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a b s t r a c t

I examine the effect of exogenous spatial heterogeneity on the coexistence of competing species using a

simple model of non-hierarchical competition for site occupancy on a lattice. The sites on the lattice are

divided into two types representing two different habitats or spatial resources. The model features no

temporal variability, hierarchical competition, type-dependent interactions or other features traditionally

known to support more competing species than there are resources. Nonetheless, stable coexistence of two

habitat specialists and a generalist is observed in this model for a range of parameter values. In the spatially

implicit mean field approximation of the model, such coexistence is shown to be impossible, demonstrating

that it indeed arises from the explicit spatial structure.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The coexistence of competing species, and factors promoting and
limiting it, are of considerable practical and theoretical interest in
ecology. A well known ‘‘rule of thumb’’ is the principle of compe-
titive exclusion (Gause, 1932; Tilman, 1982; Levin, 1970), which
states that at most n mutually competing species may stably coexist
on n available resources.

Under suitable assumptions, the competitive exclusion principle
can be proven as a mathematical theorem. However, if these
assumptions are violated – for example, if the resource abundances
may fluctuate over time, either due to external resources or simply
because the ecological dynamics tend to a cyclic or chaotic attractor
– it may no longer hold (although a related concept, the essential
dimensionality of the environment (Dieckmann and Metz, 2006;
Metz et al., 2008), may still be applied to such systems).

For systems which do satisfy these assumptions, the validity of
the competitive exclusion principle depends fundamentally on
just what we count as ‘‘a resource’’ (Abrams, 1988). This is not as
simple a matter as it sounds. Were one to ask a practical-minded
ecologist what constitutes a resource, they might name examples
such as water, sunlight and nutrients for plants, or prey species
for animals. But in the mathematically exact form of the compe-
titive exclusion principle, almost anything may constitute a
distinct resource: a single prey individual, a square meter of land,
ll rights reserved.
a specific combination of nutrient concentrations, etc. Thus, even
in systems which the competitive exclusion principle formally
holds, the actual number of potentially coexisting competitors
may be greater than one would expect by naively undercounting
the resources.

The effect of spatial structure on the maximum diversity a
system can support is, in particular, often neglected. For example,
systems consisting of several distinct types of habitats are often
modeled by assuming that each habitat constitutes a homogeneous
patch within which the populations are well mixed. If competition
between individuals is for suitable living space within these habi-
tats, space in each habitat then becomes a single resource, and thus
one would expect (and will, given these assumptions, mathemati-
cally discover) that at most n competitors may stably persist in n

distinct habitats.
In reality, however, even if habitats are homogeneous, they are

certainly not usually well mixed. Thus, individuals living near
habitat boundaries will, over time, experience a different envir-
onment than those living in the interior of habitat patches. (Even if
the individuals themselves do not move or interact with anything
outside their local site, their offspring must still disperse and may
end up in a different habitat.) This can create additional niches near
habitat boundaries in which additional competing species might be
able to coexist.

To demonstrate this, I present in this paper a simple spatially
explicit toy model of site occupancy competition, which supports
stable coexistence of three strains – two specialists and one general-
ist – on two spatially segregated habitats on a lattice of sites. This
model contains no other features known to promote coexistence,
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such as internally or externally generated temporal fluctuation
(Hsu et al., 1978; Armstrong and McGehee, 1980), hierarchical
site competition (Adler and Mosquera, 2000; Tilman, 1994), direct
strain-dependent competition terms (Murrell and Law, 2003) or
cooperative or other nonlinear interactions between individuals.
Rather, the coexistence arises merely from the presence of habitat
boundaries combined with passive distance-limited dispersal, which
causes specialist strains to be locally maladapted near these bound-
aries and thereby allows more generalist strains to persist there.

As far as I know, this particular mechanism of coexistence has
not been previously studied in individual-based models. A similar
coexistence mechanism was very recently described in a reaction–
diffusion model and in a one-dimensional stepping stone model by
Débarre and Lenormand (2011), who termed it ‘‘habitat boundary
polymorphism’’. The results in this paper parallel theirs, and confirm
that this mechanism is robust with respect to the details of the
model, provided that the basic features of habitat heterogeneity and
passive distance-limited dispersal are present.

