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a b s t r a c t 

Bifurcation theory provides a powerful framework to analyze the dynamics of differential systems as a 

function of specific parameters. Abou-Jaoudé et al. (2009) introduced the concept of logical bifurcation 

diagrams, an analog of bifurcation diagrams for the logical modeling framework. In this work, we propose 

a formal definition of this concept. Since logical models are inherently discrete, we use the piecewise 

differential (PWLD) framework to introduce the underlying bifurcation parameters. Given a regulatory 

graph, a set of PWLD models is mapped to a set of logical models consistent with this graph, thereby 

linking continuous changes of bifurcation parameters to sequences of valuations of logical parameters. 

A logical bifurcation diagram corresponds then to a sequence of valuations of the logical parameters 

(with their associated set of attractors) consistent with at least one bifurcation diagram of the set of 

PWLD models. Necessary conditions on logical bifurcation diagrams in the general case, as well as a 

characterization of these diagrams in the Boolean case, exploiting a partial order between the logical 

parameters, are provided. We also propose a procedure to determine a logical bifurcation diagram of 

maximum length, starting from an initial valuation of the logical parameters, in the Boolean case. Finally, 

we apply our methodology to the analysis of a biological model of the p53-Mdm2 network. 

© 2019 The Authors. Published by Elsevier Ltd. 
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. Introduction 

The behavior of biological systems relies on complex regula-

ory networks which understanding requires the use of compu-

ational modeling approaches. Different formalisms, operating at

ifferent levels of abstraction, have been used to model complex

iological networks. Among these formalisms, the logical frame-

ork, initially introduced by Thomas and d’Ari (1990) , has proven

o be particularly useful to model such networks, in particular

hen precise quantitative data are lacking, with applications in

 wide range of biological systems including cell differentiation

n developmental processes ( Fauré et al., 2014 ), haematopoiesis

 Collombet et al., 2017 ), T-cell activation and differentiation ( Abou-

aoudé et al., 2015 ) or cell cycle control ( Faure et al., 2006 ) (see

bou-Jaoudé et al., 2016 for additional applications). 

In the logical modeling formalism, regulatory networks are

odeled in terms of a logical regulatory graph, where nodes rep-

esent regulatory components, while edges denote regulatory in-
� This article is further included in a special issue of JTB dedicated to the memory 
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eractions ( Thomas and d’Ari, 1990 ). Each component is associated

ith a discrete variable representing its (current) functional level

f activity. In addition, a logical rule defines the evolution of this

evel, depending on the values of the regulators of the component.

 logical rule can be specified using either a logical function, or

ogical parameters ( Snoussi, 1989; Thomas and d’Ari, 1990 ). When

everal component levels are called to update, an updating scheme

 e.g. , synchronous, asynchronous) has to be specified to define the

tate successor(s). The resulting dynamics can be represented in

erms of a state transition graph , where nodes denote states, while

irected edges represent state transitions. 

Bifurcation theory provides a powerful framework to analyze

ualitative changes in the dynamics of ODEs depending on spe-

ific parameters. This analysis can be represented in a bifurcation

iagram, where the attractors (oscillatory regimes or steady states)

nd their stability are represented as a function of the parameter(s)

f interest ( e.g. , reaction rate or external stimuli) ( Strogatz, 20 0 0 ).

bou-Jaoudé et al. (2009) introduced the concept of logical bifurca-

ion diagram, an analog to ODE bifurcation diagrams for the logical

odeling framework. Given a regulatory graph of a model, a logical

ifurcation diagram corresponds to a sequence of valuations of the

ogical parameters associated with a model component (with its

orresponding attractors), upon a change of an implicit parameter
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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( e.g. , a degradation rate in Abou-Jaoudé et al., 2009 ). However, a

formal definition of this concept is still lacking. 

In this work, we propose a formal definition of logical bifur-

cation diagrams. To do so, we use the piecewise linear differen-

tial (PWLD) framework to explicitly introduce the underlying bi-

furcation parameters and formally associate monotonous and con-

tinuous changes of these parameters to sequences of valuations of

logical parameters. More precisely, we map a set of piecewise lin-

ear differential models associated with a given regulatory graph to

the set of the logical models whose logical parameter values are

consistent with the regulatory graph. A logical bifurcation diagram

then corresponds to a sequence of valuations of the logical pa-

rameters (with their associated set of attractors) consistent with

at least one bifurcation diagram in the class of PWLD models. 

This manuscript is organized as follows. We start in

Section 2 by describing the case study of the model of the core of

the p53-Mdm2 network, proposed by Abou-Jaoudé et al. (2009) . In

Section 3 , we introduce the class of logical models associated with

a regulatory graph, from a partial order defined in the set of the

logical parameters. In Section 4 , we propose a formal definition of

logical bifurcation diagrams associated to a model component, as

well as a procedure to compute one logical bifurcation diagram

of maximum length, starting from a given valuation of the logical

parameters, in the case where the component is Boolean. Finally,

Section 5 is devoted to a bifurcation analysis of our case study

b  

Fig. 1. (a) Regulatory graph of the model of the core p53-Mdm2 network, adapted from

is active on nuclear Mdm2 (denoted by M n ) above its first threshold, and on cytoplasm

activations, whereas red blunt ones denote inhibitions. Ellipses denote Boolean compone

bifurcation diagram, adapted from Fig. 3(a) in Abou-Jaoudé et al. (2009) , corresponding to

the following constraints: K M n , { (p53 , 1) , (M c , 0) } ≤ K M n , { (p53 , 0) , (M c , 0) } ≤ K M n , { (p53 , 1) , (M c , 1) } ≤ K M n , { (p5

for the logical parameters of p 53 and M c are: 0 for K p53 , { (M n , 1) } , 2 for K p53 , { (M n , 0) } , 0 for 

figure legend, the reader is referred to the web version of this article.) 
sing our methodology. Details on the building of the set of PWLD

odels associated to a regulatory graph, and the definition of

he pertinent objects to consider in the class of PWLD models

or the mappings to the set of logical models are presented in

ppendix A . Details on the mappings between the two sets of

WLD and logical models, and the link between their dynamics

re presented in Appendix B . 

. A case study: The p53-Mdm2 network 

We consider the model of the core of the p53-Mdm2 network,

roposed by Abou-Jaoudé et al. (2009) , which encompasses the fol-

owing components: the protein p53; the ubiquitin ligase Mdm2 in

he cytoplasm; and the ubiquitin ligase Mdm2 in the nucleus. p53

lays an essential role in the control of cell proliferation in mam-

als by regulating a large number of genes involved notably in

rowth arrest, DNA repair or apoptosis. Its level is tightly regulated

y the ubiquitin ligase Mdm2. Nuclear Mdm2 down-regulates the

evel of active p53, both by accelerating p53 degradation through

biquitination and by blocking the transcriptional activity of p53.

n return, p53 activates Mdm2 transcription and down-regulates

he level of nuclear Mdm2 by inhibiting Mdm2 nuclear transloca-

ion. 

These interactions are modeled in the regulatory graph shown

n Fig. 1 (a), in which we focus on the case where p53 (denoted

y p 53) is active on nuclear Mdm2 ( M n ) above its first threshold,
 Fig. 2(a) in Abou-Jaoudé et al. (2009) , in the case where p53 (denoted by p 53) 

ic Mdm2 (denoted by M c ) above its second threshold. Green edges correspond to 

nts (0 or 1), whereas the rectangle represents a ternary one (0, 1 or 2). (b) Logical 

 the regulatory graph in (a) in the case where the logical parameters of M n respect 

3 , 0) , (M c , 1) } (see Example 2 for more details on these parameters). The values taken 

K M c , { (p53 , 0) } , 1 for K M c , { (p53 , 2) } . (For interpretation of the references to color in this 
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nd on cytoplasmic Mdm2 ( M c ) above its second threshold. To en-

ble a systematic characterization of all the asymptotic behaviors

onsistent with a given regulatory graph, in the framework of log-

cal modeling, Abou-Jaoudé et al. introduced the concept of logical

ifurcation diagram ( Abou-Jaoudé et al., 2009 ), an analog of bifur-

ation analysis for ODE systems, based on the following two main

deas: 

(i) the inference of constraints between the values of the logical

parameters of a component ( M n in Abou-Jaoudé et al., 2009 )

from the regulatory graph, relying on the idea that a negative

influence of a component ( p 53) tends to lower the level of its

target(s) ( M n ) whereas the positive influence of a component

( M c ) tends to increase the level of its target(s) ( M n ); 

ii) the fact that logical parameters represent discretized ratios of

the production and degradation rates of a component, thereby

allowing to link changes of the logical parameter values of a

component ( M n in Abou-Jaoudé et al., 2009 ) with the variation

of an implicit continuous parameter (the degradation rate of M n 

in Abou-Jaoudé et al., 2009 ), under the inferred constraints. 

Fig. 1 (b) shows one of the logical bifurcation diagrams de-

ived in Abou-Jaoudé et al. (2009) , corresponding to one admis-

ible ordering of the logical parameter values, where the attrac-

ors (steady states, limit cycles) of the model are displayed as a

unction of the degradation rate of M n . In the following, we pro-

ose a formalization of the concept of logical bifurcation diagram

ntroduced in Abou-Jaoudé et al. (2009) . We will see that the con-

traints on the logical parameters values inferred in Abou-Jaoudé

t al. (2009) from the regulatory graph, can be formalized in terms

f a partial order in the set of the logical parameters ( Section 3.2 ).

egarding the formalization of the link between the implicit bifur-

ation parameter and the logical parameter values, we will use the

iecewise linear differential (PWLD) framework to introduce the

nderlying bifurcation parameter and link it to sequence of valu-

tions of the logical parameters ( Section 4 ). A class of PWLD mod-

ls is first associated with the regulatory graph and then formally

inked to the set of the logical models consistent with the partial

rder. We now first recall some key aspects of the logical modeling

ramework. 

. Logical models 

.1. Regulatory graph and logical parameters 

We start by recalling the definition of a regulatory graph,

dapted from Chaouiya et al. (2004) , in the framework of the logi-

al modeling formalism. 

efinition 1. A regulatory graph (G, �, sign, T ) is defined by: 

(i) A set of regulatory components G = { g 1 , g 2 , . . . , g n } , where n is

the number of components; 

ii) A set of regulatory interactions � defined as a subset of the set

G × G; 

ii) A mapping, sign, from the set � to the set {−1 , 1 } , defining the

sign of the interactions; 

v) A set T = { t g,g ′ } (g,g ′ ) ∈ � of sets of thresholds associated with �,

where, for all ( g, g ′ ) ∈ �, t g,g ′ is a subset of the set of strictly

positive integers, which fulfills the following condition: for all

g ∈ G, there exists a strictly positive integer k g such that: ⋃ 

(g,g ′ ) ∈ �
t g,g ′ = � 1 , k g � . 

We denote by �+ (resp. �−) the subset of � defined as follows:

(g, g ′ ) ∈ �+ (resp. (g, g ′ ) ∈ �−) if and only if sign ((g, g ′ )) = 1 (resp.

ign ((g, g ′ )) = −1 ). 
For all g of G, we denote by R g the subset of G defined as fol-

ows: g ′ ∈ R g if and only if ( g ′ , g ) ∈ �. 

In Definition 1 , each element ( g, g ′ ) of � represents a regu-

atory interaction, either positive if sign ((g, g ′ )) = 1 or negative if

ign ((g, g ′ )) = −1 . We thus discard cases of dual interactions. The

lements of �+ (resp. �−) are the positive (resp. negative) interac-

ions of the regulatory graph, whereas the elements of R g repre-

ent the regulators of component g . Note that we account for cases

here a regulatory interaction ( g, g ′ ) has multiple thresholds (that

s to say that when the set t g,g ′ has more than one element). 

xample 1. Let us illustrate the definition of a regulatory graph on

ur case study ( Fig. 1 ). Following Definition 1 , its regulatory graph

(G, �, sign, T ) is described as follows: 

i) the set G of regulatory components is defined as: G =
{ p53 , M c , M n } ; 

ii) the set � of regulatory interactions is defined as: 

� = { (p53 , M c ) , (M c , M n ) , (p53 , M n ) , (M n , p53) };
ii) the mapping, sign , from the set � to the set {−1 , 1 } is defined

as: 

sign ((p53 , M c )) = 1 , sign ((M c , M n )) = 1 , 

sign ((p53 , M n )) = −1 , and sign ((M n , p53)) = −1 ;
v) the set T = { t p53 ,M c 

, t M c ,M n 
, t p53 ,M n 

, t M n ,p53 } of sets of thresholds

is defined as: 

t p53 ,M c 
= { 2 } , t M c ,M n 

= { 1 } , t p53 ,M n 
= { 1 } , and t M n ,p53 = { 1 } . 

To specify a logical regulatory graph, one has to define a regu-

atory graph (G, �, sign, T ) , and associate to each component g ∈ G:

i) a multivalued discrete variable X g ∈ � 0, max ( X g ) � (a Boolean one

if X g = 1 ) and; 

ii) a logical rule defining the target value of the component at

each state. 

A logical rule can be specified using either a logical function, or

ogical parameters. In this work, we choose to specify logical rules

sing logical parameters ( Snoussi, 1989; Thomas and d’Ari, 1990 ).

ore precisely, to each component is associated a set of logical

arameters, each corresponding to a combination of values of its

egulators (see Table 1 for an example). The value of a logical pa-

ameter defines the target value of the component for the corre-

ponding combination ( Thieffry and Romero, 1999; Thomas, 1991 ).

t each state, the state successor(s) are determined from the target

alues of the components and the chosen updating scheme ( e.g. ,

synchronous, synchronous), thereby defining the dynamics of the

odel. More formally, we define the logical parameters of a com-

onent g as follows: 

efinition 2. Let (G, �, sign, T ) be a regulatory graph and g a com-

onent of G. The set K g of the logical parameters associated with

 is defined as follows: 

 g = { K g,α | α ∈ �g } 
here �g is the set of all the combinations of values of the regu-

ators of g , defined as follows: 

g = 

∏ 

g ′ ∈R g 

{ (g ′ , l g ′ ) | l g ′ ∈ { 0 ∪ t g,g ′ }} 

The set V g of the valuations of the logical parameters associated

ith a component g is defined as follows: 

 g = 

∏ 

α∈ �g 

{ (K g,α, l α) | l α ∈ � 0 , max (X g ) � } 

or all L ∈ V g and all ( K g, α , l α) ∈ L, l α will be called the value of the

ogical parameter K g, α . 
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Table 1 

Truth table for the regulators of M n in our case study ( Fig. 1 ), listing the admissible valuations of 

the logical parameters of M n ( i.e. the elements of V a M n 
) with the corresponding logical functions. 

The symbols ¬, ∧ and ∨ denote the logical operators NOT, AND and OR, respectively. 

Truth table 

Logical parameters Regulators Logical functions 

p 53 M c false ¬p 53 ∧ M c ¬p 53 M c ¬p 53 ∨ M c true 

K M n , { (p53 , 0) , (M c , 0) } 0 0 0 0 1 0 1 1 

K M n , { (p53 , 0) , (M c , 1) } 0 1 0 1 1 1 1 1 

K M n , { (p53 , 1) , (M c , 0) } 1 0 0 0 0 0 0 1 

K M n , { (p53 , 1) , (M c , 1) } 1 1 0 0 0 1 1 1 
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In Definition 2 , a logical parameter K g,α ∈ K g of component g is

defined by a combination α ∈ �g of levels l g ′ ∈ { 0 ∪ t g,g ′ } of the reg-

ulators g ′ of g , where �g is the set of all these combinations. A val-

uation L ∈ V g of the set K g of the logical parameters of g then spec-

ifies the discrete target level l α ∈ � 0, max ( X g ) � of g for each context

α ∈ �g . 

Example 2. Consider our case study ( Fig. 1 ), and let us focus

on component M n . Its regulators are p 53 and M c , which interac-

tions on M n are associated with the following sets of thresholds:

 p53 ,M n 
= { 1 } and t M c ,M n 

= { 1 } . The contexts of regulations of M n

( i.e. the elements of the set �M n 
) are thus: 

(i) {( p 53, 1), ( M c , 0)}, for which p 53 level equals its threshold 1,

and M c level is 0; 

ii) {( p 53, 1), ( M c , 1)}, for which both levels of p 53 and M c equal

their threshold 1; 

ii) {( p 53, 0), ( M c , 0)}, for which both levels of p 53 and M c equal 0;

v) {( p 53, 0), ( M c , 1)}, for which p 53 level is 0, and M c level equals

1. 

Following Definition 2 , the set K M n 
of the logical parameters of

M n is: 

K M n 
= { K M n , { (p53 , 1) , (M c , 0) } , K M n , { (p53 , 1) , (M c , 1) } , 

K M n , { (p53 , 0) , (M c , 0) } , K M n , { (p53 , 0) , (M c , 1) } } . 

3.2. Partial order and class of logical models associated to a 

regulatory graph 

Let us now assume that a regulatory graph has been defined.

To be consistent with this graph, relative values of the logical pa-

rameters of a component should be constrained by the sign of the

incoming interactions. For example, let us focus on the logical pa-

rameters of M n of our case study. The value of K M n , { (p53 , 0) , (M c , 1) } for

which the level of the inhibitor p 53 equals to 0 and of the activator

M c equals to 1 should be higher than the one of K M n , { (p53 , 0) , (M c , 0) } ,
K M n , { (p53 , 1) , (M c , 1) } , and K M n , { (p53 , 1) , (M c , 0) } , for which either the level

of the activator has been decreased or the level of the inhibitor

has been increased. On the contrary, other pairs of logical param-

eters will not be comparable, as for example K M n , { (p53 , 0) , (M c , 0) } and
Fig. 2. Hasse diagrams of the partially ordered sets (a) (K p53 , 	
 M n , { (p53 , 1) , (M c , 1) } . We thus see that the sign of the incoming in-

eractions of a component induces a partial order in the set of the

ogical parameters associated to this component. 

More formally, given a regulatory graph, the set K g of the logi-

al parameters of component g can be equipped with a partial or-

er 	K defined as follows. 

efinition 3. Let (G, �, sign, T ) be a regulatory graph. Let g be a

omponent of G, and K g the set of the logical parameters associ-

ted with g . We define the partially ordered set (K g , 	K ) as fol-

ows: let K g, α and K g,α′ be two elements of K g where: 

= { (g ′ , l g ′ ) } g ′ ∈R g 
and α′ = { (g ′ , l ′ g ′ ) } g ′ ∈R g 

, 

ith (l g ′ , l ′ g ′ ) ∈ { 0 ∪ t g ′ ,g } 2 for all g ′ ∈ R g . 

Then K g,α 	K K g,α′ if and only if the following conditions hold: 

(i) for all g ′ ∈ R g such that (g ′ , g) ∈ �+ , we have: l g ′ ≤ l ′ 
g ′ ; 

ii) for all g ′ ∈ R g such that (g ′ , g) ∈ �−, we have: l g ′ ≥ l ′ 
g ′ . 

According to Definition 3 , the logical parameter K g, α is smaller

han the logical parameter K g,α′ in the partially ordered set (K g , 	K 
) of the logical parameters associated to component g ( i.e. K g,α 	K 
 g,α′ ), if and only if: 

(i) the level of each activator of g is lower in α than in α′ (condi-

tion (i)); 

ii) the level of each inhibitor of g is higher in α than in α′ (condi-

tion (ii)). 

