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Bifurcation theory provides a powerful framework to analyze the dynamics of differential systems as a
function of specific parameters. Abou-Jaoudé et al. (2009) introduced the concept of logical bifurcation
diagrams, an analog of bifurcation diagrams for the logical modeling framework. In this work, we propose
a formal definition of this concept. Since logical models are inherently discrete, we use the piecewise
differential (PWLD) framework to introduce the underlying bifurcation parameters. Given a regulatory
graph, a set of PWLD models is mapped to a set of logical models consistent with this graph, thereby
linking continuous changes of bifurcation parameters to sequences of valuations of logical parameters.
A logical bifurcation diagram corresponds then to a sequence of valuations of the logical parameters
(with their associated set of attractors) consistent with at least one bifurcation diagram of the set of
PWLD models. Necessary conditions on logical bifurcation diagrams in the general case, as well as a
characterization of these diagrams in the Boolean case, exploiting a partial order between the logical
parameters, are provided. We also propose a procedure to determine a logical bifurcation diagram of
maximum length, starting from an initial valuation of the logical parameters, in the Boolean case. Finally,

we apply our methodology to the analysis of a biological model of the p53-Mdm2 network.

© 2019 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The behavior of biological systems relies on complex regula-
tory networks which understanding requires the use of compu-
tational modeling approaches. Different formalisms, operating at
different levels of abstraction, have been used to model complex
biological networks. Among these formalisms, the logical frame-
work, initially introduced by Thomas and d’Ari (1990), has proven
to be particularly useful to model such networks, in particular
when precise quantitative data are lacking, with applications in
a wide range of biological systems including cell differentiation
in developmental processes (Fauré et al., 2014), haematopoiesis
(Collombet et al., 2017), T-cell activation and differentiation (Abou-
Jaoudé et al.,, 2015) or cell cycle control (Faure et al., 2006) (see
Abou-Jaoudé et al., 2016 for additional applications).

In the logical modeling formalism, regulatory networks are
modeled in terms of a logical regulatory graph, where nodes rep-
resent regulatory components, while edges denote regulatory in-
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teractions (Thomas and d’Ari, 1990). Each component is associated
with a discrete variable representing its (current) functional level
of activity. In addition, a logical rule defines the evolution of this
level, depending on the values of the regulators of the component.
A logical rule can be specified using either a logical function, or
logical parameters (Snoussi, 1989; Thomas and d’Ari, 1990). When
several component levels are called to update, an updating scheme
(e.g., synchronous, asynchronous) has to be specified to define the
state successor(s). The resulting dynamics can be represented in
terms of a state transition graph, where nodes denote states, while
directed edges represent state transitions.

Bifurcation theory provides a powerful framework to analyze
qualitative changes in the dynamics of ODEs depending on spe-
cific parameters. This analysis can be represented in a bifurcation
diagram, where the attractors (oscillatory regimes or steady states)
and their stability are represented as a function of the parameter(s)
of interest (e.g., reaction rate or external stimuli) (Strogatz, 2000).
Abou-Jaoudé et al. (2009) introduced the concept of logical bifurca-
tion diagram, an analog to ODE bifurcation diagrams for the logical
modeling framework. Given a regulatory graph of a model, a logical
bifurcation diagram corresponds to a sequence of valuations of the
logical parameters associated with a model component (with its
corresponding attractors), upon a change of an implicit parameter
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(e.g., a degradation rate in Abou-Jaoudé et al., 2009). However, a
formal definition of this concept is still lacking.

In this work, we propose a formal definition of logical bifur-
cation diagrams. To do so, we use the piecewise linear differen-
tial (PWLD) framework to explicitly introduce the underlying bi-
furcation parameters and formally associate monotonous and con-
tinuous changes of these parameters to sequences of valuations of
logical parameters. More precisely, we map a set of piecewise lin-
ear differential models associated with a given regulatory graph to
the set of the logical models whose logical parameter values are
consistent with the regulatory graph. A logical bifurcation diagram
then corresponds to a sequence of valuations of the logical pa-
rameters (with their associated set of attractors) consistent with
at least one bifurcation diagram in the class of PWLD models.

This manuscript is organized as follows. We start in
Section 2 by describing the case study of the model of the core of
the p53-Mdm2 network, proposed by Abou-Jaoudé et al. (2009). In
Section 3, we introduce the class of logical models associated with
a regulatory graph, from a partial order defined in the set of the
logical parameters. In Section 4, we propose a formal definition of
logical bifurcation diagrams associated to a model component, as
well as a procedure to compute one logical bifurcation diagram
of maximum length, starting from a given valuation of the logical
parameters, in the case where the component is Boolean. Finally,
Section 5 is devoted to a bifurcation analysis of our case study

+2

using our methodology. Details on the building of the set of PWLD
models associated to a regulatory graph, and the definition of
the pertinent objects to consider in the class of PWLD models
for the mappings to the set of logical models are presented in
Appendix A. Details on the mappings between the two sets of
PWLD and logical models, and the link between their dynamics
are presented in Appendix B.

2. A case study: The p53-Mdm2 network

We consider the model of the core of the p53-Mdm2 network,
proposed by Abou-Jaoudé et al. (2009), which encompasses the fol-
lowing components: the protein p53; the ubiquitin ligase Mdm2 in
the cytoplasm; and the ubiquitin ligase Mdm?2 in the nucleus. p53
plays an essential role in the control of cell proliferation in mam-
mals by regulating a large number of genes involved notably in
growth arrest, DNA repair or apoptosis. Its level is tightly regulated
by the ubiquitin ligase Mdm2. Nuclear Mdm2 down-regulates the
level of active p53, both by accelerating p53 degradation through
ubiquitination and by blocking the transcriptional activity of p53.
In return, p53 activates Mdm2 transcription and down-regulates
the level of nuclear Mdm2 by inhibiting Mdm2 nuclear transloca-
tion.

These interactions are modeled in the regulatory graph shown
in Fig. 1(a), in which we focus on the case where p53 (denoted
by p53) is active on nuclear Mdm2 (M,) above its first threshold,

Valuation of the logical parameters
Knrn {(p53,1).(M..0)} 1 0 0 0
Ko {(953,0),(M.,0)} 1 1 0 0
Krn {(953.1),(M..1)} 1 1 1 0
Ko, ((953,0),(M,, 1)} 1 1 1 1,0
3
000 - 100
~ 001 200
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Increasing degradation rate of nuclear Mdm?2

(b)

Fig. 1. (a) Regulatory graph of the model of the core p53-Mdm2 network, adapted from Fig. 2(a) in Abou-Jaoudé et al. (2009), in the case where p53 (denoted by p53)
is active on nuclear Mdm2 (denoted by M,) above its first threshold, and on cytoplasmic Mdm2 (denoted by M.) above its second threshold. Green edges correspond to
activations, whereas red blunt ones denote inhibitions. Ellipses denote Boolean components (0 or 1), whereas the rectangle represents a ternary one (0, 1 or 2). (b) Logical
bifurcation diagram, adapted from Fig. 3(a) in Abou-Jaoudé et al. (2009), corresponding to the regulatory graph in (a) in the case where the logical parameters of M, respect
the following constraints: Ky, ((p53,1),(Mc.00} < Kty ((553.0).(Mc.00} < Kny ((p53.1).Mc.1)} < Knty {(p53.0).(Mc.1)} (S€€ Example 2 for more details on these parameters). The values taken
for the logical parameters of p53 and M. are: 0 for Kpss (v,.1)}> 2 for Kps3 (.00 0 for Ky, ((ps3.0). 1 for Ky, ((ps3,2))- (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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and on cytoplasmic Mdm2 (M,) above its second threshold. To en-
able a systematic characterization of all the asymptotic behaviors
consistent with a given regulatory graph, in the framework of log-
ical modeling, Abou-Jaoudé et al. introduced the concept of logical
bifurcation diagram (Abou-Jaoudé et al., 2009), an analog of bifur-
cation analysis for ODE systems, based on the following two main
ideas:

(i) the inference of constraints between the values of the logical
parameters of a component (M, in Abou-Jaoudé et al., 2009)
from the regulatory graph, relying on the idea that a negative
influence of a component (p53) tends to lower the level of its
target(s) (Mp) whereas the positive influence of a component
(M¢) tends to increase the level of its target(s) (Mp);

the fact that logical parameters represent discretized ratios of
the production and degradation rates of a component, thereby
allowing to link changes of the logical parameter values of a
component (M, in Abou-Jaoudé et al., 2009) with the variation
of an implicit continuous parameter (the degradation rate of M,
in Abou-Jaoudé et al., 2009), under the inferred constraints.

(ii

=

Fig. 1(b) shows one of the logical bifurcation diagrams de-
rived in Abou-Jaoudé et al. (2009), corresponding to one admis-
sible ordering of the logical parameter values, where the attrac-
tors (steady states, limit cycles) of the model are displayed as a
function of the degradation rate of M,. In the following, we pro-
pose a formalization of the concept of logical bifurcation diagram
introduced in Abou-Jaoudé et al. (2009). We will see that the con-
straints on the logical parameters values inferred in Abou-Jaoudé
et al. (2009) from the regulatory graph, can be formalized in terms
of a partial order in the set of the logical parameters (Section 3.2).
Regarding the formalization of the link between the implicit bifur-
cation parameter and the logical parameter values, we will use the
piecewise linear differential (PWLD) framework to introduce the
underlying bifurcation parameter and link it to sequence of valu-
ations of the logical parameters (Section 4). A class of PWLD mod-
els is first associated with the regulatory graph and then formally
linked to the set of the logical models consistent with the partial
order. We now first recall some key aspects of the logical modeling
framework.

3. Logical models
3.1. Regulatory graph and logical parameters

We start by recalling the definition of a regulatory graph,
adapted from Chaouiya et al. (2004), in the framework of the logi-
cal modeling formalism.

Definition 1. A regulatory graph (G, I', sign, T) is defined by:

(i) A set of regulatory components G = {g;, £, ...
the number of components;

(ii) A set of regulatory interactions I" defined as a subset of the set
g xg;

(iii) A mapping, sign, from the set I" to the set {—1, 1}, defining the
sign of the interactions;

(iv) A set T = {tg o} (gq)cr Of sets of thresholds associated with T,
where, for all (g, g')eT, t,, is a subset of the set of strictly
positive integers, which fulfills the following condition: for all
g € G, there exists a strictly positive integer kg such that:

U teg =11,k

(g.g")el’

,&n}, where n is

We denote by I'* (resp. I'™) the subset of I" defined as follows:
(g.g) e+ (resp. (g, g) e ') if and only if sign((g, g’)) =1 (resp.
sign((g.8)) = -1).

For all g of G, we denote by R the subset of G defined as fol-
lows: g’ € R if and only if (g, g)eT.

In Definition 1, each element (g, g’) of I" represents a regu-
latory interaction, either positive if sign((g,g’)) =1 or negative if
sign((g, g')) = —1. We thus discard cases of dual interactions. The
elements of 't (resp. I'~) are the positive (resp. negative) interac-
tions of the regulatory graph, whereas the elements of Rz repre-
sent the regulators of component g. Note that we account for cases
where a regulatory interaction (g, g’) has multiple thresholds (that
is to say that when the set t, ; has more than one element).

Example 1. Let us illustrate the definition of a regulatory graph on
our case study (Fig. 1). Following Definition 1, its regulatory graph
(G, T, sign, T) is described as follows:

(i) the set G of regulatory components is defined as:
{P53. Mc, My};

(ii) the set I' of regulatory interactions is defined as:
I' = {(p53, Mc), (Mc, Mp), (p53, My), (My, p53)};

(iii) the mapping, sign, from the set I" to the set {—1, 1} is defined
as:
sign((p53, Mc)) =1, sign((Mc, Mp)) =1,
sign((p53, Mp)) = -1, and sign((My. p53)) = —1;

(iv) the set T = {tp53 Mc» EMc. My Ep53,My - EMa,p53) OF sets of thresholds
is defined as:
tpsam. = {2}, tmom, = {1}, tpsam, = {1}, and ty, ps3 = {1}.

To specify a logical regulatory graph, one has to define a regu-
latory graph (G, I', sign, T), and associate to each component g € G:

g=

(i) a multivalued discrete variable X, € [0, max(Xg)] (a Boolean one
if Xg = 1) and;

(ii) a logical rule defining the target value of the component at
each state.

