pðvÞo ~pðmÞ and
~d
ðvÞo ~d

ðmÞ
) define more deterministic gates.

4. Stochastic system with a buffer

Now consider the slightly more complex system illustrated in
Fig. 1(b), consisting of two subsystems, containing molecules of
type y and z, respectively. These subsystems are connected, and
molecules of type y convert into molecules of type z and con-
versely; y may for example be protein monomers and z protein
multimers, or y may be an inactive and z an active state of the

same protein, or y may be located in one cell compartment and z
in another one. Molecules y are produced and degraded, while
molecules z are degraded but not produced (except through
conversion from y); this is a realistic assumption with respect to
the examples cited above. Such a system can naturally be modeled
by the following coupled discretized SDEs:

Ynþ1 ¼ YnþΔPn�ΔDn�α½ΔFn�ΔGn�þΔMn;

Znþ1 ¼ Zn�ΔEnþ½ΔFn�ΔGn�þΔNn; ð12Þ

where Y and Z stand for the number of molecules of type y and z,
respectively. The constant α represents the number of molecules
of type y that make up one molecule of type z; in particular, α¼ 2
when z are protein dimers. The production term ΔPn, the
degradation terms ΔDn and ΔEn, and the interconversion terms
ΔFn and ΔGn which convert molecules of type y into molecules of
type z and conversely—all generically represented by ΔBn here-
after—decompose into a deterministic drift part (proportional to
Δt) and a stochastic part ðof the order of Δt1=2Þ:

ΔBn ¼ bðmÞUðYn; ZnÞΔtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðvÞVðYn; ZnÞ

q
Δβn: ð13Þ

We suppose here for simplicity that UðYn; ZnÞ and VðYn; ZnÞ do not
depend explicitly on time. The discretized Wiener processes βn
that describe the stochasticity of the different rates are all chosen
independent of each other. As before, Δβn ¼ βnþ1�βn, β0 ¼ 0,
EðΔβnÞ ¼ 0, and VarðΔβnÞ ¼Δt. The mean and variance of ΔBn can
be expressed as

EðΔBnÞ ¼ bðmÞEðUðYn; ZnÞÞΔt;

VarðΔBnÞ ¼ bðvÞEðVðYn; ZnÞÞΔt; ð14Þ

up to the second order in Δt. Similarly as in the case without a
buffer, we have UðYn; ZnÞ ¼ 1¼ VðYn; ZnÞ for the production rate
(ΔPn), UðYn; ZnÞ ¼ Yn ¼ VðYn; ZnÞ for the degradation rate (ΔDn) of
molecules of type y, and UðYn; ZnÞ ¼ Zn ¼ VðYn; ZnÞ for the degrada-
tion rate (ΔEn) of molecules z. For the interconversion rates (ΔFn
and ΔGn), UðYn; ZnÞ and VðYn; ZnÞ are, for the moment, left
unspecified: they depend on the specific model considered. Writ-

ing generically ΔBn ¼ fbðmÞ; bðvÞ;UðYn; ZnÞ;V ðYn; ZnÞ;βng, we have

thus ΔPn ¼ fpðmÞ; pðvÞ;1;1;ηng, ΔDn ¼ fdðmÞ; dðvÞ;Yn;Yn; δng, ΔEn ¼
feðmÞ; eðvÞ; Zn; Zn; ϵng, ΔFn ¼ ff ðmÞ; f ðvÞ;Uf ðYn; ZnÞ;Vf ðYn; ZnÞ;ϕng, and
ΔGn ¼ fgðmÞ; gðvÞ;UgðYn; ZnÞ;VgðYn; ZnÞ; γng. Finally, the Milstein
terms ΔMn and ΔNn in (12) read as

ΔMn ¼ �1
4
dðvÞððΔδnÞ2�ΔtÞ

�α
4

f ðvÞ
∂Vf

∂Yn
ððΔϕnÞ2�ΔtÞ�gðvÞ

∂Vg

∂Yn
ððΔγnÞ2�ΔtÞ

" #
;

ΔNn ¼ �1
4
eðvÞððΔϵnÞ2�ΔtÞ

þ1
4

f ðvÞ
∂Vf

∂Zn
ððΔϕnÞ2�ΔtÞ�gðvÞ

∂Vg

∂Zn
ððΔγnÞ2�ΔtÞ

" #
: ð15Þ

Also, we assume (as in the case without a buffer) that Yn and Zn
converge weakly towards the steady states Y and Z, respectively, in
the steady-state limit n-1 defined previously.

The linear combination of the two equations (12) that elim-
inates the interconversion rates (except through the Milstein
terms) yields the following conservation equation:

½Ynþ1þαZnþ1� ¼ ½YnþαZn�þ½ΔPn��½ΔDnþαΔEn�þ½ΔMnþαΔNm�:
ð16Þ
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Taking the mean of both sides yields, in the steady state limit
n-1:

pðmÞ ¼ dðmÞEðYÞþα eðmÞEðZÞ; ð17Þ
which means that, in these limits, the production and the total
degradation compensate each other on average. Furthermore,
taking the mean of the square of both sides of Eq. (16) gives,
in the same limits, the following relation between variances and
covariances:

dðmÞ VarðYÞþα2eðmÞ VarðZÞ ¼ 1
2
ðpðvÞ þdðvÞEðYÞÞþα2

2
ðeðvÞ EðZÞÞ

�αðdðmÞ þeðmÞÞ Cov ðY ; ZÞ: ð18Þ
Note that this equation does not depend explicitly on the type of
interconversion between molecules of types y and z. Note also that
the instantaneous covariance CovðY ; ZÞ is equal to the delayed
covariance up to terms of the order of Δt, which vanish in the
continuous time limit:

CovðYn; ZnÞ ¼ CovðYnþ i; ZnÞþOðΔtÞ ¼ CovðYn; Znþ iÞþOðΔtÞ; ð19Þ
where i is an integer.