Of note such a way to structure the set of the logical parame-

ers has been previously considered in Thieffry and Romero (1999) .

he elements of a partially ordered set can be graphically repre-

ented by a so-called Hasse diagram ( Birkhoff, 1948 ), where nodes

epresent logical parameters and edges represent the partial order

elations. In the Hasse diagram, two logical parameters are said to

e comparable if there exists an all ascending or an all descend-

ng path between the nodes representing these parameters (see

ig. 2 for an example). 

xample 3. Let us consider our case study ( Fig. 1 ). Following

efinition 3 , the partially ordered sets ( K p53 , 	K ), ( K M c 
, 	K ) and

 K M n 
, 	K ) of the logical parameters are represented in the Hasse

iagrams shown in Fig. 2 . 
K ) , (b) (K M c , 	K ) , and (c) (K M n , 	K ) , for our case study. 
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Let us focus on the logical parameters K M n ,α and K M n ,α′ , associ-

ted to M n , for which: 

= { (p53 , 1) , (M c , 0) } and α′ = { (p53 , 0) , (M c , 1) } . 
he level of the activator of M n , M c , is smaller in α than in α′ ,
hile the level of the inhibitor of M n , p 53, is higher in α than in
′ . Thus K M n ,α and K M n ,α′ are comparable and we have K M n ,α 	K 
 M n ,α′ . However, in the case where: 

= { (p53 , 0) , (M c , 0) } and α′ = { (p53 , 1) , (M c , 1) } , 
he levels of the activator M c and the inhibitor p 53 are both

maller in α. Thus K M n ,α and K M n ,α′ are not comparable. 

Given a regulatory graph, we can then define, from the partial

rder 	K , the set V a g of the admissible valuations of the logical

arameters associated to a component g as follows. 

efinition 4. Let (G, �, sign, T ) be a regulatory graph, and g a com-

onent of G. The set V a g of the admissible valuations of the logical

arameters of g is the subset of V g defined as follows: let L be an

lement of V g , where: 

 = { (K g,α1 
, l 1 ) , . . . , (K g,αq g 

, l q g ) } , 
nd q g is the number of elements of K g . 

Then L is an element of V a g if and only if, for all ( j, j ′ ) ∈ � 1, q g � 
2 

uch that K g,α j 
	K K g,α

j ′ , we have: 

 j ≤ l j ′ . 

The condition defining the set V a g in Definition 4 states that if

 logical parameter K g,α j 
is lower than K g,α

j ′ , for the partial order

K , then its value l j should be lower that the value l j ′ of K g,α
j ′ . Of

ote, the set of the admissible valuations of the logical parameters

orresponds to the set of the consistent combinations of logical pa-

ameters as defined in Thieffry and Romero (1999) , and also to the

et of monotone (Boolean or multivalued) logical functions, since

 regulator cannot have activator and inhibitor roles on the same

arget (we discard dual interactions). Note that such constraints do

ot impede non-functional interactions, and hence do not exclude

egenerate logical functions ( Crama and Hammer, 2011 ). The cardi-

ality of the set of all monotone Boolean functions is known as the

edekind number ( Dedekind, 1897 ), which follows a double expo-

ential growth closely bound to the set of all Boolean functions

 2 2 
m 
, where m is the number of regulators). Studying this set of

unctions would quickly become computationally impossible even

or small numbers of m . To circumvent this issue, one can use a

ethod proposed in Cury et al. (2018) which exploits a partial or-

er of monotone Boolean functions to locally explore neighboring

unctions, from a Boolean function of reference. 

xample 4. In our case study, let us consider a valuation of the

ogical parameters of M n : 

L = { (K M n , { (p53 , 1) , (M c , 0) } , l 1 
)
, 
(
K M n , { (p53 , 1) , (M c , 1) } , l 2 

)
, (

K M n , { (p53 , 0) , (M c , 0) } , l 3 
)
, 
(
K M n , { (p53 , 0) , (M c , 1) } , l 4 

)} . 
here the values l 1 , l 2 , l 3 , and l 4 equal to 0 or 1. The logical param-

ters of the partially ordered set (K M n 
, 	K ) are ordered as follows:

(i) K M n , { (p53 , 1) , (M c , 0) } 	K K M n , { (p53 , 1) , (M c , 1) } , 
ii) K M n , { (p53 , 1) , (M c , 0) } 	K K M n , { (p53 , 0) , (M c , 0) } , 
ii) K M n , { (p53 , 1) , (M c , 1) } 	K K M n , { (p53 , 0) , (M c , 1) } , 
v) K M n , { (p53 , 0) , (M c , 0) } 	K K M n , { (p53 , 0) , (M c , 1) } , 

(see Hasse diagram in Fig. 2 (c)). Therefore, following

efinition 4 , the valuation L is admissible if and only if: 

(i) l 1 ≤ l 2 , (ii) l 1 ≤ l 3 , (iii) l 2 ≤ l 4 , and (iv) l 3 ≤ l 4 . 

The set V a 
M n 

of the admissible valuations of the logical parame-

ers of M n is presented in Table 1 . 
Finally, we define the class of logical models associated with a

egulatory graph as follows. 

efinition 5. The class of logical models associated with the reg-

latory graph (G, �, sign, T ) is the set of logical models satisfying

he following conditions: 

i) their regulatory graph is (G, �, sign, T ) ; 

ii) for all components g i ∈ G, the valuation of the logical parame-

ters associated with g i belongs to V a g i 
. 

. Logical bifurcation diagrams 

In this section, we propose a formal definition of the con-

ept of logical bifurcation diagram, introduced in Abou-Jaoudé

t al. (2009) in the logical modeling framework. To introduce the

nderlying bifurcation parameters, we take advantage of the piece-

ise linear differential (PWLD) formalism. Indeed: 

i) this semi-quantitative modeling framework is such that it can

be formally linked to logical modeling framework (as we will

see in the following); 

ii) its dynamics depends on continuous parameters (contrary to

logical modeling which parameters are inherently discrete),

which can thus be chosen as bifurcation parameters; 

ii) monotonous and continuous changes of each parameter can be

mapped to sequences of valuations of logical parameters (as we

will see in the following). 

A logical bifurcation diagram would then correspond to a se-

uence of valuations of the logical parameters (with their associ-

ted set of attractors) which can be mapped to a change of at least

ne bifurcation parameter. 

More precisely, we first associate a class PWLD models with a

egulatory graph (G, �, sign, T ) . Roughly speaking, each component

 i ∈ G is associated with a non-negative variable x i describing the

evel of g i , a basal constant a i and a degradation rate d i , while each

nteraction ( g i , g j ) ∈ � of the regulatory graph is associated with a

et of step functions of magnitude k l 
i j 

with l ∈ t g i ,g j (either increas-

ng or decreasing functions depending on the sign of the interac-

ion), the order between the thresholds of the step functions being

onsistent with the order between the thresholds of the regula-

ory graph. The differential equation describing the evolution of x i 
s built by summing the step functions associated with the incom-

ng interactions on g i . Details about the construction of this class

f models can be found in Appendix A.1 . 

We then map this class of PWLD models to the class of logical

odels associated to (G, �, sign, T ) . More precisely, the i th coordi-

ates of a so-called focal function ( i.e. the elements of the set de-

oted F i ) are mapped to the logical parameters of component g i 
 i.e. the elements of K g i ), and a relative position of these i th co-

rdinates with respect to the thresholds ( i.e. an element of the set

enoted P i ) is mapped to an admissible valuation of the logical pa-

ameters of g i ( i.e. an element of V a g i 
), thereby mapping each model

f the class of PWLD models to a specific model of the correspond-

ng class of logical models. Briefly speaking, the focal function de-

cribes the values towards which the variables x i tend according

o the relative positions of x i with the thresholds. A qualitative de-

cription of the dynamics of a PWLD model, called state transition

raph , can be deduced from the positionings of the coordinates of

he focal function. We show that the image of the state transition

raph of a PWLD model is the asynchronous state transition graph

f the image of the PWLD model by the mapping. Details on the

efinition of the pertinent objects to consider in the class of PWLD

odels for the mappings (focal function, positioning of the coor-

inates of the focal function, partial order, state transition graph)

an be found in Appendix A . Details on the mapping between the
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Table 2 

Table of correspondence between the class of logical models and the class of PWLD models, associated with a regulatory 

graph (G, �, sign, T ) where G = { g 1 , g 2 , . . . , g n } and T = { t g i ,g j } (g i ,g j ) ∈ � ( Definition 1 ). | t g i ,g j | denotes the number of elements 

of the set t g i ,g j . More details on the definitions related to the class of PWLD models can be found in Appendix A . 

Logical models PWLD models 

Components { g 1 , g 2 , . . . , g n } 
Variables ( X g i ) 1 ≤i ≤n ∈ 

∏ n 
i =1 � 0 , max (X g i ) � ( x i ) 1 ≤i ≤n ∈ (R + ) n 

Thresholds t g i ,g j ⊆ � 1 , max (X g i ) � 
(
θ l 

i j 

)
l∈ t g i ,g j 

∈ (R + � ) | t g i ,g j | 

Interactions / Step functions (g i , g j ) ∈ �, sign ((g i , g j )) ∈ {−1 , 1 } (
s sign ((g i ,g j )) (., θ l 

i j 
) 
)

l∈ t g i ,g j 
∈ ( R + �→ { 0 , 1 } ) | t g i ,g j | 

Logical parameters/ ( K g 1 , . . . , K g n ) ( F 1 , . . . , F n ) 
Coordinates of the focal function 

Valuations of logical parameters/ 

Positioning of the coordinates 
(
V a g 1 

, . . . , V a g n 

)
( P 1 , . . . , P n ) 

of the focal function 

Partial order in the sets K g i / 	K 	F 
Partial order in the sets F i 
Bifurcation parameters / { k l 

i j 
} (g i ,g j ) ∈ �,l∈ t g i ,g j , ( a i ) 1 ≤ i ≤ n , ( d i ) 1 ≤ i ≤ n 

Dynamics Asynchronous state transition graph State transition graph 
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two classes of models, and the link between their dynamics can

be found in Appendix B . A logical bifurcation diagram would then

correspond to a sequence of valuations of the logical parameters

(with their associated set of attractors) consistent with at least one

bifurcation diagram of the class of PWLD models. Of note a given

set of attractors can correspond to distinct valuations of the logical

parameters. Table 2 summarizes the correspondences between the

class of logical models and the class of PWLD models, associated

with a regulatory graph. 

Let us now define the type of bifurcation analysis in PWLD

models that we consider in our work. Generally speaking, a bi-

furcation analysis of a differential model is the analysis of the at-

tractors as a function of one (or several) parameters. Here, we re-

strict our study to bifurcation analysis depending on one parame-

ter, called bifurcation parameter , and focus on the attractors of the

state transition graph of a PWLD model. A bifurcation diagram of

a PWLD model then corresponds to the sequence of attractors in

the state transition graph of the system upon monotonous ( i.e. in-

creasing or decreasing) and continuous variation of one bifurcation

parameter. Note that the state transition graph depends on the po-

sitioning of the coordinates of the focal function ( i.e. on the sets

P i ), and not on the precise values of the parameters of the PWLD

model. What matters then is to understand how the positioning

of the coordinates of the focal function varies when changing the

value of the bifurcation parameter. Actually, the evolution of these

positionings is restricted by constraints on the relative positions

between the coordinates of the focal function. Part of these con-

straints can be formalized in the frame of a partial order 	F on the

sets of these coordinates ( i.e. on the sets F i ) (see Appendix A.4 ). 

More formally, given a component g i , the set P 

pwl 

bd i 
of the se-

quences of positionings of the i th coordinates of the focal function

upon monotonous and continuous change of a bifurcation parame-

ter is defined as follows. 

Definition 6. Let (G, �, sign, T ) be a regulatory graph, and let us

consider the class of PWLD models associated with (G, �, sign, T ) . 

Let g i be a component of G, and P i the set of the positionings

of the i th coordinates of the focal function for the class of PWLD

models. 

We define the set P 

pwl 

bd i 
⊆ P 

� 
i 

as follows: let ( P j ) 0 ≤ j ≤ k be an ele-

ment of P 

� 
i 

where: 

P j = { (( f 1 , F 1 ) , l j 1 

)
, . . . , 

(
( f q i , F q i ) , l 

j 
q i 

)} , 
with q i = |F i | , 

(
( f 1 , F 1 ) , . . . , ( f q i , F q i ) 

)
∈ F 

q i 
i 

, and (l 
j 
1 
, . . . , l 

j 
q i 
) ∈

� 0 , max (X g i ) � 
q i for all j ∈ � 0, k � , such that for all j ∈ � 0 , k − 1 � , there

exists m ∈ � 1, q i � satisfying l 
j 
m 

� = l 
j+1 
m 

. 
Then (P j ) 0 ≤ j≤k ∈ P 

pwl 

bd i 
if and only if there exist: 

(i) a parameter p l ; 

ii) a set �0 
i 

of threshold values of the outgoing interactions of g i ; 

ii) a set p \ p 0 
l 

of values of all the parameters except p l ; 

v) two values p in 
l 

and p 
f in 

l 
of the parameter p l ; 

uch that, there exists a continuous and monotonous function γ

rom the set [0, 1] to the set 

[ 
p in 

l 
, p 

f in 

l 

] 
satisfying γ (0) = p in 

l 
and

(1) = p 
f in 

l 
, and a subdivision t 0 < t 1 < . . . < t k −1 of [0, 1] such

hat: 

(i) 
(
h m 

i ( [0 , t 0 [ ) 
)

1 ≤m ≤q i 
= 

(
l 0 m 

)
1 ≤m ≤q i 

, 

ii) 
(
h m 

i 

(
] t j−1 , t j [ 

))
1 ≤m ≤q i 

= 

(
l 

j 
m 

)
1 ≤m ≤q i 

for all integers j between 1

and k − 1 , 

ii) 
(
h m 

i 

(
] t k −1 , + ∞ [ 

))
1 ≤m ≤q i 

= 

(
l k m 

)
1 ≤m ≤q i 

, 

here h m 

i 
is the function from the set [0, 1] to the set � 0 , max (X g i ) �

efined, for all integers m between 1 and q i , as follows: 

 

m 

i : 

{
[ 0 , 1 ] → � 0 , max (X g i ) � 

t �→ α
�0 

i 

R 

(
f m 

(
γ (t) , p \ p 0 

l 

))
, 

here α
�0 

i 
R 

is a mapping from the set R 

+ to the set � 0 , max (X g i ) � ,

efined in Appendix A.2 . 

Following Definition 6 , a sequence (P 0 , P 1 , . . . , P k ) belongs to

he set P 

pwl 

bd i 
if there exists a parameter p l and a continuous and

onotonous change of p l , from an initial value p in 
l 

to a final value

p 
f in 

l 
, such that the evolution of the relative position l 

j 
1 
, ..., l 

j 
q i 

of the

 th coordinates ( f 1 , F 1 ), ..., ( f q i , F q i ) of the focal function with re-

pect to the thresholds �0 
i 
, upon the change of p l , is the sequence

(P 0 , P 1 , . . . , P k ) , for all integers j from 1 to k . Note that we discard

equences containing identical successive valuations of the logical

arameters in the definition of the set P 

pwl 

bd i 
. 

Then using the mappings 	 i introduced in Appendix B , we

an associate to each positioning of the coordinates of the focal

unction a valuation of the logical parameters (and thus a logical

odel) in the corresponding class of logical models. Given a com-

onent g i , a logical bifurcation diagram should now be a sequence

f valuations of the logical parameters of g i (with its associated

ets of attractors) which corresponds to at least one bifurcation di-

gram in the corresponding class of PWLD models ( i.e. one element

f the set P 

pwl 

bd i 
). More formally, these sequences of valuations of
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ogical parameters are defined by the set P 

log 

bd g i 
of sequences of el-

ments of V a g i 
, as follows. 

efinition 7. Let (G, �, sign, T ) be a regulatory graph, and g i a

omponent of G. 

We define the set P 

log 

bd g i 
⊆ (V a g i 

) � as follows: 
(
L j 

)
0 ≤ j≤k 

∈ P 

log 

bd g i 
if

nd only if: 

	−1 
i 

(L j ) 
)

0 ≤ j≤k 
∈ P 

pwl 

bd i 
. 

In Definition 7 , the sequence (L 0 , L 1 , . . . , L k ) of valuations of the

ogical parameters of a component g i belongs to the set P 

log 

bd g i 
if and

nly if the sequence 
(
	−1 

i 
(L 0 ) , 	

−1 
i 

(L 1 ) , . . . , 	
−1 
i 

(L k ) 
)

of position-

ng of the i th coordinates of the focal function belongs to P 

pwl 

bd i 
. 

The following property holds on the set P 

log 

bd g i 
, for all compo-

ents g i of G: 

roperty 1. Let (G, �, sign, T ) be a regulatory graph, and g i a compo-

ent of G. Let ( L j ) 0 ≤ j ≤ k be an element of P 

log 

bd g i 
where, for all integers

 between 0 and k: 

 j = { (K g i ,α1 
, l j 

1 
) , . . . , (K g i ,αq g i 

, l j q g i 
) } . 

hen, the following condition holds: 

(i) either, for all r ∈ � 1 , q g i � and for all j ∈ � 0 , k − 1 � : 

l j+1 
r − l j r = 0 or l j+1 

r − l j r = 1 ;
ii) or, for all r ∈ � 1 , q g i � and for all j ∈ � 0 , k − 1 � : 

l j+1 
r − l j r = 0 or l j+1 

r − l j r = −1 . 

The proof of this property is detailed in Appendix D . In

roperty 1 , the condition states that the values l 
j 
r of the logical

arameters K g i ,αr either all increase (statement (i)), or all decrease

statement (ii)), along a sequence ( L j ) 0 ≤ j ≤ k of the set P 

log 

bd g i 
(which

esults from the monotonic variation of the coordinates of the focal

unction upon a change of a bifurcation parameter), and that this

hange cannot exceed 1 (which results from the continuous vari-

tion of the coordinates of the focal function upon a change of a

ifurcation parameter). 

Studying the whole set P 

log 

bd g i 
would quickly become computa-

ionally intractable even for small numbers of regulators of com-

onent g i . Instead, starting from a given valuation of the logical

arameters, one could explore the logical bifurcation diagrams of

iven length around this valuation, or determine one possible log-

cal bifurcation diagram of maximum length. In the following, we

ocus on the determination of one possible logical bifurcation dia-

ram of maximum length. 

To do so, we first exploit the constraints imposed by the partial

rder 	F on the relative position of the coordinates of the focal

unction, upon a continuous and monotonous change of a bifurca-

ion parameter, to determine necessary conditions for a sequence

f valuations of the logical parameters of a component g i to belong

o the set P 

log 

bd g i 
. These constraints can actually be transferred on

he partial order 	K operating in the sets of the logical parameters

see Section 3.2 ), as it is the partial order induced by the mappings

i from the partial order 	F (see Appendix B ). 

The following property provides necessary conditions, account-

ng for the partial order 	K , on the elements of P 

log 

bd g i 
, in the case

here the values of the logical parameters increase along a se-

uence (the other case where the values of the logical parameters

ecrease can be treated similarly). 
c  

d

roperty 2. Let (G, �, sign, T ) be a regulatory graph, and g i a compo-

ent of G. Let ( L j ) 0 ≤ j ≤ k be an element of P 

log 

bd g i 
where, for all integers

 between 0 and k: 

 j = { (K g i ,α1 
, l j 

1 
) , . . . , (K g i ,αq g i 

, l j q g i 
) } , 

uch that, for all j ∈ � 0 , k − 1 � and for all r ∈ � 1 , q g i � , we have l 
j 
r ≤

 

j+1 
r . 