A logical rule can be specified using either a logical function, or
logical parameters. In this work, we choose to specify logical rules
using logical parameters (Snoussi, 1989; Thomas and d’Ari, 1990).
More precisely, to each component is associated a set of logical
parameters, each corresponding to a combination of values of its
regulators (see Table 1 for an example). The value of a logical pa-
rameter defines the target value of the component for the corre-
sponding combination (Thieffry and Romero, 1999; Thomas, 1991).
At each state, the state successor(s) are determined from the target
values of the components and the chosen updating scheme (e.g.,
asynchronous, synchronous), thereby defining the dynamics of the
model. More formally, we define the logical parameters of a com-
ponent g as follows:

Definition 2. Let (G, I', sign, T) be a regulatory graph and g a com-
ponent of G. The set Kg of the logical parameters associated with
g is defined as follows:

Kg = {Kgor | & € Q)

where Qg is the set of all the combinations of values of the regu-
lators of g, defined as follows:

Qg = H {(gl’lg’) | lg’ € {OUtg.g’}}
geRyg

The set V; of the valuations of the logical parameters associated
with a component g is defined as follows:

Vo= [[{Kga, ko) | o € [0, max(Xe)]}
aeQy

For all L € Vg and all (Kgq, lo) €L, Iy will be called the value of the
logical parameter Kgq.
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Table 1

Truth table for the regulators of M, in our case study (Fig. 1), listing the admissible valuations of
the logical parameters of M, (ie. the elements of V,‘f,,") with the corresponding logical functions.
The symbols —, A and v denote the logical operators NOT, AND and OR, respectively.

Truth table
Logical parameters  Regulators Logical functions
p53 M. false -p53AM. -p53 M, -p53vM, true
K, {(553.0),(Mc.0)} 0 0 0 0 1 0 1 1
K, {(p53.0),(Mc, 1)) 0 1 0 1 1 1 1 1
Ky, ((p53.1). (Mc.0)) 1 0 0 0 0 0 0 1
K, ((p53.1),Mc, 1)} 1 1 0 0 0 1 1 1

In Definition 2, a logical parameter Ky € K¢ of component g is
defined by a combination « € 2g of levels Iy € {0 Uty o} of the reg-
ulators g’ of g, where €2 is the set of all these combinations. A val-
uation L € Vg of the set K of the logical parameters of g then spec-
ifies the discrete target level I, € [0, max(Xg)] of g for each context
o€ Qg.

Example 2. Consider our case study (Fig. 1), and let us focus
on component Mp. Its regulators are p53 and M., which interac-
tions on M, are associated with the following sets of thresholds:
tps3m, = {1} and ty m, = {1}. The contexts of regulations of Mp
(i.e. the elements of the set €2),) are thus:

(i) {(p53, 1), (M¢, 0)}, for which p53 level equals its threshold 1,
and M. level is 0;
(ii) {(p53, 1), (M, 1)}, for which both levels of p53 and M. equal
their threshold 1;
(iii) {(p53, 0), (M, 0)}, for which both levels of p53 and M, equal O;
(iv) {(p53, 0), (M, 1)}, for which p53 level is 0, and M, level equals
1

Following Definition 2, the set Ky, of the logical parameters of
My is:

K, = {Ku, {(p53.1). M..0)} Ki {(p53.1). (M. 1))
K, ((53.0).M..001- Knty (53,00, v 1)1}

3.2. Partial order and class of logical models associated to a
regulatory graph

Let us now assume that a regulatory graph has been defined.
To be consistent with this graph, relative values of the logical pa-
rameters of a component should be constrained by the sign of the
incoming interactions. For example, let us focus on the logical pa-
rameters of My of our case study. The value of Ky, ((p53,0),mc,1)) for
which the level of the inhibitor p53 equals to 0 and of the activator
Mc equals to 1 should be higher than the one of Ky, {(ps3,0),Mc,0)}>
KMn.{(P53,1)<(Mc,1)}’ and KMn,{(P53‘1),(Mc.0)}’ for which either the level
of the activator has been decreased or the level of the inhibitor
has been increased. On the contrary, other pairs of logical param-
eters will not be comparable, as for example Ky, ((p53.0),(m..0)) and

Kypss,1(M,,00} K. {(p53,1)}

Kops3,{(M,0, 1)} Kir, {(p53,0)}

(a) (b)

K, {(p53,1),(Mc,1))- We thus see that the sign of the incoming in-
teractions of a component induces a partial order in the set of the
logical parameters associated to this component.

More formally, given a regulatory graph, the set Kg of the logi-
cal parameters of component g can be equipped with a partial or-
der <x defined as follows.

Definition 3. Let (G, I",sign, T) be a regulatory graph. Let g be a
component of G, and Kz the set of the logical parameters associ-
ated with g. We define the partially ordered set (Kg, <) as fol-
lows: let Ky and K, be two elements of Kg where:

a = {(gly lg’)}g’eRg and o’ = {(gjv lé')}g‘eng
with (I, lé,) e{0Uty )2 forall g € Ry.
Then Kz o < Kg o if and only if the following conditions hold:

(i) for all g’ € Rg such that (g',g) e I't, we have: Iy < lé,;
(i) for all g’ € Rq such that (g, g) e I'", we have: [y > lé,.

According to Definition 3, the logical parameter Kgo is smaller
than the logical parameter K, , in the partially ordered set (Kg, <x
) of the logical parameters associated to component g (i.e. Kgo =<k
K, o), if and only if:

(i) the level of each activator of g is lower in « than in ' (condi-

tion (i));

(ii) the level of each inhibitor of g is higher in « than in ' (condi-

tion (ii)).

Of note such a way to structure the set of the logical parame-
ters has been previously considered in Thieffry and Romero (1999).
The elements of a partially ordered set can be graphically repre-
sented by a so-called Hasse diagram (Birkhoff, 1948), where nodes
represent logical parameters and edges represent the partial order
relations. In the Hasse diagram, two logical parameters are said to
be comparable if there exists an all ascending or an all descend-
ing path between the nodes representing these parameters (see
Fig. 2 for an example).

Example 3. Let us consider our case study (Fig. 1). Following
Definition 3, the partially ordered sets (Kps3, <x), (Kum,. =x) and
(K, =x) of the logical parameters are represented in the Hasse
diagrams shown in Fig. 2.

K, 1(953,0),(M.,1)}

N

K, {(953,0),(M,00} B, {(p53,1),(M..,1)}

~N S

Kir, (p53,1),(M.,0)}

(c)

Fig. 2. Hasse diagrams of the partially ordered sets (a) (Kps3, <x). (b) (Kum,, =x), and (c) (Kp,. =), for our case study.



W. Abou-Jaoudé and P.T. Monteiro/Journal of Theoretical Biology 466 (2019) 39-63 43

Let us focus on the logical parameters Ky, o and Ky, o/, associ-
ated to My, for which:

o ={(p53,1), (M.,0)} and o’ = {(p53,0), (M, 1)}.

The level of the activator of My, M, is smaller in « than in o/,
while the level of the inhibitor of My, p53, is higher in « than in
a'. Thus Ky, o and Ky, ., are comparable and we have Ky, o <k
Ky, o'~ However, in the case where:

o= {(p537 0)1 (MCv O)} and a/ = {(p537 1)1 (MC: 1)}1

the levels of the activator M. and the inhibitor p53 are both
smaller in «. Thus Ky, , and Ky, ,+ are not comparable.

Given a regulatory graph, we can then define, from the partial
order <, the set V¢ of the admissible valuations of the logical
parameters associated to a component g as follows.

Definition 4. Let (G, I", sign, T) be a regulatory graph, and g a com-
ponent of G. The set V¢ of the admissible valuations of the logical
parameters of g is the subset of V; defined as follows: let L be an

element of Vg, where:
L= {(Kg,a1 > l]), cee (Kgqu, lqg)}’

and qg is the number of elements of Kg.
Then L is an element of V§ if and only if, for all (j, j/) € [1, qel?
such that Kg,aj <K I(g,aj,, we have:

ljfljr

The condition defining the set V¢ in Definition 4 states that if
a logical parameter K is lower than Kg,a}_,, for the partial order

=k, then its value [; should be lower that the value I} of Kg.aj,. of

note, the set of the admissible valuations of the logical parameters
corresponds to the set of the consistent combinations of logical pa-
rameters as defined in Thieffry and Romero (1999), and also to the
set of monotone (Boolean or multivalued) logical functions, since
a regulator cannot have activator and inhibitor roles on the same
target (we discard dual interactions). Note that such constraints do
not impede non-functional interactions, and hence do not exclude
degenerate logical functions (Crama and Hammer, 2011). The cardi-
nality of the set of all monotone Boolean functions is known as the
Dedekind number (Dedekind, 1897), which follows a double expo-
nential growth closely bound to the set of all Boolean functions
(22", where m is the number of regulators). Studying this set of
functions would quickly become computationally impossible even
for small numbers of m. To circumvent this issue, one can use a
method proposed in Cury et al. (2018) which exploits a partial or-
der of monotone Boolean functions to locally explore neighboring
functions, from a Boolean function of reference.

Example 4. In our case study, let us consider a valuation of the
logical parameters of Mjy:

L = {(Ku,.ps3.1). .01 1) (Kngy tps3.1). ey 12).
(KM,,,{(p53,0).(MC,0)}~ 13), (KMH,{(psa,oy(McJ)}, 14)}-

where the values Iy, I, I3, and 4 equal to 0 or 1. The logical param-
eters of the partially ordered set (K. <x) are ordered as follows:

=i Ky ((p53.1), (M)}
=i Kty {(p53.0), (Mc,0)}>
=K KMn {(p53.0).(Mc. 1)}
=K Ky {(p53,0). (M. 1)}

(see Hasse diagram in Fig. 2(c)). Therefore,
Definition 4, the valuation L is admissible if and only if:

(i) lh <b, (ii) 1 <13, (iii) I, <14, and (iv) I3 <ly.

The set Vﬁ/l of the admissible valuations of the logical parame-
ters of M, is presented in Table 1.

(i) KMn {(p53.1),(Mc,0)}
(i) K, {(p53.1), (Mc,0)}
(iii) K, {(P531)(Mcl)}
(i) Kitn,{(p53.0). (Mc.0}

following

Finally, we define the class of logical models associated with a
regulatory graph as follows.

Definition 5. The class of logical models associated with the reg-
ulatory graph (G, I', sign, T) is the set of logical models satisfying
the following conditions:

(i) their regulatory graph is (g, I', sign, T);
(ii) for all components g; € G, the valuation of the logical parame-
ters associated with g; belongs to Ve,

4. Logical bifurcation diagrams

In this section, we propose a formal definition of the con-
cept of logical bifurcation diagram, introduced in Abou-Jaoudé
et al. (2009) in the logical modeling framework. To introduce the
underlying bifurcation parameters, we take advantage of the piece-
wise linear differential (PWLD) formalism. Indeed:

(i) this semi-quantitative modeling framework is such that it can
be formally linked to logical modeling framework (as we will
see in the following);

(ii) its dynamics depends on continuous parameters (contrary to
logical modeling which parameters are inherently discrete),
which can thus be chosen as bifurcation parameters;

(iii) monotonous and continuous changes of each parameter can be
mapped to sequences of valuations of logical parameters (as we
will see in the following).

A logical bifurcation diagram would then correspond to a se-
quence of valuations of the logical parameters (with their associ-
ated set of attractors) which can be mapped to a change of at least
one bifurcation parameter.

More precisely, we first associate a class PWLD models with a
regulatory graph (G, I', sign, T). Roughly speaking, each component
g; € G is associated with a non-negative variable x; describing the
level of g;, a basal constant g; and a degradation rate d;, while each
interaction (g;, gj)el" of the regulatory graph is associated with a
set of step functions of magnitude kf.]. with | € tg, ¢; (either increas-
ing or decreasing functions depending on the sign of the interac-
tion), the order between the thresholds of the step functions being
consistent with the order between the thresholds of the regula-
tory graph. The differential equation describing the evolution of x;
is built by summing the step functions associated with the incom-
ing interactions on g;. Details about the construction of this class
of models can be found in Appendix A.1.

