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c We analyse zero-order ultrasensitivity with realistic enzyme mechanisms.
c A new algebraic approach shows that PTM systems are linear at steady state.
c Strong irreversibility of the enzymes yields unlimited ultrasensitivity.
c This arises from a singularity in a novel algebraic invariant.
c Unlimited ultrasensitivity may no longer hold for non-strongly irreversible systems.
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Unlimited ultrasensitivity in a kinase/phosphatase ‘‘futile cycle’’ has been a paradigmatic example of

collective behaviour in multi-enzyme systems. However, its analysis has relied on the Michaelis–

Menten reaction mechanism, which remains widely used despite a century of new knowledge.

Modifying and demodifying enzymes accomplish different biochemical tasks; the donor that con-

tributes the modifying group is often ignored without the impact of this time-scale separation being

taken into account; and new forms of reversible modification are now known. We exploit new algebraic

methods of steady-state analysis to reconcile the analysis of multi-enzyme systems with single-enzyme

biochemistry using zero-order ultrasensitivity as an example. We identify the property of ‘‘strong

irreversibility’’, in which product re-binding is disallowed. We show that unlimited ultrasensitivity is

preserved for a class of complex, strongly irreversible reaction mechanisms and determine the

corresponding saturation conditions. We show further that unlimited ultrasensitivity arises from a

singularity in a novel ‘‘invariant’’ that summarises the algebraic relationship between modified and

unmodified substrate. We find that this singularity also underlies knife-edge behaviour in allocation of

substrate between modification states, which has implications for the coherence of futile cycles within

an integrated tissue. When the enzymes are irreversible, but not strongly so, the singularity disappears

in the form found here and unlimited ultrasensitivity may no longer be preserved. The methods

introduced here are widely applicable to other reversible modification systems.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Zero-order ultrasensitivity first emerged as a property of a
so-called ‘‘futile cycle’’, in which a substrate exists in two states,
unphosphorylated or phosphorylated, inter-converted by a forward-
modifying kinase and a reverse-demodifying phosphatase (Fig. 1A).
Mathematical analysis shows that, under conditions of enzyme
saturation, in which the enzymes operate in the zero-order regime,
the steady-state proportion of modified substrate exhibits unlimited
ll rights reserved.

: þ1 617 432 5012.

wardena).
ultrasensitivity to changes in enzyme concentrations (Goldbeter and
Koshland, 1981). That is, the dose-response resembles a Hill function,
whose Hill coefficient can be made arbitrarily large by increasing
the saturation of the enzymes by the substrate. Zero-order ultra-
sensitivity has been found in vitro in the control of metabolic
enzymes (LaPorte and Koshland, 1983; Meinke et al., 1986).
The extent to which ultrasensitivity is unlimited remains unclear
as does its significance in vivo, as we review in the Discussion, but
this motif remains widely influential as a paradigm of how novel
functionality emerges through collective behaviour in multi-enzyme
systems (Berg et al., 2000; Gomez-Uribe et al., 2007; Malleshaiah
et al., 2010; Melen et al., 2005; Qian, 2003; van Albada and ten
Wolde, 2007).
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Fig. 1. Time-scale separations and enzyme mechanisms. (A) A schematic of a GK loop with phosphorylation as the modification showing substrate in unmodified form, S0,

and modified form, S1, with forward and reverse enzymes in green. The donor (ATP) and its hydrolysis products (ADP, Pi), shown in blue, are assumed to be buffered to

fluctuations in demand by the metabolic processes that replenish ATP. A similar scheme would hold for other reversible, small-molecule modification (methylation,

acetylation, ADP-ribosylation, etc.) but not for ubiquitin-like modifications, which require a cascade of enzymes. (B) Examples of reaction mechanisms built up from the

three basic reactions in (5), with those for the forward enzyme, E, on the left and those for the reverse enzyme, F, on the right. The reverse enzyme has a dead-end, or

unproductive, intermediate complex, Y6, which is reversibly formed. The top row shows two reversible mechanisms, in which the relevant product can be re-converted

back to substrate. The other two rows illustrate ways in which these reversible mechanisms can become irreversible (middle row) or strongly irreversible (bottom row),

with the corresponding irreversible reactions highlighted in magenta. (For interpretation of the references to color in this figure caption, the reader is referred to the web

version of this paper.)
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We stress that there is nothing futile about a futile cycle.
Unlike metabolic enzymes that frequently operate reversibly
close to thermodynamic equilibrium (Saier, 1987), modification
and demodification enzymes are able to maintain substrate states
far from equilibrium through dissipative mechanisms, either
largely unmodified (‘‘off’’) or largely modified (‘‘on’’). Such energy
expenditure is essential for cellular information processing and
decision making (Prabakaran et al., in press). To avoid further
suggestions of futility, we refer from now on to the ‘‘GK loop’’, in
honour of Goldbeter and Koshland, who built upon the earlier
work of Stadtman and Chock (1977).

While ultrasensitivity had been found previously in biological
systems, most notably in allosteric proteins, Monod et al. (1963),
the unlimited ultrasensitivity in the GK loop is a striking feature.
Other forms of ultrasensitivity are limited by intrinsic properties,
such as the number of binding sites, rather than by expression
levels, which can be regulated on a physiological time scale. The
GK loop exhibits regulatable ultrasensitivity, whose unlimited
extent suggests flexibility for cellular information processing. We
focus particularly on understanding how this unlimited ultrasen-
sitivity arises. In practice, substrate concentrations cannot be
increased indefinitely, so the unlimited extent of the ultrasensi-
tivity cannot be utilised in any given system. However, there is an
important difference between knowing that a system has a
maximum Hill coefficient of 10 versus an unlimited Hill coeffi-
cient. Experimental measurements that gave a Hill coefficient of
11 would be implausible in the former case but not in the latter.
We also examine another aspect of the GK loop, which is the
allocation of substrate between modification states, where we
find analogous behaviour to zero-order ultrasensitivity. The
extent of these behaviours and how they are determined by the
enzyme mechanisms are central to understanding how the GK
loop behaves in experimental contexts.
Nearly all analyses of the GK loop have assumed a Michaelis–
Menten reaction mechanism for both kinase and phosphatase:
a single intermediate enzyme–substrate complex is reversibly
formed, which then irreversibly breaks down to release enzyme
and product,

EþS"
a

b
Y-

c
EþP: ð1Þ

Here, a, b, cAR40 are the positive rate constants for mass-action
kinetics. This mechanism was put forward in 1913 for the enzyme
invertase, (Michaelis and Menten, 1913), and remains surpris-
ingly popular, despite a great deal of new knowledge (Adams,
2001; Barford et al., 1998; Stock et al., 2000; Fersht, 1985).
Enzymes may have multiple intermediates and the forward and
reverse enzymes have distinct mechanisms, as they accomplish
distinct biochemical functions. In particular, the forward enzyme
has two substrates, the one not usually mentioned being the
donor for the modification (ATP, in the case of phosphorylation).
While it may be reasonable to assume that donor molecules can
be ignored dynamically, they can still give rise to more inter-
mediates than in (1) because of the order of substrate binding.
There is a surprising lack of discussion of such issues in the
current literature and one purpose of the present paper is to begin
reconciling the modern analysis of multi-enzyme systems with
classical single-enzyme biochemistry.

Phosphorylation is only one of several forms of reversible
modification that are now known. Others include, for instance,
methylation, acetylation, palmitoylation, ADP-ribosylation and
ubiquitin-like modifications (Walsh, 2006; Prabakaran et al., in
press), which may have distinct enzyme mechanisms. Our analy-
sis applies to many of these. While post-translational modifica-
tion of protein substrates has been particularly studied in the
context of ultrasensitivity, our analysis is not restricted to these
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and substrates may be small molecules or even reversibly
methylated DNA.