Let, for all m ∈ � 0 , max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) � , K 

j,m 

g i 
be the subset of K g i 

or which, for all j ∈ � 0 , k − 1 � and for all r ∈ � 1 , q g i � , K g i ,αr ∈ K 

j,m 

g i 
if

nd only if l 
j 
r = m . 

Let K 

j,m,up 
g i 

be the subset of K g i defined, for all integers m from 0

o max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 , as follows: 

 

j,m,up 
g i 

= { K ∈ K g i | l j+1 
i 

> l j 
i 
, l j 

i 
= m } , 

nd K 

j,up 
g i 

the union of these sets K 

j,m,up 
g i 

for all the integers m from 0

o max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 : 

 

j,up 
g i 

= 

⋃ 

m ∈ � 0 ,max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g 

′ ) −1 � 

K 

j,m,up 
g i 

. 

e define the partially ordered sets (K g i , 	
j 
K ) , for all integers j be-

ween 0 and k − 1 , as follows: 

i) (K g i , 	0 
K ) = (K g i , 	K ) ; 

ii) for all (K, K 

′ ) / ∈ K 

j,up 
g i 

, we have: 

K 	 j 
K K 

′ �⇒ K 	 j+1 
K K 

′ ;
ii) for all m ∈ � 0 , max ( 

⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 � , for all (K, K 

′ ) ∈ K 

j,m,up 
g i 

,

we have: 

K 	 j+1 
K K 

′ and K 

′ 	 j+1 
K K;

v) for all m ∈ � 0 , max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 � , for all K ∈ K 

j,m,up 
g i 

, and

for all K 

′ ∈ K 

j,m 

g i 
∩ K 

j,up 
g i 

, we have: 

K 

′ 	 j+1 
K K. 

Let M 

j 
m 

be the set of the maximal elements of the par-

ially ordered set (K 

j,m 

g i 
, 	 j 

K ) , for all j ∈ � 0 , k − 1 � and for all m ∈
 0 , max ( 

⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 � , and M 

j the union of these sets M 

j 
m 

for

ll m ∈ � 0 , max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 � , for all j ∈ � 0 , k − 1 � : 

 

j = 

⋃ 

m ∈ � 0 ,max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g 

′ ) −1 � 

M 

j 
m 

. 

hen, we have, for all integers j from 0 to k − 1 : 

 

j,up 
g i 

⊆ M 

j . 

The proof of this property is detailed in Appendix D . In

roperty 2 , the partial ordered sets (K g i , 	
j 
K ) are defined by induc-

ion on j , starting from the partial order 	K . After each transition

rom the valuation L j to the valuation L j+1 along the sequence, the

artial order 	 j 
K is updated to record the new constraints on the

rder between the logical parameters appearing after this transi-

ion. The condition of the property imposes that the set K 

j,up 
g i 

of

he logical parameters whose value increases from L j to L j+1 has

o belong to the set of the maximal elements M 

j of the partially

rdered sets (K 

j,m 

g i 
, 	 j 

K ) , for all integers j between 0 and k − 1 .

he other case where the values of the logical parameters decrease

an be treated similarly by considering the sets of the logical pa-

ameters whose values decrease along a sequence, adapting conse-

uently the inequalities in the updating of the partial orders, and

onsidering the sets of the minimal elements of the partially or-

ered sets. 
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Fig. 3. Hasse diagram of the partially ordered set (K 0 g i 
, 	K ) , where K 0 g i 

is the set of 

the logical parameters whose value in L 0 is 0, in the case of Example 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

 

 

 

(

h  

t

(

t

(

f  

a  

t  

K  

v

 

v  

f

{
 

f  

d  

s  

n  

m  

c  

l

P  

n
 

b

L

s  

k

(

 

|  

a

 

(

 

 

a  

b

C

As explained above, Property 2 defines necessary conditions ac-

counting for constraints imposed by the partial order 	K but not

sufficient ones, regarding the elements of the set P 

log 

bd g i 
. To illustrate

the additional constraints we have to account for, let us consider

the following Example 5 . 

Example 5. We focus on the case of a regulatory graph which con-

tains a Boolean component g i regulated by three activators g 1 , g 2 
and g 3 , which sets of thresholds are t g 1 ,g i = t g 2 ,g i = t g 3 ,g i = { 1 } . 

Let us consider the class of logical models associated to the reg-

ulatory graph. We start from the valuation: 

L 0 = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 } 
of the logical parameters associated to component g i , where the

logical parameters are ordered as follows: 

(i) K g i , { (g 1 , 0) , (g 2 , 0) , (g 3 , 0) } , 
(ii) K g i , { (g 1 , 1) , (g 2 , 0) , (g 3 , 0) } , 

(iii) K g i , { (g 1 , 0) , (g 2 , 1) , (g 3 , 0) } , 
(iv) K g i , { (g 1 , 0) , (g 2 , 0) , (g 3 , 1) } , 
(v) K g i , { (g 1 , 1) , (g 2 , 1) , (g 3 , 0) } , 

(vi) K g i , { (g 1 , 1) , (g 2 , 0) , (g 3 , 1) } , 
(vii) K g i , { (g 1 , 0) , (g 2 , 1) , (g 3 , 1) } , 

(viii) K g i , { (g 1 , 1) , (g 2 , 1) , (g 3 , 1) } . 

Let K 

0 
g i 

be the set of logical parameters whose value in L 0 is

0. The maximal elements of the partially ordered set (K 

0 
g i 

, 	K )
(whose Hasse diagram is shown in Fig. 3 ) are: 

K g i , { (g 1 , 1) , (g 2 , 1) , (g 3 , 0) } , K g i , { (g 1 , 1) , (g 2 , 0) , (g 3 , 1) } and

K g i , { (g 1 , 0) , (g 2 , 1) , (g 3 , 1) } . 
The set of successors of the valuation L 0 , authorized by

Property 2 , are thus: 

(i) {0, 0, 0, 0, 1, 0, 0, 1}, 

(ii) {0, 0, 0, 0, 0, 1, 0, 1}, 

(iii) {0, 0, 0, 0, 0, 0, 1, 1}, 

(iv) {0, 0, 0, 0, 1, 1, 0, 1}, 

(v) {0, 0, 0, 0, 1, 0, 1, 1}, 

(vi) {0, 0, 0, 0, 0, 1, 1, 1}, 

(vii) {0, 0, 0, 0, 1, 1, 1, 1}. 

Let us choose as a successor of L 0 the valuation 

L 1 = { 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 } . 
Following Property 2 , the partial order 	0 

K = 	K is updated to the

partial order 	1 
K to account for the additional constraints appearing

with the transition L 0 −→ L 1 , that is to say that: 

(i) K g i , { (g 1 , 1) , (g 2 , 0) , (g 3 , 1) } 	1 
K K g i , { (g 1 , 1) , (g 2 , 1) , (g 3 , 0) } , 

ii) K g i , { (g 1 , 0) , (g 2 , 1) , (g 3 , 1) } 	1 
K K g i , { (g 1 , 1) , (g 2 , 1) , (g 3 , 0) } . 

Now let us consider the corresponding constraints between the

i th coordinates of the focal function, via the mapping χ i (Appendix

B.1) , in the class of PWLD models associated to the regulatory

graph: 

(i) k 1 
1 i 

+ k 1 
3 i 

< k 1 
1 i 

+ k 1 
2 i 
ii) k 1 
2 i 

+ k 1 
3 i 

< k 1 
1 i 

+ k 1 
2 i 

olding for all (k 1 
1 i 

, k 1 
2 i 

, k 1 
3 i 
) ∈ (R 

� + ) 3 . It follows after simplification

hat the following inequalities hold, for all (k 1 
1 i 

, k 1 
2 i 

, k 1 
3 i 
) ∈ (R 

� + ) 3 : 

(i) k 1 
3 i 

< k 1 
2 i 

ii) k 1 
3 i 

< k 1 
1 i 

hat is to say that: 

(i) χ−1 
i 

(K g i , { (g 1 , 0) , (g 2 , 0) , (g 3 , 1) } ) 1 (p) < χ−1 
i 

(K g i , { (g 1 , 0) , (g 2 , 1) , (g 3 , 0) } ) 1 (p) 

ii) χ−1 
i 

(K g i , { (g 1 , 0) , (g 2 , 0) , (g 3 , 1) } ) 1 (p) < χ−1 
i 

(K g i , { (g 1 , 1) , (g 2 , 0) , (g 3 , 0) } ) 1 (p) 

or all values of the parameter vector p , and thus all along

ny bifurcation sequence. These last inequalities forbid that

he value K g i , { (g 1 , 0) , (g 2 , 0) , (g 3 , 1) } increases before the value of

 g i , { (g 1 , 1) , (g 2 , 0) , (g 3 , 0) } and K g i , { (g 1 , 0) , (g 2 , 1) , (g 3 , 0) } along a sequence of

aluations belonging to P 

log 

bd g i 
. 

It can then be showed that there exists, from L 1 , sequences of

aluations respecting Property 2 but which violate this constraint,

or example sequences containing the following transition: 

 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 } → { 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 } . 
From this example, we see that additional constraints appear

rom the fact that the coordinates of the focal function are not in-

ependent. The following property gives a characterization of the

et P 

log 

bd g i 
, accounting for the dependencies between the coordi-

ates of the focal function, in the case where X g i is Boolean ( i.e.

ax (X g i ) = 1 ) and where the values of the logical parameters in-

rease along a sequence (the other case where the values of the

ogical parameters decrease can be treated similarly). 

roperty 3. Let (G, �, sign, T ) be a regulatory graph, and g i a compo-

ent of G. We assume that max (X g i ) = 1 (Boolean case). Let ( L j ) 0 ≤ j ≤ k

e an element of (V a g i 
) � , where, for all integers j between 0 and k: 

 j = { (K g i ,α1 
, l j 

1 
) , . . . , (K g i ,αq g i 

, l j q g i 
) } , 

uch that, the following conditions hold, for all integers j from 0 to

 − 1 : 

(i) for all r ∈ � 1 , q g i � , we have l 
j 
r ≤ l 

j+1 
r , and 

ii) K 

j,up 
g i 

⊆ M 

j , 

where the sets K 

j,up 
g i 

and M 

j are defined in Property 2 . 

We define the subset C j of the set (R 

� + ) | DF p |−n × (R 

+ ) n , where

 DF p | denotes the number of all the parameters except the thresholds,

s follows, for all integers j between 0 and k: 

(i) p ∈ C 0 , if and only if, for all (r, r ′ ) ∈ � 1 , q g i � 
2 such that l 0 r = 0 and

l 0 
r ′ = 1 , we have: 

χ−1 
i 

(K g i ,αr 
) 1 (p) < χ−1 

i 
(K g i ,αr ′ ) 1 (p) ;

ii) p ∈ C j , for all integers j between 1 and k, if and only if: 

(a) for all (r, r ′ ) ∈ � 1 , q g i � 
2 such that l 

j−1 
r < l 

j 
r and l 

j 

r ′ = 0 , we

have: 

χ−1 
i 

(K g i ,αr ′ ) 1 (p) < χ−1 
i 

(K g i ,αr 
) 1 (p) ;

(b) for all (r, r ′ ) ∈ � 1 , q g i � 
2 such that l 

j−1 
r < l 

j 
r and l 

j−1 

r ′ < l 
j 

r ′ , we

have: 

χ−1 
i 

(K g i ,αr 
) 1 (p) = χ−1 

i 
(K g i ,αr ′ ) 1 (p) ;

nd the set C as the intersection between the sets C j for all integers j

etween 0 and k: 

 = 

k ⋂ 

j=0 

C j . 
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Algorithm 1 Computation of a valid neighboring function. 

1: function getValidParentFunction (depGraph, func) 

2: changeLP Cand ← ∅ 
3: f uncLP s ← getLP s ( f unc) 

4: for all l p ∈ f uncLP s do 

5: if l p.state > = l p.max then 

6: continue 

7: end if 

8: l pNeighborList ← depGraph.get Parent s (l p) 

9: canChange ← true 

10: for all l pNeighbor ∈ l pNeighborList do 

11: if f unc.getV alueO f (l pNeighbor) == l p.state then 

12: canChange ← false 

13: break 

14: end if 

15: end for 

16: if canChange then 

17: changeLP Cand ← changeLP Cand ∪ l p 

18: end if 

19: end for 

20: randLP CombList ← random (getCombinations (changeLP Cand)) 

21: for all l pC omb ∈ randLP C ombList do 

22: if ! isV alid LP Set(d epGraph, l pComb) then 

23: continue 

24: end if 

25: if ! depGraph.satis f iesP rop3(l pComb, f uncLP s ) then 

26: continue 

27: end if 

28: parentF unc ← f unc.duplicate () 

29: for all l p ∈ l pComb do 

30: parentF unc.increaseLP (l p) 

31: end for 

32: return parentF unc � Returns a random valid function 

33: end for 

34: return ∅ � There’s no parent function 

35: end function 

(v  
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M  
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o  
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a

 

u  
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t  

m  
hen, 
(
L j 

)
0 ≤ j≤k 

∈ P 

log 

bd g i 
if and only if C � = ∅ . 

The proof of this property is detailed in Appendix D . In

roperty 3 , the characterization of the set P 

log 

bd g i 
relies on the ex-

stence of a solution of a system C of equalities and inequali-

ies involving the i th coordinates χ−1 
i 

(K g i ,αr ) of the focal function.

oughly speaking, this system gathers the constraints on these co-

rdinates appearing along a sequence ( L 0 , L 1 , . . . , L k ) which already

atisfies the necessary conditions stated in Property 2 , that is to

ay that: 

– the constraints C 0 at the initial valuation L 0 (condition (i)); 

– the constraints C j appearing at each transition (L j−1 , L j ) , for all

integers j from 1 to k (condition (ii)); 

mposing, at each step j of the sequence, an order between the
−1 
i 

(K g i ,αr ) which relative positions with the threshold are differ-

nt. Briefly speaking, proof of Property 3 relies on the fact that the

rder between the i th coordinates of the focal function which de-

end on a particular parameter does not change upon a variation

f this parameter ( Lemma 1 in Appendix D ). The case where the

alues of the logical parameters decrease along a sequence can be

reated similarly. 

Based on Properties 2 and 3 , we propose a procedure to in-

rementally construct a logical bifurcation diagram of maximum

ength associated to a component g i , starting from an initial val-

ation of the logical parameters, in the case where max (X g i ) = 1

Boolean case). The full procedure is detailed in Appendix E . A

eneric Java implementation for the multilevel case, accounting for

he necessary conditions stated in Property 2 , is made publicly

vailable (see section Availability). 

The core of the procedure is described in Algorithm 1 which

omputes a valid successor L k +1 ( parentFunc ), if it exists, of an

lement ( L 0 , L 1 , . . . , L k ) of P 

log 

bd g i 
, that is to say that a valua-

ion L k +1 such that 
(
L 0 , L 1 , · · · , L k , L k +1 

)
∈ P 

log 

bd g i 
. The main steps of

lgorithm 1 are described as follows: 

(i) the input depGraph of the algorithm represents the updated

partially ordered set (K g i , 	k 
K ) accounting for the accumu-

lated constraints on the logical parameters along the sequence

( L 0 , L 1 , . . . , L k ) , whereas the input func represents the valuation

L k of the logical parameters of component g i ; 

ii) in line 4, the algorithm iterates over each logical parameter

lp , discarding those whose value lp.state already reached their

maximum lp.max (lines 5 to 7); 

ii) in line 8, given a logical parameter lp , the set of its immedi-

ate parents lpNeighborList in the partially ordered set depGraph

is obtained. If none of the parents equals to the value of lp in

func (lines 10 to 15) ( i.e., lp belongs to the set of the maximal

elements M 

j ), then lp is added to the list changeLPCand of the

logical parameters whose value can increase (lines 16 to 18). Of

note the computation of the immediate parents/children of a

logical parameter is inspired by the computation of immediate

parents/children of a Boolean function in Cury et al. (2018) ; 

v) in line 20, the set of all the combinations of the list

changeLPCand is generated and shuffled (see Algorithm 3 in

Appendix E for more details on the function getCombinations ); 

v) in line 21, the algorithm iterates over the combinations of the

list changeLPCand . The first combination which satisfies the fol-

lowing two conditions is selected: 

– the logical parameters which are equal in the partially or-

dered set depGraph are picked together in the selected com-

bination lpComb (see Algorithm 3 in Appendix E for more

details on the function isValidLPSet ) (lines 22 to 24); 

– the selected combination satisfies Property 3 (lines 25 to

27); 
t  
i) finally, the value of each logical parameter of the selected com-

bination is increased to generate the successor parentFunc of

func (lines 29 to 32). 

. Application 

We consider our case study of the model of the core of the p53-

dm2 network proposed in Abou-Jaoudé et al. (2009) , described

n Section 2 , and focus on the analysis of the logical bifurcation

iagrams associated with the component M n , using our methodol-

gy described in the previous section. Table 1 in Section 3.2 lists

he logical parameters of M n , and their admissible valuations in

he class of logical models associated to the regulatory graph

 Fig. 1 (a)). For illustration, we selected three logical bifurcation di-

grams, with distinct sequences of attractors, corresponding to the

hree sequences of valuations of the logical parameters indicated in

ig. 4 (a). Correspondence between the classes of logical and PWLD

odels associated to the regulatory graph, and examples of PWLD

ifurcation diagrams corresponding to the logical bifurcation ones

re detailed in Appendix C . 

In each case, we start from an initial valuation where the val-

es of all the logical parameters are equal to 1, for which the

odel shows the unique stable state 001, and ends at the valua-

ion where all the logical parameters are equal to 0, for which the

odel shows the unique stable state 210. Starting from the valua-

ion L = { 1 , 1 , 1 , 1 } , the set of the parameters whose value equals
0 
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Fig. 4. (a) Figure representing the three logical bifurcation diagrams associated with M n considered for the bifurcation analysis in Section 5 , each represented with 

a different color. The diagram in green corresponds to the one shown in Fig. 1 (b). Ellipses represent the attractors of the model for the corresponding valuation of 

the logical parameters, where the values of the components are ordered as follows: p 53, M c , M n . The values of the logical parameters of M n are ordered as follows: 

{ K M n , { (p53 , 1) , (M c , 0) } , K M n , { (p53 , 1) , (M c , 1) } , K M n , { (p53 , 0) , (M c , 0) } , K M n , { (p53 , 0) , (M c , 1) } } . The values taken for the logical parameters associated to p 53 and M c are indicated in caption of Fig. 1 . 

(b) Hasse diagram of the partially ordered set (K M n , 	K ) . The subset of (K M n , 	K ) indicated in black corresponds to the partial order in the set of the logical parameters 

whose value is equal to 1 in the valuation L 1 = { 0 , 1 , 1 , 1 } . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

(

(i

 

 

 

 

 

 

 

 

 

i  

t  

L  

g  

i  

t  

b  

o  

e  

c  

F

6

 

c  

f

e  

i  

t  

t  

r  

t  

i  

w  

o  

o  

f  

t  

d  

h  

s  

w

 

w  

T  

c  

M  

p  
1 in L 0 is K M n 
, that is to say that: {

K M n , { (p53 , 1) , (M c , 0) } , K M n , { (p53 , 1) , (M c , 1) } , K M n , { (p53 , 0) , (M c , 0) } , 

K M n , { (p53 , 0) , (M c , 1) } 
}
. 