We then map this class of PWLD models to the class of logical
models associated to (G, I', sign, T). More precisely, the ith coordi-
nates of a so-called focal function (i.e. the elements of the set de-
noted ;) are mapped to the logical parameters of component g;
(ie. the elements of Kg), and a relative position of these ith co-
ordinates with respect to the thresholds (i.e. an element of the set
denoted 7;) is mapped to an admissible valuation of the logical pa-
rameters of g; (i.e. an element of ng ), thereby mapping each model
of the class of PWLD models to a specific model of the correspond-
ing class of logical models. Briefly speaking, the focal function de-
scribes the values towards which the variables x; tend according
to the relative positions of x; with the thresholds. A qualitative de-
scription of the dynamics of a PWLD model, called state transition
graph, can be deduced from the positionings of the coordinates of
the focal function. We show that the image of the state transition
graph of a PWLD model is the asynchronous state transition graph
of the image of the PWLD model by the mapping. Details on the
definition of the pertinent objects to consider in the class of PWLD
models for the mappings (focal function, positioning of the coor-
dinates of the focal function, partial order, state transition graph)
can be found in Appendix A. Details on the mapping between the
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Table 2

Table of correspondence between the class of logical models and the class of PWLD models, associated with a regulatory
graph (G, ', sign, T) where G = {g1, 8, ..., gn} and T = {tg, g} (g.g,)er (Definition 1). |tz ¢;| denotes the number of elements
of the set tg, o;. More details on the definitions related to the class of PWLD models can be found in Appendix A.

Logical models PWLD models
Components {81.82,....&n}
Variables (Xg)1<i<n € [T [0, max(Xg )] (Xi)1<i<n € (RT)"
Thresholds tg.g, € [1, max(Xg)] @), e (Rt
5.5

Interactions / Step functions

Logical parameters/ (Kgy ... Kg,)
Coordinates of the focal function
Valuations of logical parameters/

Positioning of the coordinates (ve....v8)
of the focal function

Partial order in the sets Kg,/ <K

Partial order in the sets F;

Bifurcation parameters /

Dynamics

(gi.8;) €T, sign((gi. ) € {-1,1}

Asynchronous state transition graph

(ssign((g,-gj))('q 91’])) € (Rt {0, ]})\[g,gj\

letg g
(Fi,..., Fn)
(P1,..., Pn)
=F

{kfj}<g‘.gj)e1‘.laglgj, (@)1 <i<n (di)1<i<n
State transition graph

two classes of models, and the link between their dynamics can
be found in Appendix B. A logical bifurcation diagram would then
correspond to a sequence of valuations of the logical parameters
(with their associated set of attractors) consistent with at least one
bifurcation diagram of the class of PWLD models. Of note a given
set of attractors can correspond to distinct valuations of the logical
parameters. Table 2 summarizes the correspondences between the
class of logical models and the class of PWLD models, associated
with a regulatory graph.

Let us now define the type of bifurcation analysis in PWLD
models that we consider in our work. Generally speaking, a bi-
furcation analysis of a differential model is the analysis of the at-
tractors as a function of one (or several) parameters. Here, we re-
strict our study to bifurcation analysis depending on one parame-
ter, called bifurcation parameter, and focus on the attractors of the
state transition graph of a PWLD model. A bifurcation diagram of
a PWLD model then corresponds to the sequence of attractors in
the state transition graph of the system upon monotonous (i.e. in-
creasing or decreasing) and continuous variation of one bifurcation
parameter. Note that the state transition graph depends on the po-
sitioning of the coordinates of the focal function (i.e. on the sets
P;), and not on the precise values of the parameters of the PWLD
model. What matters then is to understand how the positioning
of the coordinates of the focal function varies when changing the
value of the bifurcation parameter. Actually, the evolution of these
positionings is restricted by constraints on the relative positions
between the coordinates of the focal function. Part of these con-
straints can be formalized in the frame of a partial order <» on the
sets of these coordinates (i.e. on the sets 7;) (see Appendix A.4).

More formally, given a component g;, the set Pé’;:’l of the se-
quences of positionings of the ith coordinates of the focal function
upon monotonous and continuous change of a bifurcation parame-
ter is defined as follows.

Definition 6. Let (G, I',sign,T) be a regulatory graph, and let us
consider the class of PWLD models associated with (G, I, sign, T).
Let g; be a component of G, and P; the set of the positionings
of the ith coordinates of the focal function for the class of PWLD
models.
We define the set 735(‘1’;” C Pt as follows: let (Pj)oj<i be an ele-

ment of P* where:

P = {((flﬁﬁ)v l{) ((ququ)» léf)}’

with g =%l ((fi.F).....(fq.Fp)) e Fi. and (1.....1}) e
[0, max(Xg,)]% for all j € [0, k], such that for all j € [0, k — 1], there
exists me [1, q;] satisfying I}, # 1}+1.

Then (P))g<j<k € Pf(}"_’l if and only if there exist:
- 1

(i) a parameter p;;
(ii) a set @? of threshold values of the outgoing interactions of g;;
(iii) a set p\ p? of values of all the parameters except p;;

(iv) two values pﬁ” and p{ i of the parameter p;;
such that, there exists a continuous and monotonous function y
from the set [0, 1] to the set [p';”, p,fi"] satisfying y (0) = pf” and

y(1) =p1fi”, and a subdivision ty <t; < ... <t,_; of [0, 1] such

that:

(i) (h}"([o, tO[))lgmsq,- = (l%)lgmgq,—’

(ii) (hzﬁ(]tf*“tf[))lsmsq,- = (l{ﬂ)]Squi for all integers j between 1
and k-1,

1<m<gq; = (151)151115(1,' ’

(iii) (A" (11, +oel))

where hT" is the function from the set [0, 1] to the set [0, max(Xg,)]
defined, for all integers m between 1 and g, as follows:

[0, 1] — [0, max(Xg,)]
{f = oy (fu(y ©). P\ 10)).

m .
i

0
where aﬂ(;" is a mapping from the set R* to the set [0, max(Xg,)],
defined in Appendix A.2.

Following Definition 6, a sequence (P, Py,...,P,) belongs to
the set Plf;_” if there exists a parameter p; and a continuous and
1

monotonous change of p;, from an initial value pf" to a final value

plf ", such that the evolution of the relative position I, .., I, of the
ith coordinates (fi, Fy), ..., (fq;, Fg;) of the focal function with re-
spect to the thresholds @?, upon the change of p,, is the sequence
(P, Py, ..., B), for all integers j from 1 to k. Note that we discard
sequences containing identical successive valuations of the logical
parameters in the definition of the set Plf;:f'.

Then using the mappings W; introduced in Appendix B, we
can associate to each positioning of the coordinates of the focal
function a valuation of the logical parameters (and thus a logical
model) in the corresponding class of logical models. Given a com-
ponent g;, a logical bifurcation diagram should now be a sequence
of valuations of the logical parameters of g; (with its associated
sets of attractors) which corresponds to at least one bifurcation di-
agram in the corresponding class of PWLD models (i.e. one element
of the set P,fgl). More formally, these sequences of valuations of
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logical parameters are defined by the set Plog of sequences of el-

ements of Vgi, as follows.

Definition 7. Let (G, TI',sign,T) be a regulatory graph, and g; a
component of G.
We define the set le;?fi. < (V)" as follows: (L;)

and only if:
(w71(L)

In Definition 7, the sequence (Lg, Ly, ..., L;) of valuations of the
logical parameters of a component g; belongs to the set P, "g if and
i ](LO), “Iji ](L]), ey
ing of the ith coordinates of the focal function belongs to Plf;’l.

log
0<j<k Phd 1f

pwl
0<j<k € Pbdi :

only if the sequence (W Wl (L)) of position-

The following property holds on the set P'%

b, for all compo-

nents g; of G:

Property 1. Let (G, I, sign, T) be a regulatory graph, and g; a compo-
nent of G. Let (Lj)g<j<k be an element of Pb?ig where, for all integers

j between 0 and k:

L= {(Kgi,aw l{) - (Kg, g, > qg )}

Then, the following condition holds:

(i) either, for all r € [1, qg,] and for all j € [0, k —1]:

P =0or I -1/ =1;

(ii) or, for all r € [1, qg,] and for all j e [0,k —1]:

P =0o0r 1 -1 = -1,

The proof of this property is detailed in Appendix D. In
Property 1, the condition states that the values Il of the logical
parameters K, o, either all increase (statement (i)), or all decrease

(statement (ii)), along a sequence (L;j)gj of the set 7>’°g (which

results from the monotonic variation of the coordinates of the focal
function upon a change of a bifurcation parameter), and that this
change cannot exceed 1 (which results from the continuous vari-
ation of the coordinates of the focal function upon a change of a
bifurcation parameter).

Studying the whole set P’Og would quickly become computa-

tionally intractable even for small numbers of regulators of com-
ponent g;. Instead, starting from a given valuation of the logical
parameters, one could explore the logical bifurcation diagrams of
given length around this valuation, or determine one possible log-
ical bifurcation diagram of maximum length. In the following, we
focus on the determination of one possible logical bifurcation dia-
gram of maximum length.

To do so, we first exploit the constraints imposed by the partial
order <z on the relative position of the coordinates of the focal
function, upon a continuous and monotonous change of a bifurca-
tion parameter, to determine necessary conditions for a sequence
of valuations of the logical parameters of a component g; to belong
to the set Pll?‘;g These constraints can actually be transferred on

the partial order < operating in the sets of the logical parameters
(see Section 3.2), as it is the partial order induced by the mappings
W, from the partial order < (see Appendix B).

The following property provides necessary condltlons, account-

ing for the partial order <, on the elements of Pb‘;g , in the case

where the values of the logical parameters mcrease along a se-
quence (the other case where the values of the logical parameters
decrease can be treated similarly).

Property 2. Let (G, I, sign, T) be a regulatory graph, and g; a compo-
nent of G. Let (Lj)o<j<k be an element of Pl"g where, for all integers

j between 0 and k:
L = {(Kgar ). (Kgagy » 1)),
such that, for all j e [0,k —1] and for all r € [1, qg,], we have l{ <
1

Let, for all m € [0, max(Ug,.gyer tgivg’)]]’ Ké’im be the subset of Kg,
for which, for all j € [0,k —1] and for all r € [1,qg,], Kg;.or € ICé‘im if
and only if lr =m.

Let lci,l_"’ P be the subset of Kg, defined, for all integers m from 0
to max(U(gi’g,)EF tgl.g/) —1, as follows:

KM = {K e Kg | U > 1, 1) =m},

1

and Icé;,”p the union of these sets Ici;’im'”” for all the integers m from 0
to max(Ug, gyer tg,.g) — 1

K" = U

me[[O.max(U(gi‘g,)Er [gi‘g,)—l]]

Jj.m.up
fchmup,

We define the partially ordered sets (Kg,, 5{%), for all integers j be-
tween 0 and k — 1, as follows:

(i) (Kg. =) = (Kgi. <x);
(ii) for all (K,K") ¢ Kg"P, we have:
K=<l K —=K=<"K;

(iii) for all m € [0, max(Ug, ger tg, ) — 11, for all (K.K') € k5™,

we have:
1 j+1
K=< K and K' <7 K;
(iv) for all m € [0, max(U(g, gyer tg,g) — 11, for all K e Ké;,’”*“”, and

for all K’ € ICQ” N icg;}”P, we have:

K' <t K.

Let Mf,, be the set of the maximal elements of the par-
tially ordered set (Icé;,m, 5{6), for all je[0,k—1] and for all me
[0. max(U g, g)er tg.g) — 11 and M/ the union of these sets M{n for
all m e [0, max(U g, ¢)er tg, ) — 11, for all je [0,k —1]:

Mi = U M.
me[[O,max(U(givg%r [g,‘,g’)*l]]

Then, we have, for all integers j from 0 to k —1:

KEP < M.