We exploit new methods of algebraic steady-state analysis,
developed in our laboratory, that are particularly relevant for
reversible modification (Gunawardena, 2012a; Thomson and
Gunawardena 2009a,b). The methods introduced in Thomson and
Gunawardena (2009a) enable the highly nonlinear reaction net-
work of modification and demodification, with realistic enzyme
mechanisms, to be treated as if it is linear, at steady state. This
enables calculations to be undertaken that were previously intract-
able. Biochemical rate constants are treated as undetermined
symbols, whose numerical values do not need to be known in
advance, thereby avoiding issues of parameter estimation and
model identification and permitting mathematical analysis instead
of numerical simulation. These methods are widely applicable to
more complex systems of reversible modification.
2. Results

2.1. Enzymology of modification and demodification

We discuss the enzymology of reversible modification in gen-
eral and specialise to the case of the GK loop in subsequent
sections. Reversible modifications may be subdivided into two
classes: those using small-molecule modifications, such as phos-
phorylation, methylation, acetylation, ADP-ribosylation, etc., and
those using ubiquitin-like modifications, such as ubiquitin itself
as well as SUMO, NEDD, etc. (Walsh, 2006). The biochemistry is
fundamentally different in each class (Prabakaran et al., in press).
For small-molecule modification, the donor molecules are synthe-
sised through intermediary metabolism. In the case of phosphor-
ylation, for instance, the phosphoryl-donor, ATP, is the central
energy currency of the cell, and in the case of methylation, the
methyl-donor is SAM (S-adenosine methionine), a byproduct of
folate biosynthesis. In contrast, for ubiquitin-like modifications, the
donor molecules are polypeptides synthesised by gene transcrip-
tion. Furthermore, small-molecule modification and demodifica-
tion are usually catalysed by single enzymes, while ubiquitin-like
modification requires a cascade of several enzymes. For reasons
explained below, the current analysis has to be restricted to
modifications in the first class.

We make two time-scale separation assumptions that provide
the basis for the mathematical analysis that follows. There is
limited experimental evidence for either assumption. This does
not necessarily mean that the assumptions are invalid but, rather,
that they have not yet been tested experimentally. These assump-
tions are habitually taken for granted in analysing reversible
modification systems, although they are not always made explicit.
In the absence of relevant data, it is best to think of them as
convenient initial hypotheses that enable analysis and to focus on
the conclusions that can be drawn from them.

As a dissipative process, reversible modification is driven by the
excess in concentration of the donor over its hydrolysis products.
We make the first basic assumption that the relevant metabolic
processes are able to maintain the donor and its hydrolysis
products at constant concentration, despite fluctuations in demand
for the donor (Fig. 1A). This amounts to an assumption about time-
scales: the metabolic processes are assumed to operate sufficiently
fast with respect to the time scale on which demand changes.
There is evidence for such buffering in phosphorylation, where it
may seem reasonable because ATP is used for so many different
cellular processes, but little is known about the extent of buffering
for other reversible modifications. SAM, for instance, is also used
for DNA methylation, which could dominate methylation demand
at times of DNA synthesis.
Since the donor and its hydrolysis products are buffered, they
no longer have to be treated as dynamical variables and their
effects can be absorbed into the rate constants. For instance, if an
intermediate enzyme–substrate complex, Y1, binds ATP to form a
ternary complex, Y2, the corresponding reaction can now be
summarised

Y1-
k

Y2: ð2Þ

Here, the rate constant k includes an implicit contribution from
ATP, k¼ k0½ATP�, where k0 is the actual rate constant for the
underlying two-substrate reaction,

Y1þATP-
k0

Y2,

and ½ATP� is the buffered, constant concentration of the donor.
There is, however, the further problem of the order in which

substrates bind to form the ternary complex. This can either be
random or follow a compulsory order. If ATP binds second, the
conversion reaction in (2) can be used after substrate binding,

SþE-Y1-Y2: ð3Þ

However, if ATP binds first, it reversibly creates a new enzyme
form,

EþATP "
kþ

k�
E-ATP:

We make the second time-scale assumption that binding of donor
molecules to enzymes is sufficiently fast that it can be considered
to be independently at equilibrium. In this case, ½E-ATP� ¼

kA½ATP�½E�, where kA ¼ kþ =k� is the association constant for the
equilibrium. Formation of the ternary complex in the reaction

SþE-ATP-
k1

Y2,

can now be rewritten as

SþE-
k2

Y2, ð4Þ

where k2 ¼ k1kA½ATP�. With a compulsory-order mechanism,
either (3) or (4) can be used, depending on the order. With a
random-order mechanism, both (3) and (4) are needed.

Enzyme mechanisms may have multiple intermediates for
reasons other than donor binding. For instance, tyrosine phos-
phatases use a substituted enzyme mechanism in which the
phosphate group is transiently attached to a cysteine residue
before being hydrolysed (Barford et al., 1998), while protein
kinases may also go through multiple stages of catalytic trans-
formation (Adams, 2001). Intermediates can be identified by the
transient, stopped-flow techniques introduced by Chance (1943),
who was the first to characterise an intermediate complex and to
measure the individual rate constants, a, b and c, in mechanisms
like (1). For a modern treatment and several examples, see
Anderson (2003).

With the time-scale assumptions introduced above, a class of
enzyme mechanisms can be constructed from the following three
basic reactions: creation of an intermediate complex from a
substrate form (i.e. a modification state) and free enzyme;
break-up of an intermediate complex to yield a substrate form
and free enzyme; and conversion of one intermediate to another,

EþSi-Yj, Yj-EþSi, Yj-Yk: ð5Þ

Here, Si, Sj denote substrate forms. In the case of the GK-loop,
there are only two, the unmodified form, S0, and the modified
form, S1, but the ideas can be applied more generally to substrates
with many modification states (Thomson and Gunawardena,
2009a).

There are two significant restrictions in (5). First, only one
enzyme can participate in a mechanism. This rules out ubiquitin-like
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modifications, which rely on a cascade of enzymes. It may be possible
to bring such cascades within the scope of this analysis, and this is
work in progress, but this paper is focussed on small-molecule
modifications that can be accommodated by the basic reactions
in (5). Second, the scheme in (5) does not allow for two-substrate,
double-displacement (substituted enzyme) mechanisms, such as
ping-pong mechanisms (Cornish-Bowden, 1995). This is relevant only
to forward enzymes, which have two substrates. Protein kinases that
act on serine, threonine and tyrosine residues typically follow single-
displacement mechanisms (Adams, 2001). Double-displacement
mechanisms for reverse enzymes, which have only a single substrate
(ignoring, as is customary, the ever present H2O), are accommodated
by (5).

The scope of (5) can be summarised as follows. First, it allows
for currently known protein kinases, (Adams, 2001), and phos-
pho-protein phosphatases (Barford et al., 1998). This includes the
histidine–aspartate two-component systems found in eubacteria,
plants and fungi, which use a phospho-transfer mechanism in
which ATP binds first in a compulsory order (Stock et al., 2000).
Second, it may cover other forms of reversible small-molecule
modification (methylation, acetylation, etc.) but much less is
known about the corresponding enzymatic mechanisms. Third,
it does not cover some non-protein kinases, such as nucleoside
diphosphate kinase, which use a two-substrate double-displace-
ment mechanism (Cornish-Bowden, 1995). Such enzymes are
usually involved in biosynthesis (flux) rather than signalling
(information), for which substrate concentration may be less
significant.

The reaction scheme in (5) could be generalised by explicitly
including modifiers and allowing substrate to bind to modifier-
bound intermediates and not just to free enzyme. This would
allow for double-displacement mechanisms. However, the alge-
braic details are considerably more complicated and we restrict
attention in the present paper to the reaction scheme in (5), with
the limitations just noted.

Enzyme mechanisms are allowed to be made up from any
‘‘sensible’’ combination of the basic reactions in (5), no matter
how complex. Some examples are shown in Fig. 1B. The forward
enzyme, E, has a bi–bi mechanism with random order substrate
binding and random-order product release. The reverse enzyme,
F, has a uni–uni mechanism with two main intermediates, along
with an unproductive, ‘‘dead-end’’ complex. A sensible mechan-
ism is, informally, one that does not prejudice the formation of a
steady state. For instance, there should be no irreversible forma-
tion of a dead-end complex, since that would act as a sink from
which substrate could never be recovered. The dead-end complex
in the examples in Fig. 1B is always reversibly formed.

The formal definition of ‘‘sensible’’ requires some new con-
cepts that are introduced next. The technical detail can be found
in Thomson and Gunawardena (2009a) but it is helpful to
introduce them in a broader context that has emerged in
subsequent work, Gunawardena (2012a), and which will be used
again in analysing the GK loop itself.

2.2. The linear framework

We consider a labelled, directed graph, G, with vertices,
1, . . . ,n, edges, i-

k
j, and no self-loops, i =-i. The vertices represent

components (i.e. chemical entities) in a biochemical system.
A dynamics is defined on these components by treating each
edge as if it were a chemical reaction under mass-action kinetics,
with the label as rate constant. For the moment, the labels are
symbolic positive real numbers, kAR40. Since each edge has a
unique source, each reaction is first-order and the dynamics is
therefore linear. If xi denotes the amount (or concentration) of
matter at vertex i, then the dynamics can be described by the
matrix equation

dx

dt
¼LðGÞ:x , ð6Þ

where xARn and LðGÞ is called the Laplacian matrix of G.
Our interest is in steady states of the dynamics, where
dx=dt¼ 0, or, equivalently, xAker LðGÞ. (For more background;
see Gunawardena, 2012a.)