To obtain relations that involve the interconversion terms,
consider again the two equations (12). The computation of their
mean and the mean of their squares yields the following addi-
tional relations in the same limits:

pðmÞ �dðmÞEðYÞ ¼ αEðΦy-zÞ ¼ αeðmÞEðZÞ;

dðmÞ VarðYÞ ¼ 1
2
ðpðvÞ þdðvÞEðYÞÞ�α Cov ðY ;Φy-zÞþα2

2
ΦðvÞ;

eðmÞ VarðZÞ ¼ 1
2
ðeðvÞEðZÞÞ�CovðZ;Φz-yÞþ1

2
ΦðvÞ;

ðdðmÞ þeðmÞÞ CovðY ; ZÞ ¼ CovðY ;Φy-zÞþCovðαZ;Φz-yÞ�αΦðvÞ;

ð20Þ

where the “mean” flux Φy-z from system y to buffer z in the

steady-state limit is defined by: Φy-z ¼ �Φz-y ¼ f ðmÞUf �gðmÞUg ,

and the flux “variance” by ΦðvÞ ¼ f ðvÞEðVf ÞþgðvÞEðVgÞ. The first
equation means that, in the steady-state limit, the average number
of molecules entering system y is equal to the number of
molecules leaving it, and similarly for z. The other three equations
relate VarðYÞ, VarðZÞ and CovðY ; ZÞ to the “mean” flux Φy-z and

the flux “variance” ΦðvÞ between the system and the buffer.
Let us now compare the systems with and without a buffer.

Consider therefore that y and ~y refer to the same type of
molecules. Their degradation rates are thus identical. Moreover,
to make things comparable, we need to impose an equal average
number of molecules in the steady-state limit, i.e. EðYÞ ¼ Eð ~Y Þ. This
implies that the mean production rates are in general different to
allow a sufficient production and compensate on the average for
the molecules of type y that enter the buffer. However, we assume
that the production in both systems is due to the same external
process and is thus of the same kind, so that the ratio of the
variance and mean of the production rates are identical. More
precisely, we set:

dðmÞ ¼ ~d
ðmÞ

; dðvÞ ¼ ~d
ðvÞ
;

pðvÞ

pðmÞ ¼
~pðvÞ

~pðmÞ; EðYÞ ¼ Eð ~Y Þ ¼ ~pðmÞ

dðmÞ : ð21Þ

Inserting these relations into Eq. (20) and using Eq. (8) yields:

pðmÞ � ~pðmÞ ¼ αEðΦy-zÞ; ð22Þ
and the following expression for the variance of the system
without a buffer:

Varð ~Y Þ ¼ EðYÞ
2

pðvÞ

pðmÞ þ
dðvÞ

dðmÞ

 !
: ð23Þ

The use of these relations and of Eqs. (18)–(20) gives the difference
between the variances for systems with and without a buffer:

dðmÞðVarð ~Y Þ�VarðYÞÞ ¼ α CovðY ;Φy-zÞ�α2

2
ΦðvÞ �α

2
pðvÞ

pðmÞEðΦ
y-zÞ

¼ α2eðmÞ VarðZÞ� eðvÞ

eðmÞ þ
pðvÞ

αpðmÞ

� �
EðZÞ
2

� �
þαðdðmÞ þeðmÞÞ CovðY ; ZÞ

¼ �α2 CovðZ;Φz-yÞþα2

2
ΦðvÞ �α

2
pðvÞ

pðmÞEðΦ
y-zÞþαðdðmÞ þeðmÞÞ CovðY ; ZÞ:

ð24Þ
First consider the case where the degradation rate of the buffer

(ΔEn) vanishes. Eq. (24) then implies that the variance of the
system without a buffer is larger than the variance of the system
with a buffer if and only if CovðY ; ZÞ is positive, i.e. if and only if Y
and Z are positively correlated:

ΔEn ¼ 0 : VarðYÞrVarð ~Y Þ3CovðY ; ZÞZ0: ð25Þ
This condition may be considered as satisfied in general: a buffer is
indeed by definition positively correlated with the system, since its
role is to absorb the possible overflow of molecules of the system,
or, on the contrary, to provide it with molecules if it runs short.

On the other hand, when ΔEn does not vanish, the difference
between the variances of the systems with and without a buffer is
equal to CovðY ; ZÞ plus a term that depends on the mean and
variance of Z (Eq. (24)):

VarðYÞrVarð ~Y Þ3 ðdðmÞ þeðmÞÞ CovðY ; ZÞ

þαeðmÞ VarðZÞ� eðvÞ

eðmÞ þ
pðvÞ

αpðmÞ

� �
EðZÞ
2

� �
Z0: ð26Þ

This additional term may be positive or negative in general. It is
positive in the case the Fano factor of Z is of order one, and when
the buffer's degradation gate and the systems's production gate
are not too noisy, i.e. when eðvÞ and pðvÞ are not too much larger
than eðmÞ and pðmÞ. If these two reasonable conditions are satisfied
and if CovðY ; ZÞ is positive, we can again deduce that the variance
of the system without a buffer is larger than that of the system
with a buffer. An equivalent condition is obtained from the first
equation in Eq. (24):

VarðYÞrVarð ~Y Þ3Cov ðY ;Φy-zÞZ1
2

αΦðvÞ þ pðvÞ

pðmÞEðΦ
y-zÞ

� �
: ð27Þ

This condition is satisfied when the “mean” flux Φy-z towards the
buffer is positively correlated with Y (which again is a reasonable
assumption for a buffer) and when the flux “variance” ΦðvÞ and
“mean” EðΦy-zÞ are not too large; note that ΦðvÞ is always positive
but that EðΦy-zÞ may be positive or negative.