The proof of this property is detailed in Appendix D. In
Property 2, the partial ordered sets (Kg;, —)c) are defined by induc-
tion on j, starting from the partial order <. After each transition
from the valuation L; to the valuation L; 4 along the sequence, the

partial order <,C is updated to record the new constraints on the
order between the logical parameters appearing after this transi-
tion. The condition of the property imposes that the set K" of
the logical parameters whose value increases from L; to Lj,; has
to belong to the set of the maximal elements M of the partially
ordered sets (kg™ <), for all integers j between 0 and k—1.
The other case where the values of the logical parameters decrease
can be treated similarly by considering the sets of the logical pa-
rameters whose values decrease along a sequence, adapting conse-
quently the inequalities in the updating of the partial orders, and
considering the sets of the minimal elements of the partially or-
dered sets.
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K

9::4(91,0),(92.),(93. )} Koy 1091.1),(02,0), (03,01 Egi {(91.1).(92.1),(93,0)}

Ky, 1(91.0,(92,0.(95.00}  Kgi,{(91,0).(92. 1,095,003  Kgi,{(91,1),(92.0).(93,0)}

Ky, {(91.0),(92.0).(95.0)}

Fig. 3. Hasse diagram of the partially ordered set (’CQ,’ =<x), where }CE{ is the set of
the logical parameters whose value in Lg is 0, in the case of Example 5.

As explained above, Property 2 defines necessary conditions ac-
counting for constraints imposed by the partial order <x but not
sufficient ones, regarding the elements of the set P, | "g . To illustrate

the additional constraints we have to account for, let us consider
the following Example 5.

Example 5. We focus on the case of a regulatory graph which con-
tains a Boolean component g; regulated by three activators g, g,
and g3, which sets of thresholds are tg, g = tg, g; = tg3.q, = {1}.

Let us consider the class of logical models associated to the reg-
ulatory graph. We start from the valuation:

Ly=1{0,0,0,0,0,0,0,1}

of the logical parameters associated to component g;, where the
logical parameters are ordered as follows:

2i-((21.0).(82,0).(g3,0)}»
L ((81.1).(82,0).(85.0))
i) Kg {(g1.0).(2,.1).(83.0))>
V) Kg, ((g1.0).(22.0.(g5.1))
) Ko tg1.1). (82,185,001
( 1) K. {(g,,1).(8,.0). (g5, D)}
vii) K. ¢ )
iii) Kg )

—
UQ/\

i-((€1,0),(g2,1). (g3. D)}

gi-{(g1.1).(g2. 1. (g3. D}

Let Kgi be the set of logical parameters whose value in Ly is

0. The maximal elements of the partially ordered set (/Cgi,flg)
(whose Hasse diagram is shown in Fig. 3) are:

Kg. ((g1.1).(82.1).(85.00)> Kg; ((g1.1).(22.00.(85.1)) and

Ke, ((g1.0).(82. 1. (g5 1))
The set of successors

Property 2, are thus:

of the valuation Ly, authorized by

(i) {0,0,0,0,1,0,0, 1},
(i) {0, 0,0, 0,0, 1, 0, 1},
(iii) {0, 0, 0, 0, 0, 0, 1, 1},
(iv) {0,0,0,0,1,1,0, 1},
(v) {0,0,0,0,1,0, 1,1},
(vi) {0,0,0,0,0,1,1, 1},
(vii) {0,0,0,0, 1, 1, 1, 1}.

Let us choose as a successor of Ly the valuation
={0,0,0,0,1,0,0,1}.

Following Property 2, the partial order <%=<, is updated to the
partial order <}. to account for the additional constraints appearing
with the transition Ly — Ly, that is to say that:

(1) K, {(g1.1).(62.0).(e5. D} =k Kgi.{(21.1).82.1). 3.0
(1) Kg, ((g,.0).(85.1).85.1) Sk Kgl (@1 &2.1).(85.0))

Now let us consider the corresponding constraints between the
ith coordinates of the focal function, via the mapping y; (Appendix
B.1), in the class of PWLD models associated to the regulatory
graph:

(i) k1, + kb, < ki, + ki,

(i) kL, + kL, < kI + K,

holding for all (k},. k1. k1) e (R**)3. It follows after simplification
that the following 1nequallt1es hold, for all (kl,, k}. ki) e (R*)3:

(i) kI, < KL,
(ii) kI, < k1,

that is to say that:

(1) X7 Ky ((21.0.(5.0).(25.DD1(P) < X Ky ((2,.0).22.1). 85,011 (P)
(i) 17 (K

51(21.00.(82.0). (&5 D)1 (P) < X; " (Ko ((g1.1).(85.0).(25.0)))1 (P)
for all values of the parameter vector p, and thus all along
any bifurcation sequence. These last inequalities forbid that
the value K; ((g.0). (g2 0).(gs.1)) increases before the value of
Kg,,{(gl,1>.<g2,0),(g3,0>} Ke,.{(€1.0).(62.1).(85.0)) 2long a sequence of
valuations belonging to P,l)‘;i

It can then be showed tilat there exists, from L;, sequences of

valuations respecting Property 2 but which violate this constraint,
for example sequences containing the following transition:

{0,0,0,0,1,1,1,1} - {0,0,0,1,1,1,1, 1}.

From this example, we see that additional constraints appear
from the fact that the coordinates of the focal function are not in-
dependent. The following property gives a characterization of the
set Pb‘;g , accounting for the dependencies between the coordi-
nates of the focal function, in the case where Xg; is Boolean (i.e.
max(Xg;) = 1) and where the values of the logical parameters in-
crease along a sequence (the other case where the values of the
logical parameters decrease can be treated similarly).

Property 3. Let (G, I, sign, T) be a regulatory graph, and g; a compo-
nent of G. We assume that max(Xg,) = 1 (Boolean case). Let (L;)o <j <
be an element of (vgi)*, where, for all integers j between 0 and k:

Li = { Ko 1D, K - 1,04
such that, the following conditions hold, for all integers j from 0 to
k—1:
(i) for all r € [1,qg], we have I} < 1!, and
(it) i < M,
where the sets icé}“" and M are defined in Property 2.

We define the subset C; of the set (R**)IP7pl=n x (R*)", where
|DFp| denotes the number of all the parameters except the thresholds,
as follows, for all integers j between 0 and k:

(i) peCo, if and only if, for all (r,1") € [1, qg,]? such that I? = 0 and

15 =1, we have:
X Kgo)1(D) < X7 (g )1 (D)

(ii) peG, for all integers j between 1 and k, if and only if:

(a) for all (r,1r') e [[1,qg,.]]2 such that lﬂ’l < I{ and lf, =0, we
have:

Xi ' Kga,)1(P) < X" (Kg.a )1 (P):

(b) for all (1) € [1,qg]? such that ' <1} and lz,’l
have:

Xl'_l (Kgi.ot,)l (p) = X,'_l (Kg;,oz,r )1 (p)Z

and the set C as the intersection between the sets C; for all integers j
between 0 and k:

k
c=[G.
j=0

< lz/, we
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Then, (L j)

0<jck € Pé‘;ii if and only if C # @.

The proof of this property is detailed in Appendix D. In

Property 3, the characterization of the set Pl’)‘c’i relies on the ex-
i

istence of a solution of a system C of equalities and inequali-
ties involving the ith coordinates le] (Kg;.o,) of the focal function.
Roughly speaking, this system gathers the constraints on these co-
ordinates appearing along a sequence (Lg, Ly, ..., L;) which already
satisfies the necessary conditions stated in Property 2, that is to
say that:

- the constraints Cy at the initial valuation Ly (condition (i));
- the constraints C; appearing at each transition (L;_q,L;), for all
integers j from 1 to k (condition (ii));

imposing, at each step j of the sequence, an order between the
lel(Kgl.,a,) which relative positions with the threshold are differ-
ent. Briefly speaking, proof of Property 3 relies on the fact that the
order between the ith coordinates of the focal function which de-
pend on a particular parameter does not change upon a variation
of this parameter (Lemma 1 in Appendix D). The case where the
values of the logical parameters decrease along a sequence can be
treated similarly.

Based on Properties 2 and 3, we propose a procedure to in-
crementally construct a logical bifurcation diagram of maximum
length associated to a component g;, starting from an initial val-
uation of the logical parameters, in the case where max(Xg) =1
(Boolean case). The full procedure is detailed in Appendix E. A
generic Java implementation for the multilevel case, accounting for
the necessary conditions stated in Property 2, is made publicly
available (see section Availability).

The core of the procedure is described in Algorithm 1 which
computes a valid successor L, ; (parentFunc), if it exists, of an

element (Lg,L;,..., L,) of Pll,‘zigg, that is to say that a valua-
i

tion L,y such that (Lo, Ly, -+ Ly, Liy1) € Pll;;i . The main steps of
i
Algorithm 1 are described as follows:

(i) the input depGraph of the algorithm represents the updated
partially ordered set (Kg, 5’,&) accounting for the accumu-
lated constraints on the logical parameters along the sequence
(Lo, Ly, ..., L), whereas the input func represents the valuation
L, of the logical parameters of component g;;

(ii) in line 4, the algorithm iterates over each logical parameter

Ip, discarding those whose value Ip.state already reached their

maximum Ip.max (lines 5 to 7);

in line 8, given a logical parameter Ip, the set of its immedi-

ate parents IpNeighborList in the partially ordered set depGraph

is obtained. If none of the parents equals to the value of Ip in
func (lines 10 to 15) (i.e., Ip belongs to the set of the maximal
elements M), then Ip is added to the list changeLPCand of the
logical parameters whose value can increase (lines 16 to 18). Of

note the computation of the immediate parents/children of a

logical parameter is inspired by the computation of immediate

parents/children of a Boolean function in Cury et al. (2018);

(iv) in line 20, the set of all the combinations of the list
changeLPCand is generated and shuffled (see Algorithm 3 in
Appendix E for more details on the function getCombinations);

(v) in line 21, the algorithm iterates over the combinations of the
list changeLPCand. The first combination which satisfies the fol-
lowing two conditions is selected:

- the logical parameters which are equal in the partially or-
dered set depGraph are picked together in the selected com-
bination IpComb (see Algorithm 3 in Appendix E for more
details on the function isValidLPSet) (lines 22 to 24);

- the selected combination satisfies Property 3 (lines 25 to
27);

(iii

=

Algorithm 1 Computation of a valid neighboring function.

1: function GETVALIDPARENTFUNCTION(depGraph, func)
2: changeLPCand « ¢

3 funcLPs < getLPs(func)

4 for all Ip € funcLPs do

5 if [p.state >= Ip.max then

6: continue

7 end if

8 IpNeighborList < depGraph.getParents(lp)
9: canChange <« true

10: for all [pNeighbor € IpNeighborList do

11: if func.getValueOf(IpNeighbor) == Ip.state then
12: canChange < false

13: break

14: end if

15: end for

16: if canChange then

17: changeLPCand < changeLPCand U Ip
18: end if

19: end for
20: randLPComblList < random(getCombinations(changeLPCand))
21: for all [pComb € randLPCombList do

22: if lisValidLPSet (depGraph, I[pComb) then

23: continue

24: end if

25: if !depGraph.satis fiesProp3(IpComb, funcLPs) then
26: continue

27: end if

28: parentFunc < func.duplicate()

29: for all Ip e I[pComb do

30: parentFunc.increaseLP(lp)

31: end for

32: return parentFunc > Returns a random valid function

33: end for
34: return ¢
35: end function

> There’s no parent function

(vi) finally, the value of each logical parameter of the selected com-
bination is increased to generate the successor parentFunc of
func (lines 29 to 32).

5. Application

We consider our case study of the model of the core of the p53-
Mdm2 network proposed in Abou-Jaoudé et al. (2009), described
in Section 2, and focus on the analysis of the logical bifurcation
diagrams associated with the component M;,, using our methodol-
ogy described in the previous section. Table 1 in Section 3.2 lists
the logical parameters of My, and their admissible valuations in
the class of logical models associated to the regulatory graph
(Fig. 1(a)). For illustration, we selected three logical bifurcation di-
agrams, with distinct sequences of attractors, corresponding to the
three sequences of valuations of the logical parameters indicated in
Fig. 4(a). Correspondence between the classes of logical and PWLD
models associated to the regulatory graph, and examples of PWLD
bifurcation diagrams corresponding to the logical bifurcation ones
are detailed in Appendix C.