A key observation is that if G is strongly connected then
dim ker LðGÞ ¼ 1 (Thomson and Gunawardena, 2009a, Lemma 1).
No matter how the dynamics is initiated, with arbitrary amounts
of matter at each vertex, once a steady state is reached (and some
steady state is always reached), only one degree of freedom is left:
if xi is known for some i then xj is fixed for all ja i. This
remarkable rigidity is the essence of the method used here.

The Matrix-Tree Theorem (MTT) (Thomson and Gunawardena,
2009a; Tutte, 1948), provides a formula for calculating xj in terms
of xi (Appendix). The MTT shows that, at steady state, xj=xi is a
rational expression in the labels. That is, xj=xi is a ratio of two
polynomials, each of which is a sum of products of labels.

So far, this discussion has been entirely linear. Nonlinearity is
introduced through the labels. In applying the linear framework
to a biochemical network, the labels are allowed to be complex
algebraic expressions involving rate constants of actual reactions
or concentrations of actual chemical species. For instance,
k¼ ða1½X1�þa2½X2�Þa3½X3� is a legitimate label, where a1, a2, a3

are rate constants and X1, X2, X3 are species. The one essential
restriction is that if a species X appears in a label, it cannot
correspond to a component in the graph. This is the ‘‘uncoupling
condition’’. In an application, not all the species in the actual
network may be components in the graph; those that are not in
the graph are allowed to appear in the labels. The framework can
be applied when a labelling can be found that satisfies the
uncoupling condition such that the steady states of the linear
Laplacian dynamics in (6) coincide with the steady states of the
nonlinear dynamics of the actual network. It is important to note
that this coincidence does not have to extend from the steady
states to the transient dynamics. If it did, the system would be
linear. All that is required is that the steady states of the two
systems coincide. Dynamical nonlinearity with simple rate con-
stants can thereby be traded for dynamical linearity with complex
labels, at steady state. Such a trade-off is highly beneficial, as it
allows complete calculation of the steady states of the nonlinear
system.

As an illustration, we construct the graph for the reversible
forward mechanism in Fig. 1B, as shown in Fig. 2A. The details are
similar for any enzyme mechanism. The vertices of this graph
are the intermediate complexes and the free enzyme. The edges
are derived from the reactions. For substrate–binding reactions,
which correspond to the edges outgoing from vertex E, the labels
are compound expressions of the form kn½Sn�. For all other
reactions, the labels are simple rate constants, kn. Since the
substrates Sn are not components in the graph, the uncoupling
condition is satisfied. It is shown in Thomson and Gunawardena
(2009a) that, with this labelling, the steady states of the linear
Laplacian dynamics in (6) coincide with the steady states of the
intermediate complexes and the free enzyme in the full nonlinear
dynamics. It is not difficult to check this for the particular reaction
mechanism in Fig. 1B but it holds in generality, no matter how
complex the reaction mechanism, as long as it is based on (5)
(Thomson and Gunawardena, 2009a).

A reaction mechanism is ‘‘sensible’’ when its graph is strongly
connected. In this case, the MTT can be applied to calculate the
steady state concentrations of the enzyme forms. Since inter-
mediate complexes usually release enzyme eventually, strong
connectivity is a natural condition. The exception might be a
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dead-end complex, as mentioned above, but as long as this is
reversibly formed, strong connectivity is preserved.

Enzymologists are familiar with this construction in the guise
of the King–Altman procedure (Cornish-Bowden, 1995; King and
Altman, 1956), which is equivalent to the Matrix-Tree Theorem
(Thomson and Gunawardena, 2009a). It is, however, more pro-
ductive to see it as one application of the linear framework just
described, which has far wider applications than to enzyme
mechanisms (Gunawardena, 2012a), including the analysis of
multi-enzyme reversible modification systems, as explained
below.
2.3. Steady-state analysis of the enzyme mechanisms

To explain the analysis of enzyme mechanisms, it may be
helpful to see how it works for the simple case of the Michaelis–
Menten mechanism in (1). In this case, the graph is

which is sufficiently simple that its steady state can be calculated
without appealing to the MTT, to give

½Y� ¼
½S�½E�

KM
, ð7Þ

where ½�� denotes steady-state concentration and KM ¼ ðbþcÞ=a is
the classical Michaelis–Menten constant. Formula (7) is the basic
algebraic relationship that underlies the Michaelis–Menten rate
formula (Cornish-Bowden, 1995).

If the enzyme mechanism is built up from the reactions in (5)
and the corresponding strongly connected, labelled, directed
graph is constructed, then the MTT yields similar steady-state
formulas (Appendix). This works irrespective of the complexity of
the reaction mechanism. For instance, for the reversible reaction
mechanisms in Fig. 1B, the steady state concentrations of the
intermediates are given by

½Yi� ¼

½S0�½E�

KE
i,0

þ
½S1�½E�

KE
i,1

for 1r ir4

½S0�½F�

KF
i,0

þ
½S1�½F�

KF
i,1

for 5r ir7

8>>>><
>>>>:

: ð8Þ

The Kn

n,n in (8) are ‘‘generalised Michaelis–Menten constants’’
(gMMC) that relate each intermediate to the substrates and
products in the reaction mechanism (Appendix). Since both S0

and S1 can contribute to the intermediates, two gMMCs are
needed, one for each substrate form. (Irreversibility leads to
simplifications, as discussed in the next sections.) The gMMCs
are rational expressions in the underlying rate constants, like
KM ¼ ðbþcÞ=a for (7), but they can become a good deal more
complicated. If the graph of the reaction mechanism has n

vertices, then the polynomials in Kn

n,n have degree n�1
(Appendix).

Depending on the reaction mechanism, it is possible that one
or the other substrate form may not contribute to an intermedi-
ate. In this case, the corresponding term in (8) will be absent and
there is no associated gMMC. However, it is helpful to indicate
this by taking the gMMC to be infinite, Kn

n,n ¼1, which has the
effect of killing the term. This is merely a shorthand for saying
that the term does not appear in (8); gMMCs, when they exist, are
always finite, positive quantities, Kn

n,nAR40.
In writing formulas like (8), we shall refer to the particular

examples of reaction mechanisms in Fig. 1B. However, it should
be understood that the formulas hold in general for any sensible
reaction mechanisms made up from the reactions in (5). The
examples in Fig. 1B allow the concepts to be made clear without
having to introduce the more abstract notations of Thomson and
Gunawardena (2009a).

2.4. Steady-state analysis of the GK loop

Knowing the steady-state concentrations of the intermediates,
the contributions of each enzyme in the GK loop can be
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calculated. There are two pathways to form S1 from S0. The direct
pathway is through the forward enzyme E, which has two ways to
do this, using intermediate Y3, with rate constant k9, and using
intermediate Y4, with rate constant k13. From (8), the total rate of
S1 formation (by which we mean d½S1�=dt) through this direct
pathway is

k9

KE
3,0

þ
k13

KE
4,0

 !
½S0�½E�:

Only the gMMCs for S0 are relevant for the production of S1 from
S0. The second pathway is through the reverse enzyme F, operat-
ing in reverse. Y5 is the only intermediate that yields S1, which it
does with rate constant k16, so the rate of S1 formation through
this reverse pathway is

k16

KF
5,0

 !
½S0�½F�:

As previously, only the gMMC for S0 is relevant. The total rate for
forming S1 from S0 is then the sum over these two pathways,
which may be summarised as

ðcE
0½E�þcF

0½F�Þ½S0�: ð9Þ

Here, cn
n

is a ‘‘total generalised catalytic efficiency’’ (tgCE)
(Thomson and Gunawardena, 2009a; Cornish-Bowden, 1995),
given by

cE
0 ¼

k9

KE
3,0

þ
k13

KE
4,0

and cF
0 ¼

k16

KF
5,0

: ð10Þ

Catalytic efficiencies are well known to enzymologists as the ratio
of the catalytic rate constant to the Michaelis–Menten constant
(Cornish-Bowden, 1995). For our purposes, a similar generalised
quantity may be calculated for any intermediate that releases
product and the tgCE is then the sum over all intermediates that
can yield the relevant substrate form, as in the formulas above.
It is important to note, when dealing with realistic mechanisms,
that product release and catalysis may not occur in the same step,
unlike (1). Although we continue to use the phrase ‘‘catalytic
efficiency’’, what is relevant here is product release, which may,
or may not, also correspond to catalysis. Just like gMMCs, tgCEs
are rational expressions in the underlying rate constants. The
steady-state rate of formation of S0 from S1 can now be calculated
in a similar way to be