To illustrate that these conditions are indeed satisfied for quite
general types of biological buffers, and thus that the presence of
such buffers tends to reduce the variance of the number of
molecules, we analyze in detail two different model systems.

4.1. Model 1: Active and nonactive states of a protein

Consider the case where y and z correspond to the same
protein in two different structural states: y corresponds to the
active state and z to the inactive one. We then have

α¼ 1; Uf ðYn; ZnÞ ¼ Yn ¼ Vf ðYn; ZnÞ;
UgðYn; ZnÞ ¼ Zn ¼ VgðYn; ZnÞ: ð28Þ

From Eq. (20) we can easily solve for EðYÞ, VarðYÞ, EðZÞ, VarðZÞ and
CovðY ; ZÞ in terms of the system's parameters:

cEðYÞ ¼ apðmÞ;

cEðZÞ ¼ f ðmÞpðmÞ; ð29Þ
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2cðaþbÞ VarðYÞ ¼ ðcþa2ÞpðvÞ þpðmÞ

c
ðaðcþa2ÞdðvÞ þgðmÞ2f ðmÞeðvÞ

þðcþeðmÞ2Þðaf ðvÞ þ f ðmÞgðvÞÞ;

2cðaþbÞ VarðZÞ ¼ f ðmÞ2pðvÞ þpðmÞ

c
ðaf ðmÞ2dðvÞ þðcþb2Þf ðmÞeðvÞ

þðcþdðmÞ2Þðaf ðvÞ þ f ðmÞgðvÞÞ;

2cðaþbÞ CovðY ; ZÞ ¼ af ðmÞpðvÞ þpðmÞ

c
ða2f ðmÞdðvÞ þbgðmÞf ðmÞeðvÞ

�ðadðmÞ þbeðmÞÞðaf ðvÞ þ f ðmÞgðvÞÞÞ;
where

a¼ eðmÞ þgðmÞ;

b¼ dðmÞ þ f ðmÞ;

c¼ dðmÞeðmÞ þeðmÞf ðmÞ þdðmÞgðmÞ:

Using Eq. (23), we find that

VarðYÞrVarð ~Y Þ3

0rcgðmÞ pðvÞ

pðmÞ �
gðvÞ

gðmÞ

� �
þeðmÞgðmÞ2 dðvÞ

dðmÞ �
eðvÞ

eðmÞ

 !

þaðcþeðmÞ2Þ dðvÞ

dðmÞ �
f ðvÞ

f ðmÞ

 !
þeðmÞ2gðmÞ dðvÞ

dðmÞ �
gðvÞ

gðmÞ

 !
: ð30Þ

In the unperturbed birth-death case, where dðvÞ ¼ dðmÞ, eðvÞ ¼ eðmÞ,

pðvÞ ¼ pðmÞ, f ðvÞ ¼ f ðmÞ and gðvÞ ¼ gðmÞ, we have the equality
VarðYÞ ¼Varð ~Y Þ. More generally, this equality remains true when
all the parts of the process are equally noisy, in the sense that

pðvÞ=pðmÞ ¼ dðvÞ=dðmÞ ¼ eðvÞ=eðmÞ ¼ f ðvÞ=f ðmÞ ¼ gðvÞ=gðmÞ. In that case, we
also note that CovðY ; ZÞ ¼ 0.

In contrast, the inequality VarðYÞoVarð ~Y Þ is satisfied if the buffer
is less noisy than the main system, i.e. if pðvÞ=pðmÞ;

dðvÞ=dðmÞ4eðvÞ=eðmÞ; f ðvÞ=f ðmÞ; gðvÞ=gðmÞ. Conversely, if the buffer is

more noisy than the main system, i.e. if pðvÞ=pðmÞ; dðvÞ=dðmÞo
eðvÞ=eðmÞ; f ðvÞ=f ðmÞ; gðvÞ=gðmÞ, we have the reversed inequality
VarðYÞ4 Varð ~Y Þ. Note that the covariance CovðY ; ZÞ is positive if
the interconversion gates are not too noisy, and becomes negative
otherwise.

Now consider a slightly different case where the proteins are
produced in their inactive state, and become active in the “buffer”
(the quotation marks indicate that it is no longer a true buffer). In
this case we have to compare VarðZÞ to Varð ~Y Þ, with conditions
that differ from those given in Eq. (21). These are:

eðmÞ ¼ ~d
ðmÞ

; eðvÞ ¼ ~d
ðvÞ
;

pðvÞ

pðmÞ ¼
~pðvÞ

~pðmÞ;

EðZÞ ¼ Eð ~Y Þ ¼ ~pðmÞ

eðmÞ ; Varð ~Y Þ ¼ EðZÞ
2

pðvÞ

pðmÞ þ
eðvÞ

eðmÞ

� �
: ð31Þ

With these conditions and Eqs. (29), we obtain the following result:

VarðZÞrVarð ~Y Þ3

0raðcþdðmÞ2Þ pðvÞ

pðmÞ �
f ðvÞ

f ðmÞ

 !
þdðmÞf ðmÞgðmÞ eðvÞ

eðmÞ �
dðvÞ

dðmÞ

 !

þdðmÞeðmÞf ðmÞ pðvÞ

pðmÞ �
dðvÞ

dðmÞ

 !
þgðmÞðcþdðmÞ2Þ eðvÞ

eðmÞ �
gðvÞ

gðmÞ

� �
: ð32Þ

Again, the equality VarðZÞ ¼Varð ~Y Þ is satisfied in the unperturbed
birth-death model and, more generally, when the “buffer” and the
main systems are equally noisy. In such a case we have CovðY ; ZÞ ¼ 0.
The inequality VarðZÞoVarð ~Y Þ is satisfied when the “buffer” is noisier
than the main system, while the reversed inequality VarðZÞ4Varð ~Y Þ
holds when the main system is noisier than the “buffer”.