Therefore, the set of its minimal elements, ordered by 	K , is

{ K M n , { (p53 , 1) , (M c , 0) } } (see Fig. 2 (c)). Following the necessary condi-

tions stated in Property 2 , the only admissible successor of L 0 is

then: 

L 1 = { 0 , 1 , 1 , 1 } , 
for which the value of K M n , { (p53 , 1) , (M c , 0) } has been decreased, lead-

ing to the transition L 0 −→ L 1 , with no updating of the partial or-

der 	K . Focusing on L 1 , the set of the minimal elements of the set

of the parameters whose value equals 1 in L 1 , ordered by 	K , is: 

{ K M n , { (p53 , 1) , (M c , 1) } , K M n , { (p53 , 0) , (M c , 0) } } , 
(see Fig. 4 (b)). According to Property 2 , there are now 3 admissible

successors: 

(i) L 2 = { 0 , 0 , 1 , 1 } , (ii) L 3 = { 0 , 1 , 0 , 1 } and (iii) L 4 = { 0 , 0 , 0 , 1 } ,
corresponding to the following 3 possible subsets of the set of the

minimal elements: 

(i) { K M n , { (p53 , 1) , (M c , 1) } } , (ii) { K M n , { (p53 , 0) , (M c , 0) } } and 

(iii) { K M n , { (p53 , 1) , (M c , 1) } , K M n , { (p53 , 0) , (M c , 0) } } , 
respectively, leading to the corresponding transitions, with the fol-

lowing updating of the partial order 	K : 

(i) K M n , { (p53 , 1) , (M c , 1) } 	K K M n , { (p53 , 0) , (M c , 0) } , 
ii) K M n , { (p53 , 0) , (M c , 0) } 	K K M n , { (p53 , 1) , (M c , 1) } , 
ii) K M n , { (p53 , 1) , (M c , 1) } = K M n , { (p53 , 0) , (M c , 0) } , 

respectively. In L 2 (resp. L 3 ), the set of the minimal elements of

the set of the parameters whose value equals to 1, ordered by the

updated partial order, is K M n , { (p53 , 0) , (M c , 0) } (resp. K M n , { (p53 , 1) , (M c , 1) } ),
leading to the transition L 2 −→ L 4 (resp. L 3 −→ L 4 ), with no up-

dating of 	K . Finally, the only successor of L 4 is {0, 0, 0, 0}, as

there is only one parameter whose value equals to 1 in L 4 . It can

then be checked that each of these sequences of valuations re-

spects Property 3 , thereby proving that these sequences are logical

bifurcation diagrams. 
Focusing on the attractors shown in the bifurcation diagram

n green in Fig. 4 (a), the system is characterized by a cyclic at-

ractor, with high amplitude oscillations of p 53, for the valuation

 2 = { 0 , 0 , 1 , 1 } of the logical parameters. In contrast, in the dia-

ram displayed in red, the system shows instead a bistable behav-

or, with the coexistence of two stable states (001 and 210), for

he valuation L 3 = { 0 , 1 , 0 , 1 } . Finally, in the sequence displayed in

lue, the system jumps from a monostable behavior to another

ne, without showing any oscillatory or bistable behavior. As an

xample, the state transition graphs representing the dynamics

orresponding to the sequence showing bistability are described in

ig. 9 in Appendix C . 

. Conclusion 

We have proposed a formalization of the concept of logi-

al bifurcation diagrams, an analog of ODE bifurcation diagrams

or the logical modeling framework, introduced in Abou-Jaoudé

t al. (2009) . Moreover, necessary conditions on a sequence of log-

cal parameters valuations to be a logical bifurcation diagrams in

he general case, as well as a characterization of these diagrams in

he Boolean case, exploiting a partial order between the logical pa-

ameters, are provided. We have also designed a procedure to de-

ermine one logical bifurcation diagram of maximum length, start-

ng from an initial valuation of the logical parameters, in the case

here the component is Boolean. We have illustrated our method-

logy to the bifurcation analysis of a model of the core network

f the p53-Mdm2 network proposed in Abou-Jaoudé et al. (2009) ,

ocusing on the case where p53 first activates nuclear Mdm2. No-

ably, this analysis allowed to recover the two bifurcation diagrams

escribed in Abou-Jaoudé et al. (2009) , one showing a bistable be-

avior, the other displaying an oscillatory regime. Interestingly, our

tudy shows that an additional bifurcation diagram can occur, in

hich none of these behaviors appears. 

It is worth recalling that Property 3 only applies to the case

here the component of a logical bifurcation diagram is Boolean.

o cope with this limitation, we plan to generalize this property

haracterizing logical bifurcation diagrams to the multilevel case.

oreover, details on how to implement Property 3 in the designed

rocedure is still lacking. This property relies on the existence of
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constraints on the definition of the thresholds. 
 solution of a system of equalities and inequalities. One could

or example, adapt the Fourier–Motzkin algorithm to this specific

roblem in order to determine whether a solution of such system

xists ( Kroening and Strichman, 2008 ). Apart from the determina-

ion of one logical bifurcation diagram of maximum length, our

ethodology could be also used to explore logical bifurcation di-

grams of a given length around an initial valuation of the logical

arameters, thereby providing a rational way to assess the sensi-

ivity of an attractor to parameter changes. Another prospect of

his work would be to extend the proposed definition of logical

ifurcation diagrams to changes of more than one bifurcation pa-

ameter in the corresponding class of PWLD models, for example

y adapting the approach described in Cummins et al. (2018) to

ur methodology. Finally, it is known that the functionality of

ircuits plays a crucial role in the dynamics of regulatory net-

orks ( Comet et al., 2013 ). A future prospect would be to use our

ethodology to study the functionality of a circuit along logical

ifurcation diagrams. 

vailability 

The software used to compute a bifurcation diagram, given a

odel and a component, is freely available at https://github.com/

tgm/bifurcation under a GNU General Public License v3.0 (GPL- 

.0). This software is expected to be made available as part of the

et of software tools made available at http://github.com/colomoto

y the http://CoLoMoTo.org (Consortium for Logical Models and

ools) consortium, and integrated into the GINsim modeling and

imulation tool ( http://ginsim.org ). 
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ppendix A. Piecewise linear differential models 

1. Class of PWLD models associated with a regulatory graph 

Here, we associate a class of piecewise linear differential

PWLD) models to a regulatory graph. 

efinition 8. Let (G, �, sign, T ) be a regulatory graph, as intro-

uced in Definition 1 . We proceed as follows to define a class of

WLD models associated with (G, �, sign, T ) : 

(i) for all integers i from 1 to n , we associate to each component

g ∈ G: 
i 
– a non-negative real variable x i ∈ R 

+ . This variable denotes

the level of the component g i in the PWLD models; 

– a positive real degradation constant d i ∈ R 

� + ; 
– a non-negative real production constant a i ∈ R 

+ . 
We denote by x the vector of variables (x 1 , . . . , x n ) . 

ii) To each regulatory interaction ( g i , g j ) ∈ �, we associate a set of

step functions defined, for all integers l in t g i ,g j , as follows: { 

s (x i , θ
l 
i j ) = 0 , if x i < θ l 

i j , 

s (x i , θ
l 
i j ) = k l i j , if x i > θ l 

i j , 

if sign ((g i , g j )) = 1 or: { 

s (x i , θ
l 
i j ) = k l i j , if x i < θ l 

i j , 

s (x i , θ
l 
i j ) = 0 , if x i > θ l 

i j , 

if sign ((g i , g j )) = −1 , where, the k l 
i j 

and the θ l 
i j 

are positive real

constants, such that, for all ((g i , g j ) , (g i , g j ′ )) ∈ � × � and for all

(l , l ′ ) ∈ t g i ,g j × t g i ,g j ′ , the following constraints hold: 

– if l < l ′ , then θ l 
i j 

< θ l ′ 
i j ′ , 

– if l > l ′ , then θ l 
i j 

> θ l ′ 
i j ′ , 

– if l = l ′ , then θ l 
i j 

= θ l ′ 
i j ′ . 

k l 
i j 

and θ l 
i j 

will be called the kinetic rate and the threshold of

the associated step function, respectively. 

ii) The evolution of the class of PWLD models associated with

(G, �, sign, T ) is described by the following system of piecewise

linear differential equations: 

dx i 
dt 

= f i (x ) − d i · x i , (1) 

where: 

f i (x ) = a i + 

∑ 

g j ∈R g i 

∑ 

l∈ t g j ,g i 

s (x j , θ
l 
ji ) , 

for all integers i from 1 to n . 

e denote by DF p the set of all the parameters except the thresh-

lds, that is to say that: 

F p = { k l ji , a i , d i | ∀ i ∈ � 1 , n � , ∀ (g j , g i ) ∈ �, ∀ l ∈ t g j ,g i } . 
Note that the step functions are not defined at the thresholds

 i.e. for x i = θ l 
i j 

) (statement (ii) in Definition 8 ). Moreover, we opted

ere for summing the step functions in the differential system

escribing the evolution of the class of PWLD models (statement

iii) in Definition 8 ). Such a way to define a class of PWLD mod-

ls associated to a regulatory graph has also been considered in

ummins et al. (2018) . 

xample 6. To illustrate Definition 8 , let us consider our case

tudy described in Section 2 . Following this definition, the evolu-

ion of the class of PWLD models associated with the regulatory

raph of our case study ( Fig. 1 ) is described by the following piece-

ise linear differential equations: 

 

 

 

 

 

 

 

 

 

 

 

dx 1 
dt 

= a 1 + k 1 31 · s (x 3 , θ1 
31 ) − d 1 · x 1 

dx 2 
dt 

= a 2 + k 2 12 · s (x 1 , θ2 
12 ) − d 2 · x 2 

dx 3 
dt 

= a 3 + k 1 23 · s (x 2 , θ
1 
23 ) + k 1 13 · s (x 1 , θ

1 
13 ) − d 3 · x 3 

here x 1 , x 2 and x 3 denote the variables associated to the compo-

ents p 53, M c and M n , respectively, and θ1 
13 < θ2 

12 according to the

https://www.github.com/ptgm/bifurcation
http://www.github.com/colomoto
http://CoLoMoTo.org
http://ginsim.org
https://doi.org/10.13039/501100001871
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A2. Mapping of values and states 

We introduce the following mapping between the set non-

negative real numbers and a finite set of integers. 

Definition 9. Let p be an integer ≥ 1, and � = { θi } 1 ≤i ≤p be a set

of distinct positive real numbers, ranked by increasing order, i.e.

θ1 < θ2 < . . . < θp . We define the mapping of values α�
R 

from the

set R 

+ to the set � 0, p � as follows. 

α�
R 

: 

{
R 

+ → � 0 , p� 

x �→ min {{ p} ∪ { k ∈ � 0 , p − 1 � , x < θk +1 }} . 
In this mapping, we partition the set of non-negative real num-

bers into intervals (delimited by the set �), and then map each

interval to an integer: the interval [0, θ1 [ is mapped to 0, the inter-

val [ θk , θk +1 [ is mapped to k , for k from 1 to p − 1 , and the interval

[ θp , + ∞ [ to p . 

From the mapping defined above, we introduce the mapping

α�
s between the set of states (R 

+ ) n and a finite set of integer vec-

tors as follows. 

Definition 10. Let ( p i ) 1 ≤ i ≤ n be a vector of integers ≥ 1. Let � =
{ �i } 1 ≤i ≤n be a set of sets of distinct positive real numbers, ranked

by increasing order. We define the following mapping of states α�
s 

between the set (R 

+ ) n and the set 
∏ n 

i =1 � 0 , p i � as follows: 

α�
s : 

{
(R 

+ ) n → 

∏ n 
i =1 � 0 , p i � 

(x i ) 1 ≤i ≤n �→ (α�1 

R 
(x 1 ) , . . . , α

�n 

R 
(x n )) . 

In this mapping, we partition the state space (R 

+ ) n into a set

of domains delimited by �, and then map each domain to a vector

of integers by applying the mappings of values α
�i 
R 

coordinate by

coordinate. 

A3. Focal function and state transition graph 

We now introduce the focal function of a class of PWLD models

associated with a regulatory graph. 

Definition 11. Let (G, �, sign, T ) be a regulatory graph. Let us con-

sider the class of PWLD models associated with (G, �, sign, T ) . 

For all i ∈ � 1, n � , let �i = { θ l 
ji 
} g j ∈R g i 

,l∈ t g j ,g i be the set of thresh-

olds of the step functions associated to the incoming interactions

to g i . 

The focal function � of the class of PWLD models is a function

from the subset of states 
∏ n 

i =1 (R 

+ ��i ) to the set of vectors of

functions (
(R 

� + ) | DF p |−n × (R 

+ ) n → R 

+ )n 
, defined as follows: 

� : 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

∏ n 
i =1 (R 

+ ��i ) → 

(
(R 

� + ) | DF p |−n × (R 

+ ) n → R 

+ )n 

x �→ 

( 

p �→ 

a i + 

∑ 

g j ∈R g i 

∑ 

l∈ t g j ,g i s (x j , θ
l 
ji 
) 

d i 

) 

1 ≤i ≤n 

, 

where p = 

(
(k l 

i j 
) (g i ,g j ) ∈ �,l∈ t g i ,g j , (d i ) 1 ≤i ≤n , (a i ) 1 ≤i ≤n 

)
and | DF p | is

the number of elements of DF p . 

Note that, in Definition 11 , we discard the cases where the

value of a variable x i is at a threshold since the step func-

tions are not defined at their threshold. The image of x 0 by

the focal function, �( x 0 ), is a vector of functions defined from

the space of parameters (R 

� + ) | DF p |−n × (R 

+ ) n to the set R 

+ .
Actually, �( x 0 ) defines the point towards which the system

tends monotonically, starting from point x 0 , for each vector p 0 =(
( k l 

i j 

0 
) (g i ,g j ) ∈ �,l∈ t g i ,g j , (d 0 

i 
) 1 ≤i ≤n , (a 0 

i 
) 1 ≤i ≤n 

)
of parameter values. It is

obtained by solving the system of Eq. (1) at the stationary states
ith the initial conditions x 0 , i.e. by solving the following equa-

ions, for all integers i between 1 and n , considering the initial

ondition x 0 : 

dx i 
dt 

= 0 , 

hich, from Eq. (1) , straightforwardly leads to: 

i (x 0 )(p 0 ) = 

a 0 
i 

+ 

∑ 

g j ∈R g i 

∑ 

l∈ t g j ,g i s (x 0 j , θ
l 
ji 
) 

d 0 
i 

, 

or all integers i between 1 and n . 

Focusing on the i th coordinate of �, we see that �i ( x ) only de-

ends on the relative positions of the j th coordinates of x such that

 j ∈ R g i , with respect to the set of thresholds { θ l 
ji 
} l∈ t g j ,g i . More pre-

isely, we can explicit �i ( x ) for all x ∈ 

∏ n 
i =1 (R 

+ ) ��i as follows: 

�i (x ) = 

( 

p �→ 

a i + 

∑ 

(g j ,g i ) ∈ �+ 
∑ 

l∈ t g j ,g i ∩ � 1 ,l ji � k 
l 
ji 

d i 

+ 

∑ 

(g j ,g i ) ∈ �−
∑ 

l∈ t g j ,g i ∩ � l ji +1 ,max (t g j ,g i ) � 
k l 

ji 

d i 

) 

, 

(2)

here for all i ∈ � 1, n � and for all g j ∈ R g i , l ji is defined as follows: 

 ji = max { 0 ∪ { l ∈ t g j ,g i , θ
l 
ji < x j }} , 

hich can also be expressed as follows: 

 ji = max 
(
� 0 , α�i 

R 
(x j ) � ∩ { 0 ∪ t g j ,g i } 

)
. 

here �i = { θ l 
ji 
} g j ∈R g i 

,l∈ t g j ,g i and the mappings α
�i 
R 

have been in-

roduced in Definition 9 . 

Let us now consider the set of all the functions the i th coordi-

ate of the focal function can take, that is to say that the set of the

unctions �i ( x ) for all x ∈ 

∏ n 
i =1 (R 

+ ��i ) . 

Before, let us introduce, for all integers i between 1 and n , the

apping β i from the set 
∏ 

g j ∈R g i 
{ 0 ∪ t g j ,g i } to the set of subsets of

 n 
k =1 (R 

+ ��k ) , defined as follows: 

i : 

{∏ 

g j ∈R g i 
{ 0 ∪ t g j ,g i } → ℘ 

(∏ n 
k =1 (R 

+ ��k ) 
)

l �→ { x ∈ (R 

+ ) n , γ i (x ) = l} . 
here γ i is a mapping from the set 

∏ n 
k =1 (R 

+ ��k ) to the set
 

g j ∈R g i 
{ 0 ∪ t g j ,g i } , defined as follows: 

i : 

{ ∏ n 
k =1 (R 

+ ��k ) → 

∏ 

g j ∈R g i 
{ 0 ∪ t g j ,g i } 

(x i ) 1 ≤i ≤n �→ 

(
max 

(
� 0 , α�i 

R 
(x j ) � ∩ { 0 ∪ t g j ,g i } 

))
g j ∈R g i 

. 

In the mapping γ i , we partition the state space (R 

+ ) n in a set

f subspaces delimited by the set �i of thresholds and then map

ach of these subspaces (from which we discard the thresholds) to

n integer point of the set 
∏ 

g j ∈R g i 
{ 0 ∪ t g j ,g i } representing the rel-

tive positions of the j th coordinates of x for which g j ∈ R g i , with

espect to the thresholds { θ l 
ji 
} l∈ t g j ,g i . Inversely, the mapping β i as-

ociates to each integer vector of the set 
∏ 

g j ∈R g i 
{ 0 ∪ t g j ,g i } the cor-

esponding subspace as described above. 

We can now define the sets F i of the functions the i th coordi-

ate of the focal function � can take, for all integers i between 1

nd n , using the mappings defined above, as follows. 

efinition 12. Let (G, �, sign, T ) be a regulatory graph, and let us

onsider its associated class of PWLD models. Let g i be a compo-

ent of G. 

We define the set F i as follows: (x, y ) ∈ F i if and only if there

xists a vector of integers l = (l ji ) g j ∈R g i 
∈ 

∏ 

g j ∈R g i 
{ 0 ∪ t g j ,g i } such

hat: 
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(i) x = �i 

(
β i ( l ) 

)
and, 

ii) y = { (g j , l ji ) } g j ∈R g i 
. 

Following Definition 12 , each element of the set F i is a couple (
�i 

(
β i 

(
(l ji ) g j ∈R g i 

))
, { (g j , l ji ) } g j ∈R g i 

)
which: 

(i) first coordinate is the function �i takes in the subspace of

states β i 
(
(l ji ) g j ∈R g i 

)
; 

ii) second coordinate records the corresponding set of positioning

l ji of x j , for all the regulators g j of g i . 

The following property holds on the sets F i : 

roperty 4. Let i ∈ � 1, n � . Then, for all 
(
( f, F ) , ( f, F ′ ) 

)
∈ F 

2 
i 
, we

ave: 

 = F ′ ⇐⇒ f = f ′ . 

roof. Let i ∈ � 1, n � , and ( f, F ) and ( f, F ′ ) two elements of the set F i

here: 

– f = �i 

(
β i ( l ) 

)
, F = { (g j , l ji ) } g j ∈R g i 

, and 

– f ′ = �i 

(
β i 

(
l ′ 
))

, F ′ = { (g j , l 
′ 
ji 
) } g j ∈R g i 

. 