A model almost identical to mine was studied by Lanchier and
Neuhauser (2006), who showed analytically that it could support
stable dimorphic coexistence, either of a generalist and a specia-
list strain or of two different specialist strains. My model differs
from theirs only in that they restrict the habitat configuration to the
special case of an infinite regular checkerboard pattern consisting of
n-by-n squares of each habitat type.1 However, while Lanchier and
Neuhauser did briefly remark that ‘‘the generalists persist for a very
long time along the boundaries ywhere the density of specialists is
low’’ in numerical simulations, they do not seem to have investi-
gated this possibility of trimorphic coexistence in their model
further. Similarly, Snyder and Chesson (2003) define a model quite
similar to mine (although in discrete time and one spatial dimen-
sion), and observe the enhancing effect of stable spatial hetero-
geneity and local dispersal on coexistence of competitors, but also
restrict their analysis to two competitors.
2 Equivalently, I could have scaled the offspring production rate of the
2. Model definition

I model a population of haploid, asexually reproducing sessile
organisms with distance-limited offspring dispersal. The model
I’ll define below belongs to the class of lattice contact processes
(Harris, 1974; Neuhauser, 1992), in which the environment is
taken to consist of a lattice of discrete sites, and interactions are
(mainly) between nearest neighbor sites.

Let L be a regular two-dimensional lattice of sites (e.g. L¼Z2,
although for numerical simulations a finite lattice must obviously
be used). To each site I assign a random, fixed habitat class (‘‘A’’ or
‘‘B’’), such that both classes of sites are present in L in equal
numbers. (I will describe the way in which the habitat classes are
assigned in more detail below.)

Each site in L may, at a given time, be either vacant or occupied
by an individual belonging to one of three strains: an A-specialist
(a), a B-specialist (b) or a generalist (g). The two specialist strains
can only occupy sites in their respective habitat class, while the
generalist strain may occupy any site.

Except for their different habitat adaptations, the strains are
completely identical: all individuals die with rate m and produce
offspring with rate f. Offspring are randomly dispersed to
the eight nearest sites surrounding the parent individual’s site
(or possibly, with probability E, to a randomly chosen site in L),
and will become new individuals if the site they land in is vacant
and of a suitable habitat class. However, the generalists pay a cost
1 Lanchier and Neuhauser (2006) also consider a somewhat different set of

dispersal kernels, but both theirs and mine include the basic case of strict nearest-

neighbor dispersal.
for their ability to live in either habitat: their offspring survive
only with probability pgo1.2

The time evolution of the entire lattice L can thus be considered
as a continuous-time Markov process, whose state at time t is a
function Zt : L-f0,a,b,ggmapping sites in L to their occupancy state
(with the state 0 denoting a vacant site). The local transition rates of
a site x are then
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and

rða-0Þ ¼ rðb-0Þ ¼ rðg-0Þ ¼ m,

where rðs-s0Þ is the rate at which a site in state s changes to state s0,
Hx is the habitat class of site x and Ex is the set of sites adjacent to x.

The behavior of the model is determined by the habitat config-
uration along with two parameters: the scaled baseline fecundity
rate l¼f=m (or equivalently, the scaled mortality rate l�1

¼ m=f)
and the generalist survival rate pg. The baseline fecundity affects
the equilibrium population density of both the specialists and the
generalist strain: at low l all strains die out, while at very high l
almost all sites are occupied at any time.

The parameter 0opgo1 determines the penalty which the
generalist must pay for its ability to exploit both site types, and is
(together with the habitat configuration) crucial in determining the
outcome of the model. If pg is too low, the generalist strain will not
be viable, or, even if viable on its own, may lose in competition to
the specialists. Conversely, if pg is close to 1, the specialist strains
gain little or no advantage over the generalist from their specializa-
tion, while paying a considerable price in being able to live in only
one habitat, and can thus be expected to lose to the generalist.
3. Landscape generation

An issue so far overlooked in the model definition above is the
way in which the lattice sites are assigned to their habitat classes.
The simplest way to do so, of course, is to simply assign each site
independently to either habitat with equal probability. This pro-
duces a lattice with no correlations between the habitat classes of
different sites.