Note that this system can also be viewed as modeling mole-
cules that are located in two different cell compartments, or that
are inside and outside the cell.

4.2. Model 2: Protein monomers and dimers

Consider the case where the molecules y are protein monomers
and the molecules z are homodimers formed by two molecules y.
We then have

α¼ 2; Uf ðYn; ZnÞ ¼
1
2!
YnðYn�1Þ ¼ Vf ðYn; ZnÞ;

UgðYn; ZnÞ ¼ Zn ¼ VgðYn; ZnÞ: ð33Þ
Let us first assume that the buffer's degradation rate vanishes, i.e.
eðvÞ ¼ 0¼ eðmÞ. Inserting relation (33) in Eq. (12), and taking the
mean of these equations as well as the mean of their squares and
of their product, we can obtain EðYÞ, EðZÞ, VarðZÞ and CovðY ; ZÞ as
functions of the parameters, of VarðYÞ and of the skewness
κðYÞ ¼ EððY�EðYÞÞ3Þ. In this way, we get the relation:

ðAEðYÞþBÞðVarð ~Y Þ�VarðYÞÞþCðκð ~Y Þ�κðYÞÞ ¼DEðYÞ2þEEðYÞ; ð34Þ
where

A¼ 4f ðmÞ;

B¼ 2 dðmÞ þgðmÞ � f ðmÞð1þ f ðvÞ

f ðmÞ þ
gðvÞ

gðmÞÞ
 !

;

C ¼ 2f ðmÞ;

D¼ 2f ðmÞ dðvÞ

dðmÞ þ
pðvÞ

pðmÞ �
f ðvÞ

f ðmÞ �
gðvÞ

gðmÞ

 !
;

E¼ f ðmÞ 2� dðvÞ

dðmÞ �
pðvÞ

pðmÞ

 !
f ðvÞ

f ðmÞ þ
gðvÞ

gðmÞ

 !
þ dðvÞ

dðmÞ �1

 !
dðvÞ

dðmÞ þ
pðvÞ

pðmÞ

 ! !
:

The variance Varð ~Y Þ of the system without a buffer is given by
Eq. (23). Its skewness is easy to compute by taking the mean of Eq.
(4) to the third power, which yields:

κð ~Y Þ ¼ dðvÞ

dðmÞ Varð ~Y Þ: ð35Þ

The skewness of the system without a buffer is thus proportional
to Varð ~Y Þ. Hence, for normal buffers, the skewness κðYÞ of the
system with a buffer can be assumed to be of the order of its
variance VarðYÞ. For EðYÞb1, we can thus focus on the term
EðYÞðVarð ~Y Þ�VarðYÞÞ on the left-hand side of Eq. (34) and on the
term EðYÞ2 on the right-hand side. This approximation gives

Varð ~Y Þ�VarðYÞ � 1
2

dðvÞ

dðmÞ þ
pðvÞ

pðmÞ �
f ðvÞ

f ðmÞ �
gðvÞ

gðmÞ

 !
EðYÞ: ð36Þ

This equation means that, when eðvÞ ¼ 0¼ eðmÞ and EðYÞb1,
we have

ΔEn ¼ 0 : VarðYÞoVarð ~Y Þ3 dðvÞ

dðmÞ þ
pðvÞ

pðmÞ4
f ðvÞ

f ðmÞ þ
gðvÞ

gðmÞ;

VarðYÞ4Varð ~Y Þ3 dðvÞ

dðmÞ þ
pðvÞ

pðmÞo
f ðvÞ

f ðmÞ þ
gðvÞ

gðmÞ: ð37Þ

The equality VarðYÞ ¼Varð ~Y Þ is obtained in the unperturbed birth-
death case or more generally when the parameters' mean and
variance are equal (dðvÞ=dðmÞ ¼ pðvÞ=pðmÞ ¼ f ðvÞ=f ðmÞ ¼ gðvÞ=gðmÞ).

To check the validity of the assumptions made to obtain these
relations, we performed some numerical simulations using the R
package, which are summarized in Table 1. We chose as time step
Δt ¼ 0:1, as initial conditions Y0 ¼ 10¼ Z0, as number of time
steps N¼10,000, and made 10,000 runs for the estimation of the
mean and variance. As expected, in the unperturbed birth-death
case, the Fano factor VarðYÞ=EðYÞ remains roughly the same in the
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presence or absence of the buffer. It is reduced when the buffer is
less noisy and increased when it is more noisy than the main
system. An example, with parameters describing an unperturbed
birth-death process, is depicted in Figs. 2(a) and 3(a). The Fano
factor is in this case very similar (1.07 and 1.00) with or without a
buffer. Note that the steady state is reached much faster in the
absence of a buffer.