Assume that F � = F ′ . Then, l � = l ′ . Moreover, by definition of the

ocal function and of β i , we have: 

�i (β
i (l)) = 

( 

p → 

a i + 

∑ 

(g j ,g i ) ∈ �+ 
∑ 

r∈ t g j ,g i ∩ � 1 ,l ji � k 
r 
ji 

d i 

+ 

∑ 

(g j ,g i ) ∈ �−
∑ 

r∈ t g j ,g i ∩ � l ji +1 ,max (t g j ,g i ) � 
k r 

ji 

d i 

) 

, 

nd: 

�i (β
i (l ′ )) = 

( 

p → 

a i + 

∑ 

(g j ,g i ) ∈ �+ 
∑ 

r∈ t g j ,g i ∩ � 1 ,l ′ ji � k 
r 
ji 

d i 

+ 

∑ 

(g j ,g i ) ∈ �−
∑ 

r∈ t g j ,g i ∩ � l ′ ji +1 ,max (t g j ,g i ) � 
k r 

ji 

d i 

) 

. 

ince k r 
ji 

� = 0 for all r, j, i (statement (ii) in Definition 8 ) and (l , l ′ ) ∈
( 
∏ 

g j ∈R i 
{ 0 ∪ t g j ,g i } ) 2 , it follows that �i ( β

i ( l )) � = �i ( β
i ( l ′ )), that is to

ay that: 

f � = f ′ . 

Assume now that F = F ′ . Then, l = l ′ , and thus β i (l) = β i (l ′ ) ,
hat is to say that: 

f = f ′ , 

hich ends the proof. �

xample 7. For illustration, let us consider the class of PWLD

odels associated with the regulatory graph of our case study

 Fig. 1 ). Following Definition 12 , the sets F 1 , F 2 and F 3 (corre-

ponding to the components p 53, M c and M n , respectively) are: 

F 1 = { f 1 , f 2 } , 
F 2 = { f ′ 1 , f 

′ 
2 } , 

F 3 = { f ′′ 1 , f 
′′ 
2 , f 

′′ 
3 , f 

′′ 
4 } , 

here: 
 

 

 

 

 

f 1 = 

(
p �→ 

a 1 
d 1 

, { (M n , 1) } 
)
, 

f 2 = 

(
p �→ 

a 1 + k 1 31 

d 1 
, { (M n , 0) } 

)
, 
 

 

 

 

 

f ′ 1 = 

(
p �→ 

a 2 
d 2 

, { (p53 , 0) } 
)
, 

f ′ 2 = 

(
p �→ 

a 2 + k 2 12 

d 2 
, { (p53 , 1) } 

)
, 

nd: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ′′ 1 = 

(
p �→ 

a 3 
d 3 

, { (p53 , 1) , (M c , 0) } 
)
, 

f ′′ 2 = 

(
p �→ 

a 3 + k 1 23 

d 3 
, { (p53 , 1) , (M c , 1) } 

)
, 

f ′′ 3 = 

(
p �→ 

a 3 + k 1 13 

d 3 
, { (p53 , 0) , (M c , 0) } 

)
, 

f ′′ 4 = 

(
p �→ 

a 3 + k 1 13 + k 1 23 

d 3 
, { (p53 , 0) , (M c , 1) } 

)
. 

We next define the sets P i of the positionings of the i th coordi-

ates of the focal function, for all integers i between 1 and n . 

efinition 13. Let (G, �, sign, T ) be a regulatory graph, and let us

onsider its associated class of PWLD models. Let g i be a compo-

ent of G, �i the set of thresholds of the outgoing interactions

rom g i , ranked by increasing order, and F i = { ( f j , F j ) } 1 ≤ j≤q i 
, where

 i = |F i | . 
We define the set P i as follows: 

 (x j , y j ) } 1 ≤ j≤q i ∈ P i 

f and only if there exists a value p 0 ∈ (R 

� + ) | DF p |−n × (R 

+ ) n of the

arameter vector such that, for all j ∈ � 1, q i � , we have: 

i) x j = ( f j , F j ) and, 

ii) y j = α
�i 
R 

(
f j (p 0 ) 

)
. 

In Definition 13 , each element of P i is a couple

( f j , F j ) , α
�i 
R 

(
f j (p 0 ) 

))
which: 

i) first element ( f j , F j ) is a i th coordinate of the focal function; 

ii) second element α
�i 
R 

(
f j (p 0 ) 

)
is the relative position of this co-

ordinate with respect to the thresholds �i of the outgoing in-

teractions from g i , for the parameter value p 0 . 

xample 8. For illustration, let us consider the class of PWLD

odels associated to the regulatory graph our case study ( Fig. 1 ).

ollowing Definition 13 , the sets P 1 , P 2 and P 3 of positioning of

he coordinates of the focal function are: 

P 1 = {{ ( f 1 , 0) , ( f 2 , 0) } , { ( f 1 , 0) , ( f 2 , 1) } , { ( f 1 , 0) , ( f 2 , 2) } , 
{ ( f 1 , 1) , ( f 2 , 1) } , { ( f 1 , 1) , ( f 2 , 2) } , { ( f 1 , 2) , ( f 2 , 2) }} , 

P 2 = 

{{
( f ′ 1 , 0) , ( f ′ 2 , 0) } , { ( f ′ 1 , 0) , ( f ′ 2 , 1) } , { ( f ′ 1 , 1) , ( f ′ 2 , 1) 

}}
, 

P 3 = {{ ( f ′′ 1 , 0) , ( f ′′ 2 , 0) , ( f ′′ 3 , 0) , ( f ′′ 4 , 0) } , 
{ ( f ′′ 1 , 0) , ( f ′′ 2 , 0) , ( f ′′ 3 , 0) , ( f ′′ 4 , 1) } , 
{ ( f ′′ 1 , 0) , ( f ′′ 2 , 1) , ( f ′′ 3 , 0) , ( f ′′ 4 , 1) } , 
{ ( f ′′ 1 , 0) , ( f ′′ 2 , 0) , ( f ′′ 3 , 1) , ( f ′′ 4 , 1) } , 
{ ( f ′′ 1 , 0) , ( f ′′ 2 , 1) , ( f ′′ 3 , 1) , ( f ′′ 4 , 1) } , 
{ ( f ′′ 1 , 1) , ( f ′′ 2 , 1) , ( f ′′ 3 , 1) , ( f ′′ 4 , 1) }} . 

here f 1 , f 2 , f ′ 
1 
, f ′ 

2 
, f ′′ 

1 
, f ′′ 

2 
, f ′′ 

3 
, and f ′′ 

4 
are defined in Example 7 . 

From the positionings of the coordinates of the focal function

that is to say that, given an element of P i , for all integers i be-

ween 1 and n ), one can build a qualitative representation of the

ynamics of a PWLD model, called a state transition graph ( Glass

nd Pasternack, 1978; Gouzé and Sari, 2002 ). In this graph, the
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nodes represent the domains of the space state delimited by the

thresholds of the step functions while the directed edges denote

the possible transitions of the trajectories from a domain to the ad-

jacent ones. More formally, a state transition graph T G of a PWLD

model can be defined as follows. 

Definition 14. Let (G, �, sign, T ) be a regulatory graph and let us

consider the associated class of PWLD models. 

Let � = { �i } 1 ≤i ≤n , with �i = { θ l 
i j 
} (g i ,g j ) ∈ �,l∈ t g i ,g j , be a set of

threshold values and p 0 ∈ (R 

� + ) | DF p |−n × (R 

+ ) n a vector of param-

eter values, thus defining a PWLD model of the considered class. 

Let D be the set of subspaces of (R 

+ ) n delimited by �, from

which we discard the threshold values. 

The state transition graph T G associated with a PWLD model is

a couple (V, T ) , defined as follows: 

(i) V = D; 

ii) T is a set of subsets of D × D defined as follows. Let D and D 

′ 
be two domains of D, then: 

– if D and D 

′ are not adjacent, then (D, D 

′ ) �∈ T ; 
– if D and D 

′ are adjacent, let i 0 ∈ � 1, n � , j 0 ∈ � 1, n � and l 0 ∈
t g 

i 0 
,g 

j 0 
be three integers such that the hyperplane of equa-

tion: 

x i 0 = θ l 0 

i 0 j 0 , 

is the hyperplane separating D and D 

′ . 
Let m be the element of 

∏ 

g j ∈R g 
i 0 
{ 0 ∪ t g j ,g i 0 

} such that: 

D ⊆ β i 0 (m ) . 

Then: 

(i) if α�
s (D ) i 0 < α�

s (D 

′ ) i 0 , then (D, D 

′ ) ∈ T if and only if: 

α
�

i 0 

R 

(
�i 0 

(
β i 0 (m ) 

)
(p 0 ) 

)
≥ α

�
i 0 

R 
(θ l 0 

i 0 j 0 ) , 

(ii) if α�
s (D ) i 0 > α�

s (D 

′ ) i 0 , then (D, D 

′ ) ∈ T if and only if: 

α
�

i 0 

R 

(
�i 0 

(
β i 0 (m ) 

)
(p 0 ) 

)
≤ α

�
i 0 

R 
(θ l 0 

i 0 j 0 ) . 

In Definition 14 , on can check that a state transition graph does

not depend on the precise value of the parameters but on the posi-

tioning of the coordinates of the focal function, that is to say that,

an element of the set 
∏ n 

i =1 P i completely defines a state transition

graph. The reader can refer to Glass and Pasternack (1978) and

Gouzé and Sari (2002) for more details regarding state transition

graphs of PWLD models. 

Example 9. To illustrate Definition 14 , let us consider the class

of PWLD models associated with the regulatory graph of our case

study ( Fig. 1 ). We focus on the model of this class defined by the

following positionings P 1 ∈ P 1 , P 2 ∈ P 2 and P 3 ∈ P 3 of the coordi-

nates of the focal function: 

P 1 = { ( f 1 , 0) , ( f 2 , 2) } , 
P 2 = { ( f ′ 1 , 0) , ( f ′ 2 , 1) } , 
P 3 = { ( f ′′ 1 , 0) , ( f ′′ 2 , 0) , ( f ′′ 3 , 1) , ( f ′′ 4 , 1) } , 
where f 1 , f 2 , f ′ 1 , f ′ 2 , f ′′ 1 , f ′′ 2 , f ′′ 3 , and f ′′ 4 are defined in Example 7 . 

Let T G = (V, T ) be the state transition graph of this model.

Then, following Definition 14 , the set of vertexes V is: 

V = { D 

0 0 0 , D 

001 , D 

010 , D 

011 , D 

100 , D 

101 , D 

110 , 

D 

111 , D 

200 , D 

201 , D 

210 , D 

211 } 
here: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D 

0 0 0 = { x | 0 ≤ x 1 < θ1 
13 , 0 ≤ x 2 < θ1 

23 , 0 ≤ x 3 < θ1 
31 } 

D 

001 = { x | 0 ≤ x 1 < θ1 
13 , 0 ≤ x 2 < θ1 

23 , x 3 > θ1 
31 } , 

D 

010 = { x | 0 ≤ x 1 < θ1 
13 , x 2 > θ1 

23 , 0 ≤ x 3 < θ1 
31 } , 

D 

011 = { x | 0 ≤ x 1 < θ1 
13 , x 2 > θ1 

23 , x 3 > θ1 
31 } , 

D 

100 = { x | θ1 
13 < x 1 < θ2 

12 , 0 ≤ x 2 < θ1 
23 , 0 ≤ x 3 < θ1 

31 } , 
D 

101 = { x | θ1 
13 < x 1 < θ2 

12 , 0 ≤ x 2 < θ1 
23 , x 3 > θ1 

31 } , 
D 

110 = { x | θ1 
13 < x 1 < θ2 

12 , x 2 > θ1 
23 , 0 ≤ x 3 < θ1 

31 } , 
D 

111 = { x | θ1 
13 < x 1 < θ2 

12 , x 2 > θ1 
23 , x 3 > θ1 

31 } , 
D 

200 = { x | x 1 > θ2 
12 , 0 ≤ x 2 < θ1 

23 , 0 ≤ x 3 < θ1 
31 } , 

D 

201 = { x | x 1 > θ2 
12 , 0 ≤ x 2 < θ1 

23 , x 3 > θ1 
31 } , 

D 

210 = { x | x 1 > θ2 
12 , x 2 > θ1 

23 , 0 ≤ x 3 < θ1 
31 } , 

D 

211 = { x | x 1 > θ2 
12 , x 2 > θ1 

23 , x 3 > θ1 
31 } , 

nd the set of transitions T is: 

T = { (D 

0 0 0 , D 

100 ) , 

(D 

0 0 0 , D 

001 ) , (D 

100 , D 

200 ) , (D 

200 , D 

210 ) , (D 

010 , D 

110 ) , 

(D 

010 , D 

011 ) , (D 

010 , D 

0 0 0 ) , (D 

110 , D 

210 ) , (D 

101 , D 

001 ) , (D 

101 , D 

100 ) , 

(D 

201 , D 

211 ) , (D 

201 , D 

200 ) , (D 

201 , D 

101 ) , (D 

011 , D 

001 ) , (D 

111 , D 

011 ) , 

(D 

111 , D 

110 ) , (D 

111 , D 

101 ) , (D 

211 , D 

111 ) , (D 

211 , D 

210 ) } . 
ig. 6 (a) shows the state transition graph of the considered PWLD

odel. 

4. Partial order 

We now equip the sets F i of the i th coordinates of the focal

unction with the partial order 	F , for all integers i between 1

nd n , defined as follows. 

efinition 15. Let (G, �, sign, T ) be a regulatory graph and let us

onsider its associated class of PWLD models. Let g i be a compo-

ent of G. 

We define the partially ordered set (F i , 	F ) as follows: let ( f, F )

nd ( f ′ , F ′ ) be two elements of F i . 

Then, ( f, F ) 	F ( f ′ , F ′ ) if and only if, for all vectors of parame-

er values p 0 ∈ (R 

� + ) | DF p |−n × (R 

+ ) n , we have: 

f (p 0 ) ≤ f ′ (p 0 ) . 

This partial order can be defined from the signs of the incoming

nteractions of a component g i according to the following property.

roperty 5. Let g i be a component of G, and ( f, F ) and ( f ′ , F ′ ) two

lements of F i where: 

 = { (g j , l ji ) } g j ∈R g i 
, 

nd: 

 

′ = { (g j , l 
′ 
ji ) } g j ∈R g i 

. 

hen, ( f, F ) 	F ( f ′ , F ′ ) if and only if the following conditions hold: 

(i) for all j ∈ � 1 , |R g i | � such that (g j , g i ) ∈ �+ , we have: l ji ≤ l ′ 
ji 
, and;

ii) for all j ∈ � 1 , |R g i | � such that (g j , g i ) ∈ �−, we have: l ji ≥ l ′ 
ji 

. 

roof. Let i ∈ � 1, n � , and let ( f, F ) and ( f ′ , F ′ ) be two elements of F i

here: 

 = { (g j , l ji ) } g j ∈R g i 
, 

nd: 

 

′ = { (g j , l 
′ 
ji ) } g j ∈R g i 

. 

et us first prove the necessary condition of the property. Assume

hat ( f, F ) 	F ( f ′ , F ′ ) . Then, by Definition 15 , we have, for all vec-

ors of parameter values p 0 ∈ (R 

� + ) | DF p |−n × (R 

+ ) n : 

f (p 0 ) ≤ f ′ (p 0 ) . (3)
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Fig. 5. Hasse diagrams of the partially ordered set (F 3 , 	F ) (a), and (K M n , 	K ) (b), 

in the case of Example 1 . The Hasse diagrams of (K M n , 	K ) and (F 3 , 	F ) are linked 

by the mapping χ3 ( Property 7 ). For sake of clarity, we omitted the levels of the 

regulators associated to the coordinates of the focal function in the writing of the 

elements of F 3 . 
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t follows, from the expression of f and f ′ as a function of the pa-

ameters (see Eq. (2) in Section A.3 ), that the following condition

olds, for all p 0 ∈ (R 

� + ) | DF p |−n × (R 

+ ) n : 

d i 
(

f (p 0 ) − f ′ (p 0 ) 
)

= 

⎛ 

⎝ a i + 

∑ 

(g j ,g i ) ∈ �+ 

∑ 

l∈ t g j ,g i ∩ � 1 ,l ji � 
k l ji + 

∑ 

(g j ,g i ) ∈ �−

∑ 

l∈ t g j ,g i ∩ � l ji +1 ,max (t g j ,g i ) � 

k l ji 

⎞ 

⎠ 

−

⎛ 

⎝ a i + 

∑ 

(g j ,g i ) ∈ �+ 

∑ 

l ∈ t g j ,g i ∩ � 1 ,l ′ ji � 
k l ji + 

∑ 

(g j ,g i ) ∈ �−

∑ 

l ∈ t g j ,g i ∩ � l ′ ji +1 ,max (t g j ,g i ) � 

k l ji 

⎞ 

⎠ 

= 

∑ 

(g j ,g i ) ∈ �+ 

⎛ 

⎝ 

∑ 

l∈ t g j ,g i ∩ � 1 ,l ji � 
k l ji −

∑ 

l ∈ t g j ,g i ∩ � 1 ,l ′ ji � 
k l ji 

⎞ 

⎠ 

+ 

∑ 

(g j ,g i ) ∈ �−

⎛ 

⎝ 

∑ 

l∈ t g j ,g i ∩ � l ji +1 ,max (t g j ,g i ) � 

k l ji −
∑ 

l ∈ t g j ,g i ∩ � l ′ ji +1 ,max (t g j ,g i ) � 

k l ji 

⎞ 

⎠ 

≤ 0 . 

(4) 

Now let j 0 ∈ � 1 , |R g i | � . By tending k l 
ji 

to 0 for all j � = j 0 , we get: 

(i) ∑ 

l∈ t g 
j 0 

,g i 
∩ � 1 ,l 

j 0 i 
� 

k l j 0 i −
∑ 

l ∈ t g 
j 0 

,g i 
∩ � 1 ,l ′ 

j 0 i 
� 

k l j 0 i ≤ 0 , 

if (g j 0 , g i ) ∈ �+ , and: 

ii) ∑ 

l∈ t g 
j 0 

,g i 
∩ � l 

j 0 i 
+1 ,max (t g 

j 0 
,g i 

) � 

k l j 0 i −
∑ 

l ∈ t g 
j 0 

,g i 
∩ � l ′ 

j 0 i 
+1 ,max (t g 

j 0 
,g i 

) � 

k l j 0 i ≤ 0 , 

if (g j 0 , g i ) ∈ �−. 

It thus follows, from the previous inequalities, that: 

(i) l j 0 i ≤ l ′ 
j 0 i 

, if (g j 0 , g i ) ∈ �+ , 
ii) l j 0 i ≥ l ′ 

j 0 i 
, if (g j 0 , g i ) ∈ �−, 

hich ends the proof of the necessary condition. 

Let us now prove the sufficient condition of the property. As-

ume that: 

(i) for all j ∈ � 1 , |R g i | � such that (g j , g i ) ∈ �+ , we have: l ji ≤ l ′ 
ji 
,

and; 

ii) for all j ∈ � 1 , |R g i | � such that (g j , g i ) ∈ �−, we have: l ′ 
ji 

≤ l ji . 

Then, it follows that the inequality in Eq. (4) is satisfied, for all

p 0 ∈ (R 

� + ) | DF p |−n × (R 

+ ) n , which implies that: 

f (p 0 ) ≤ f ′ (p 0 ) , (5)

or all p 0 ∈ (R 

� + ) | DF p |−n × (R 

+ ) n , that is to say that: 

( f, F ) 	F ( f ′ , F ′ ) , 
hich ends the proof of the sufficient condition of the property,

nd thus also the proof of the property. �

The partial order 	F imposes constraints on the relative posi-

ions between the coordinates of the focal function. The following

roperty gives necessary conditions on the sets P i of the position-

ngs of the coordinates of the focal function, imposed by the partial

rder 	F . 

roperty 6. Let i ∈ � 1, n � , and F i = { ( f i , F i ) } 1 ≤i ≤q i 
, with q i = |F i | . Let

 be an element of the set 
∏ q i 

i =1 
( ( f i , F i ) × N ) where: 

 = { ( ( f 1 , F 1 ) , l 1 ) , . . . , (( f q i , F q i ) , l q i ) } . 
Assume that P ∈ P i . Then the following condition holds, for all ( k,

 

′ ) ∈ � 0, q i � 
2 : 

( f k , F k ) 	F ( f k ′ , F k ′ ) �⇒ l k ≤ l k ′ . 

roof. We take the same notations as in the statement of

roperty 6 . 