However, real environmental features are often correlated, and
it would be desirable to consider the effects of such correlations on
the behavior of the model. To first order, such correlations can be
characterized by the pairwise correlation probability k¼ Pr½Hx ¼Hy

9yAEx�, i.e. the probability that two randomly chosen adjacent sites
have the same habitat type. With an equal number of sites in each
habitat, the pairwise correlation probability on a completely ran-
dom, uncorrelated lattice is k¼ 1

2, while lattices with 1
2 oko1 are

positively correlated and those with 0oko 1
2 are anticorrelated.3

To generate random habitat class distributions with a given
pairwise correlation probability for numerical simulations, I start by
generalists to pgf. However, the definition I have chosen allows a straightforward

generalization to semi-specialist strains with different (non-zero) survival rates in

different habitats.
3 On a square lattice where each site is adjacent to its eight nearest neighbors,

the smallest achievable value of k is 1
4.
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randomly choosing half of the sites and assigning them to habitat A
and the rest to habitat B. I then apply an iterative annealing process,
which reassigns randomly chosen sites to new habitat classes with
suitable weighted probabilities, until the desired value of k is reached.

There are many possible variations of the general annealing
scheme I have used. The basic idea in all of them is to change the
habitat classes of randomly chosen sites if this would change k in
the desired direction, while occasionally also allowing changes in
the other direction so that the process does not get stuck at a local
minimum or maximum.

The particular annealing algorithm I have used to generate
habitat configurations for the simulations in this paper4 chooses
random adjacent pairs of sites, and swaps their habitat classes
with probability

p¼
dg

dgþð1�dÞg

if kcurrentoktarget, or with probability 1�p otherwise, where d is
the fraction of sites adjacent to the chosen pair which belong to
the opposite habitat than their neighbor in the chosen pair.

The exponent g is a free parameter which controls the ‘‘tempera-
ture’’ of the process. When g¼ 1, the probability of exchanging the
habitat classes of a chosen site pair is a linear function of d. This tends
to produce fairly slow convergence and rough, jagged cluster bound-
aries. At high values of g, p approaches a step function, producing
faster initial convergence and smoother cluster boundaries, but also
increasing the risk of the process getting stuck at a local maximum or
minimum of k.
4. Mean field approximation

Classical ecological theory predicts that the only possible
outcome of three distinct strains competing for the occupancy
of two habitats should be the eventual extinction of one or more
of the strains, except at specific degenerate choices of the model
parameters where neutral coexistence may occur. I will demon-
strate below that this prediction indeed holds if the populations
are assumed to be well mixed, either globally or within each
habitat. However, I shall also show that, in the full model with
explicit spatial structure, a region of stable trimorphic coexistence
does exist for intermediate values of pg.

Assuming that all offspring disperse uniformly over the entire
lattice, i.e. that E¼ 1 in (1), the transition rates of each site are
fully described by the mean population densities na, nb and ng of
the different strains, where

ns ¼
X
yA L

1fZðyÞ ¼ sg

9L9

for each strain s. Further letting the lattice size 9L9 tend to infinity,
one obtains a simple system of ordinary differential equations
describing the time evolution of these mean population densities –
the so called mean field approximation – which may be solved
analytically. Such an approximation of an essentially equivalent
model was presented by Lanchier and Neuhauser (2006), who
showed that trimorphic coexistence was only possible for degen-
erate choices of parameter values.

However, simply assuming all dispersal to be global comple-
tely neglects not only the detailed spatial habitat structure, but
even the pairwise correlation parameter k. A better approxima-
tion, similar to the ‘‘improved mean field approximation’’ of
Hiebeler and Morin (2007), is obtained by assuming well mixing
4 The interactive Java applets from which the snapshots in Fig. 6 are taken use

a different annealing algorithm.
only within each habitat. The resulting approximation can be
interpreted as a model of a population inhabiting two well-mixed
habitat patches with a fraction k of all offspring remaining within
their parent’s patch and the rest dispersing to the other patch.
This two-patch approximation takes into account the habitat
correlation parameter k but still retains the analytical tractability
of the mean field approximation. (For k¼ 1

2, the two approxima-
tions are exactly equivalent.) Below, I will analyze this approx-
imation of the model defined above, and show that it also only
supports non-degenerate coexistence of at most two strains.