Consider now the general case when the buffer's degradation
rate does not vanish, thus eðvÞa0aeðmÞ. Using the same procedure

as above yields:

ðA0EðYÞþB0ÞðVarð ~Y Þ�VarðYÞÞþC 0ðκð ~Y Þ�κðYÞÞ
þF 0ðEðZÞ�VarðZÞÞ ¼D0EðYÞ2þE0EðYÞ; ð38Þ

where

A0 ¼ 2dðmÞgðmÞAþ8eðmÞf ðmÞðdðmÞ þeðmÞ þgðmÞÞ;

B0 ¼ 2dðmÞgðmÞBþ4eðmÞdðmÞðdðmÞ þeðmÞ þ2gðmÞÞ
�2eðmÞf ðmÞðdðmÞ þeðmÞÞð2þ2f þpÞþeðmÞgðmÞð2f þpþ2gþ2e�2Þ;

C0 ¼ 2dðmÞgðmÞCþ4eðmÞf ðmÞðdðmÞ þeðmÞ þgðmÞÞ;

D0 ¼ 2dðmÞgðmÞD

þ2eðmÞf ðmÞððdðmÞ þeðmÞ þgðmÞÞðpþ2d�2f Þþ2gðmÞð2�e�gÞÞ;

E0 ¼ 2dðmÞgðmÞEþ2eðmÞf ðmÞgðmÞð2�e�gÞðdþp�2Þ
þeðmÞf ðmÞðdðmÞ þeðmÞ þgðmÞÞð2d2�p2þð2�pÞð2f �dÞ�2fdÞ;

F 0 ¼ 16eðmÞgðmÞðeðmÞ þgðmÞÞ;
with p¼ pðvÞ=pðmÞ, d¼ dðvÞ=dðmÞ, e¼ eðvÞ=eðmÞ, f ¼ f ðvÞ=f ðmÞ,
g¼ gðvÞ=gðmÞ. Again, as argued before, we can disregard the term
involving the skewness κðYÞ when EðYÞb1 since it should in general
be of the order of VarðYÞ. Furthermore, we also expect VarðZÞ � EðZÞ

Table 1
Numeric evaluation of change of the Fano factor upon protein dimerization
in the case eðvÞ ¼ 0¼ eðmÞ . The parameters are equal to: pðmÞ ¼ f100;200g,
dðmÞ ¼ f0:005;0:01g, f ðmÞ ¼ f5� 10�6 ;1� 10�5g, gðmÞ ¼ f0:05;0:1g, with the rela-

tions: pðvÞ=pðmÞ ¼ 1¼ dðvÞ=dðmÞ , and f ðvÞ=f ðmÞ ¼ 1
2;1;2
� �¼ gðvÞ=gðmÞ .

Parameter values Varð ~Y Þ
Eð ~Y Þ

�VarðYÞ
EðYÞ

Number of tests

dðvÞ

dðmÞ þ
pðvÞ

pðmÞ ¼
f ðvÞ

f ðmÞ þ
gðvÞ

gðmÞ
[�0.02, 0.03] 16

dðvÞ

dðmÞ þ
pðvÞ

pðmÞ 4
f ðvÞ

f ðmÞ þ
gðvÞ

gðmÞ
[0.10, 0.46] 48

dðvÞ

dðmÞ þ
pðvÞ

pðmÞ o
f ðvÞ

f ðmÞ þ
gðvÞ

gðmÞ
[�0.90, �0.12] 80

Fig. 2. Numeric simulation of the number of molecules in a system without (left) and with (right) a buffer, as a function of time (n), in the case of protein dimerization. The
horizontal line represents the mean number of molecules in the steady state, which is imposed to be equal in the system with and without a buffer (Eð ~Y Þ ¼ EðYÞ).
(a) Unperturbed birth-death process with no degradation in the buffer: eðvÞ ¼ 0¼ eðmÞ , pðmÞ ¼ 100¼ pðvÞ , dðmÞ ¼ 0:01¼ dðvÞ , f ðmÞ ¼ 5� 10�5 ¼ f ðvÞ , gðmÞ ¼ 5� 10�2 ¼ gðvÞ;
(b) unperturbed birth-death process with degradation in the buffer: pðmÞ ¼ 200¼ pðvÞ , dðmÞ ¼ 0:05¼ dðvÞ , f ðmÞ ¼ 5� 10�4 ¼ f ðvÞ , gðmÞ ¼ 5� 10�3 ¼ gðvÞ , and eðmÞ ¼ 0:05¼ eðvÞ;
(c) perturbed birth-death process with little noisy interconversion gates: pðmÞ ¼ 100¼ pðvÞ , dðmÞ ¼ 0:05¼ dðvÞ , f ðmÞ ¼ 0:001¼ 2f ðvÞ , gðmÞ ¼ 0:005¼ 2gðvÞ , and eðmÞ ¼ 0:1¼ 1

2e
ðvÞ; and

(d) perturbed birth-death process with a noisy buffer: pðmÞ ¼ 200¼ pðvÞ , dðmÞ ¼ 0:05¼ dðvÞ , f ðmÞ ¼ 0:001¼ 1
2f

ðvÞ , gðmÞ ¼ 0:1¼ 1
2g

ðvÞ , and eðmÞ ¼ 0:05¼ eðvÞ . The production parameter
of the systemwithout a buffer ( ~p ðmÞ) has been determined so as to have an equal mean number of molecules in the main system in the presence or absence of the buffer. The
time step is Δt ¼ 0:1, the initial conditions Y0 ¼ 10¼ Z0, the number of time steps N¼ 50;000 in (a) and N ¼ 10;000 in (b–d), and the number of runs R¼10,000. Only the
first and last iterations are shown (nr5000 and nZ45;000 in (a) and nr200 and nZ9800 in (b–d)), and 500 trajectories are drawn.
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for normal buffers. If we moreover focus on parameters that yield a
similar amount of molecules in the system and in the buffer, so that
EðZÞ and EðYÞ are of the same order, the term EðZÞ�VarðZÞ can be
disregarded too. The dominating terms for EðYÞb1 are thus:

A″ðVarð ~Y Þ�VarðYÞÞ �D″EðYÞ; ð39Þ
where

A″¼ 4ðdðmÞ þeðmÞÞðeðmÞ þgðmÞÞ;

D″¼ eðmÞðdðmÞ þeðmÞ þgðmÞÞp
ðvÞ

pðmÞ þ2ðdðmÞ þeðmÞÞðeðmÞ þgðmÞÞ dðvÞ

dðmÞ �
f ðvÞ

f ðmÞ

 !