Let i ∈ � 1, n � , �i the set of the thresholds of the step functions

or the outgoing interactions of g i , and P an element of the set
 q i 
i =1 

( ( f i , F i ) × N ) where: 

 = { (( f 1 , F 1 ) , l 1 ) , . . . , (( f q i , F q i ) , l q i ) } . 
ssume that P is an element of P i , and let k and k ′ be two integers

f � 0, q i � . 

Now assume that ( f k , F k ) 	F ( f k ′ , F k ′ ) . Then, according to

efinition 15 , the following condition holds, for all vectors of pa-

ameter values p 0 ∈ (R 

� + ) | DF p |−n × (R 

+ ) n : 

f k (p 0 ) ≤ f k ′ (p 0 ) . 

t follows, by definition of the mapping α
�i 
R 

, that, for all p 0 ∈
(R 

� + ) | DF p |−n × (R 

+ ) n , we have: 

�i 

R 

(
f k (p 0 ) 

)
≤ α�i 

R 

(
f k ′ (p 0 ) 

)
, 

hat is to say that: 

 k ≤ l k ′ , 

y definition of the set P i ( Definition 13 ), which ends the proof. �

xample 10. To illustrate the partial order 	F introduced above,

et us consider the class of PWLD models associated to the reg-

latory graph of our case study ( Fig. 1 ). Fig. 5 (a) shows the Hasse

iagram representing the partially ordered set (F 3 , 	F ) , associated

o component M n , following Definition 15 . 

ppendix B. From PWLD models to logical models 

1. Mapping between PWLD and logical models 

Let (G, �, sign, T ) be a regulatory graph. Let us consider its as-

ociated classes of logical models and PWLD models (as defined in

ection 3.2 and Appendix A.1 ). We define the mapping χ i between

he set F i of the i th coordinates of the focal function and the set

 g i of the logical parameters of component g i , for all integers i be-

ween 1 and n , as follows. 

efinition 16. Let i ∈ � 1, n � . We define the mapping χ i between

he set F i and the set K g i as follows: 

i : 

{
F i → K g i 

( f, F ) �→ K g i ,F 

Let us check that χ i is well defined, that is to say that: 

i (F i ) ⊆ K g i . 
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Let K ∈ χi (F i ) . Then, there exists ( f, F ) ∈ F i such that K = K g i ,F 
.

By definition of F i , there exists (l ji ) g j ∈R g i 
∈ 

∏ 

g j ∈R g i 
{ 0 ∪ t g j ,g i } , such

that F = { (g j , l ji ) } g j ∈R g i 
. It follows, from Definition 2 , that F ∈ �,

which implies that K = K g i ,F 
∈ K g i . 

The following property holds: 

Property 7. Let i ∈ � 1, n � . Then, 

(i) χ i defines a bijection between the sets F i and K g i , 

ii) let (K g i , 	) be the partially ordered set defined as follows: for all

(K, K 

′ ) ∈ K g i × K g i , K 	K 

′ if and only if: 

χ−1 
i 

(K) 	F χ
−1 
i 

(K 

′ ) . 

Then we have: 

(K g i , 	) = (K g i , 	K ) . 

Proof. We take the same notations as in the statement of

Property 7 . 

Let i ∈ � 1, n � . Let us prove statement (i), by first showing that χ i

is injective. Let ( f, F ) and ( f ′ , F ′ ) be two elements of F i , such that: 

χi ( f, F ) = χi ( f ′ , F ′ ) . 

Then, K g i ,F 
= K g i ,F 

′ , and thus F = F ′ . It follows, from Property 4 ,

that f = f ′ . Therefore, χ i is injective. 

Moreover we have |F i | = | ∏ 

g j ∈R g i 
{ 0 ∪ t g j ,g i }| = |K g i | . Thus, χ i is

bijective. 

Let us now prove statement (ii). Let K g i ,F 
and K g i ,F 

′ be two el-

ements of K g i , and ( f, F ) and ( f ′ , F ′ ) the antecedents of K g i ,F 
and

K g i ,F 
′ , respectively, by χ i . By definition of the partial order 	, the

following inequality: 

K g i ,F 	 K g i ,F ′ 

is equivalent to the following one: 

( f, F ) 	F ( f ′ , F ′ ) , 

which, from Property 5 and Definition 3 , is equivalent to the fol-

lowing inequality: 

K g i ,F 	K K g i ,F ′ , 

which ends the proof. �

Property 7 (ii) states that the partial order 	 in the set K g i , in-

duced by the mapping χ i from the partial order 	F in the set F i ,

is the partial order 	K in the set K g i introduced in Definition 3 . 

We next define the mapping 	 i between the set P i of the po-

sitionings of the i th coordinates of the focal function, and the set

V a g i 
of the admissible valuations of the logical parameters of com-

ponent g i , for all integers i between 1 and n , as follows. 

Definition 17. Let i ∈ � 1, n � . We define the mapping 	 i between

the set P i and the set V a g i 
as follows: 

	i : 

{
P i → V a g i { (( f j , F j ) , l j 

)} 1 ≤ j≤q i �→ { (χi (( f j , F j )) , l j 
)} 1 ≤ j≤q i 

where q i = |F i | . 
In Definition 17 , the mappings 	 i associate each model of the

class of PWLD models ( i.e. each element of the set P i ) to a specific

model of the class of logical models ( i.e. an element of the set V a g i 
).

It is the logical model which value of the logical parameter K g i ,F j 
is

the positioning l j of the corresponding i th coordinate ( f j , F j ) of the

focal function, for all integers i ∈ � 1, n � and j ∈ � 1, q i � . Note that 	 i

does not define a bijection. 

Let us check that 	 i is well defined, that is to say that: 

	i (P i ) ⊆ V a g i 
. 
et L ∈ 	i (P i ) . Then, by definition of χ i , there exists

 

(
( f j , F j ) , l j 

)} 1 ≤ j≤q i 
∈ P i such that: 

L = { (χi 

(
( f j , F j ) 

)
, l j 

)} 1 ≤ j≤q i 

= { (K g i ,F j , l j 
)} 1 ≤ j≤q i . 

ow let (K g i ,F j 
, K g i ,F k 

) ∈ K g i × K g i , and assume that K g i ,F j 
	K K g i ,F k 

.

rom Property 7 (ii), it follows that: ( f j , F j ) 	F ( f k , F k ) . From

roperty 6 , we then have: l j ≤ l k . 

We have thus shown that for all (K g i ,F j 
, K g i ,F k 

) ∈ K g i × K g i , if

 g i ,F j 
	K K g i ,F k 

, then l j ≤ l k , that is to say that: 

 ∈ V a g i 
, 

y definition of V a g i 
( Definition 4 ). 

xample 11. To illustrate the mappings χ i introduced in

efinition 16 , let us consider our case study ( Fig. 1 ). Follow-

ng Definition 16 , the mappings χ1 , χ2 and χ3 between the

ets F 1 and K p53 , F 2 and K M c 
, and F 3 and K M n 

respectively, are

efined as follows: 

χ1 ( f 1 ) = K p53 , { (M n , 1) } , 
χ1 ( f 2 ) = K p53 , { (M n , 0) } , 

χ2 

(
f ′ 1 

)
= K M c , { (p53 , 0) } , 

χ2 

(
f ′ 2 

)
= K M c , { (p53 , 1) } , 

nd: 
 

 

 

 

 

 

 

χ3 

(
f ′′ 1 

)
= K M n , { (p53 , 1) , (M c , 0) } , 

χ3 

(
f ′′ 2 

)
= K M n , { (p53 , 1) , (M c , 1) } , 

χ3 

(
f ′′ 3 

)
= K M n , { (p53 , 0) , (M c , 0) } , 

χ3 

(
f ′′ 4 

)
= K M n , { (p53 , 0) , (M c , 1) } , 

here f 1 , f 2 , f ′ 
1 
, f ′ 

2 
, f ′′ 

1 
, f ′′ 

2 
, f ′′ 

3 
, and f ′′ 

4 
are defined in Example 7 . 

Fig. 5 (b) shows the Hasse diagram of the partially ordered set

(K M n 
, 	K ) , induced by the mapping χ3 . 

xample 12. To illustrate the mappings 	 i introduced in

efinition 17 , let us consider our case study ( Fig. 1 ). Let us focus,

s an example, on the component M c . Following Definition 17 , the

apping 	2 between the sets P 2 and V a 
M c 

, is defined as follows: 

 

	2 ({ ( f ′ 1 , 0) , ( f ′ 2 , 0) } ) = { (K M c , { (p53 , 0) } , 0) , (K M c , { (p53 , 1) } , 0) } , 
	2 ({ ( f ′ 1 , 0) , ( f ′ 2 , 1) } ) = { (K M c , { (p53 , 0) } , 0) , (K M c , { (p53 , 1) } , 1) } , 
	2 ({ ( f ′ 1 , 1) , ( f ′ 2 , 1) } ) = { (K M c , { (p53 , 0) } , 1) , (K M c , { (p53 , 1) } , 1) } , 
here f ′ 1 and f ′ 2 are defined in Example 7 . 

2. Dynamical analysis 

Let (G, �, sign, T ) be a regulatory graph, and let us consider its

ssociated classes of logical models and PWLD models (as defined

n Sections 3.2 and Appendix A.1 ). We focus in this section on the

ink between the dynamics of a PWLD model of this class and

ts corresponding logical model via the mappings 	 i defined in

ppendix B.1 . 

The following theorem states a link between the state transition

raphs of these two models. 

heorem 1. Let ( P i ) 1 ≤ i ≤ n be an element of 
∏ n 

i =1 P i in the considered

lass of PWLD models, and T G = (D, T ) be the corresponding state

ransition graph. 

Let us consider the model in the considered class of logical models

hich valuation of the logical parameters is 	 i ( P i ), for all integers i

etween 1 and n, and let (V ′ , T ′ ) be its asynchronous state transition

raph. 

We define the graph (V ′′ , T ′′ ) as follows: 

(i) V ′′ = V ′ , 
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Table 3 

Correspondence table between the logical parameters and the coordinates 

of the focal function for the case study ( Fig. 1 ). Logical parameters and 

coordinates of the focal function are formally linked by the mappings χ i 

( Definition 16 in Appendix B.1 ). For sake of clarity, we omitted to mention 

the combinations of levels of the regulators in the coordinates of the focal 

function. 

Components Logical parameters Coordinates of the focal function 

(sets K g i ) (sets F i ) 

p 53 K p53 , { (M n , 0) } 
a 1 + k 1 31 

d 1 

K p53 , { (M n , 1) } 
a 1 
d 1 

M c K M c , { (p53 , 0) } 
a 2 
d 2 

K M c , { (p53 , 1) } 
a 2 + k 2 12 

d 2 

M n K M n , { (p53 , 0) , (M c , 0) } 
a 3 + k 1 13 

d 3 

K M n , { (p53 , 1) , (M c , 0) } 
a 3 
d 3 

K M n , { (p53 , 0) , (M c , 1) } 
a 3 + k 1 13 + k 1 23 

d 3 

K M n , { (p53 , 1) , (M c , 1) } 
a 3 + k 1 23 

d 3 
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a  
ii) T ′′ is a set of subset of V ′ × V ′ defined as follows: let s = (s i ) 1 ≤i ≤n 

and s ′ = (s ′ 
i 
) 1 ≤i ≤n be two elements of V ′ . Then (s, s ′ ) ∈ T ′′ if and

only if: ( 

n ∏ 

i =1 

(α�i 

R 
) −1 (s i ) ��i , 

n ∏ 

i =1 

(α�i 

R 
) −1 (s ′ i ) ��i 

) 

∈ T . 

where �i is the set of the thresholds of the step functions of the

outgoing transitions from g i , for all i ∈ � 1, n � . 

Then, we have: 

 

′′ = T ′ . 

roof. We take the same notations as in the statement of

heorem 1 . 

Let (G, �, sign, T ) be a regulatory graph, and let us consider its

ssociated classes of logical models and PWLD models. 

Let (P i ) 1 ≤i ≤n ∈ 

∏ n 
i =1 P i in the considered class of PWLD models,

nd T G = (D, T ) the corresponding state transition graph. 

Let us consider the logical model which valuation L i of the log-

cal parameters associated to g i is: 

 i = 	i (P i ) , 

or all i ∈ � 1, n � , and let (V ′ , T ′ ) be its asynchronous state transition

raph. 

Let us now prove the following inclusion: 

 

′′ ⊆ T ′ . (6) 

et s = (s i ) 1 ≤i ≤n and s ′ = (s ′ 
i 
) 1 ≤i ≤n be two elements of V ′ . Assume

hat (s, s ′ ) ∈ T ′′ . It follows that: 

D, D 

′ ) ∈ T . 

here D and D 

′ are defined as follows: 

 = 

n ∏ 

i =1 

(α�i 

R 
) −1 (s i ) ��i and D 

′ = 

n ∏ 

i =1 

(α�i 

R 
) −1 (s ′ i ) ��i . 

y definition of T ( Definition 14 ), D and D 

′ are adjacent domains,

hich implies, by definition of D and D 

′ , that there exists i 0 ∈ � 1,

 � such that the following two conditions hold: 

(i) either 

s i 0 = s ′ i 0 + 1 , (7)

or 

s i 0 = s ′ i 0 − 1 , (8)

ii) 

s i = s ′ i (9) 

for all i � = i 0 . 

Let i 0 be such an integer. Then there exists j 0 ∈ � 1, n � and l 0 ∈
 g 

i 0 
,g 

j 0 
such that D and D 

′ are separated by the hyperplane of equa-

ion: 

 i 0 = θ l 0 

i 0 j 0 . 

et m = (m j ) g j ∈R g 
i 0 

be the element of 
∏ 

g j ∈R 

i 0 
{ 0 ∪ t g j ,g i 0 

} such

hat: 

 ⊆ β i 0 (m ) . 

t follows, by definition of D, D 

′ and β i 0 , that, for all g j ∈ R g 
i 0 

, we

ave: 

 j = m j . (10) 

oreover, by definition of T , D and D 

′ , the following conditions

old: 
i) if s i 0 < s ′ 
i 0 

, then: 

l k ≥ α�i 

R 
(θ l 0 

i 0 j 0 
) , (11) 

ii) if s i 0 > s ′ 
i 0 

, then: 

l k ≤ α�i 

R 
(θ l 0 

i 0 j 0 ) , (12) 

here l k is the integer such that (( f k , F k ), l k ) is the element of P i 0 
atisfying: 

 k = { (g j , m j ) } g j ∈R g i 
. 

ince L i 0 = 	i (P i 0 ) , l k is also the value of the logical parameter

 g 
i 0 

,F k 
. It thus follows, from Eqs. (7) –(12) , that: 

(s, s ′ ) ∈ T ′ , 

hereby proving the inclusion of Eq. (6) . 

The proof of the opposite inclusion, that is to say that T ′ ⊆ T ′′ ,
s deduced by proceeding by equivalence, which ends the proof of

heorem 1 . �

xample 13. To illustrate Theorem 1 , let us consider the classes of

WLD models and logical models associated with the regulatory

raph of our case study ( Fig. 1 ). 

Let us focus on the PWLD model which positionings P 1 ∈ P 1 ,

 2 ∈ P 2 and P 3 ∈ P 3 of the coordinates of the focal function are

hose given in Example 9 . 

Fig. 6 (a) shows the corresponding state transition graph. Then,

he state transition graph defined in Theorem 1 (shown in

ig. 6 (b)) is the asynchronous state transition graph of the logi-

al model which valuations L 1 , L 2 and L 3 of the logical parameters

re: 

 1 = 	1 (P 1 ) , L 2 = 	2 (P 2 ) and L 3 = 	3 (P 3 ) . 

ppendix C. Correspondence between logical models and 

WLD models for the case study 

We consider the model of the core of the p53-Mdm2 network,

roposed by Abou-Jaoudé et al. (2009) , described in Section 2 . The

volution of the class of PWLD models associated to its regulatory

raph (shown in Fig. 1 ) is described by the system of differential

quations given in Example 6 . Table 3 gives the correspondence

etween the sets F i of the coordinates of the focal function and

he sets K g i of the logical parameters of the class of logical models

ssociated to the regulatory graph, via the mappings χ described
i 
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Fig. 6. (a) State transition graph of the PWLD models of the case study ( Fig. 1 ) corresponding to the positionings P 1 , P 2 and P 3 of the coordinates of the focal function of 

Example 9 . x 1 , x 2 and x 3 denote the variables associated to the components p 53, M c and M n , respectively. (b) Asynchronous state transition graph of the logical model of 

our case study which valuations of the logical parameters are 	1 ( P 1 ), 	2 ( P 2 ) and 	3 ( P 3 ). The values of the components in each state are ordered as follows: p 53, M c , M n . 

Ellipses represent the steady states of the model. 

Fig. 7. Hasse diagrams of the partially ordered sets (K p53 , 	K ) (a), (F 1 , 	F ) (b), (K M c , 	K ) (c), (F 2 , 	F ) (d), (K M n , 	K ) (e), (F 3 , 	F ) (f), for the case study ( Fig. 1 ). For sake 

of clarity, we omitted to mention the corresponding combination of levels of the regulators in the writing of the elements of the sets F i . 
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in the previous section. Fig. 7 shows the Hasse diagrams of the par-

tial order 	F in the sets F i with the corresponding Hasse diagrams

of the partial order 	K in the sets K g i . 

We now focus on the three logical bifurcation diagrams asso-

ciated to component M n considered in Fig. 4 . Fig. 8 describes cor-

responding bifurcation diagrams in the associated class of PWLD

models upon an increase of the parameter d 3 , chosen as the bifur-

cation parameter. In each case, we choose: 

(i) as initial value of d 3 a value such that all the 3 rd coordinates

of the focal function are above the threshold θ1 
31 , which corre-

sponds to the valuation {1, 1, 1, 1} of the logical parameters of

M n ; and 

ii) as final value of d 3 a value such that all the 3 rd coordinates

of the focal function are below the threshold θ1 
31 

, which corre-

sponds to the valuation {0, 0, 0, 0} of the logical parameters of

M n . 