Assume that the occupancy states of the lattice sites are inde-
pendent, and that the probability of a site being occupied by a given
strain s is equal to the mean population density ns,H of that type in
the site’s habitat H. Then, in the limit as 9L9-1, the time evolution
of the population densities can be written as

d

dt
ns,A ¼ ps,AvAfðkns,Aþð1�kÞns,BÞ�mns,A,

d

dt
ns,B ¼ ps,BvBfðkns,Bþð1�kÞns,AÞ�mns,B

for sAfa,b,gg, where vA and vB are the vacant site densities in the
two habitats and ps,A and ps,B are the probabilities of an offspring of
type s surviving in the respective habitats:

pa,A ¼ pb,B ¼ 1,

pb,A ¼ pa,B ¼ 0,

pg,A ¼ pg,B ¼ pg:

Equivalently, this system may be written in matrix form as

d

dt
ns ¼Msns

for sAfa,b,gg, where ns ¼ ½ns,A,ns,B�
T and

Ms ¼
fkps,AvA�m fð1�kÞps,AvA

fð1�kÞps,BvB fkps,BvB�m

" #
:

If this system has a nontrivial interior equilibrium ~ns, this necessarily
implies that Ms ~ns ¼ ½0;0�

T a ~ns, and therefore that Ms must be
singular, and thus have a zero determinant, for each strain s present
in the population. Writing out the determinant as

9Ms9¼f2
ð2k�1Þps,AvAps,BvB�fmk ps,AvAþps,BvB

� �
þm2 ¼ 0

yields, for each s, an equation containing the same two unknown
variables: vA and vB. As the coefficients ps,A and ps,B will, in general,
be different for each strain s, one can see that, except for degenerate
choices of the parameter values, no solution will exist for more than
two strains.

More specifically, we can see that, in the absence of specialists,
small generalist populations can grow in the two-patch approxima-
tion of this specific model if and only if pgf4m, and conversely that
small populations of either specialist strain can grow in the absence
of the generalist if and only if kf4m. Outside these regions, shown
in Fig. 1, the respective strains are not viable and will always die out
(as the per capita growth rates in this model are always maximized
at vanishing population densities).

Within the region where all strains are viable, the approxi-
mated model has (in general) two possibly stable equilibria: one
where only the generalist is present, and one where the generalist
is absent and both specialists present. (Any equilibria with only
one specialist present are obviously unstable against invasion by
the other specialist.) The former is stable if and only if pg4k, while
the latter is stable if and only if pgok. Only at exactly pg ¼ k, shown
as the white line in Fig. 1, both of the equilibria are neutrally stable,
and are connected by a line of neutrally stable equilibria along
which neutral coexistence can occur.



Fig. 1. The outcome of the model as predicted by the two-patch approximation for

different values of the normalized mortality rate m=f and the generalist survival

probability pg. The diagonal line at m=f¼ pg and the vertical line at m=f¼ k mark

the boundaries at which the generalist and specialist strains go extinct even in the

absence of competitors. In the regions marked ‘‘generalist wins’’ and ‘‘specialists

win’’, all strains can survive in the absence of competitors, but from any initial

state with all three strains present, the system converges to either a monomorphic

generalist-only state or a dimorphic specialist-only state. Along the white line at

pg ¼ k, the three strains can coexist neutrally.
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5. Simulation results

Studying the dynamics of the full unapproximated model requires
numerical simulations. As such simulations tend to be computation-
ally intensive, I have carried them out using custom, optimized
programs written in the C programming language.5 The simulation
code used for this paper includes two variants of the coupling-based
simulation algorithm described in Karonen (in preparation), one
using an occupancy list for low population densities, and another
using a vacancy list for high densities, with the outer simulation loop
periodically checking the population density and switching to the
variant with the higher mean time step per iteration. I have also
ported the basic simulation code (without the coupling technique) to
Java for demonstration purposes using interactive applets.

All simulation runs for this paper were done on a square
256�256 lattice with eight neighbors per site and with the edges
wrapping around to the opposite sides. In all simulation runs, time
has been scaled so that the per capita mortality rate m¼ 1; in effect, I
measure time in mean individual lifetimes. Habitat configurations
were generated using an annealing method as described in Section
3. The ‘‘flea’’ pseudorandom number generator (Jenkins, 2007) was
used to produce random numbers, although I also carried out tests
using other random number generators to check that the results did
not depend on such details.