þ2gðmÞeðmÞ 2� eðvÞ

eðmÞ �
gðvÞ

gðmÞ

� �
þ2gðmÞdðmÞ pðvÞ

pðmÞ �
gðvÞ

gðmÞ

� �
: ð40Þ

Thus, as A″ is always positive, we deduce that the noise is reduced
in the system by the presence of the buffer if and only if D″ is
positive:

VarðYÞoVarð ~Y Þ3D″40;

VarðYÞ4Varð ~Y Þ3D″o0: ð41Þ

It is easy to see from Eq. (40) that the noise in the main system is
always reduced by the presence of a buffer in the unperturbed
birth-death case or in the more general case where the para-
meters’ means and variances are equal, except when the buffer's
degradation rate vanishes. In the latter case, the noise of the main
system remains the same whether or not a buffer is present, in
agreement with Eq. (37).

Fig. 3. Probability density of the number of molecules at the steady state in a systemwithout (black line) and with (red line) a buffer, in the case of protein dimerization. The
vertical dashed line represents the mean number of molecules in the steady state, which is imposed to be equal in the system with and without a buffer (Eð ~Y Þ ¼ EðYÞ). The
values of the production, degradation and interconversion parameters and the details of the numeric simulations are given in the legend of Fig. 2(a–d). (a) Unperturbed
birth-death process with no degradation in the buffer; (b) unperturbed birth-death process with degradation in the buffer; (c) perturbed birth-death process with little noisy
interconversion gates; and (d) perturbed birth-death process with a noisy buffer.
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More generally, the noise of the main system is reduced by the
presence of the buffer when the buffer is less noisy than the main
system (dðvÞ=dðmÞ, pðvÞ=pðmÞ4 f ðvÞ=f ðmÞ, gðvÞ=gðmÞ, eðvÞ=eðmÞ). This
remains true even if the buffer is somewhat more noisy than the
main system provided that eðmÞa0. It is only when the buffer
becomes too noisy that the noise rate in the main system starts to
increase (dðvÞ=dðmÞ; pðvÞ=pðmÞ5 f ðvÞ=f ðmÞ; gðvÞ=gðmÞ; eðvÞ=eðmÞ).

This analysis is again based on a number of hypotheses. To
check their validity, we made a series of numerical simulations,
summarized in Table 2. We chose again Δt ¼ 0:1, Y0 ¼ 10¼ Z0,
N¼10,000 time steps, and 10,000 runs for mean and variance
estimation. As expected from the analytical development, we find
that the variance of the main system is increased by the presence
of the buffer only when the variance parameters involving the
buffer (i.e. eðvÞ, f ðvÞ and gðvÞ) are much larger than their mean (hence
when the buffer is very “bad”). In all other cases, the variance is
decreased by the presence of the buffer. In the unperturbed birth-
death case, the noise reduction that is reached with the tested
parameters amounts to more than 20%. Even larger noise reduc-
tions are obtained when the buffer is less noisy than the main
system.

Three examples of trajectories with the associated probability
densities at the steady state are depicted in Figs. 2 and 3. The first
(Figs. 2(b) and 3(b)) corresponds to an unperturbed birth-death
process, in which the Fano factor is reduced from 1 to 0.82 upon
addition of a buffer. In Figs. 2(c) and 3(c), the interconversion gates
are less noisy than usual (f ðvÞ=f ðmÞ ¼ 1

2¼ gðvÞ=gðmÞ) and the Fano
factor is even more reduced by the buffer: from 1.00 to 0.56.
In contrast, with very noisy interconversion rates (f ðvÞ=f ðmÞ ¼
2¼ gðvÞ=gðmÞ), the Fano factor is increased from 1.00 to 1.39, as
depicted in Figs. 2(d) and 3(d).

Two further observations can be made from Fig. 2. First, the
number of molecules varies much more from one time step to the
next in the presence of a buffer, even when approaching the steady
state—at least for the parameter values tested. When no buffer is
present, the time variations in each particular trajectory seem
more limited, even though the variance over the different trajec-
tories is sometimes much larger. Second, the steady state is
approached much faster in the absence of a buffer when
eðmÞ ¼ 0¼ eðvÞ, whereas it is approached much faster in the pre-
sence of a buffer whose molecules can degrade (eðmÞa0aeðvÞ).
Further analyses are necessary to figure out whether these two
observations are general or instead are specific to the parameter
values tested.

5. Two connected systems

Now consider the slightly more complex system illustrated in
Fig. 1(b), where the “buffer” has a non-vanishing production rate
ΔQn. The two subsystems are thus perfectly symmetric, and we
investigate whether their connection leads to a reduction of their
respective variances. This system is modeled by the following

coupled discretized SDEs:

Ynþ1 ¼ YnþΔPn�ΔDn�α½ΔFn�ΔGn�þΔMn;

Znþ1 ¼ ZnþΔQn�ΔEnþ½ΔFn�ΔGn�þΔNn: ð42Þ

Using the same approach as in the previous section, we compare
the variances VarðYÞ and VarðZÞ of the connected systems to the
variances Varð ~Y Þ and Varð ~Z Þ of the unconnected systems. We set
thus, similar to Eq. (21):

dðmÞ ¼ ~d
ðmÞ

; dðvÞ ¼ ~d
ðvÞ
;

pðvÞ

pðmÞ ¼
~pðvÞ

~pðmÞ; EðYÞ ¼ Eð ~Y Þ ¼ ~pðmÞ

dðmÞ ;

eðmÞ ¼ ~eðmÞ; eðvÞ ¼ ~eðvÞ;
qðvÞ

qðmÞ ¼
~qðvÞ

~qðmÞ; EðZÞ ¼ Eð ~Z Þ ¼ ~qðmÞ

eðmÞ : ð43Þ

The variances of the unconnected systems ~y and ~z read as

Varð ~Y Þ ¼ EðYÞ
2

pðvÞ

pðmÞ þ
dðvÞ

dðmÞ

 !
and Varð ~Z Þ ¼ EðZÞ

2
qðvÞ

qðmÞ þ
eðvÞ

eðmÞ

� �
:

ð44Þ
The comparison between the variances of the connected and
unconnected systems leads to the following relations, which are
generalizations of Eqs. (26,27):

dðmÞVarðYÞþα2eðmÞVarðZÞrdðmÞVarð ~Y Þþα2eðmÞVarð ~Z Þ

3CovðY ; ZÞZ 1

2ðdðmÞ þeðmÞÞ
pðvÞ

pðmÞ �
αqðvÞ

qðmÞ

� �
EðΦy-zÞ;

VarðYÞrVarð ~Y Þ3CovðY ;Φy-zÞZ1
2

αΦðvÞ þ pðvÞ

pðmÞEðΦ
y-zÞ

� �
;

Table 2
Numeric evaluation of the change of the Fano factor upon protein dimerization

when eðvÞa0aeðmÞ . The parameters are equal to: pðmÞ ¼ f100;200g, dðmÞ ¼
f0:05;0:1g ¼ eðmÞ , f ðmÞ ¼ f0:0005;0:001g, and gðmÞ ¼ f0:005;0:01g. The parameter
values used in the first row are excluded from the other rows.

pðvÞ

pðmÞ
dðvÞ

dðmÞ
eðvÞ

eðmÞ
f ðvÞ

f ðmÞ
gðvÞ

gðmÞ
Varð ~Y Þ
Eð ~Y Þ

�VarðYÞ
EðYÞ

Number of tests

1 1 1 1 1 [0.13, 0.22] 32
1 1 1

2 ;1;2
� �

1
2 ;1
� �

1
2 ;1;2
� �

[0.05, 0.47] 544

1 1 1
2 ;1;2
� �

2 1
2 ;1;2
� �

[�0.46, �0.19] 288

Fig. 4. Numeric simulation of the number of molecules in two systems (above and
below) that are unconnected (left) and connected (right), as a function of time (n).
The interconversion terms are the same as for protein dimerization (Eq. (33)). The
horizontal lines represent the mean number of molecules in the steady state, which
is imposed to be equal in the subsystems whether they are connected or not
(Eð ~Y Þ ¼ EðYÞ and Eð ~Z Þ ¼ EðZÞ). The parameters correspond to a usual birth-death
process: pðmÞ ¼ 200¼ pðvÞ , dðmÞ ¼ 0:05¼ dðvÞ , qðmÞ ¼ 100¼ qðvÞ , eðmÞ ¼ 0:05¼ eðvÞ ,
f ðmÞ ¼ 0:0005¼ f ðvÞ , and gðmÞ ¼ 0:005¼ gðvÞ . The production parameters of the
systems without a buffer ( ~p ðmÞ and ~q ðmÞ) have been determined so as to have an
equal mean number of molecules in one system in the presence or absence of the
other system. The time step is Δt ¼ 0:1, the initial conditions Y0 ¼ 10¼ Z0, the
number of time steps N ¼ 10;000 , and the number of runs R¼10,000. Only the first
and last iterations are shown (nr400 and nZ9600), and 500 trajectories
are drawn.

M. Rooman et al. / Journal of Theoretical Biology 354 (2014) 113–123 121



VarðZÞrVarð ~Z Þ3CovðZ;Φz-yÞZ1
2

ΦðvÞ þ qðvÞ

qðmÞEðΦ
z-yÞ

� �
: ð45Þ

We thus find that the (weighted) sum of the variances of the two
systems is reduced upon connection if and only if the correlation
between their respective numbers of molecules is larger than a
quantity that is proportional to the “mean” flux from the main
system to the buffer; note that both the “mean” flux and the
proportionality factor may be positive or negative. The variance of
each of the subsystems is reduced if and only if the correlation
between its number of molecules and the “mean” flux towards the
other system is larger than the flux “variance” and “mean”.

The behavior of two positively correlated interacting systems is
illustrated in Figs. 4 and 5. The interconversion gates are con-
sidered to be the same as in the dimer case (Eq. (33)); the
difference is that the “buffer” is now a true system in which
molecules can be produced directly, independently of the other
system (qðmÞa0aqðvÞ). The parameters tested describe an unper-
turbed birth-death process. Both systems considered separately
have a Fano factor of one, and this factor decreases upon connec-
tion (0.85 and 0.91). We have thus the expected decrease in noise
upon connection of two systems whose molecules are positively
correlated.

6. Conclusion

In this paper, we demonstrated analytically that the variance of
the number of molecules in a system is decreased if it is connected
to a particular kind of buffer. The comparison is performed upon
imposing an equal mean number of molecules in the main system
in the presence and absence of the buffer. The conditions that such
buffers must generally satisfy are the following:

� The system and the buffer must be positively correlated. This
means that the number of molecules in the system and in the
buffer must be simultaneously higher or smaller than their
respective means. It amounts to requiring that the buffer

system acts as a true buffer, which absorbs the excess of
molecules produced in the system, or corrects its deficit.

� The Fano factor of the buffer must be of order one and its
degradation gate must not be too noisy. This puts some
reasonable constraints on the quality of the buffer. Also, the
system's production rate must not be too noisy.

Note that the first condition is sufficient when the buffer's
degradation rate vanishes. These two conditions are equivalent
to the following:

� The “mean” flux of molecules from the main system towards
the buffer must be positively correlated with the number of
molecules in the main system. Again this is a reasonable
assumption for any bufferlike system.