The constraints on the values of the PWLD parameters corre-

sponding to the logical bifurcation diagram: 
(i) in red is k 1 
13 

< k 1 
23 

. This constraint comes from the transition:

{ 0 , 1 , 1 , 1 } −→ { 0 , 1 , 0 , 1 } for which the coordinate 
a 3 + k 1 13 

d 3 
of the

focal function crosses the threshold before 
a 3 + k 1 23 

d 3 
; 

ii) in blue is k 1 13 = k 1 23 . This constraint comes from the transition:

{ 0 , 1 , 1 , 1 } −→ { 0 , 0 , 0 , 1 } for which the coordinates 
a 3 + k 1 13 

d 3 
and

a 3 + k 1 23 
d 3 

of the focal function cross the threshold at the same

time; 

ii) in green is k 1 
13 

> k 1 
23 

. This constraint comes from the transition:

{ 0 , 1 , 1 , 1 } −→ { 0 , 0 , 1 , 1 } for which the coordinate 
a 3 + k 1 23 

d 3 
of the

focal function crosses the threshold before 
a 3 + k 1 13 

d 3 
. 

ppendix D. Proofs 

roperty 1. Let (G, �, sign, T ) be a regulatory graph, and g i a compo-

ent of G. Let ( L j ) 0 ≤ j ≤ k be an element of P 

log 

bd g i 
where, for all integers

 between 0 and k: 

 j = { (K g i ,α1 
, l j 

1 
) , . . . , (K g i ,αq g 

, l j q g ) } . 
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Fig. 8. Logical bifurcation diagrams considered in Fig. 4 for the case study, and corresponding PWLD bifurcation diagrams as a function of the parameter d 3 . The PWLD 

bifurcation diagrams show the successive positionings of the 3 rd coordinates of the focal function, relative to the threshold, upon the increase of d 3 . Ellipses represent the 

attractors of the logical model for the corresponding valuation of the logical parameters. The components in the states are ordered as follows: p 53, M c , M n . The logical 

parameters of M n in its valuations are ordered as follows: { K M n , { (p53 , 1) , (M c , 0) } , K M n , { (p53 , 1) , (M c , 1) } , K M n , { (p53 , 0) , (M c , 0) } , K M n , { (p53 , 0) , (M c , 1) } } . 

T

(

P  

P

L  

T

(

(

(i

(i

s

f  

γ  

(

h i ( [0 , t 0 [ ) = l m 

, (14) 
hen, the following condition holds: 

(i) either, for all r ∈ � 1 , q g i � and for all j ∈ � 0 , k − 1 � : 

l j+1 
r − l j r = 0 or l j+1 

r − l j r = 1 , 

ii) or, for all r ∈ � 1 , q g i � and for all j ∈ � 0 , k − 1 � : 

l j+1 
r − l j r = 0 or l j+1 

r − l j r = −1 . 

roof. Let g i be a component of G and ( L j ) 0 ≤ j ≤ k be an element of

 

log 

bd g i 
where, for all integers j between 0 and k : 

 j = { (K g i ,α1 
, l j 

1 
) , . . . , (K g i ,αq g 

, l j q g ) } . (13)

i i 
hen, according to Definitions 6 and 7 , there exists: 

i) a parameter p l ; 

ii) a set �0 
i 

of threshold values of the outgoing interactions of g i ; 

ii) a set p \ p 0 
l 

of values of all the parameters except p l ; 

v) two values p in 
l 

and p 
f in 

l 
of the parameter p l ; 

uch that, there exists a continuous and monotonous function γ

rom the set [0, 1] to the set 

[ 
p in 

l 
, p 

f in 

l 

] 
satisfying γ (0) = p in 

l 
and

(1) = p 
f in 

l 
, and a subdivision t 0 < t 1 < . . . < t k of [0, 1] such that:

i) 

m 0 
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Fig. 9. Sequence of valuations of the logical parameters of M n corresponding to the 

logical bifurcation diagram in red in Fig. 4 for our case study, with the correspond- 

ing state transition graphs. Gray dashed arrows represent the transitions differing 

with respect to the preceding graph along the logical bifurcation diagram. The el- 

lipses denote the stable states of the model for each valuation of the logical pa- 

rameters. The order of the components in the states and of the logical parameters 

in the valuations are indicated in caption of Fig. 8 . (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 
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m  

f

 

(
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�

|  

(
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P  

n  

j

L

s

l

f  

L

 

t

K

a  

t

K

W  

t

(

(i  

K 	K K and K 	K K;
ii) 

h 

m 

i ( ] t j , t j+1 [ ) = l j m 

, (15)

for all integers j between 0 and k − 1 , 

ii) 

h 

m 

i ( ] t k , + ∞ [ ) = l k m 

, (16)

for all integers m between 1 and q g i , where h m 

i 
is the function from

the set [0, 1] to the set � 0 , max (X g i ) � defined for all integers m

between 1 and q g i as follows: 

h 

m 

i : 

{
[ 0 , 1 ] → � 0 , max (X g i ) � 

t �→ α
�0 

i 

R 

(
χ−1 

i 
(K g i ,αm 

) 1 
(
γ (t) , p \ p 0 

l 

))
. 

Let γ be a function satisfying the conditions stated above. Then,

for all integers m between 1 and q g i , the function: 

 �→ χ−1 
i 

(K g i ,αm 
) 1 

(
γ (t) , p \ p 0 l 

)

s also continuous and monotonous as the composition of

he two continuous and monotonous functions, γ and x �→
−1 
i 

(K g i ,αm ) 1 
(
x, p \ p 0 

l 

)
. 

By definition of the mapping α
�0 

i 
R 

and from the monotony of

he function t �→ χ−1 
i 

(K g i ,αm ) 1 
(
γ (t) , p \ p 0 

l 

)
, it follows that h m 

i 
is

onotonous for all integers m between 1 and q g i , which implies,

rom Eqs. (14) –(16) , that the following conditions hold: 

(i) either, for all m ∈ � 1 , q g i � and for all j ∈ � 0 , k − 1 � : 

l j m 

≤ l j+1 
m 

, (17)

ii) or, for all m ∈ � 1 , q g i � and for all j ∈ � 0 , k − 1 � : 

l j m 

≥ l j+1 
m 

. (18)

Moreover, by definition of the mapping α
�0 

i 
R 

and from the con-

inuity of the function t �→ χ−1 
i 

(K g i ,αm ) 1 
(
γ (t) , p \ p 0 

l 

)
, it follows,

rom Eqs. (14) –(16) , that the following conditions hold, for all j ∈
 0 , k − 1 � and all m ∈ � 1 , q g i � : 

 l j+1 
m 

− l j m 

| ≤ 1 . (19)

Therefore, from Eqs. (17) –(19) , the following conditions hold: 

(i) either, for all r ∈ � 1 , q g i � and for all j ∈ � 0 , k − 1 � : 

l j+1 
r − l j r = 0 or l j+1 

r − l j r = 1 , 

ii) or, for all r ∈ � 1 , q g i � and for all j ∈ � 0 , k − 1 � : 

l j+1 
r − l j r = 0 or l j+1 

r − l j r = −1 , 

hich ends the proof. �

roperty 2. Let (G, �, sign, T ) be a regulatory graph, and g i a compo-

ent of G. Let ( L j ) 0 ≤ j ≤ k be an element of P 

log 

bd g i 
where, for all integers

 between 0 and k: 

 j = { (K g i ,α1 
, l j 

1 
) , . . . , (K g i ,αq g i 

, l j q g i 
) } , 

uch that, for all j ∈ � 0 , k − 1 � and for all r ∈ � 1 , q g i � , we have l 
j 
r ≤

 

j+1 
r . 

Let, for all m ∈ � 0 , max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) � , K 

j,m 

g i 
be the subset of K g i 

or which, for all j ∈ � 0 , k − 1 � and for all K ∈ K 

j,m 

g i 
, the value of K in

 j is m. 

Let K 

j,m,up 
g i 

be the subset of K g i defined, for all integers m from 0

o max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 , as follows: 

 

j,m,up 
g i 

= { K ∈ K g i | l j+1 
i 

> l j 
i 
, l j 

i 
= m } , 

nd K 

j,up 
g i 

the union of these sets K 

j,m,up 
g i 

for all the integers m from 0

o max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 : 

 

j,up 
g i 

= 

⋃ 

m ∈ � 0 ,max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g 

′ ) −1 � 

K 

j,m,up 
g i 

. 

e define the partially ordered sets (K g i , 	
j 
K ) , for all integers j be-

ween 0 and k − 1 , as follows: 

(i) (K g i , 	0 
K ) = (K g i , 	K ) ; 

ii) for all (K, K 

′ ) / ∈ K 

j,up 
g i 

, we have: 

K 	 j 
K K 

′ �⇒ K 	 j+1 
K K 

′ ;
ii) for all m ∈ � 0 , max ( 

⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 � , for all (K, K 

′ ) ∈ K 

j,m,up 
g i 

,

we have: 

j+1 ′ ′ j+1 
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(i  

 

t  

�  

a

M

T

K

L  

o

w{

o{

L

 

f

 

(  

(i  

L  

u  

a

 

P  

P

 

w

L

(

(i

(i

s

 

a  

e

(  

 

(  

 

 

i  

a

 

j

m  

a  

c  

f

(  

 

(  

 

 

χ
 

r

χ

S  

f  

f

K  

 

	  

r

K  

f

 

L  

t

K

a  

e  

E

χ

f  

a

(

(ii) or α
R 

(χ
i 

(K) 1 (p \ p 
l 
, p 

l 
)) < α

R 
(χ

i 
(K ) 1 (p \ p 

l 
, q )) , 
v) for all m ∈ � 0 , max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 � , for all K ∈ K 

j,m,up 
g i 

, and

for all K 

′ ∈ K 

j,m 

g i 
∩ K 

j,up 
g i 

, we have: 

K 

′ 	 j+1 
K K. 

Let M 

j 
m 

be the set of the maximal elements of the par-

ially ordered set (K 

j,m 

g i 
, 	 j 

K ) , for all j ∈ � 0 , k − 1 � and for all m ∈
 0 , max ( 

⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 � , and M 

j the union of these sets M 

j 
m 

for

ll m ∈ � 0 , max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 � , for all j ∈ � 0 , k − 1 � : 

 

j = 

⋃ 

m ∈ � 0 ,max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g 

′ ) −1 � 

M 

j 
m 

. 

hen, we have, for all integers j from 0 to k − 1 : 

 

j,up 
g i 

⊆ M 

j . 

Before proving Property 3 , we give the following two lemmas: 

emma 1. Let i ∈ � 1, n � and p r a parameter involved in the equation

f evolution of x i of a class of PWLD models: 

dx i 
dt 

= a i + 

∑ 

g j ∈R g i 

∑ 

l∈ t g j ,g i 

s (x j , θ
l 
ji ) − d i · x i , 

here: 
 

s (x i , θ
l 
i j ) = 0 , if x i < θ l 

i j , 

s (x i , θ
l 
i j ) = k l i j , if x i > θ l 

i j , 

r: 
 

s (x i , θ
l 
i j ) = k l i j , if x i < θ l 

i j , 

s (x i , θ
l 
i j ) = 0 , if x i > θ l 

i j . 

et p \ p 0 r be a vector of values of all the parameters except p r . 

Let ( f, F ) and ( f ′ , F ′ ) be two distinct elements of F i , such that f and

 

′ depend on p j . Then, the following condition holds: 

(i) either f (p \ p 0 r , p r ) < f ′ (p \ p 0 r , p r ) , for all p l ∈ R 

+ if p r = a i , or

for all p r ∈ R 

� + if p r = k l 
i j 

or p r = d i ; 

ii) or f (p \ p 0 r , p r ) = f ′ (p \ p 0 r , p r ) , for all p r ∈ R 

+ if p r = a i , or for

all p r ∈ R 

� + if p r = k l 
i j 

or p r = d i ; 

ii) or f (p \ p 0 r , p r ) > f ′ (p \ p 0 r , p r ) , for all p r ∈ R 

+ if p r = a i , or for

all p r ∈ R 

� + if p r = k l 
i j 

or p r = d i . 

emma 2. We consider the class of PWLD models associated to a reg-

latory graph (G, �, sign, T ) . Let g i be a component of G, and ( f, F )

nd ( f ′ , F ′ ) two distinct elements of the set F i . 

If ( f, F ) 	F ( f ′ , F ′ ) , then, for all vectors of parameter values p 0 ∈
(R 

� + ) | DF p |−n × (R 

+ ) n of the parameter vector, we have: 

f (p 0 ) < f ′ (p 0 ) . 

roof. We take the same notations as in the statement of

roperty 2 . 

Let g i be a component of G. Let ( L j ) 0 ≤ j ≤ k be an element of P 

log 

bd g i 
,

here, for all integers j between 0 and k : 

 j = { (K g,α1 
, l j 

1 
) , . . . , (K g,αq g 

, l j q g ) } . 
Then, according to Definition 6 , there exists: 

(i) a parameter p l ; 

ii) a set �0 
i 

of threshold values of the outgoing interactions of g i ; 

ii) a set p \ p 0 
l 

of values of all the parameters except p l ; 

v) two values p in 
l 

and p 
f in 

l 
of the parameter p l ; 

uch that the conditions of Definition 6 are satisfied. 

Let j be an integer between 0 and k − 1 . Then, 
(
L j ′ 

)
0 ≤ j ′ ≤ j 

is also

n element of P 

log 

bd g i 
, and, for all integers j ′ between 0 and j , there

xists a value p 
j ′ 
l 

∈ R 

+ of parameter p l , such that: 
i) for all m ∈ � 0 , max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 � , for all (K, K 

′ ) ∈ K 

j ′ ,m,up 
g i 

,

we have: 

χ−1 
i 

(K) 1 (p \ p 0 l , p 
j ′ 
l 
) = χ−1 

i 
(K 

′ ) 1 (p \ p 0 l , p 
j ′ 
l 
) , (20)

ii) for all m ∈ � 0 , max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 � , for all K ∈ K 

j ′ ,m,up 
g i 

, and

for all K 

′ ∈ K 

j ′ ,m 

g i 
∩ K 

j ′ ,up 
g i 

, we have: 

χ−1 
i 

(K 

′ ) 1 (p \ p 0 l , p 
j ′ 
l 
) < χ−1 

i 
(K) 1 (p \ p 0 l , p 

j ′ 
l 
) . (21)

Moreover, by hypothesis, the values of the logical parameters

ncreases along 
(
L j ′ 

)
0 ≤ j ′ ≤ j 

. Therefore, χ−1 
i 

(K) 1 (p \ p 0 
l 
, p l ) increases

long 
(
L j ′ 

)
0 ≤ j ′ ≤ j 

for all K ∈ K g i . 

It follows, from Lemma 1 , that, for all integers j ′ between 0 and

 , and for all values q ≥ max { p j ′ 
l 

| j ′ ∈ � 0 , j� } (resp. for all values q ≤
in { p j ′ 

l 
| j ′ ∈ � 0 , j� } ) of parameter p l if p l �→ χ−1 

i 
(K) 1 (p \ p 0 

l 
, p l ) is

n increasing function (resp. if p l �→ χ−1 
i 

(K) 1 (p \ p 0 
l 
, p l ) is a de-

reasing function) for all K ∈ K g i , Eqs. (20) and (21) are satisfied,

or all integers j ′ between 0 and j , that is to say that: 

i) for all m ∈ � 0 , max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 � , for all (K, K 

′ ) ∈ K 

j ′ ,m,up 
g i 

,

we have: 

χ−1 
i 

(K) 1 (p \ p 0 l , q ) = χ−1 
i 

(K 

′ ) 1 (p \ p 0 l , q ) , (22)

ii) for all m ∈ � 0 , max ( 
⋃ 

(g i ,g 
′ ) ∈ � t g i ,g ′ ) − 1 � , for all K ∈ K 

j ′ ,m,up 
g i 

, and

for all K 

′ ∈ K 

j ′ ,m 

g i 
∩ K 

j ′ ,up 
g i 

, we have: 

χ−1 
i 

(K 

′ ) 1 (p \ p 0 l , q ) < χ−1 
i 

(K) 1 (p \ p 0 l , q ) . (23)

We can assume without loss of generality that p l �→−1 
i 

(K) 1 (p \ p 0 
l 
, p l ) is an increasing function for all K ∈ K g i . 

Moreover, from Property 7 , we have, for all pairs of logical pa-

ameters ( K, K 

′ ) such that K 	K K 

′ : 
−1 
i 

(K) 1 	F χ
−1 
i 

(K 

′ ) 1 . 

ince χ i is bijective ( Property 7 ), it follows, from Lemma 2 , that,

or all pairs of logical parameters ( K, K 

′ ) such that K � = K 

′ , we have,

or all q > 0: 

 	K K 

′ �⇒ χ−1 
i 

(K) 1 (p \ p 0 l , q ) < χ−1 
i 

(K 

′ ) 1 (p \ p 0 l , q ) . (24)

Therefore, it follows, from Eqs. (22) –(24) , and by definition of
j 
K , that the following condition holds, for all pairs of logical pa-

ameters ( K, K 

′ ) such that K � = K 

′ : 

 	 j 
K K 

′ �⇒ χ−1 
i 

(K) 1 (p \ p 0 l , q ) < χ−1 
i 

(K 

′ ) 1 (p \ p 0 l , q ) (25)

or all q ≥ max { p j ′ 
l 

| j ′ ∈ � 0 , j� } . 
Now let us prove that K 

j,up 
g i 

⊆ M 

j by proving its contraposition.

et K be a logical parameter which does not belong to the set M 

j ,

hat is to say that: 

 / ∈ M 

j , 

nd let m be the value of K in L j . Then, by definition of M 

j , there

xists K 

′ � = K of value m in L j such that K 	 j 
K K 

′ . It follows, from

q. (25) , that: 

−1 
i 

(K) 1 (p \ p 0 l , q ) < χ−1 
i 

(K 

′ ) 1 (p \ p 0 l , q ) , 

or all q ≥ max { p j ′ 
l 

| j ′ ∈ � 0 , j� } . Since p l �→ χ−1 
i 

(K) 1 (p \ p 0 
l 
, p l ) is

n increasing function, it follows that: 

i) either α
�0 

i 
R 

(χ−1 
i 

(K) 1 (p \ p 0 
l 
, p 

j 

l 
)) = α

�0 
i 

R 
(χ−1 

i 
(K 

′ ) 1 (p \ p 0 
l 
, q )) , 

�0 
i −1 0 j �0 

i −1 ′ 0 
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for all q ≥ max { p j ′ 
l 

| j ′ ∈ � 0 , j� } . 
Therefore, the value of K remains the same from L j to L j+1 .

Thus, we have: 

K / ∈ K 

j,up 
g i 

. 

We have thus proved by contraposition that: 

K 

j,up 
g i 

⊆ M 

j . 

which ends the proof. �

Property 3. Let (G, �, sign, T ) be a regulatory graph, and g i a compo-

nent of G. We assume that max (X g i ) = 1 (Boolean case). Let ( L j ) 0 ≤ j ≤ k

be an element of (V a g i 
) � , where, for all integers j between 0 and k: 

L j = { (K g i ,α1 
, l j 

1 
) , . . . , (K g i ,αq g i 

, l j q g i 
) } , 

such that, the following conditions hold, for all integers j from 0 to

k − 1 : 

(i) for all r ∈ � 1 , q g i � , we have l 
j 
r ≤ l 

j+1 
r , and 

ii) K 

j,up 
g i 

⊆ M 

j , 

where the sets K 

j,up 
g i 

and M 

j are defined in Property 2 . 

We define the subset C j of the set (R 

� + ) | DF p |−n × (R 

+ ) n , where

| DF p | denotes the number of all the parameters except the thresholds,

as follows, for all integers j between 0 and k: 

(i) p ∈ C 0 , if and only if, for all (r, r ′ ) ∈ � 1 , q g i � 
2 such that l 0 r = 0 and

l 0 
r ′ = 1 , we have: 

χ−1 
i 

(K g i ,αr 
) 1 (p) < χ−1 

i 
(K g i ,αr ′ ) 1 (p) ;

ii) p ∈ C j , for all integers j between 1 and k, if and only if: 

(a) for all (r, r ′ ) ∈ � 1 , q g i � 
2 such that l 

j−1 
r < l 

j 
r and l 

j 

r ′ = 0 , we

have: 

χ−1 
i 

(K g i ,αr ′ ) 1 (p) < χ−1 
i 

(K g i ,αr 
) 1 (p) ;

(b) for all (r, r ′ ) ∈ � 1 , q g i � 
2 such that l 

j−1 
r < l 

j 
r and l 

j−1 

r ′ < l 
j 

r ′ , we

have: 

χ−1 
i 

(K g i ,αr 
) 1 (p) = χ−1 

i 
(K g i ,αr ′ ) 1 (p) ;

and the set C as the intersection between the sets C j for all integers j

between 0 and k: 

C = 

k ⋂ 

j=0 

C j . 