In each case, we start from an initial valuation where the val-
ues of all the logical parameters are equal to 1, for which the
model shows the unique stable state 001, and ends at the valua-
tion where all the logical parameters are equal to 0, for which the
model shows the unique stable state 210. Starting from the valua-
tion Ly = {1, 1,1, 1}, the set of the parameters whose value equals
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{1717171}

++++++++++++ I

O’OQ /

(a)

K, {(953,0),(M., 1)}

SN

K, £ (053,1),(Me )M M, {(953,0),(M..,0)}

NS

K My, ,{(p53,1),(M.,0)}

(b)

Fig. 4. (a) Figure representing the three logical bifurcation diagrams associated with M, considered for the bifurcation analysis in Section 5, each represented with
a different color. The diagram in green corresponds to the one shown in Fig. 1(b). Ellipses represent the attractors of the model for the corresponding valuation of
the logical parameters, where the values of the components are ordered as follows: p53, M., M,. The values of the logical parameters of M, are ordered as follows:
(K, {(p53.1),(Me.00} Ko 1(053,1), M. 1)) Kt ((953.0). (Mc.0)1» K {(p53.0, M., 1)} }- The values taken for the logical parameters associated to p53 and M, are indicated in caption of Fig. 1.
(b) Hasse diagram of the partially ordered set (Ky,, <x). The subset of (Ky,, <) indicated in black corresponds to the partial order in the set of the logical parameters
whose value is equal to 1 in the valuation L; = {0, 1, 1, 1}. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

1in Ly is Ky, that is to say that:

{Kut.053.1). 1.0 Kt (p53.1). e 1)) Ko (553,00, .00}
K, {(p53.0).0..1)) }-

Therefore, the set of its minimal elements, ordered by =<y, is
(Ko, ((p53,1), (Mc,0))} (see Fig. 2(c)). Following the necessary condi-
tions stated in Property 2, the only admissible successor of L is
then:

Ly ={0,1,1,1},

for which the value of Ky, ((p53.1),(mc,0)) has been decreased, lead-
ing to the transition Ly — L;, with no updating of the partial or-
der <. Focusing on L;, the set of the minimal elements of the set
of the parameters whose value equals 1 in L, ordered by <, is:

{Kw,. ((p53.1). M. 1)) K, (053.0). .01}

(see Fig. 4(b)). According to Property 2, there are now 3 admissible
Successors:

(i) I, = {0,0,1,1}, (ii) L3 = {0, 1,0, 1} and (iii) Ly = {0,0,0, 1},
corresponding to the following 3 possible subsets of the set of the
minimal elements:

(1) (Ko, {(p53.1), (e, 19} (1) {Kty, ((p53,0), (M09} and

(i) {Kngy, (53,1, (Me. 1)} K, ((p53.0). (M. 00}
respectively, leading to the corresponding transitions, with the fol-
lowing updating of the partial order <y:

(1) Kyt ((p53,1), e, 13} <K Knty (953,00, M. 00)-
(1) Kugy {(53.0).Mc.00) <K Ko, ((p53.1). (M. 1))
(i) Kty ((p53.1).Me. 1)) = Knay (953,00, M0+

respectively. In L, (resp. L3), the set of the minimal elements of
the set of the parameters whose value equals to 1, ordered by the
updated partial order, is Ky, ((ps3,0), M0y} (1€SP- Kty (p53.1), (Mc, 1)}
leading to the transition L, — L4 (resp. L3 —> L4), with no up-
dating of <. Finally, the only successor of L, is {0, O, 0, 0}, as
there is only one parameter whose value equals to 1 in L4. It can
then be checked that each of these sequences of valuations re-
spects Property 3, thereby proving that these sequences are logical
bifurcation diagrams.

Focusing on the attractors shown in the bifurcation diagram
in green in Fig. 4(a), the system is characterized by a cyclic at-
tractor, with high amplitude oscillations of p53, for the valuation
L, ={0,0,1,1} of the logical parameters. In contrast, in the dia-
gram displayed in red, the system shows instead a bistable behav-
ior, with the coexistence of two stable states (001 and 210), for
the valuation L; = {0, 1,0, 1}. Finally, in the sequence displayed in
blue, the system jumps from a monostable behavior to another
one, without showing any oscillatory or bistable behavior. As an
example, the state transition graphs representing the dynamics
corresponding to the sequence showing bistability are described in
Fig. 9 in Appendix C.

6. Conclusion

We have proposed a formalization of the concept of logi-
cal bifurcation diagrams, an analog of ODE bifurcation diagrams
for the logical modeling framework, introduced in Abou-Jaoudé
et al. (2009). Moreover, necessary conditions on a sequence of log-
ical parameters valuations to be a logical bifurcation diagrams in
the general case, as well as a characterization of these diagrams in
the Boolean case, exploiting a partial order between the logical pa-
rameters, are provided. We have also designed a procedure to de-
termine one logical bifurcation diagram of maximum length, start-
ing from an initial valuation of the logical parameters, in the case
where the component is Boolean. We have illustrated our method-
ology to the bifurcation analysis of a model of the core network
of the p53-Mdm2 network proposed in Abou-Jaoudé et al. (2009),
focusing on the case where p53 first activates nuclear Mdm2. No-
tably, this analysis allowed to recover the two bifurcation diagrams
described in Abou-Jaoudé et al. (2009), one showing a bistable be-
havior, the other displaying an oscillatory regime. Interestingly, our
study shows that an additional bifurcation diagram can occur, in
which none of these behaviors appears.

It is worth recalling that Property 3 only applies to the case
where the component of a logical bifurcation diagram is Boolean.
To cope with this limitation, we plan to generalize this property
characterizing logical bifurcation diagrams to the multilevel case.
Moreover, details on how to implement Property 3 in the designed
procedure is still lacking. This property relies on the existence of
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a solution of a system of equalities and inequalities. One could
for example, adapt the Fourier-Motzkin algorithm to this specific
problem in order to determine whether a solution of such system
exists (Kroening and Strichman, 2008). Apart from the determina-
tion of one logical bifurcation diagram of maximum length, our
methodology could be also used to explore logical bifurcation di-
agrams of a given length around an initial valuation of the logical
parameters, thereby providing a rational way to assess the sensi-
tivity of an attractor to parameter changes. Another prospect of
this work would be to extend the proposed definition of logical
bifurcation diagrams to changes of more than one bifurcation pa-
rameter in the corresponding class of PWLD models, for example
by adapting the approach described in Cummins et al. (2018) to
our methodology. Finally, it is known that the functionality of
circuits plays a crucial role in the dynamics of regulatory net-
works (Comet et al., 2013). A future prospect would be to use our
methodology to study the functionality of a circuit along logical
bifurcation diagrams.
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Appendix A. Piecewise linear differential models
Al. Class of PWLD models associated with a regulatory graph

Here, we associate a class of piecewise linear differential
(PWLD) models to a regulatory graph.

Definition 8. Let (G, I",sign, T) be a regulatory graph, as intro-
duced in Definition 1. We proceed as follows to define a class of
PWLD models associated with (G, I', sign, T):

(i) for all integers i from 1 to n, we associate to each component
gieg:

- a non-negative real variable x; € R*. This variable denotes
the level of the component g; in the PWLD models;
- a positive real degradation constant d; € R**;
- a non-negative real production constant ag; € R*.
We denote by x the vector of variables (xq,...,Xn).
(ii) To each regulatory interaction (g;, g)eI', we associate a set of
step functions defined, for all integers [ in tg; g;, as follows:

{s(x,-, L) =0, ifx <6,

s(x, 0) = kij, ifx; > 6},

if sign((g;.g;)) =1 or:

{s(xi, o) =k, ifx <6,
s(xi.05) =0, ifx >0},

if sign((g;. g;)) = —1, where, the kﬁj and the 9,'1]' are positive real
constants, such that, for all ((g;, g;), (8;.8j)) € I' x I and for all
(1) e tg g, x tgg; the following constraints hold:
. 1 l/
- if I</, then 91,], < 9,.].,,
- if I> I, then 01.’. > 6l
j i)
- if I=1, then 6, = 6],
kgj and 9,.’]. will be called the kinetic rate and the threshold of
the associated step function, respectively.

(iii) The evolution of the class of PWLD models associated with
(G, T, sign, T) is described by the following system of piecewise
linear differential equations:

dx;
R O M
where:

f=a+ Y > sx.00.

ngRg,' lEtgj.g,-
for all integers i from 1 to n.

We denote by DF ) the set of all the parameters except the thresh-
olds, that is to say that:

D]:p = {kl ai, d,‘ | Vie [[1, n]],V(gj,gi) el'\Vle tgj“gi}.

ji?

Note that the step functions are not defined at the thresholds
(ie. for x; = Qi’j) (statement (ii) in Definition 8). Moreover, we opted
here for summing the step functions in the differential system
describing the evolution of the class of PWLD models (statement
(iii) in Definition 8). Such a way to define a class of PWLD mod-
els associated to a regulatory graph has also been considered in
Cummins et al. (2018).

Example 6. To illustrate Definition 8, let us consider our case
study described in Section 2. Following this definition, the evolu-
tion of the class of PWLD models associated with the regulatory
graph of our case study (Fig. 1) is described by the following piece-
wise linear differential equations:

dx

T; =0y + k3 -s(x3.05) —di -xg

dx

g =0tk s(1.0%) —da - xo

dx

(Ts = a3 +kly - s(x2,0)) + ki -s(x1,0%) —d3 - x3

where X1, X, and x5 denote the variables associated to the compo-
nents p53, Mc and M, respectively, and 0}, < 62, according to the
constraints on the definition of the thresholds.
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A2. Mapping of values and states

We introduce the following mapping between the set non-
negative real numbers and a finite set of integers.

Definition 9. Let p be an integer >1, and © = {6;};.;-, be a set
of distinct positive real numbers, ranked by increasing order, i.e.
01 <0 < ... <0p. We define the mapping of values aﬂ? from the
set R to the set [0, p] as follows.

«© - IR = [0.p]
R Vx> min{{pul{ke[0,p—1].x < Gr1}}

In this mapping, we partition the set of non-negative real num-
bers into intervals (delimited by the set ®), and then map each
interval to an integer: the interval [0, 6] is mapped to 0, the inter-
val [0y, 6y,1[ is mapped to k, for k from 1 to p— 1, and the interval
[0p, +o0] to p.

From the mapping defined above, we introduce the mapping
a® between the set of states (R*)" and a finite set of integer vec-
tors as follows.

Definition 10. Let (p;); ;< be a vector of integers >1. Let ® =
{®i}1<i<n be a set of sets of distinct positive real numbers, ranked
by increasing order. We define the following mapping of states a®
between the set (R*)" and the set [][O0, p;] as follows:

4@ - [ @)™ = TIL[0. pil
S G rzien > (@ (X1, 2 (x0)).

In this mapping, we partition the state space (R™)" into a set
of domains delimited by ®, and then map each domain to a vector
. . . Q; .
of integers by applying the mappings of values o' coordinate by
coordinate.

A3. Focal function and state transition graph

We now introduce the focal function of a class of PWLD models
associated with a regulatory graph.

Definition 11. Let (G, I, sign, T) be a regulatory graph. Let us con-
sider the class of PWLD models associated with (G, I', sign, T).
For all ie[1, n], let ®; = {e}i}gjeng..lerg.g. be the set of thresh-
1 ]l
olds of the step functions associated to the incoming interactions
to g;.

The focal function ® of the class of PWLD models is a function
from the subset of states []i;(R*,©;) to the set of vectors of
functions

((®=H)IPFpl=n 5 (RT)M — R+)n, defined as follows:

l_[?:l R*/0;) - ((R*"’)‘D]‘-p‘—” x (RY)" — R+)”

) I
@ Qi+ ger,, Zlergj,gi s(x;, 0;;)
X~ |p— a ,
i

1<i<n

where p= ((K)) g, g))cr 1e o+ (@)1zizn: @)1zizn) and [DFy| is
the number of elements of DFp.