� The flux “variance” between the main system and the buffer
must not be too large. This also is a reasonable assumption: if
we connect a system to a buffer through a highly noisy gate, we
cannot expect it to reduce the noise in the main system.
Furthermore, the “mean” flux towards the buffer must not be
too positive.

These conditions are actually intuitive but cannot be proven
analytically using the master equation formalism. The discrete
SDE-based approach used in this paper has allowed us to achieve
this goal.

We tested these general results in two explicit cases. In the
first, the main system contains proteins in their active state and
the buffer proteins in their inactive state, or conversely. The
system-buffer conversion terms are in this case linear in the
number of molecules, and the system of SDEs can be solved
exactly in terms of the parameter values. For unperturbed birth-
death processes, the system-buffer correlation vanishes and the
noise is the same whether a buffer is present or not. When
external perturbations modify the simple birth-death process,
we found that the noise in the main system is decreased upon
addition of a buffer that is less noisy than the main system, and
increased otherwise. Note that this model can also be viewed as

Fig. 5. Probability density of the number of molecules at the steady state in two systems that are unconnected (black line) and connected (red line). The vertical dashed line
represents the mean number of molecules in the steady state, which is imposed to be equal in the subsystems whether they are connected or not (Eð ~Y Þ ¼ EðYÞ and
Eð ~Z Þ ¼ EðZÞ). The values of the production, degradation and interconversion parameters and the details of the numeric simulations are given in the legend of Fig. 4. (a) First
system with molecules of type y and (b) second system with molecules of type z.
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representing a molecule which, for example, moves from one cell
compartment to another or goes from the cytoplasm to the nucleus.

In the second test case, the main system contains protein
monomers and the buffer homodimers. The conversion terms
between the main system and the buffer are in this case non-
linear, and the system cannot be solved analytically unless some
hypotheses are made about the skewness of the probability
distributions and about the number of molecules in the main
system compared to the buffer. With these assumptions, we found
that the noise in the main system is reduced upon interaction with
the buffer even in the unperturbed birth-death model. Higher
levels of noise reduction are reached if the system is perturbed in
such a way that the buffer is less noisy than the main system. The
noise is seen to increase only when the buffer is much noisier than
the main system. The validity of the hypotheses is supported by a
series of numerical simulations. The noise reduction reaches 20%
for the tested parameter values in the case of an unperturbed
birth-death process, and almost 50% for a perturbed birth-death
process.

Furthermore, we investigated analytically the more general
case where two systems are connected, each containing molecules
that are produced and degraded. The “buffer” and the main system
are here considered on the same footing. We found the general
result that the (weighted) sum of the variances of the number of
molecules in the two systems is reduced upon connection, if their
covariance is (sufficiently) positive; more precisely, it must be
larger than a (positive or negative) quantity involving the “mean”
flux between the systems. Focusing on one of the systems, the
noise is seen to be reduced if and only if the covariance between
the number of molecules and their “mean” flux towards the other
system is larger than a quantity involving the flux “variance” and
“mean”. Here again, the results are intuitive: systems have their
noise level decreased upon interconnection when the molecules
they contain are positively correlated.

The significance of the degrees of freedom encoded in the mean
and variance of the parameters, generically denoted as bðmÞ and bðvÞ,
becomes clear at this point. When an individual system unconnected
to any other system contains molecules that are produced and
degraded, it may be described by a simple unperturbed birth-death
process. We have in this case the equality bðmÞ ¼ bðvÞ and the number
of molecules in the system follows a Poisson-type distribution with a
Fano factor equal to one. When the system is connected to other
systems, the distribution is in general no longer of Poissonian type and
the Fano factor is either larger or lower than one. This non-Poisson
behavior of a system due to its interaction with other systems can be
recovered by considering the system as being unconnected but using
effective production and degradation parameters satisfying bðmÞabðvÞ,
which encode the effect of the other systems without considering
them explicitly.

The perturbed birth-death processes characterized by bðmÞabðvÞ

that we analyzed in this paper can thus be viewed as representing
systems whose noise is either increased by the interactions with other
systems (bðmÞobðvÞ) or decreased (bðmÞ4bðvÞ). For instance, the
conversion of a protein from its inactive to its active state or its
migration from one cell compartment to another usually occurs
through binding with a ligand, which was not explicitly taken into
account in the model. Since the number of ligands and the number of
proteins are generally positively correlated, we may expect this
protein-ligand interaction to cause an effective reduction of the
variances of the parameters, and thus in particular bðmÞ4bðvÞ for the
system-buffer interconversion parameters. This would imply the noise
reduction of the protein's active state, characterized by a Fano factor
o1. This issue will be further developed in future work.

This work opens many other interesting perspectives. First, one
could consider more complex cases—for example cascades of

interacting systems, which tend to better approximate real biological
systems—and study their effect on the noise level. Another perspective
is to study the impact of a buffer on the time needed by the system to
reach its steady state. Indeed, the simulations that we performed with
a buffer having a non-vanishing degradation rate (Fig. 2(b)–(d))
suggest that this time is much shorter in the presence of a buffer. If
true, this complexification would constitute an additional advantage
for biological systems.

We thus conclude that connecting two systems or a system and a
buffer tends to limit the overall noise in the case they are positively
correlated. This result has clear implications in cellular and molecular
biology, since these contain a lot of systems that act cooperatively.
Moreover, we saw that in the case of non-linear interactions, such as
dimer formation from two monomers, the noise reduction is more
pronounced. Strikingly again, many biological subsystems interact
non-linearly. These findings suggest that a reason why biological
systems interact and tend towards higher complexity across evolution
is to reduce noise and hence gain in predictable and robust behavior.
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