Fig. 2 shows the equilibrium densities of generalists and
specialists observed in repeated individual-based simulations of the
model on a 256�256 lattice with reproduction to eight nearest
neighbors and wrapped edges with an uncorrelated habitat distribu-
tion and a moderate value of f=m. Each simulation run was started
from a random habitat configuration and a random initial state with
half the sites occupied by generalists and half by specialists. Popula-
tions were allowed to equilibrate for 50 000=m time units, after
which population densities were averaged over another 50 000=m
time units. The specialist occupancy fractions are summed over both
specialist strains.

Contrary to the predictions from the mean field approxima-
tion, a non-degenerate region of the parameter space where all
5 Source code available from author under an open source license.
three strains stably coexist can be seen in Fig. 2. This region is
displayed more extensively in Figs. 3 and 4, which plot the
observed region of coexistence against m=f and pg for the various
habitat configurations (anticorrelated, uncorrelated and two posi-
tively correlated patterns) shown in Fig. 5. Fig. 3 shows results for
pure nearest-neighbor dispersal (E¼ 0), while in Fig. 4, 1% of all
offspring were permitted to disperse uniformly over the whole
lattice (E¼ 0:01).

For Figs. 3 and 4, each simulation run was started from a
random initial population on the fixed pregenerated habitat
landscapes shown in Fig. 5. Populations were allowed to equili-
brate for 20 000=m time units, after which population densities
were averaged over 2000=m time units. The red areas labelled
‘‘specialists win’’ and ‘‘only specialists viable’’ show where only
the specialist strains survived, while in the blue regions labelled
‘‘generalist wins’’ and ‘‘only generalist viable’’ only the generalist
strain remained. The lighter shaded area between them shows the
part of the parameter space where both specialists and generalists
survived with the color gradient shown above the figures indicat-
ing the relative average population densities.

In both Figs. 3 and 4, the region of stable coexistence can be
seen as a more or less wedge-shaped area starting from the point
where the viability boundaries of the strains intersect, which is
where the two-patch approximation would predict a line of neutral
coexistence (see Fig. 1). The main difference between the figures can
be seen in the lower left side of the coexistence region: with global
dispersal, the lower boundary of the coexistence region is quite
sharp, whereas with no global dispersal and high baseline fecundity
f=m, the generalist can often survive in small numbers (shown as a
light orange hue in the plots) even where the specialist dominates.

This happens simply because the high fecundity allows even
small isolated population clusters to survive for a long time, and
because the strictly local dispersal prevents the specialists from
recolonizing isolated habitat patches. If such a habitat patch
happens to end up with no specialist individuals (either because
all happen to die out, or because none were present initially), the
patch can be colonized by generalists, which are then safe from
competition there. Allowing a fraction of offspring to disperse
globally lets the specialist strains recolonize such patches, elim-
inating this effect.

It can also be seen that the addition of global dispersal generally
reduces the width of the coexistence region somewhat, although
(except for the isolated patch effect noted above) the reduction is
not yet very large for E¼ 0:01. This is to be expected, given that at
E¼ 1 the coexistence region reduces to a line, as shown by the mean
field (and two-patch) approximation above.

The results shown in Figs. 2–4 were calculated using a simulation
technique based on monotone coupling (Karonen, in preparation),
which allows the system to be efficiently simulated for all values of
the parameter pg in parallel. Each line in Fig. 2 and each vertical
stripe (out of 1024 per plot) in Figs. 3 and 4 corresponds to one
simulation run. Because the simulation technique used causes the
effects of random demographic fluctuations on populations with
different values of pg within the same run to be correlated, the
results show stronger correlations within each run than between
runs, which should be kept in mind when interpreting the figures.

Fig. 6 contains snapshots of simulations run on lattices with
different site type patterns. It can be seen that, when sites of the
same type are strongly clustered, large contiguous clusters are
dominated by the respective specialist strain, while the generalist
strain is able to persist in areas near cluster boundaries and in
isolated minor clusters too small to support a stable specialist
population.

On the other hand, when site types are uncorrelated, a different
pattern is observed. Such lattices contain no large contiguous
clusters that could be dominated by one specialist strain; instead,



Fig. 2. Plots of equilibrium specialist and generalist densities at k¼0.5 and f¼ 8m as functions of pg obtained from 20 numerical simulation runs. See text for details. The

graph on the right has been plotted on a logarithmic scale and zoomed in to better show the coexistence region.