Note that, in Definition 11, we discard the cases where the
value of a variable x; is at a threshold since the step func-
tions are not defined at their threshold. The image of xy by
the focal function, ®(xg), is a vector of functions defined from
the space of parameters (R*T)PFpl-"x (RT)" to the set RT.
Actually, ®(xg) defines the point towards which the system
tends monotonically, starting from point X, for each vector p® =

0 .
((kfi )(gi’gj)el",letgigj, (d)1<i<n. (a?)ls,-sn) of parameter values. It is
obtained by solving the system of Eq. (1) at the stationary states

with the initial conditions X, i.e. by solving the following equa-
tions, for all integers i between 1 and n, considering the initial
condition xg:

dXi

ik

which, from Eq. (1), straightforwardly leads to:

0 I
4 + XLger,, Zletgj_gis(xoj’gji)
o ,
d;
for all integers i between 1 and n.
Focusing on the ith coordinate of ®, we see that ®;(x) only de-

pends on the relative positions of the jth coordinates of x such that

gj € Ryg;, with respect to the set of thresholds {Q}i}letgj,g,v' More pre-

cisely, we can explicit ®;(x) for all x € [T, (RT),/®; as follows:

D;(x0) (p°) =

ai + Z(gpgi)d“' Zlergj.g,-m[“vlji]] kil
&) =(pr -
i

1
Z(gj,gi)eF* Zletgj_gin[[lj,»+1,max(rgl,gi)]] kji
+ d s
i

(2)

where for all i€ [1, n] and for all g; € Rg,, I; is defined as follows:
L =max{0 U {l € tg g, 0}; < x;}},

which can also be expressed as follows:

i = max([0. i ()] N {0 Uty ¢ }).

where ©; = {6! and the mappings ag" have been in-

]i}ngRg,-»’Efgj»g,'
troduced in Definition 9.
Let us now consider the set of all the functions the ith coordi-
nate of the focal function can take, that is to say that the set of the
functions ®;(x) for all x € [TL; (R* /©)).
Before, let us introduce, for all integers i between 1 and n, the
mapping B from the set ngGRgi{O u tgj,gi} to the set of subsets of

[Tioq (R /Oy, defined as follows:

Bi: {ng,eRgi{O Uty g} - ATkt (RT/0y))
I~ {xe ®")", yi(x) =1}.

where y! is a mapping from the set [[{_;(R*/®,) to the set
]'[gjeRg‘ {0Utg; g}, defined as follows:

0 [Ti—1 RT/©y) — ngsggi{o Uty g}
VoY () icien > (max(10, o ()] N {0 Ut 4.}))

gstgi'

In the mapping y;, we partition the state space (R™)" in a set
of subspaces delimited by the set ®; of thresholds and then map
each of these subspaces (from which we discard the thresholds) to
an integer point of the set ngeng_ {ou tgj,gi} representing the rel-

1

ative positions of the jth coordinates of x for which g; € Rg;, with

respect to the thresholds {G}i},etg,g,. Inversely, the mapping 8; as-
j Sl

sociates to each integer vector of the set ngERgi {0Utg; g} the cor-
responding subspace as described above.

We can now define the sets F; of the functions the ith coordi-
nate of the focal function & can take, for all integers i between 1
and n, using the mappings defined above, as follows.

Definition 12. Let (G, I',sign, T) be a regulatory graph, and let us
consider its associated class of PWLD models. Let g; be a compo-
nent of G.

We define the set F; as follows: (x,y) € F; if and only if there
exists a vector of integers I = (lji)g;ery, € ]‘[gjeﬁgi{Outgj,gi} such
that:
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(i) x=®;(B(1)) and,
(i) y = {(gj. Lji) Ygjery, -

Following Definition 12, each element of the set F; is a couple

(‘:Di(ﬁi((lji)gje’/zgi)), {(g;. lji)}gje’Rgi) which:

(i) first coordinate is the function &; takes in the subspace of
states ﬂi((lji)gjeﬁgi):

(ii) second coordinate records the corresponding set of positioning
li; of x;, for all the regulators g; of g;.

The following property holds on the sets F;:

Property 4. Let ie[1, n]. Then, for all ((f.F).(f.F))eF2, we
have:

F=F < f=f.
Proof. Let ic[1, n], and (f, F) and (f, F') two elements of the set F;
where:
- f=®i(B'D), F={(gj j)}gjers,- and

- = (). F = {(g). U)))gjemy, -

Assume that F#F. Then, [#I'. Moreover, by definition of the
focal function and of B!, we have:
ai + Z(g;wgi)el“ Zretgj-giﬂ[[l-’ji]] kgi

d;

P;(B1(1) =(P—>

r

Z(gfg,-)s[‘* Zretgj,gin[[lj,-+1.max(tgj_gi)]] kji )

+ )
d;

and:

. T
A+ 2 (g,.g)er+ ngrgj_gim[[l.t}i]] K
d;

P;(B(1") =(P—>

.

D (g g)el- Zretgj,gim[[tglﬂ.max(tgj.gp]] K’

+ d .
1

Since k;i 0 for all , j, i (statement (ii) in Definition 8) and (I,1')
(ngevz,ﬂ{OUfgj,gi})z’ it follows that ®;(Bi(l)) ®;(Bi(I')), that is to
say that:

f#f.

Assume now that F = F’. Then, I =!, and thus Bi(l) = Bi(l'),
that is to say that:

f=r.
which ends the proof. O

Example 7. For illustration, let us consider the class of PWLD
models associated with the regulatory graph of our case study
(Fig. 1). Following Definition 12, the sets F;, 7, and F3 (corre-
sponding to the components p53, M. and M, respectively) are:
Fi=1{f, 2},
F={f1. f}.
]_—3 _ {f// 1 1 //}

= sJ2s 035047

where:
fi= (P G- (1)),
Kl
f= (pw T 31,{<Mn,o>}),

f= (p» Z—j,{(pss,on),
k2
f= (p'—> % :;2 2, {(p53,1)}),

and
a
i = (P G (053.1). (M. 0)})
as + kl
2//: D 3d3 237{(p5311)7(MC’1)} ’
11 a3+k}3

3 = p'—> d3 7{(p5370)ﬂ (MCsO)} )

1
as + ki

+ Kl
)= (P — TB {(p53,0), (M, 1)})~

We next define the sets P; of the positionings of the ith coordi-
nates of the focal function, for all integers i between 1 and n.

Definition 13. Let (G, I, sign, T) be a regulatory graph, and let us
consider its associated class of PWLD models. Let g; be a compo-
nent of G, ®; the set of thresholds of the outgoing interactions
from g;, ranked by increasing order, and F; = {(fj, Fj)}1<j<q,, Where
qi = | Fil.

We define the set P; as follows:

{(xj.yDh<j<q € Pi
if and only if there exists a value p® e (R*+)IPFpl=1 x (R+)" of the
parameter vector such that, for all je[1, g;], we have:
(1) x; = (f;, F) and,
(i) yj = o (£;(P%).

In Definition 13, each

((fijj),Olg"(fj(po)D which:

(i) first element (f;, F;) is a ith coordinate of the focal function;

(ii) second element oeﬂ(g" (fj(po)) is the relative position of this co-
ordinate with respect to the thresholds ®; of the outgoing in-
teractions from g;, for the parameter value p°.

element of P; is a couple

Example 8. For illustration, let us consider the class of PWLD
models associated to the regulatory graph our case study (Fig. 1).
Following Definition 13, the sets P;, P, and P3 of positioning of
the coordinates of the focal function are:

P ={{(f1.0). (2. 0)}. {(f1.0). (. D}. {(f1.0). (2. 2)},
{(fi. D, (2. DY D, (2.2} {(f1.2). (2. D},

P2 ={{(£1.0). (5. O} {(F.0). (5. DA . (. D}}.

Ps ={{(f1.0). (f3.0), (f5. 0). (f4, O)},
{(f1.0), (f7.0). (f5,0), (fy. D},
{(f1.0), (f7. D, (f5.0), (ff, D}
{(f1,0), (f7,0), (f5, D, (ff, D},
{(f1,0), (5, D), (f5, D, (ff, D},
{0, (7D, (5, D, (ff, DL
where f1, fo, f1. f3. fi'. f5. fi. and f; are defined in Example 7.
From the positionings of the coordinates of the focal function
(that is to say that, given an element of P;, for all integers i be-
tween 1 and n), one can build a qualitative representation of the

dynamics of a PWLD model, called a state transition graph (Glass
and Pasternack, 1978; Gouzé and Sari, 2002). In this graph, the
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nodes represent the domains of the space state delimited by the
thresholds of the step functions while the directed edges denote
the possible transitions of the trajectories from a domain to the ad-
jacent ones. More formally, a state transition graph 76 of a PWLD
model can be defined as follows.

Definition 14. Let (G, I',sign, T) be a regulatory graph and let us
consider the associated class of PWLD models.
Let ® = {@)i}]sisnv with O wzﬂ(g,gj)el"letgg B be a set of

threshold values and p° e (R*H)IP7pl=" x (R*)" a vector of param-
eter values, thus defining a PWLD model of the considered class.
Let D be the set of subspaces of (R*)" delimited by ®, from
which we discard the threshold values.
The state transition graph 7G associated with a PWLD model is
a couple (V, T), defined as follows:

(i) v=n;
(ii) 7 is a set of subsets of D x D defined as follows. Let D and D’
be two domains of D, then:
- if D and D’ are not adjacent, then (D,D’) ¢ T;
- if D and D’ are adjacent, let i®<[1, n], j°<[1, n] and I° €
tgl_(],gj0 be three integers such that the hyperplane of equa-

tion:

Xiﬂ = 9110010’
is the hyperplane separating D and D’.
Let m be the element of ngeﬂgio {0Utg; g4} such that:

D c B*(m).

Then:
(i) if @ (D)o < @@ (D)0, then (D,D’) € T if and only if:

2 (@ (B” (M) (P)) = o5 (B,
(i) if @2 (D)o > a® (D), then (D,D’) € T if and only if:

2 (@ (B" (M) (PV) < 0" (B o).

In Definition 14, on can check that a state transition graph does
not depend on the precise value of the parameters but on the posi-
tioning of the coordinates of the focal function, that is to say that,
an element of the set [], P; completely defines a state transition
graph. The reader can refer to Glass and Pasternack (1978) and
Gouzé and Sari (2002) for more details regarding state transition
graphs of PWLD models.

Example 9. To illustrate Definition 14, let us consider the class
of PWLD models associated with the regulatory graph of our case
study (Fig. 1). We focus on the model of this class defined by the
following positionings Py € P1, P, € P, and P; € P3 of the coordi-
nates of the focal function:

={(flv 0)7 (va 2)}5
P, ={(f1.0). (f3. D},
={(f1.0), (f5,0). (ff. 1), (ff. D},

where f1, fo, f1. f3. f{. fy. f. and f} are defined in Example 7.
Let 7G = (V,T) be the state transition graph of this model.
Then, following Definition 14, the set of vertexes V is:

V= {DOOO’ D001’ DO]O, DO]], D]OO, le, DHO,
D]l] DZOO D201 DZlO DZH}

where:

D0 = {x | 0 <x <913, O<x2<923, O<x3<931}

001

At ol bl e e [}

DO = {x | O<xl <913’ x2>923’ X >5 11, !

D10 — {x | 6] <lx <l?é? 2O<)2<3’<39 (3)]<x < 6L}

D101 = {x | 4913<xl <912, O<x2<0237 X >5 11 317

DO — {x | 9113 < X1 < 91227 Xy > 51 83; x3 < 9311}

pm _{X | 913<X1 <912’ X2>9237 X_>5 11, o

D20 _ (x| xy o 02, 0 2y < 0100 = x5 2 61 1.

D20t _ X | X1 >9]2, 0 <X2 <023, Xé < Uz

o {x | x> i _x21< )3s X3 > %1}
={x|x1>07%, x>0, 0<x3 <05},

DM = {x | x1 > 0%,, xo >0}, x3 > 01},

and the set of transitions 7 is:

T = {(D°%°, p100),

(D000, 00Ty (D100 [)200) (200 [)210) (po10 pi1oy

(D010, pOI1y (pOI10, po00y (D110 210y (10l [ooty (1ol 100y
(D201, 211y (D201 200y (D201 pioly (poil pooty (plil poity
(D', p110) (p'1 pioty (p211 piity (p211 p210y},

Fig. 6(a) shows the state transition graph of the considered PWLD
model.

A4. Partial order

We now equip the sets F; of the ith coordinates of the focal
function with the partial order <, for all integers i between 1
and n, defined as follows.

Definition 15. Let (G, I", sign, T) be a regulatory graph and let us
consider its associated class of PWLD models. Let g; be a compo-
nent of G.

We define the partially ordered set (F;, <x) as follows: let (f, F)
and (f, F') be two elements of F;.

Then, (f,F) <7 (f’,F’) if and only if, for all vectors of parame-
ter values p° € (R*M)IP7pl=1 x (R*)", we have:
F°) < £ (0.

This partial order can be defined from the signs of the incoming
interactions of a component g; according to the following property.