Then, 
(
L j 

)
0 ≤ j≤k 

∈ P 

log 

bd g i 
if and only if C � = ∅ . 

Proof. We take the same notations as in the statement of

Property 3 . 

Let g i be a component of G and let us assume that max (X g i ) = 1

(Boolean case). Let ( L j ) 0 ≤ j ≤ k be an element of (V a g i 
) � , where, for all

integers j between 0 and k : 

L j = { (K g i ,α1 
, l j 

1 
) , . . . , (K g i ,αq g i 

, l j q g i 
) } , (26)

such that, we have, for all integers j from 0 to k − 1 : 

(i) for all r ∈ � 1 , q g i � , we have l 
j 
r ≤ l 

j+1 
r , and 

ii) K 

j,up 
g i 

⊆ M 

j , 

where the sets K 

j,up 
g i 

and M 

j are defined in Property 2 . 

We start by first proving the necessary condition of the prop-

erty, that is to say that: (
L j 

)
0 ≤ j≤k 

∈ P 

log 

bd g i 
�⇒ C � = ∅ . (27)

Assume that 
(
L j 

)
0 ≤ j≤k 

∈ P 

log 

bd g i 
. Then, according to Definitions 6 and

7 , there exists: 
(i) a parameter p l ; 

ii) a set �0 
i 

= { θ0 
i 
} of threshold values of the outgoing interactions

of g i ( �0 
i 

is a singleton since X g i is Boolean); 

ii) a set p \ p 0 
l 

of values of all the parameters except p l ; 

v) two values p in 
l 

and p 
f in 

l 
of the parameter p l ; 

uch that, there exists a continuous and monotonous function γ

rom the set [0, 1] to the set 

[ 
p in 

l 
, p 

f in 

l 

] 
satisfying γ (0) = p in 

l 
and

(1) = p 
f in 

l 
, and a subdivision t 0 < t 1 < . . . < t k −1 of [0, 1] such

hat, for all m ∈ � 1 , q g i � , we have: 

(i) 

h 

m 

i ( [0 , t 0 [ ) = l 0 m 

, (28)

ii) 

h 

m 

i ( ] t j−1 , t j [ ) = l j m 

, (29)

for all integers j between 1 and k − 1 , 

ii) 

h 

m 

i ( ] t k −1 , + ∞ [ ) = l k m 

, (30)

here h m 

i 
is the function from the set [0, 1] to the set � 0 , max (X g i ) �

efined for all integers m between 1 and q g i as follows: 

 

m 

i : 

{
[ 0 , 1 ] → � 0 , max (X g i ) � 

t �→ α
�0 

i 

R 

(
χ−1 

i 
(K g i ,αm 

) 1 
(
γ (t) , p \ p 0 

l 

))
. 

Let γ be a function satisfying the conditions stated above. Then,

or all integers m between 1 and q g i , the function: 

 �→ χ−1 
i 

(K g i ,αm 
) 1 

(
γ (t) , p \ p 0 l 

)
s also continuous and monotonous as the composition of

he two continuous and monotonous functions, γ and x �→
−1 
i 

(K g i ,αm ) 1 
(
x, p \ p 0 

l 

)
. 

By definition of the mapping α
�0 

i 
R 

and of the functions h m 

i 
, it

ollows: 

(i) from Eq. (28) , that, for all t ∈ [0, t 0 [ and for all (r, r ′ ) ∈ � 1 , q g i � 
2

such that l 0 r = 0 and l 0 
r ′ = 1 , we have: 

χ−1 
i 

(K g i ,αr 
) 1 

(
γ (t) , p \ p 0 l 

)
< χ−1 

i 
(K g i ,αr ′ ) 1 

(
γ (t) , p \ p 0 l 

)
, (31)

ii) from Eq. (29) , that, for all j ∈ � 1 , k − 1 � , for all t ∈ ] t j−1 , t j [ , for

all (r, r ′ ) ∈ � 1 , q g i � 
2 such that l 

j−1 

r ′ < l 
j 

r ′ and l 
j 
r = 0 , we have: 

χ−1 
i 

(K g i ,αr 
) 1 

(
γ (t) , p \ p 0 l 

)
< χ−1 

i 
(K g i ,αr ′ ) 1 

(
γ (t) , p \ p 0 l 

)
, (32)

ii) from Eq. (30) , that, for all t ∈ ] t k −1 , + ∞ [ , for all (r, r ′ ) ∈ � 1 , q g i � 
2

such that l 
j−1 

r ′ < l 
j 

r ′ and l 
j 
r = 0 , we have: 

χ−1 
i 

(K g i ,αr 
) 1 

(
γ (t) , p \ p 0 l 

)
< χ−1 

i 
(K g i ,αr ′ ) 1 

(
γ (t) , p \ p 0 l 

)
. (33)

Now let j ∈ � 1, k � and r ∈ � 1 , q g i � such that l 
j−1 
r < l 

j 
r . From

he continuity of the function t �→ χ−1 
i 

(K g i ,αr ) 1 
(
γ (t) , p \ p 0 

l 

)
, we

ave: 

−1 
i 

(K g i ,αr 
) 1 

(
γ (t j−1 ) , p \ p 0 l 

)
= θ0 

i . 

t thus follows, for all (r, r ′ ) ∈ � 1 , q g i � 
2 such that l 

j−1 
r < l 

j 
r and

 

j−1 

r ′ < l 
j 

r ′ , that: 

−1 
i 

(K g i ,αr 
) 1 

(
γ (t j−1 ) , p \ p 0 l 

)
= χ−1 

i 
(K g i ,αr ′ ) 1 

(
γ (t j−1 ) , p \ p 0 l 

)
. 

(34)

From Lemma 1 , it follows that Eqs. (31) –(34) are satisfied for all

 > t k −1 , that is to say that, by definition of C: 

( ] t k −1 , + ∞ [ ) ⊆ C, 
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hich implies, in particular, that: 

 � = ∅ , 
hich ends the proof of the necessary condition of the property. 

Let us now prove the sufficient condition of the property, that

s to say that: 

 � = ∅ �⇒ 

(
L j 

)
0 ≤ j≤k 

∈ P 

log 

bd g i 
. (35)

ssume that C � = ∅ . Then, by definition of C, there exists a vector

p 0 ∈ (R 

� + ) | DF p |−n × (R 

+ ) n of the parameter values such that we

ave: 

(i) for all (r, r ′ ) ∈ � 1 , q g i � 
2 such that l 0 r = 0 and l 0 

r ′ = 1 : 

χ−1 
i 

(K g i ,αr 
) 1 (p 0 ) < χ−1 

i 
(K g i ,αr ′ ) 1 (p 0 ) , (36)

ii) for all integers j between 1 and k , and: 

(a) for all (r, r ′ ) ∈ � 1 , q g i � 
2 such that l 

j−1 
r < l 

j 
r and l 

j 

r ′ = 0 : 

χ−1 
i 

(K g i ,αr ′ ) 1 (p 0 ) < χ−1 
i 

(K g i ,αr 
) 1 (p 0 ) , (37)

(b) for all (r, r ′ ) ∈ � 1 , q g i � 
2 such that l 

j−1 
r < l 

j 
r and l 

j−1 

r ′ < l 
j 

r ′ : 

χ−1 
i 

(K g i ,αr 
) 1 (p 0 ) = χ−1 

i 
(K g i ,αr ′ ) 1 (p 0 ) . (38)

et us choose such a value p 0 . Let us further choose: 

(i) d i as the parameter of bifurcation; 

ii) a positive threshold value θ0 
i 

; and 

ii) the vector of values p 0 �d i for the values of all the parameters

except d i . 

By definition of the set F i , χ
−1 
i 

(K) depends on d i for all K ∈ K g i .

t follows, from Lemma 1 , that Eqs. (36) –(38) are satisfied for all

 i ∈ R 

� + , that is to say that, the following conditions hold, for all

 i ∈ R 

� + : 

(i) for all (r, r ′ ) ∈ � 1 , q g i � 
2 such that l 0 r = 0 and l 0 

r ′ = 1 : 

χ−1 
i 

(K g i ,αr 
) 1 (p 0 \ d i , d i ) < χ−1 

i 
(K g i ,αr ′ ) 1 (p 0 \ d i , d i ) , (39)

ii) for all integers j between 1 and k , and: 

(a) for all ( r, r ′ ) ∈ � 1, g i � 
2 such that l 

j−1 
r < l 

j 
r and l 

j 

r ′ = 0 : 

χ−1 
i 

(K g i ,αr ′ ) 1 (p 0 \ d i , d i ) < χ−1 
i 

(K g i ,αr 
) 1 (p 0 \ d i , d i ) , (40)

(b) for all ( r, r ′ ) ∈ � 1, g i � 
2 such that l 

j−1 
r < l 

j 
r and l 

j−1 

r ′ < l 
j 

r ′ : 

χ−1 
i 

(K g i ,αr 
) 1 (p 0 \ d i , d i ) = χ−1 

i 
(K g i ,αr ′ ) 1 (p 0 \ d i , d i ) . (41)

oreover, the function d i �→ χ−1 
i 

(K) 1 (p 0 \ d i , d i ) is continuous and

ecreasing from the set R 

� + to the set R 

� + , for all K ∈ K g i , as it is

nversely proportional to d i by definition of the set F i . 

It follows, from the continuity of the function d i �→
−1 
i 

(K) 1 (p 0 \ d i , d i ) over the sets R 

� + , and: 

(i) from Eq. (39) , that there exists a value d in 
i 

of d i such that: 

(a) χ−1 
i 

(K g i ,αr ) 1 (p 0 \ d i , d in i 
) < θ0 

i 
, for all r such that l 0 r = 0 , 

(b) χ−1 
i 

(K g i ,αr ) 1 (p 0 \ d i , d in i 
) > θ0 

i 
for all r such that l 0 r = 1 , 

ii) from Eqs. (39) –(41) , that there exists a value d 
f in 
i 

of d i such

that: 

(a) χ−1 
i 

(K g i ,αr ) 1 (p 0 \ d i , d f in 
i 

) < θ0 
i 
, for all r such that l 0 r = 0 , 

(b) χ−1 
i 

(K g i ,αr ) 1 (p 0 \ d i , d f in 
i 

) > θ0 
i 

for all r such that l 0 r = 1 . 

ow let γ be the function defined for all t ∈ [0, 1] as follows: 

(t) = (d f in 
i 

− d in i ) t + d in i . 

e have γ (0) = d in 
i 

, γ (1) = d 
f in 
i 

and γ is straightforwardly con-

inuous and monotonous (decreasing) over [0, 1]. 

From the continuity of t �→ χ−1 
i 

(K) 1 (p 0 \ d i , γ (t)) for all K ∈
 g , and from Eqs. (39) –(41) , it follows that for all j ∈ � 0 , k − 1 �
i 
nd for all m such that l 
j 
m 

< l 
j+1 
m 

, there exists t j ∈ [0, 1] such that:

−1 
i 

(K g i ,αm 
) 1 

(
p 0 \ d i , γ (t j ) 

)
= θ0 

i . (42) 

Let us choose such a subdivision t 0 < t 1 < . . . < t k −1 of [0, 1].

t follows, by definition of α
�0 

i 
R 

and from the monotonicity of t �→
−1 
i 

(K) 1 (p 0 \ d i , γ (t)) for all K ∈ K g i , that the following conditions

old, for all integers m between 1 and q g i : 

i) 

h 

m 

i ( [0 , t 0 [ ) = l 0 m 

, (43)

ii) 

h 

m 

i ( ] t j−1 , t j [ ) = l j m 

, (44)

for all integers j between 1 and k − 1 , 

ii) 

h 

m 

i ( ] t k −1 , + ∞ [ ) = l k m 

. (45)

here h m 

i 
is the function from the set [0, 1] to the set � 0 , max (X g i ) �

efined for all integers m between 1 and q g i as follows: 

 

m 

i : 

{
[ 0 , 1 ] → � 0 , max (X g i ) � 

t �→ α
�0 

i 

R 

(
χ−1 

i 
(K g i ,αm 

) 1 
(
γ (t) , p \ p 0 

j 

))
. 

herefore, by Definition 6 , we have: 

L j 
)

0 ≤ j≤k 
∈ P 

log 

bd g i 
, 

hus proving the sufficient condition of the property. �

ppendix E. Algorithms 

The high level procedure computing a logical bifurcation di-

gram of maximum length starting from an initial valuation of

he logical parameters is described in Algorithm 2 . Given a logical

odel ( model ), and a component g i ( node ): 

i) the algorithm first constructs, with the procedure genBifurca-

tionPath , a sequence 
(
L 0 , . . . , L j 0 , . . . , L k 

)
of valuations of the

logical parameters associated to node ( bifurcPath ) which: 

(a) belongs to the set P 

log 

bd g i 
, 

(b) contains the valuation of the logical parameter L j 0 of model ,

(c) is of maximum length, 

(lines 1 and 2); 

ii) then, for each valuation L j ( function ) of the sequence, the at-

tractors of the corresponding logical model are computed (lines

3–8); 

ii) finally, the algorithm returns the corresponding sequence of

pairs ( function , associated model attractors) ( attractorList ). 

he structure bifurcDiag contains information relative to model . The

rocedure genBifurcationPath receives bifurcDiag and a compo-

ent g i ( node ), and returns a sequence ( L 0 , L 1 , . . . , L k ) of valuations

f the logical parameters associated to node ( bifurcPath ) as follows:

i) the procedure first gets the set of regulators ( regList ) of the

component node , and the valuation L j 0 of the logical parame-

ters associated to the component node ( funcRef ) of the logical

model defined in bifurcDiag (lines 12–13); 

ii) it then verifies if the valuation funcRef is consistent with the

signs of the incoming interactions on node (lines 14–16); 

ii) if it is, it constructs the partial order 	K in the set K g i of the

logical parameters associated to node ( depGraph ) and verifies if

the valuation funcRef satisfies Property 3 (lines 17–20); 

v) if it does, the partial order depGraph is updated with the con-

straints imposed by funcRef (line 21); 

v) it then initializes the bifurcation diagram ( bifurcPath ) with fun-

cRef (line 22), and: 
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Algorithm 2 Computation of a logical bifurcation diagram and its 

attractors. 

Input: model, node 

1: bi f urcDiag ← buildBi f urcationDiagram (model) 

2: bi f urcPath ← genBi f urcationPath (bi f urcDiag, node ) 

3: at t ractorList ← ∅ 
4: for all f unction ∈ bi f urcPath do 

5: newModel ← bi f urcDiag.getModel(node, f unction ) 

6: � model manipulation relies on the bioLQM library 

7: pair ← ( f unction, computeAt t ractors (newModel)) 

8: � model attractors relies on the bioLQM library 

9: at t ractorList ← at t ractorList + pair 

10: end for 

Output: attractorList 

11: function genBifurcationPath (bifurcDiag, node) 

12: r egList ← r egulators (bi f urcDiag, node ) 

13: f uncRe f ← r e fer enceF unction (bi f urcDiag, node ) 

14: if ! consistent( f uncRe f, regList) then 

15: return ∅ 
16: end if 

17: depGraph ← buildLogicParamDepGraph (len (regList)) 

18: if ! depGraph.satis f iesP rop3(∅ , getLP s ( f uncRe f )) then 

19: return ∅ � If funcRef does not satisfy Property 3 

20: end if 

21: depGraph.init Rest rict ions ( f uncRe f ) 

22: bi f urcPath ← f uncRe f � new list to keep function ordering 

23: f ← f uncRe f � compute functions above funcRef 

24: while ( f ← get Parent F unct ion (depGraph, f )) � = ∅ do 

25: bi f urcPath ← bi f urcPath + f � list push back 

26: end while 

27: f ← f uncRe f � Compute functions bellow funcRef 

28: while ( f ← get ChildF unct ion (depGraph, f )) � = ∅ do 

29: bi f urcPath ← f + bi f urcPath � list push front 

30: end while 

31: return bi f urcPath 

32: end function 

 

 

 

 

 

 

 

 

 

 

 

 

 

(  

(i  

 

Algorithm 3 Auxiliary functions. 

1: function getParentFunction (depGraph, lastFunc) 

2: f unc ← get V alidParent F unct ion (depGraph, lastF unc) 

3: if f unc � = ∅ then 

4: changingLP s ← getChangingLP s (lastF unc, f unc) 

5: depGraph.updateEqualLP s ( f unc, changingLP s ) 

6: depGraph.updateInequalLP s ( f unc, changingLP s ) 

7: end if 

8: return f unc 

9: end function 

10: function getCombinations (listLPs) 

11: listO fCombs ← ∅ 
12: for all l p ∈ l istLP s do 

13: for all comb ∈ listO fCombs do 

14: newComb ← comb ∪ l p 

15: listO fCombs ← listO fCombs ∪ newComb 

16: end for 

17: listO fCombs ← l p 

18: end for 

19: end function 

20: function isValidLPSet (depGraph, listLPs) 

21: for all l p ∈ l istLP s do 

22: equalLP set ← depGraph.getEqual LP s (l p) 

23: if equalLP set � = ∅ ∧ equal LP set �⊆ l istLP s then 

24: return false 

25: end if 

26: end for 

27: return true 

28: end function 

 

(  

f

 

 

(  

(i  

R

A  

 

 

 

A  

 

B

C  

 

 

C  

 

 

C  

 

 

C  

C  

 

(a) calls the procedure getParentFunction which, considering

the current depGraph and the current valuation of the log-

ical parameters L j ( f ), returns a valid valuation L j+1 ( i.e. a

valuation such that (L j 0 , . . . , L j , L j+1 ) ∈ P 

log 

bd g i 
), for which log-

ical parameter values have been increased from L j to L j+1 ,

and updates depGraph accordingly (lines 24–26); 

(b) analogously calls the procedure getChildFunction to re-

turn a valid valuation L j−1 ( i.e. a valuation such that

(L j−1 , L j , . . . , L j 0 ) ∈ P 

log 

bd g i 
), for which logical parameter values

have been decreased from L j to L j−1 , and updates depGraph

accordingly (lines 27–30); 

until the bifurcation diagram has reached its maximum length. 

Algorithm 3 describes three auxiliary procedures used in

Algorithms 1 and 2 . The first one, getParentFunction , proceeds

as follows: 

(i) it calls the procedure getValidParentFunction , described in

Algorithm 1 , to compute a valid successor ( func ) if it exists (line

2); 

ii) the set of the logical parameters whose values have increased

( changingLPs ) is retrieved (line 4); 

ii) the partial order depGraph is updated with the constraints im-

posed by changingLPs (lines 5–6). 

The second procedure, getCombinations , computes all the sub-

sets of a given set of logical parameters. 
The third procedure, isValidLPSet takes as inputs a partial order

 depGraph ) and a list of logical parameters ( listLPs ), and proceeds as

ollows: 

(i) for each logical parameter in listLPs , it gets the set of logi-

cal parameters which are equal for the partial order depGraph

( equalLPset ) (lines 21–22); 

ii) then, if equalLPset is not empty and is not a subset of listLPs ,

the procedure returns false (line 24); 

ii) if, for each element of listLPs, equalLPset is either empty or is a

subset of listLPs , the procedure returns true (line 26). 
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