ðcF
1½F�þcE

1½E�Þ½S1�, ð11Þ

where the tgCEs can be read off from the reaction mechanism as

cF
1 ¼

k21

KF
7,1

and cE
1 ¼

k4

KE
1,1

þ
k2

KE
2,1

: ð12Þ

A striking aspect of the formulas in (9) and (11) is that they are
linear in the substrate forms. It is as if the formation of S1 from S0

takes place linearly with rate constant cE
0½E�þcF

0½F� while the
formation of S0 from S1 has rate constant cF

1½F�þcE
1½E�. This is a

general feature of any reaction mechanism and it is precisely
what is required to exploit the linear framework once again. We
can construct a new labelled, directed graph in which the vertices
are the substrate forms, S0 and S1 and there is an edge between
them whenever some enzyme is able to convert the source vertex
to the target vertex (Fig. 2B). Note that more than one enzyme
may contribute to an edge. Each edge acquires a label coming
from formulas like (9) and (11). Because the enzymes are not
components of the graph of substrate forms, that graph also
satisfies the uncoupling condition. Furthermore, it is shown in
Thomson and Gunawardena (2009a) that, with this labelling, the
steady states of the linear, Laplacian dynamics in (6) correspond
to the steady states of the full nonlinear biochemistry of the
substrate forms under the relevant reaction mechanisms. Finally,
the substrate graph in Fig. 2B is evidently strongly connected.
These assertions hold in complete generality for reversible mod-
ification systems with multiple types of modifications, multiple
sites and multiple modifying and demodifying enzymes, no
matter how complex the reaction mechanisms (Thomson and
Gunawardena, 2009a). We exploit this here for the special case of
the GK loop, which has only two substrate forms but potentially
many components in total because of the realistic biochemistry.

2.5. Irreversibility yields an invariant

The strategy for analysing the GK loop is to focus on the two
substrate forms and to eliminate as many of the other compo-
nents as possible. There are three general properties that provide
a systematic way to do this. First, the system is at steady state,
implying that the flux from S0 to S1 is balanced by the return flux
from S1 to S0. Second, the enzymes are neither synthesised nor
degraded and are hence conserved over time. Third, the substrate
is neither synthesised nor degraded and is hence also conserved
over time. In this and the next section, we exploit the first two
properties, and then bring in the third. In this section, we use the
reversible mechanisms for E and F in Fig. 1B as running examples.

Because the graph on the substrate forms recapitulates the
steady state of the full system, as outlined above, it follows from
Fig. 2 that, at steady state,

½S1�

½S0�
¼

cE
0½E�þcF

0½F�

cF
1½F�þcE

1½E�
: ð13Þ

Since the forward enzyme E is conserved, it follows that

Etot ¼ ½E�þ½Y1�þ � � � þ½Y4�, ð14Þ

where Etot is the total amount of enzyme in the system. Although
this is constant during the dynamics, it is determined by the
initial conditions and subject to change between experiments,
unlike the rate constants. Using (8), this can be rewritten as,

Etot ¼ 1þ
1

KE
1,0

þ � � � þ
1

KE
4,0

 !
½S0�þ

1

KE
1,1

þ � � � þ
1

KE
4,1

 !
½S1�

 !
½E�:

ð15Þ

It is then natural to introduce a total gMMC (tgMMC) for each
substrate form, so that (15) can be summarised as

Etot ¼ 1þ
½S0�

KE
0

þ
½S1�

KE
1

 !
½E�, ð16Þ

where the tgMMC resembles the harmonic mean of the individual
gMMCs for all the intermediates,

KE
n
¼

1

KE
1,n

þ � � � þ
1

KE
4,n

 !�1

: ð17Þ

Similar formulas hold for the reverse enzyme, F,

Ftot ¼ 1þ
½S1�

KF
1

þ
½S0�

KF
0

 !
½F�, where KF

n
¼

1

KF
5,n

þ � � � þ
1

KF
7,n

 !�1

:

We can now divide Etot by Ftot to arrive at the equation

Etot

Ftot
¼

1þ½S0�=KE
0þ½S1�=KE

1

1þ½S1�=KF
1þ½S0�=KF

0

 !
½E�

½F�

� �
: ð18Þ

Eqs. (13) and (18) involve only the two substrate forms, S0 and
S1, and the two free enzymes, E and F. The intermediates have
been eliminated, courtesy of (8). The next step is to eliminate the
enzymes. Eq. (18) is expressed in terms of the single variable
½E�=½F� rather than the two variables ½E� and ½F� separately. Eq. (13)
can be brought into a similar form, which allows ½E�=½F� to be
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eliminated. This can be done in generality but we will focus in the
present paper on a special case that is motivated by the following
definition.

A reaction mechanism is said to be irreversible if there is no
route by which the product can be re-converted back to substrate.
There may be many ways in which this can be achieved (Fig. 1B).
In any irreversible mechanism for the forward enzyme E, if Yi is an
intermediate that can yield the substrate S0, then KE

i,1 ¼1

(Appendix). This is plausible: in an irreversible mechanism there
is no way for S1 to contribute to an intermediate that can yield S0.
In particular, KE

1,1 ¼ KE
2,1 ¼1 and so it follows from (12) that

cE
1 ¼ 0. However, S1 can still contribute to other intermediates,

so the tgMMC, KE
1, which appears in (18), is not necessarily 1.

Similar results hold if the reverse enzyme is irreversible,
with cF

0 ¼ 0. If both mechanisms are irreversible, then Eq. (13)
simplifies to

½S1�

½S0�
¼

cE
0

cF
1

 !
½E�

½F�

� �
: ð19Þ

It is now easy to eliminate ½E�=½F� between Eqs. (18) and (19)
to get

cE
0Etot

cF
1Ftot

¼
1þ½S0�=KE

0þ½S1�=KE
1

1þ½S1�=KF
1þ½S0�=KF

0

 !
½S1�

½S0�

� �
,

which may be rearranged by cross-multiplication to give

tðcE
0=cF

1Þð1þ½S1�=KF
1þ½S0�=KF

0Þ½S0� ¼ ð1þ½S0�=KE
0þ½S1�=KE

1Þ½S1�: ð20Þ

Here, we have introduced t¼ Etot=Ftot for the ratio of the enzyme
totals. This quantity is the input variable to the GK loop, through
changes in the availability of the enzymes. Formula (20) is a
polynomial equation in ½S0� and ½S1� that holds in any steady state.
It summarises the algebraic relationship between the two key
variables, ½S0� and ½S1�. It is an example of an ‘‘invariant’’.

An invariant is a polynomial equation between specified
dynamical variables, here ½S0� and ½S1�, that holds in any steady
state in which all the variables are strictly positive (Karp et al., in
press; Manrai and Gunawardena, 2008). In the definition of this
concept used previously, the coefficients of the equation were
required to be rational expressions in the underlying rate con-
stants, like 1=KF

1. However, (20) is different in also containing as a
coefficient the quantity t, which is not determined by the rate
constants but, rather, by the initial conditions. Without such a
coefficient, such a concise relationship between ½S0� and ½S1� as in
(20) would not exist. This suggests that relaxing the definition of
an invariant to allow for conserved quantities, such as Etot and Ftot,
as well as rate constants, is an useful generalisation.

The invariant in (20) has terms in both ½S0�
2 and ½S1�

2, so ½S0�

can be expressed in terms of ½S1� (or vice versa) by using the well-
known formula for the roots of a quadratic equation. However,
the resulting expression is not straightforward to analyse because
the input variable t appears in several places. We turn, instead, to
a further simplification, which brings (20) into a form whose
behaviour becomes transparent. The implications of (20) are
reviewed further in the Discussion.
2.6. Strong irreversibility leads to a singularity at s¼1

A reaction mechanism is said to be ‘‘strongly irreversible’’ if
the product does not rebind after release. For the forward
mechanism in Fig. 1B, this requires that S1 does not bind to E to
form either Y3 or Y4. In particular, a strongly irreversible mechan-
ism is always irreversible but, as is evident from Fig. 1B, there are
irreversible mechanisms that are not strongly irreversible.
There is no distinction between irreversibility and strong
irreversibility for the Michaelis–Menten reaction scheme in (1).
It only becomes significant for realistic enzyme mechanisms.