Fig. 3. Results of numerical simulations on a 256�256 site lattice as functions of m=f and pg on the habitat patterns from Fig. 5 with no global dispersal (E¼ 0). See text for

details. Compare with Fig. 4 and with the mean field predictions from Fig. 1. (a) k¼0.3. (b) k¼0.5. (c) k¼0.75, g¼ 10. (d) k¼0.75, g¼ 3.
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Fig. 4. Results of numerical simulations on a 256�256 site lattice as functions of m=f and pg on the habitat patterns from Fig. 5 with occasional global dispersal (E¼ 0:01).

See text for details. The marks on Fig. 4b and d show the parameter values used for the invasion simulations in Fig. 7. Compare with Fig. 3 and with the mean field

predictions from Fig. 1. (a) k¼0.3. (b) k¼0.5. (c) k¼0.75, g¼ 10. (d) k¼0.75, g¼ 3.
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the two specialist strains tend to occur together in regions where
the random distribution of site types happens to favor one or both of
them. Through competition with the generalist strain, the two
specialist strains indirectly support one another, even though there
is no direct interaction between them.
6. Mutual invasibility

To a skeptical mind, the results presented above may yet leave
some doubt about whether the apparent coexistence observed in
these simulations is indeed genuinely stable, or merely an artifact of
slow convergence and insufficient simulation time. After all, if the
simulation was run for long enough on a finite lattice, eventually one
of the strains (and eventually all of them) would almost surely go
extinct simply due to demographic stochasticity. Thus, it may not
even be entirely clear what ‘‘stable coexistence on a finite lattice’’
should actually mean.

On an infinite lattice, as in Lanchier and Neuhauser (2006), a
set of strains may be said to coexist stably if they can all persist
indefinitely long with non-zero probability. By this definition, no
stable coexistence (or even just existence) is possible in a finite
system. However, since there do exist known results that relate
the scaling of the expected time to extinction on a finite lattice, as
a function of lattice size, to the limiting behavior of the model
on an infinite lattice, one might be inclined to try and use such
scaling laws to extrapolate stability from small lattices to the
infinite limit.

This is not the approach I have taken. After all, real habitats and
populations, like the simulations employed in this paper, are fini-
te—in appealing to a definition of coexistence that only works for
infinite populations, one ends up obscuring the fact that, in reality, if
a population of tens of thousands of individuals persisting over
equally many generations is not considered stable, it’s hard to say
what should be.

Rather, I wish to demonstrate the stability of the trimorphic
coexistence in my model in a more direct manner, by showing
that it exhibits mutual invasibility. That is to say, if a small number
of individuals of any of the three strains are introduced into a
stable population consisting solely of the other two strains, the
introduced strain will, with positive probability, survive and
grow in number up to its equilibrium density in the trimorphic



Fig. 5. The habitat configurations used for the simulations shown in Figs. 3 and 4. White squares correspond to habitat A, black squares to habitat B. The insets show a

32�32 region magnified. All lattices were generated from the same random initial state (which is nearly identical to lattice (b); only a very small amount of annealing was

needed to make k exactly 0.5) using the annealing method described in Section 3. Lattices (c) and (d) have the same pairwise correlation number k¼0.75, but the different

annealing parameters used to generate them lead to visibly different higher order correlations and to corresponding differences in population dynamics. (a) k¼0.3.

(b) k¼0.5. (c) k¼0.75, g¼ 10. (d) k¼0.75, g¼ 3.

Fig. 6. Snapshots of the population equilibrium after a few hundred mean lifetimes for various values of k, with pg near the middle of the coexistence region. Snapshots

were taken from simulations run on a 128�128 lattice with f¼ 4m and E¼ 0:001. The red and green sites are occupied by a and b specialists, respectively, the blue sites

are occupied by generalists and the gray sites are vacant. For the blue and gray colors, darker shades are used for habitat A and lighter shades for habitat B. These snapshots

have been taken from interactive Java applets available at http://vyznev.net/ca/coex2env/. (a) k¼0.5, pg ¼ 0:43. (b) k¼0.75, pg ¼ 0:7. (c) k¼0.95, pg ¼ 0:93.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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equilibrium, with the initial part of the growth curve appearing
approximately exponential.