Property 5. Let g; be a component of G, and (f, F) and (f, F) two
elements of F; where:

F={(gj. liD}gery, -
and:

= {(gja l_;i)}ngRgi'
Then, (f,F) <# (f', F’) if and only if the following conditions hold:
(i) for all j € [1,|Rg]|] such that (g;,&;) € I't, we have: l;; < l}i, and;
(ii) for all j € [1,|Rg|] such that (g;,g;) € I'~, we have: l;; > l},..

Proof. Let i< [1, n], and let (f, F) and (f, F') be two elements of F;
where:

F={(gj. liD}gery,-

and:

F' = {(g). i) }gjer, -

Let us first prove the necessary condition of the property. Assume
that (f,F) < (f’,F’). Then, by Definition 15, we have, for all vec-
tors of parameter values p® e (R*+)/PFpl=n x (RT)":

f°) < F(0°). (3)
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It follows, from the expression of f and f as a function of the pa-
rameters (see Eq. (2) in Section A.3), that the following condition
holds, for all p? e (R*+)PFpl-1 » (R)":

di(f(°) - £ (%)

S CEIP N SR TED DR S

(8.8 €T+ ety ,N[1,15] (8).81) €T~ ety g N[Lji+1,max(ty, g))]

o+ © ¥

(gj.g1)el letg; g N[1.1]

kb'i + Z Z klji

(gj.8)el~ letgj_gim[[l}iﬂ,max(tgjvgi)]]

= ) Y. Ki— X K

(gj.g)el't lEtgj‘gimll],l][]] Ieth gxﬁ[[] I |

> SRR S

(gj.g)el'~ Ietgj,glm[[lﬁﬂ,max(tgj_gi)]] letg] g ﬂ[[l’ +1, max(tg Il

<0.
(4)

Now let jO € [1, |Rg]]. By tending ks.l. to O for all j#j°, we get:

(1)
]
Z k1°1 - Z k]”l =

letg o 5N [1.0;] letg o 5,0[1.1]

if (8j0.8) € I'*t, and:
(i)

kﬂx Z kljoi < 0,

letgjo & m[[lj0i+14max(tgj0 &)l letgjo &N [[l}’_ol_+1 ,max(tgjo &)l

if (gjo.8) el
It thus follows, from the previous inequalities, that:
(1) lyo; < l}o,w ?f (8j0.8) e I'F,
(ii) lei > I}Oi, if (gjo,g,-) el
which ends the proof of the necessary condition.
Let us now prove the sufficient condition of the property. As-
sume that:
(i) for all j e [1,|Rgl] such that (gj,g) e I'*, we have: [;; < l}i,
and;
(ii) for all j € [1, |Rg|] such that (g;,g) € I'~, we have: l;j <l
Then, it follows that the inequality in Eq. (4) is satisfied, for all
pY e (R*)IPFpl-n x (R+)", which implies that:
f%) < £ (0%, (5)
for all p© e (R*+)IPFpl=1 x (R+)", that is to say that:
(f.F) = (f,F),
which ends the proof of the sufficient condition of the property,
and thus also the proof of the property. O

The partial order <r imposes constraints on the relative posi-
tions between the coordinates of the focal function. The following
property gives necessary conditions on the sets P; of the position-
ings of the coordinates of the focal function, imposed by the partial

order <r.
Property 6. Let i<[1, n], and F; = {(f;, F)}1<i<q,» With q; = |F|. Let

P be an element of the set ]‘[ " ((fi-F) x N) where:
= {((f]’F1)v l])s ] ((fq,-s Fqi)’ lq.-)}.

1 1
athiathyy K, {(p53,0).(M..1)}
| / \
“3;]“2? ”“fﬂ Ko, ((p53.1).(0.,1)y B0, {(953,0),(M.,0)}
3 3

NS

o Ko, ((p53.1),(0.,0)}

(a) (b)
Fig. 5. Hasse diagrams of the partially ordered set (F3, <) (a), and (Ky,. <x) (b),
in the case of Example 1. The Hasse diagrams of (Ky,, <x) and (F3, <) are linked
by the mapping x3 (Property 7). For sake of clarity, we omitted the levels of the

regulators associated to the coordinates of the focal function in the writing of the
elements of 7.

Assume that P € P;. Then the following condition holds, for all (k,
K)e[o, q;]?:
(fio B) =7 (f, Be) = L < I

Proof. We take the same notations as in the statement of
Property 6.

Let ie[1, n], ®; the set of the thresholds of the step functions
for the outgoing interactions of g;, and P an element of the set
]'[?;((f,-, E) x N) where:

P={((fi,F).h), ..., ((fg Fg). lg)}-
Assume that P is an element of 7;, and let k and k’ be two integers
of [0, g;]-

Now assume that (fy,F,) <7 (fi.Fs). Then, according to
Definition 15, the following condition holds, for all vectors of pa-
rameter values p® e (R*+)PFpl=n » (R+)1:
fie(0®) < fie ().

It follows, by definition of the mapping ozg", that, for all p° e
(R*H)IPFpl=n » (RT)", we have:

ag (filp®) = g (fi (09)).

that is to say that:

lk =< lk’;

by definition of the set P; (Definition 13), which ends the proof. O
Example 10. To illustrate the partial order < introduced above,
let us consider the class of PWLD models associated to the reg-
ulatory graph of our case study (Fig. 1). Fig. 5(a) shows the Hasse

diagram representing the partially ordered set (F3, <x), associated
to component My, following Definition 15.

Appendix B. From PWLD models to logical models
B1. Mapping between PWLD and logical models

Let (G, T",sign, T) be a regulatory graph. Let us consider its as-
sociated classes of logical models and PWLD models (as defined in
Section 3.2 and Appendix A.1). We define the mapping x; between
the set F; of the ith coordinates of the focal function and the set
Kg, of the logical parameters of component g;, for all integers i be-
tween 1 and n, as follows.

Definition 16. Let i< [1, n]. We define the mapping x; between
the set 7; and the set Kg, as follows:

Fi — Ky,
(f.F) '_)KgF

Let us check that y; is well defined, that is to say that:
Xi(Fi) € K.
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Let K € x;(F;). Then, there exists (f,F) e F; such that K =K r.
By definition of 7;, there exists (Iji)g;er,, € ngjgngl_{o Utg; g}, such
that F = {(gj,lﬁ)}gjeggi. It follows, from Definition 2, that Fe,
which implies that K = Kg, r € Kg;.

The following property holds:

Property 7. Let i< [1, n]. Then,

(i) x; defines a bijection between the sets F; and Kg,,
(ii) let (Kg;, <) be the partially ordered set defined as follows: for all
(K.K') € Kg; x Kg;, K=K if and only if:

X,'_1 (K) =rF X,'_l (K/)
Then we have:
(Kg» =) = (Kg;, =x0)-

Proof. We take the same notations as in the statement of
Property 7.

Let i [1, n]. Let us prove statement (i), by first showing that y;
is injective. Let (f, F) and (f, F') be two elements of F;, such that:

xi(f.F) = xi(f", F').
Then, Kg, :Kgi‘p, and thus F = F’. It follows, from Property 4,
that f = f’. Therefore, x; is injective.

Moreover we have | F;| = | ]‘[ngRg'_{O U tgj.gi}| =
bijective.

Let us now prove statement (ii). Let Kg r and Kq. be two el-
ements of Kg,, and (f, F) and (f, F') the antecedents of K, ¢ and
Ky, 7. respectively, by x;. By definition of the partial order <, the
following inequality:

|Kg;|. Thus, x; is

Ke.r < Kg.
is equivalent to the following one:

(fF) =5 (f'.F),

which, from Property 5 and Definition 3, is equivalent to the fol-
lowing inequality:

Kg,v‘F =k Kgi.F/,
which ends the proof. O

Property 7(ii) states that the partial order < in the set Kg, in-
duced by the mapping x; from the partial order < in the set F;,
is the partial order < in the set K, introduced in Definition 3.

We next define the mapping W; between the set P; of the po-
sitionings of the ith coordinates of the focal function, and the set
Ve, of the admissible valuations of the logical parameters of com-
ponent g;, for all integers i between 1 and n, as follows.

Definition 17. Let i< [1, n]. We define the mapping W; between
the set P; and the set Vg, as follows:

‘-I’~ . 'P,‘ d Vgi
. {((fJFJ) lj)}lsjsq,- = {(Xi((fj’Fj)),lj)}lfiji

where g; = | .

In Definition 17, the mappings W; associate each model of the
class of PWLD models (i.e. each element of the set P;) to a specific
model of the class of logical models (i.e. an element of the set ng)'
It is the logical model which value of the logical parameter Kgi~Fj is
the positioning [; of the corresponding ith coordinate (f;, F;) of the
focal function, for all integers i€ [1, n] and je[1, gq;]. Note that W;
does not define a bijection.

Let us check that W; is well defined, that is to say that:

i(Pi) € Vg,

Let Le W;(P;). Then, by definition of yx; there exists

{((fj-F). 1j)hzj=q; € Pi such that:
L={(x((fi- ). i) h<j=q

= {(Keur ) hjzr
Now let (Kg ;. Kg R) € Kg; x Kg;. and assume that Kg r, < Kg, -
From Property 7(ii), it follows that: (fj,F) <7 (fk,F). From
Property 6, we then have: [; <.

We have thus shown that for all (K r,.Kg ) € Kg x Kg;. if
Kgi’pj =k Kg, F,, then [; <1}, that is to say that:

Le vy,
by definition of ng (Definition 4).

Example 11. To illustrate the mappings yx; introduced in
Definition 16, let us consider our case study (Fig. 1). Follow-
ing Definition 16, the mappings xi, x» and x3 between the
sets 71 and Kps3, 7> and Ky, and F3 and Ky, respectively, are
defined as follows:

x1(fi) =K

p53.{(My. 1)}
X1(f2) = Kis3 (m,.00)

x2(f1) = Ku.((ps3.0)-
x2(f3) = K (ps3. -
and:

3(f1) = Ku (0531, (M0}

x3(f5) = Ku,{(p53,1), M. 1))
X3(f5) = K, 1p53.0).(M..0))-
x3(f4) = Kty {(053.0). (M. 1))

where f1, fo, f1. f3. f{/. f5. f{. and f} are defined in Example 7.
Fig. 5(b) shows the Hasse dlagram of the partially ordered set
(Km,. =x). induced by the mapping x 3.

Example 12. To illustrate the mappings W¥; introduced in
Definition 17, let us consider our case study (Fig. 1). Let us focus,
as an example, on the component M,. Following Definition 17, the
mapping W, between the sets P, and Vi 1s defined as follows:

W, ({(f1.0), (3. 00D = {Ku 1(p53.001- 0)» K {(p53.1)1- 0}
Lpz({(fll7 O)a (f2/7 1)}) = {(KMC,{(pSlO)}’ O)? (I<MC,{(p53.1)}’ 1)}’
W ({(f1. D, (5. D = {Eyu. (p53.00» 1 K, (p53.01 D

where f] and f] are defined in Example 7.
B2. Dynamical analysis

Let (G, I",sign, T) be a regulatory graph, and let us consider its
associated classes of logical models and PWLD models (as defined
in Sections 3.2 and Appendix A.1). We focus in this section on the
link between the dynamics of a PWLD model of this class and
its corresponding logical model via the mappings W; defined in
Appendix B.1.

The following theorem states a link between the state transition
graphs of these two models.

Theorem 1. Let (P;); -;-, be an element of [, P; in the considered
class of PWLD models, and TG = (D, T) be the corresponding state
transition graph.

Let us consider the model in the considered class of logical models
which valuation of the logical parameters is W;(P;), for all integers i
between 1 and n, and let (V', T’) be its asynchronous state transition

graph.
We define the graph (V",T") as follows:
(i) Y=y,
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(ii) 7" is a set of subset of V' x V' defined as follows: let s = (5;)1<i<n
and s' = (s})1<j<p be two elements of V'. Then (s,s’) e T" if and
only if:

n n
[T 60,/ 0u [l (). 8 ) e T.
i=1 i=1

where ©; is the set of the thresholds of the step functions of the
outgoing transitions from g;, for all i€ [1, n].

Then, we have:
T =T.

Proof. We take the same notations as in the statement of
Theorem 1.

Let (G, T",sign, T) be a regulatory graph, and let us consider its
associated classes of logical models and PWLD models.