For any strongly irreversible mechanism for the enzyme E,
KE

i,1 ¼1 for all intermediates Yi (Appendix). Again, this is plau-
sible, as there is no way for S1 to form part of any intermediate. In
consequence, the tgMMC, KE

1, has no finite contributions in (17)
and so KE

1 ¼1. If the reverse enzyme is also strongly irreversible,
then, similarly, KF

0 ¼1. In this case, the invariant in (20) simpli-
fies to yield

tðcE
0=cF

1Þð1þ½S1�=KF
1Þ½S0� ¼ ð1þ½S0�=KE

0Þ½S1�: ð21Þ

Although this polynomial equation is still quadratic, the terms in
½S0�

2 and ½S1�
2 are now no longer present. ½S0� and ½S1� can now be

re-scaled to make them nondimensional by introducing the new
variables,

x0 ¼ ½S0�=KE
0, x1 ¼ ½S1�=KF

1: ð22Þ

Formula (21) can then be rewritten as

sð1þx1Þx0 ¼ ð1þx0Þx1: ð23Þ

Here, we have introduced a new input variable, s, where

s¼ tgm, g¼
cE

0

cF
1

 !
, m¼ KE

0

KF
1

 !
: ð24Þ

The quantities g and m are rational expressions in the rate
constants. The re-scaling to give s in place of t simplifies the
analysis below. It follows that

x0 ¼
x1

sþðs�1Þx1
: ð25Þ

From this point, it will be helpful to think of x0 and x1 as variables.
We will write down equations in these variables, whose solu-
tions will give the steady-state concentrations, ½S0� and ½S1�,
through (22).

It is immediately apparent from (25) that something special
happens when s¼1, or, equivalently, when t¼ 1=ðgmÞ. In this case,
x0 ¼ x1 and there is no limitation on either variable. However, if
so1, then the graph of (25) has a vertical asymptote at s=ð1�sÞ

and x1 is limited so that

x1o
s

1�s
: ð26Þ

If x1 were to exceed this bound then, according to (25), x0 would
be negative, leading to a contradiction. Conversely, if s41, then
the graph of (25) is a rectangular hyperbola with a horizontal
asymptote at height 1=ðs�1Þ and x0 is limited so that

x0o
1

s�1
: ð27Þ

It follows that the only case in which both x1 and x0 can reach
unlimited values is when s¼1. This is summarised in Fig. 3A,
which shows the different shapes of the graph of (25) depending
on whether s is less than, equal to or greater than 1.

The change in behaviour that takes place at s¼1 is a ‘‘singu-
larity’’. This term usually describes some form of discontinuity,
such as a sudden jump in values. Consider the ðx1,x0Þ plane with a
diagonal, defined by the line x0 ¼ a�x1 between the points ð0,aÞ
and ða,0Þ. Only positive values of a are relevant here. The
significance of this geometry will become apparent in the next
section. Now take two values of s that are close together, say s and
sþD, and consider the line segment on the diagonal that is cut off
by the graph of (25) at these values of s. These segments are
shown as thick cyan lines in Fig. 3B. Let laðs,sþDÞ be the length of
the segment. We want to know how this scales with increasing a.
If the interval ðs,sþDÞ lies on one or the other side of 1, so that
sosþDo1 or 1ososþD, then laðs,sþDÞ remains bounded, no



Fig. 3. The singularity at s¼1. (A) Graphs of (25) are shown for three values of s (thick, magenta curves), as indicated. The light, blue lines show the vertical asymptote to

the s¼0.9 graph at x1 ¼ s=ð1�sÞ and the horizontal asymptote to the s¼1.1 graph at x0 ¼ 1=ðs�1Þ. (B) The segment cut off the diagonal by the graph of (25) is shown as a

thick cyan line, for the indicated values of s and sþD, with D¼ 0:05. When this interval lies below (left, top) or above (left, bottom) s¼1, these segments are bounded, no

matter how far the diagonal is from the origin. When the interval straddles s¼1 (right, centre), the segments can be made as large as one pleases by moving the diagonal

sufficiently far from the origin. Because of the asymptotes in A, the segment length is an increasing proportion of the diagonal, leading to the scaling in (28).

(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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matter how large a becomes. Indeed, the segment length can
never be larger than the segment of the diagonal cut off by the
asymptotes of (25) at the corresponding values of s. It follows
that,

laðs,sþDÞ
a

-0 as a-1:

However, if the interval between the s-values contains 1, so that
so1osþD, then laðs,sþDÞ becomes unbounded by taking a to be
sufficiently large (Fig. 3B). Furthermore, if we consider the
complement of the segment on the diagonal, which falls into
two disconnected pieces, each piece is individually bounded as a

gets large for a similar reason as above: their lengths can never be
larger than the segments of the diagonal cut off by the asymptote
of (25) and the coordinate axis parallel to it. It follows that,

laðs,sþDÞ
a

-1 as a-1: ð28Þ

The discontinuity expressed by these different scalings is the
singularity from which unlimited ultrasensitivity emerges. To see
this, it is necessary to bring in the last general property of the GK
loop, which is the conservation of substrate.
2.7. Substrate conservation yields a cubic equation

Since substrate is neither synthesised nor degraded, a con-
servation law holds for the total substrate,

Stot ¼ ½S0�þ½S1�þ½Y1�þ � � � þ½Y4�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
forward

þ½Y5�þ � � � þ½Y7�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
reverse

, ð29Þ

where Stot is determined by the initial conditions. The contribu-
tion of the intermediates to this sum can be determined as
follows. If E is strongly irreversible, so that KE

1 ¼1, formula (16)
may be rewritten as

Etot ¼ ð1þx0Þ½E�, ð30Þ

from which we see, from the conservation of total enzyme in (14),
that

½Y1�þ � � � þ½Y4� ¼ Etot�½E� ¼ x0½E�:
It also follows from (30) that ½E� ¼ Etot=ð1þx0Þ, so that

½Y1�þ � � � þ½Y4� ¼
x0Etot

1þx0
:

By a similar argument for the reverse intermediates when F is
strongly irreversible, we find that

½Y5�þ � � � þ½Y7� ¼
x1Ftot

1þx1
:

However, the invariant for strong irreversibility in (23) tells us
that

x0

1þx0
¼

1

s

� �
x1

1þx1
,

where we recall from (24) that s¼ gmðEtot=FtotÞ. Hence, the total
contribution from the intermediates is

½Y1�þ � � � þ½Y7� ¼
x1

1þx1
1þ

1

gm

� �
Ftot :

The expression depends only on ½S1� (i.e. x1) or, equivalently, by
using (23), only on S0 (i.e. x0). Strong irreversibility of both
enzymes is essential for this simplification. If the enzymes are
irreversible, but not strongly so, then the contribution of the
intermediates becomes more complicated, with both ½S0� and ½S1�

playing a role.
The substrate conservation equation in (29) can now be

reformulated as

Stot ¼ KE
0x0þKF

1x1þ
x1

1þx1
1þ

1

gm

� �
Ftot

and this can be normalised and written entirely in terms of x1 by
using (25),

Stot

KF
1

¼
x1

sþðs�1Þx1
mþx1þ

x1

1þx1
1þ

1

gm

� �
Ftot

KF
1

 !
: ð31Þ

By cross-multiplication, formula (31) yields an invariant, which is
a cubic polynomial equation in x1. By solving this to obtain ½S1�, all
the other variables can be determined: ½S0� comes from (25);
½E� and ½F� come from (30) and its equivalent for F; and the
intermediates come from (8). When both enzymes are strongly
irreversible, which could still result in an arbitrary number of
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components, the GK loop can be reduced to the solution of a
single cubic equation.

Goldbeter and Koshland derived a cubic polynomial equation
for the GK loop assuming the classical Michaelis–Menten reaction
mechanism and taking the intermediate complexes into account
(Goldbeter and Koshland, 1981). Our results show that, provided
the enzymes are strongly irreversible, the same reduction is
possible no matter how complex the reaction mechanisms. Feliu
et al. have pointed out that a reduction to a single equation is also
possible for a cascade of GK loops, in which the kinase for one
layer is the substrate for the previous, provided the classical
Michaelis–Menten reaction mechanism is assumed for all layers
(Feliu et al., 2012). In this case, the degree of the polynomial
equation increases with the length of the cascade. Our results
suggest that the reduction to a single equation is also feasible for
cascades with realistic enzyme mechanisms.