Fig. 7 shows some simulations demonstrating mutual invasi-
bility at six points within the coexistence region of the parameter
space. With 100 initial invader individuals, the invader strain
survived and established itself in all runs carried out—evidently
the invasion probability of a single invader exceeds 1/100 at all
the sampled parameter values. The population density of the
invading strain over time shows a distinctive sigmoid shape with
the initial growth being approximately exponential. A notable

http://vyznev.net/ca/coex2env/


Fig. 7. Simulations showing mutual invasibility at the parameter values marked in Fig. 4b and d; f¼ 8m for all simulations. A dimorphic population is allowed to

equilibrate for 400=m time units, after which 100 individuals (i.e. initial density � 0:0015) of the third strain are placed randomly on the lattice. In simulations of specialist

invasion, the invading strain is without loss of generality taken to be b. The population densities shown in the graphs are smoothed over 5=m time units and averaged over

10 independent simulation runs; invasion does succeed in all runs. The red, green and blue lines show the average a, b and g strain densities, respectively, while the solid,

dashed and dotted lines correspond to different values of pg within the coexistence region. (In populations with both specialist strains present, the red and green lines tend

to overlap.) The thin dotted lines are drawn one sample standard deviation above and below the corresponding average line. (a) Generalist invasion (k¼0.5). (b) Specialist

invasion (k¼0.5). (c) Generalist invasion (k¼ 0:75,g¼ 3). (d) Specialist invasion (k¼ 0:75,g¼ 3). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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feature visible in the plots is that invasion by a specialist strain also
increases the population of the other specialist strain already
present; this happens because both specialists are in competition
with the generalist strain. The relatively high variance seen in some
of the plots during the growth phase is due to initial demographic
stochasticity affecting the time until exponential growth sets in;
once properly started, the shape of the growth curve is very similar
in all runs.

Were the coexistence observed in this model merely neutral, the
population density of a newly introduced strain would be as likely to
decrease as to increase as the result of stochastic fluctuations. The
fact that, at the sampled parameter values, small populations of each
strain instead show a clear increasing trend confirms that this model
exhibits true, non-neutral coexistence.
7. Discussion

In this paper I have demonstrated, using a simple toy model of
competitive population dynamics on a lattice, that spatial hetero-
geneity is one of the mechanisms by which the competitive
exclusion principle can be violated. The fact that this cannot
occur in well-mixed populations shows that population viscosity
and explicit spatial structure are essential to this mechanism.

Had the model included more than two habitat types, temporal
variation, hierarchical competition or nonlinear interactions between
individuals, the coexistence of multiple strains would not have been
at all surprising. Yet it has none of these, and can still support more
than two strains in stable coexistence. All that allows such coex-
istence to persist in this model is the combination of environmental
variation, persistent spatial structure and distance-limited dispersal;
eliminating any of these reduces the model to one capable of
supporting no more strains than would be predicted by a naive
application of the competitive exclusion principle.

Real organisms do not usually live in a completely homoge-
neous environment, nor do most of them disperse uniformly over
their entire habitat. It is obvious and commonly acknowledged
that environmental variation can increase diversity, yet the fact
that, when combined with distance-limited dispersal, this increase
can be more than linear seems to have attracted little attention. Yet
the ubiquity of habitat edges and fragmented landscapes in nature
suggests that it should be possible to find examples of this type of
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coexistence in nature, and indeed that such ‘‘edge effects’’ may
contribute to the generation and maintenance of ecological diversity
in many, if not most, ecosystems.

I find, however, that in many ways this work has raised more
questions than it has answered. For example, an obvious question
would be whether the model allows the stable coexistence of
more than three strains. Another natural question is whether the
coexistence of three or more strains in this type of model can also
be evolutionarily stable, and further, whether it might arise from
a mono- or dimorphic state through evolutionary branching (Geritz
et al., 1998; Mágori et al., 2005). Based on limited simulation experi-
ments, the answer to all of these questions appears to be ‘‘yes’’,
although the conditions still need to be explored more thoroughly.
Acknowledgments

I would like to thank my colleague Robert Service for his comment
during a presentation which originally led me to investigate this
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