Goldbeter and Koshland showed unlimited ultrasensitivity by
numerical solution of the cubic polynomial equation, for chosen
values of the various constants. However, the structure of (31)
lends itself to a geometric approach, which brings additional
insights.
2.8. Geometric solution of the cubic equation

The solution of Eq. (31) may be found as follows. Some
terminology is helpful, which is italicised when introduced below
and illustrated in Fig. 4A. Consider, as above, the ðx1,x0Þ plane.
We plot three curves in this plane; the first two will be static,
while the third will be moved in a certain way to find the solution.
The first curve is the ‘‘diagonal’’ given by the graph of

x0 ¼
Stot

KF
1

�x1: ð32Þ

The diagonal sets the scale. All calculations take place in the
square ‘‘box’’ determined by the intersections of the diagonal with
the axes. The second curve is the ‘‘intermediate curve’’, given by
x1

x0

diagonal

substrate curve

intermediate
curve

upper point

lower pointsl
id

er

x

substrate 
axis

x0

m

box

Fig. 4. Geometric solution of the cubic equation. (A) Illustration of the three curve

(magenta)—and their key intersection points (yellow dots) in the box, as described in

substrate axis can be moved vertically up and down by the slider to change the positio

until the upper and lower points lie on the same vertical line, at which point equation (3

x0 corresponding to x1, its value may also be read-off by observing from (32) that the d

extends to the intersection with the diagonal is equal to the value of the intermediate cu

x1 solution for a different disposition of the curves, in which substrate is no longer

intersection of the diagonal and the intermediate curve, is always an upper limit for the

reader is referred to the web version of this paper.)
the graph of the last term in (31),

x0 ¼
x1

1þx1
1þ

1

gm

� �
Ftot

KF
1

 !
: ð33Þ

This is a rectangular hyperbola with a horizontal asymptote
whose height is determined by the terms in brackets. The third
curve is the ‘‘substrate curve’’, given by the graph of the first term
in (31),

x0 ¼
x1

sþðs�1Þx1
m,

which can have the same shapes as in Fig. 3A for different values
of s. The example in Fig. 4A has so1. The substrate graph should
be thought of as if its origin is a moveable ‘‘slider’’ whose position
on the vertical x0 axis can be altered. The slider takes a horizontal
‘‘substrate axis’’ along with the substrate curve. The slider is
restricted to move so that the substrate curve intersects the
diagonal in the ‘‘upper point’’, while the substrate axis intersects
the intermediate curve in the ‘‘lower point’’ (Fig. 4A).

With this preparation, the solution to Eq. (31) is found by
moving the slider until the upper and lower points lie on the same
vertical line (Fig. 4B). For that value of x1, the height of the box,
which is Stot=KF

1, is made up of three segments whose lengths are,
reading from bottom to top, the value of the intermediate curve,
the value of the substrate curve and x1 itself. This is exactly
equation (31), so that the value of x1 must be a solution of it. The
corresponding value of x0 and of the total amount of intermediate
complexes can also be read off, as shown in Fig. 4B.

An immediate consequence of this construction is that there is
always a unique solution for x1 and hence for all the other
components in the system, as explained in the previous section.
In particular, realistic enzyme mechanisms do not give rise to
multiple steady states, at least when the enzymes are strongly
irreversible. (When the enzymes follow the standard Michaelis–
Menten mechanism in (1), it is known that multiple steady states
require more than one modification site, Markevich et al., 2004;
Thomson and Gunawardena, 2009b.) These results hold irrespec-
tive of the complexity of the reaction mechanisms and of the
x1

1 solution x0 solution

s—the diagonal (black), the intermediate curve (blue) and the substrate curve

the text. The substrate curve, shown here with so1, and its associated horizontal

n of the upper and lower points. (B) The x1 solution is found by moving the slider

1) is satisfied, as explained in the text. Since the substrate curve gives the value of

iagonal has slope �1. Similarly, the remaining segment on the horizontal axis that

rve and gives the total amount of the intermediate complexes. The inset shows the

in excess over enzymes. Note that the value m shown in A, determined by the

x1 solution. (For interpretation of the references to color in this figure caption, the
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values of the rate constants. It would be impossible to infer such
general results by numerical integration of the underlying differ-
ential equations, illustrating one of the advantages of the sym-
bolic and geometric methods used here.

The unlimited ultrasensitivity can be seen to emerge through
the following argument. We require that when s¼1, the solution
of (31) is at a point where the intermediate curve is in saturation.
We first determine this saturation condition and then explain
how the ultrasensitivity arises. Suppose that x1 ¼ xn is in the
saturation regime of the intermediate curve. By construction, the
value of the intermediate curve in (33) will be very close to its
asymptotic value, while, since s¼1, the value of the substrate
curve will be just xnm. Moreover, since s¼1, t¼ 1=ðgmÞ, so that the
substrate–conservation equation in (31) can be approximated as

Stot

KF
1

¼ xnmþxnþð1þtÞ
Ftot

KF
1

 !
:

Rearranging this gives the value of xn,

xn ¼
1

ð1þmÞKF
1

ðStot�ð1þtÞFtotÞ:

Since m¼ KE
0=KF

1 and t¼ Etot=Ftot this can be further simplified to
give

xn ¼
1

KE
0þKF

1

ðStot�ðEtotþFtotÞÞ:

It follows from (33) that the half-saturation value of the inter-
mediate curve occurs at x1 ¼ 1. Hence, for x1 to be in the
saturation regime, it is necessary that xnb1, or, equivalently, that

Stot bEtotþFtotþKE
0þKF

1: ð34Þ

Formula (34) falls out easily from the geometric argument used
here but would be hard to obtain by numerical methods.

The unlimited ultrasensitivity arises as follows. If the x1

solution for s¼1 lies in the saturation regime for the intermediate
curve, then a small change in the position of the slider causes a
large change in the position of the lower point. Because of this, if s

is changed from slightly below s¼1 to slightly above, then the x1

coordinate of the upper point will still be a good approximation
to the x1 solution (Fig. 5). If so1, the slider has to be moved
down to find the correct solution, so the upper point will give an
Fig. 5. Unlimited ultrasensitivity in the saturated regime. The system is shown for the i

intermediate curve (x1 ¼ 10:09, compared to the half-saturation value of x1 ¼ 1). The con

with Etot allowed to vary to change the value of s according to (24). When s¼0.9 or s¼

solutions shown on the right. The change in x1 as s goes through 1 is therefore determin

can be made arbitrarily large (Fig. 3B) by increasing the amount of substrate. The lengt

by the scaling in (28). (For interpretation of the references to color in this figure capti
under-estimate, while if s41 the slider has to be moved up to
find the correct solution and the upper point will give an over-
estimate. The discrepancy between the approximate and the
exact solutions can be improved as much as required by increas-
ing the degree of saturation. It follows that the change in the x1

solution as s goes from slightly below to slightly above 1 is
determined, to a good approximation, by the length of the
segment on the diagonal between the substrate curves, high-
lighted in cyan in Fig. 5. As we saw in Fig. 3B, this length can be
increased beyond any limit by increasing the distance of the
diagonal from the origin or, equivalently, by increasing Stot in
accordance with the saturation condition in (34). Such a change
only affects the diagonal. Since it increases the total amount of
substrate in the system, it is important to know not only that x1

increases but also that it does so as a proportion of total substrate.
This follows from the scaling established in (28). The saturating
value of the proportion is no longer 1 because the intermediate
complexes are also present and these can play a significant role in
limiting the proportion outside the saturating regime. Indeed, if m

is the x1 coordinate of the intersection of the diagonal with the
intermediate curve, then it can be seen from Fig. 4A that x1om

for all values of s.
For chosen values of the constants, Eq. (31) can be numerically

solved to show how the proportion of ½S1� varies with s (Fig. 6A).
The ultrasensitivity in response steadily increases with increasing
substrate, from a graded response when Stot ¼ KF

1, through increas-
ingly sigmoidal responses, to an abrupt switch-like response when
Stot ¼ 500KF

1, with a corresponding increase in the proportion at
saturation, as expected from the argument above.

Ultrasensitivity can arise at values of s other than 1, particu-
larly when there is a discrepancy between the enzymes, with
KE

0aKF
1 (so that ma1). However, unlimited ultrasensitivity is

confined to s¼1. The cases mo1 and m41 are illustrated in
Fig. 6B and show asymmetric behaviour in the ultrasensitive
region, which moves closer to s¼1 as Stot increases. These distinct
shapes of dose-response correspond to the ‘‘operating regimes’’
identified by Gomez-Uribe et al., using the classical Michaelis–
Menten reaction scheme and the total quasi-steady state approx-
imation (Gomez-Uribe et al., 2007). In the strongly irreversible
case, similar distinctions appear to hold with realistic enzyme
mechanisms.
ndicated values of s, with the x1 solution for s¼1 in the saturation regime of the

stants are Stot ¼ 22, Ftot ¼ 1, KE
0 ¼ KF

1 ¼ 1 (in arbitrary units), so that m¼ 1, and g¼ 1,

1.1, the x1 coordinates of the upper points are good approximations to the exact

ed, up to a constant factor, by the line segment highlighted in cyan, whose length

h of this segment becomes an increasing proportion of the diagonal, as established

on, the reader is referred to the web version of this paper.)



Fig. 6. Dose–response of the GK loop for varying levels of substrate. (A) The amount of ½S1� as a proportion of total substrate, Stot, is plotted against s¼ gmðEtot=FtotÞ. The levels

of Stot=KF
1 are indicated next to the corresponding plots. The other constants are the same as in Fig. 5. (B) The same plots with Etot ¼ 0:01 (top) and Etot ¼ 100 (bottom), with

the other constants as in Fig. 5. Since Ftot ¼ 1, m¼ 0:01 in the top plot and m¼ 100 in the bottom plot, compared to m¼ 1 in A. Note the different horizontal and vertical

scales in the two plots. Unlike the plot in A, there is marked asymmetry in the shape of the curve before and after the point of inflection, corresponding to different

‘‘operating regimes’’ (Gomez-Uribe et al., 2007), but unlimited ultrasensitivity remains confined to s¼1.

Fig. 7. Knife-edge behaviour in substrate allocation. Steady-state concentration of unmodified substrate, S0, (blue) and modified substrate, S1, (magenta) are plotted against

total substrate, Stot. The constants are KE
0 ¼ 10, KF

1 ¼ 5, so that m¼ 2, and g¼ 0:5, so that gm¼ 1. (A) The ratio of enzyme levels, t¼ Etot=Ftot , is taken to be 0.9, so that

toðgmÞ�1. ½S0� increases without limit with increasing total substrate, while ½S1� remains bounded above. The horizontal asymptote (black) is given by (26). (B) t¼2, so that

t4ðgmÞ�1. ½S1� increases without limit, while ½S0� remains bounded above. The horizontal asymptote (black) is given by (27). (For interpretation of the references to color in

this figure caption, the reader is referred to the web version of this paper.)
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2.9. Knife-edge behaviour in substrate allocation

Ultrasensitivity is found in the response of substrate forms to
changes in enzyme totals, while keeping total substrate fixed
(Fig. 6). It is also instructive to see how substrate forms change
with total substrate, while keeping enzyme totals fixed. Both
substrate forms, S0 and S1 increase steadily with increasing total
substrate but show two distinct behaviours (Fig. 7). If so1 then
increasing amounts of substrate are allocated preferentially to S0,
which grows without limit, while S1 remains below an upper
bound (Fig. 7A). Conversely, if s41 then increasing amounts of
substrate are allocated preferentially to S1, which grows without
limit, while S0 remains below an upper bound (Fig. 7B). The
asymptotic upper bounds are given by (26) and (27), respectively,
and depend only on s.

The change between so1 and s41 can be seen more clearly
by considering each substrate form as a proportion of total
substrate. If, at steady state, u0 ¼ ½S0�=Stot and u1 ¼ ½S1�=Stot , then,
in the limit as Stot-1,

ðu0,u1Þ�!
ð1,0Þ if so1

ð0,1Þ if s41

(
:

This is another manifestation of the fundamental singularity
underlying the GK loop. In addition to zero-order ultrasensitivity,
the balance between steady-state substrate accumulation in S0 or
S1 is set on a knife edge at s¼1.

The quantity s¼ tgm depends partly on the underlying rate
constants, through g and m, as described in (24), and partly on the
balance of the enzyme totals, through t¼ Etot=Ftot . The levels of
these enzymes can be subject to fluctuations over time, as well as
to variation between cells (Sigal et al., 2006). In contrast, enzy-
matic rate constants are expected to be identical over time and
between cells. Hence, in the context of an integrated tissue, it is
possible that toðgmÞ�1 at a particular time in a particular cell,
while t4 ðgmÞ�1 at another time or in another cell. This could lead
to incoherent changes between the two distinct steady-state
responses in Fig. 7 and a loss of integrated behaviour across a
tissue.

A potential solution to this problem is to ensure that the
concentration levels of the two enzymes are kept in a fixed
relative stoichiometry, so that t becomes constant. The enzymes
could, for instance, be tightly co-regulated or forced to form a
complex. Then, at all times and in all cells, either the behaviour in
Fig. 7A or the behaviour in Fig. 7B would take place, depending
only on the rate constants. The resulting upper bounds in (37) and
(26) would be robust to fluctuations in the levels of both substrate
and enzymes.

An alternative possibility is suggested by an unusual re-
gulatory mechanism in mammalian glucose metabolism
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(Dasgupta et al., submitted for publication). The conversion of
glucose to pyruvate during glycolysis goes through a step in
which fructose-6-phosphate (F6P) is converted to fructose-1,6-
bisphosphate by the enzyme 6-phosphofructo-1-kinase (PFK-1).
The reverse conversion of pyruvate to glucose during gluconeo-
genesis, which takes place particularly in the liver, is catalysed by
fructose-1,6-bisphosphatase (FBPase-1). These two separately
catalysed reactions are believed to be key rate-limiting steps in
glucose metabolism (Saier, 1987). However, F6P is also converted
to fructose-2,6-bisphosphate (F2,6BP), which is a terminal meta-
bolite that appears not to be consumed by any other metabolic
process. Instead, it acts as an allosteric regulator: it is a potent
activator of PFK-1 and an inhibitor of FBPase-1. The concentration
of F2,6BP therefore plays a key role in regulating flux through
glycolysis and gluconeogenesis. The conversion between F6P and
F2,6BP would be a GK loop of the type studied here, except that
the forward and reverse enzymes are linked on the same bifunc-
tional protein, 6-phosphofructo-2-kinase/fructose-2,6-bispho-
sphatase (PFK-2/FBPase-2). Bifunctionality may be considered
an extreme type of complex formation. It provides a certain
way to ensure that Etot ¼ Ftot and t¼1. We suggest, therefore, that
the bifunctionality of PFK-2/FBPase-2 protects tissues such as the
liver from the loss of integrated behaviour described above and
ensures robustness of glycolytic/gluconeogenic regulation to
fluctuations in the levels of metabolic substrates and enzymes.
This suggestion is explored in detail in a separate paper (Dasgupta
et al., submitted for publication).

Bifunctionality in modification and demodification is not
uncommon and studies in bacteria have suggested that it can
give rise to some form of robust concentration control at steady
state (see Dasgupta et al., submitted for publication for refer-
ences). It has not been previously appreciated that two strongly
irreversible, monofunctional enzymes in a GK loop are poised on a
knife edge in respect of substrate allocation (Fig. 7). Bifunction-
ality may be required, not just for robust control concentration,
but as a means to avoid this singularity.
3. Conclusions

The Goldbeter–Koshland loop has been a paradigm for the
emergence of novel functionality from collective behaviour.
While many ultrasensitive mechanisms are known, such as
allosteric proteins or gene regulatory systems, a unique feature
of the GK loop is that its ultrasensitivity is regulatable by
changing the saturation level of the enzymes. For other mechan-
isms, in contrast, ultrasensitivity is limited by structural features,
such as the number of binding sites, which may be altered on an
evolutionary time scale but not so readily on a physiological time
scale. The unlimited ultrasensitivity of the GK loop suggests
considerable flexibility for cellular information processing and it
has been widely studied from different perspectives (Berg et al.,
2000; Gomez-Uribe et al., 2007; Malleshaiah et al., 2010; Melen
et al., 2005; Qian, 2003; van Albada and ten Wolde, 2007).

However, its biological relevance has been hard to assess.
Ultrasensitivity has been confirmed in vitro for phosphorylation/
dephosphorylation of E. coli isocitrate dehydrogenase (LaPorte
and Koshland, 1983), and mammalian glycogen phosphorylase
(Meinke et al., 1986). At concentrations that are realistic in vivo,
the experimentally measured ultrasensitivities have effective
Hill coefficients of around 2 and 2.3, respectively. In comparison,
the Hill coefficient of hemoglobin for oxygen binding is around
2.9. The issue here is that substrate concentrations are often
on a par with enzyme concentrations, so that enzyme satura-
tion may be limited. However, localisation into a multi-protein
complex, as achieved through scaffold proteins, can increase local
concentrations substantially so that zero-order effects become
more pronounced (van Albada and ten Wolde, 2007), and this
sensitivity can be further amplified through additional mechan-
isms. Higher Hill coefficients, of around 9, have been experimen-
tally measured in such systems (Malleshaiah et al., 2010).
Experimental evidence also suggests that zero-order ultrasensi-
tivity may play a key role in setting sharp boundaries during
embryonic patterning (Melen et al., 2005).

The relative simplicity of the GK loop makes it a good starting
point for analysing realistic enzymology. It is somewhat surpris-
ing that the Michaelis–Menten reaction mechanism continues to
be so widely used in systems biology. Michaelis and Menten
cleverly designed their experimental setting so that they mea-
sured initial rates of product formation with negligible product
present (Gunawardena, 2012b). Strong irreversibility could be
reasonably assumed in their context, allowing them to simplify
the resulting mechanism. No such justification can be provided
for more recent usage of their mechanism. It is becoming
increasingly important to reconcile systems biology with modern
enzymology. The analysis presented here shows how this might
be done but is only a starting point.

Our methods illustrate how the linear framework, that was
introduced in Thomson and Gunawardena (2009a) and extended
in Gunawardena (2012a), can deal with arbitrarily complex
reaction mechanisms. The framework provides, first, a systematic
method to undertake the steady-state elimination of intermediate
complexes. Second, the generalised constants emerging from this
analysis can be used to rewrite the reversible modification system
as linear at steady state (Fig. 2B). This linearity holds in generality
for reversible modification systems with multiple substrates,
multiple types of modification, multiple sites, multiple modifying
and demodifying enzymes and arbitrarily complex reaction
mechanisms based on (5). It follows that a very wide range of
reversible modification systems can be analysed at steady state
by symbolic, algebraic methods, avoiding numerical simulation
and the attendant challenges of parameter identification. In fact,
the linear framework underpins many examples of time-scale
separation in biology, with applications in such diverse areas as
enzyme allostery, G-protein coupled receptors, ligand-gated ion
channels and gene regulation in bacteria and eukaryotes
(Gunawardena, 2012a). The present paper provides an opportu-
nity to introduce these ideas in the context of one of the simplest
multi-enzyme systems.

It is already known that reversibility of the mechanisms
compromises ultrasensitivity (Ortega et al., 2002). What emerges
from the present analysis is that reaction mechanisms can be
irreversible in different ways and this can make a difference to
their behaviour. This issue does not arise for the classical
Michaelis–Menten mechanism, which can be irreversible in only
one way, and its significance only becomes apparent when
realistic mechanisms are considered. We find that if both enzyme
mechanisms are strongly irreversible, then unlimited ultrasensi-
tivity is preserved. Furthermore, the unlimited ultrasensitivity
arises from a singularity in the algebraic invariant in (20) that
summarises the relationship between the substrate forms. The
singularity also underlies the knife-edge response to substrate
allocation in Fig. 7. This raises an interesting question as to the
coherence of a GK loop over time and from cell to cell within
a tissue. As we have suggested, the need to impose such
coherence may account for the bifunctionality of PFK-2/FBPase-2
in mammalian glucose metabolism (Dasgupta et al., submitted for
publication).

When the enzymes are irreversible (by which we also mean
not strongly irreversible) the analysis becomes more difficult,
in part because the invariant in (20) is more complicated than
that in (21). However, one important observation can be made
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immediately: the mutually exclusive limitation on ½S0� and ½S1� no
longer holds. If ½S1� increases without bound, then ½S0� cannot be
limited, and conversely. To see this, divide both sides of the
invariant in (20) by ½S1�

2 and let ½S1�-1, while keeping ½S0�

bounded. The left hand side goes to zero while the right hand side
goes to 1=KE

1, which can only be zero if E is strongly irreversible.
Similarly, if ½S0� increases without bound while ½S1� is limited, it is
necessary that F is strongly irreversible. There is no longer a
singularity of the form shown in Fig. 3.

The irreversible case is therefore strikingly different from the
strongly irreversible case and we speculate that unlimited ultra-
sensitivity may no longer hold for the former. Although a
mathematical treatment of this has not yet emerged, we believe
that the foundation laid here will provide the basis for it. It would
be of particular interest to know how much ultrasensitivity is
available and, if it is no longer unlimited, as we speculate, then
what the limits are and what features of the reaction mechanisms
determine these limits. It would also be very interesting to know
what happens to the knife edge behaviour in Fig. 7 when strong
irreversibility is no longer assumed. These are challenging open
problems whose solution would give us a better appreciation for
the impact of reaction mechanisms on multi-enzyme systems.
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Appendix A

The formulas in the paper were found by direct algebraic
manipulation, as described in the main text. Figs. A.3–A.6 were
plotted in Mathematica (Wolfram Research Inc.). The calculations
of the Kn

n,n for the irreversible and strongly irreversible cases
was done by the method of Thomson and Gunawardena (2009a).
We review this method and then explain the calculations.

As mentioned in Section 2.2, the Laplacian dynamics of a
strongly connected, labelled, directed graph has a unique steady
state, up to a scalar multiple: dim ker LðGÞ ¼ 1. The Matrix-Tree
Theorem (MTT) (Thomson and Gunawardena, 2009a; Tutte,
1948), provides an algorithm for calculating a basis element,
rAker LðGÞ : ri is obtained by enumerating the spanning trees
rooted at vertex i, taking the product of the labels on the edges of
each tree and adding up the products over all the trees. A
spanning tree rooted at i is a sub-graph that includes every vertex
(spanning), that has no cycles when edge directions are ignored
(tree) and for which only vertex i has no outgoing edges (rooted).
Spanning trees are fundamental concepts in graph theory.

Note that the expression for ri obtained from the MTT is a sum
of positive terms. Had the linear system LðGÞ:x ¼ 0 been solved by
determinants, the result would have been an alternating sum of
positive and negative terms. The value of the MTT, and the graph
theory on which it is based, is that it takes care of all the
cancellations.

Suppose given a reaction mechanism for the forward enzyme E

satisfying the conditions introduced in the paper and let G be the
corresponding labelled, directed graph on the intermediate com-
plexes and E (Fig. 2A). An identical argument works for the
reverse enzyme F. Suppose that Yi corresponds to vertex i for
1r irn�1 and that E corresponds to vertex n. From the con-
struction of G, outlined in the first section of the Results, the only
edges carrying an algebraic expression of the form kn½Sn� are those
outgoing from vertex n (highlighted in Fig. 2A). All other edges
have only a rate constant as label. It then follows from the MTT
that

ri ¼
ai½S0�þbi½S1� for 0r irn�1

g for i¼ n,

(
ðA:1Þ

where ai, bi and g are polynomials in the rate constants. While
ga0, it is possible that either ai ¼ 0 or bi ¼ 0, depending on the
reaction mechanism. Since the steady state is unique up to a
scalar multiple, we must have ½Yi� ¼ lri and ½E� ¼ lrn, for some
lAR. Hence,

½Yi� ¼
ri

rn

� �
½E�,

which, together with (A.1), gives Eq. (8) in the paper. The corre-
sponding gMMCs are given by

KE
i,0 ¼

g
ai

, KE
i,1 ¼

g
bi

,

provided ai and bi are non-zero. The gMMCs are rational expres-
sions in the rate constants. Since each spanning tree has n�1
edges, the polynomials in these expressions have degree n�1.

If the reaction mechanism is irreversible and Yj is an inter-
mediate that can release S0, then no spanning tree rooted at j can
have an edge with label kn½S1�. If one of them did, that would
imply a chemical pathway through which S1 could yield S0, which
would contradict irreversibility. Hence, bj ¼ 0 in (A.1) and the
corresponding gMMC does not exist. Accordingly, KE

j,1 ¼1, as
claimed.

If the reaction mechanism is strongly irreversible, then G has
no edges labelled kn½S1�, since there is no rebinding of S1. Hence,
bi ¼ 0 for all i and KE

i,1 ¼1 for all i, as claimed.
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