Let (P)1<i<n € [[iL; P; in the considered class of PWLD models,
and 7G = (D, T) the corresponding state transition graph.

Let us consider the logical model which valuation L; of the log-

ical parameters associated to g; is:
Ly = W;i(P),
for allie 1, n], and let (V', T’) be its asynchronous state transition
graph.

Let us now prove the following inclusion:
T T (6)
Let s = (Si)1<i<n and s’ = (s})1<j<n be two elements of V'. Assume
that (s,s’) € 7”. It follows that:
(D.D') eT.

where D and D’ are defined as follows:

n n
D =[] (s)/O; and D' = [J(e) ' (s)), /Oy

i=1 i=1
By definition of 7 (Definition 14), D and D’ are adjacent domains,
which implies, by definition of D and D/, that there exists i® € [1,
n] such that the following two conditions hold:

(i) either
S =S + 1, (7)
or
Sp =S — 1, (8)
(i)
Si=S} (9)

for all i=10.

Let i be such an integer. Then there exists j° €1, n] and I° e
tgl_O,gj0 such that D and D’ are separated by the hyperplane of equa-

tion:
0
Xjo = Gi{,jﬁ.
Let m= (mj)gjgggi0 be the element of ngGRiO {0Utg g} such
that:
D c A" (m).

It follows, by definition of D, D’ and B, that, for all 8j € Rgy, We

have:

Moreover, by definition of 7, D and D’, the following conditions
hold:

Table 3

Correspondence table between the logical parameters and the coordinates
of the focal function for the case study (Fig. 1). Logical parameters and
coordinates of the focal function are formally linked by the mappings x;
(Definition 16 in Appendix B.1). For sake of clarity, we omitted to mention
the combinations of levels of the regulators in the coordinates of the focal

function.
Components Logical parameters  Coordinates of the focal function
(sets Kg,) (sets F;)
a; +k
p53 Kps3.{m1.0)) -
K o
p53.{(My. 1)} gl
2
Me K. ((p53.00) @
ay + ki,
K; e
Me.{(p53,1)} dzk
as +
M Kuty, ((953.0)...0)) -5
a;
Ko, {(p53,1).(Mc.00) N
as + ki + ki,
Ko, (953,00, (M. 1)) I —
K as + k;3
M, {(p53,1),(Mc, 1)} B
(i) if s < slfo, then:
O; ’0
Ikzoz]R'(Qiojo), (11)

(i) if s > sjo, then:

I < 08" (050). (12)
where I, is the integer such that ((fy, Fy), ly) is the element of P
satisfying:

Fe = {(gj. mj)}gjer,, -

Since Ly = W;(Pp), Iy is also the value of the logical parameter
Kg, F- 1t thus follows, from Eqs. (7)-(12), that:
1

(s,s)eT,

thereby proving the inclusion of Eq. (6).

The proof of the opposite inclusion, that is to say that 7/ < 77,
is deduced by proceeding by equivalence, which ends the proof of
Theorem 1. O

Example 13. To illustrate Theorem 1, let us consider the classes of
PWLD models and logical models associated with the regulatory
graph of our case study (Fig. 1).

Let us focus on the PWLD model which positionings P; € Py,
P, € P, and P; € P3 of the coordinates of the focal function are
those given in Example 9.

Fig. 6(a) shows the corresponding state transition graph. Then,
the state transition graph defined in Theorem 1 (shown in
Fig. 6(b)) is the asynchronous state transition graph of the logi-
cal model which valuations L, L, and L3 of the logical parameters
are:

Ly =Wi(P), Ly =Y,(P;) and L3 = W3 (P3).

Appendix C. Correspondence between logical models and
PWLD models for the case study

We consider the model of the core of the p53-Mdm2 network,
proposed by Abou-Jaoudé et al. (2009), described in Section 2. The
evolution of the class of PWLD models associated to its regulatory
graph (shown in Fig. 1) is described by the system of differential
equations given in Example 6. Table 3 gives the correspondence
between the sets F; of the coordinates of the focal function and
the sets g, of the logical parameters of the class of logical models
associated to the regulatory graph, via the mappings y; described
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T2 A Do11 $<— D111 <— D211 011 K 111 g 21]
9%3 Doox D1ox D201 ~ <+

03 A S / 001 K¥t—] 101 K (201

Doogd —= Di1od —= D200 < NS
1000} 3 100 | 3 200
(b)
0 01 0% 1
(a)

Fig. 6. (a) State transition graph of the PWLD models of the case study (Fig. 1) corresponding to the positionings Py, P, and P; of the coordinates of the focal function of
Example 9. x1, X, and x3 denote the variables associated to the components p53, M. and My, respectively. (b) Asynchronous state transition graph of the logical model of
our case study which valuations of the logical parameters are W;(P;), W,(P,) and W3(P;3). The values of the components in each state are ordered as follows: p53, M., M.

Ellipses represent the steady states of the model.

Kps3,((M,,0)} %lk;’l
Kps3,((M, 1)} @
(a) (b)

K, {(p53,0),(M.,1)}

/N

K, ((953,0),(M.,00} K,y {(053,1), (M., 1)}

NS

K, {(p53.1),(M.,0)}

(e)

2
K, g(p53.1)) azthiy
>
a
K. {(p53.0)} @
(c) (d)
as +ki3+ké3
ds
az+kig a3z+ksg
ds ds
as
ds
(f)

Fig. 7. Hasse diagrams of the partially ordered sets (Kys3, <x) (a), (F1,=7) (b), (K. =x) (), (F2. =#) (d), (Ky,.=x) (e), (F3,=5) (f), for the case study (Fig. 1). For sake
of clarity, we omitted to mention the corresponding combination of levels of the regulators in the writing of the elements of the sets F;.

in the previous section. Fig. 7 shows the Hasse diagrams of the par-
tial order <z in the sets F; with the corresponding Hasse diagrams
of the partial order < in the sets Kg,.

We now focus on the three logical bifurcation diagrams asso-
ciated to component M, considered in Fig. 4. Fig. 8 describes cor-
responding bifurcation diagrams in the associated class of PWLD
models upon an increase of the parameter ds, chosen as the bifur-
cation parameter. In each case, we choose:

(i) as initial value of d3 a value such that all the 3rd coordinates
of the focal function are above the threshold 0311, which corre-
sponds to the valuation {1, 1, 1, 1} of the logical parameters of
My; and

(ii) as final value of d3 a value such that all the 3rd coordinates
of the focal function are below the threshold 9311, which corre-

sponds to the valuation {0, 0, 0, 0} of the logical parameters of

M.

The constraints on the values of the PWLD parameters corre-
sponding to the logical bifurcation diagram:

(i) in red is k}3 < k;3. This constraint comes from the transition:
. . Kl
{0,1,1,1} — {0, 1,0, 1} for which the coordinate (13:;—313 of the
. k]
focal function crosses the threshold before %;
(ii) in blue is k}3 = k§3. This constraint comes from the transition:
. . Kl
{0,1,1,1} — {0,0,0, 1} for which the coordinates % and
az+kly
d3
time;
(iii) in green is k%3 > k53. This constraint comes from the transition:
1
{0,1,1,1} — {0, 0, 1, 1} for which the coordinate % of the

. k!
focal function crosses the threshold before %.

of the focal function cross the threshold at the same

Appendix D. Proofs

Property 1. Let (G, I, sign, T) be a regulatory graph, and g; a compo-
nent of G. Let (Lj)o<j<k be an element of leféi where, for all integers
Jj between 0 and k: '

L = {(Kgcor, 1), ..., (Ko 1))
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PWLD bifurcation diagrams Logical bifurcation diagrams
a L Il ! 1 1 1 1 1 1 1
) (') ()i1 aIL a#k#a azslkﬁg a.x+k=lg+k;1 {111, }
,,,,,,,,,,,,,,,,,,",,:’~:,Jit,,f’i,,,,,,,,,,,,,l: ,,,,,,,,,,
f I/—\I f f f {0,1,1,1}
0% 0L (L.’x;k‘l aszk' ax+kd' k) i
—
,_42 ********************************* / ********** =
< — 5
V| —rb ' ' ' {0,0,1,1} 0,1,0190 [ g
©da as ikl 1 astkly asthlgtkl e T gg
Lo | 0 g mik 03, ol aathshd, Z
53
\ / 02
3 — . ) &

[ I | I I 0,0,0,1

O | o iy aated, o athly il w
a5 g, s 31 ds i

1 | 1 | Il 1 {0,0 0,0}

0 G eothly okl oo gl B EITD) 1
b) L ] | | ]

T T T T {1 1,1 1}

| /\ : :

04 03, {aa;kh aﬁd’f;s} as+kii+kia .
- —_,—_,,,,,——— =
i 3

Il o
-2 £
L 09

© — QL
wn

< | H : : : ©
Oy @ {m;:cu ﬂx;f 1) ol a3+kd3+lml

1 | Il | | {0,0 0,0}

(') %‘:{’lsj;f;:i“‘sz:;x} us+k3;;+kéx gil ’ [

1 Il | | Il | 1,1 1,1
) | A et et e, B T

31 ds ds ds ds l
—t | | | | {0 1.1 1}
(l) % ()_Jll 4"35;;3 ”3”;:" 1s ast k,;‘: tk3y o
—
B i Bt /* ’X ****** g

e — 2

N | —— I | | {0,0,1,1 {0,1,0,1} ®
@ (') %lf m{k,‘s ()}“ mik]‘g a3+k3;;+k}3 T o %
)

77777777777777777777777777777777777 ”7\”/””” )

]

9 — &

! Il | | ] Il 0 0 0 1
O | T, i o PRTEATEN 000U 5755

3 d3 d3 31 d
1 1 ] [l [l Il 0 0 0 0
o wid, aied, et o1 {0.0.0.0} 575,
ds ~ gy ds d3 31 v

Fig. 8. Logical bifurcation diagrams considered in Fig. 4 for the case study, and corresponding PWLD bifurcation diagrams as a function of the parameter ds;. The PWLD
bifurcation diagrams show the successive positionings of the 3rd coordinates of the focal function, relative to the threshold, upon the increase of ds. Ellipses represent the
attractors of the logical model for the corresponding valuation of the logical parameters. The components in the states are ordered as follows: p53, M., M,. The logical
parameters of M, in its valuations are ordered as follows: {Ky, ((ps3.1),(m..0)}: KMy.{(p53,1), M. 1)} Kt ((953.0). (Mc.001+ Ko {(p53,0), (M, 1)} -

Then, the following condition holds: Then, according to Definitions 6 and 7, there exists:

(i) either, for all r € [1, qg] and for all j € [0,k — 1]: (i) a parameter p;;
) ) ) ) (i) a set ®Y of threshold values of the outgoing interactions of g;;
P =0or "' -1l =1, (iii) a set p\ p? of values of all the parameters except p;

(ii) or, for all r € [1,qg] and for all j € [0,k —1]: (iv) two values pi" and p/™ of the parameter p;;

P P —0or B P = 1 such that, there exists a continuous and monotonous function y
' " ' T from the set [0, 1] to the set [ps”, p i"] satisfying y (0) = p'i" and
Proof. Let g; be a component of G and (L;)y<j< be an element of

P})‘ZIE where, for all integers j between 0 and k: 0
i i

L = {(Kgcor, 1), ... (Kot l{,’gi)}. (13) h" ([0, to]) = 19, (14)

y(1) =p inand a subdivision tp <ty <...<t, of [0, 1] such that:
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Logical bifurcation diagram

State transition graphs

{1’17171}

{0.1,1,1}

{0,0,1,1}

{0,1,0,1}

{0,0,0,1}

{0,0,0,0}

Fig. 9. Sequence of valuations of the logical parameters of M, corresponding to the
logical bifurcation diagram in red in Fig. 4 for our case study, with the correspond-
ing state transition graphs. Gray dashed arrows represent the transitions differing
with respect to the preceding graph along the logical bifurcation diagram. The el-
lipses denote the stable states of the model for each valuation of the logical pa-
rameters. The order of the components in the states and of the logical parameters
in the valuations are indicated in caption of Fig. 8. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)

(i)
W (1t 1) = b, (15)
for all integers j between 0 and k — 1,

(iii)
" (Jtk. +o0]) = Iy,. (16)

for all integers m between 1 and qg;, where h" is the function from
the set [0, 1] to the set [0, max(Xg)] defined for all integers m
between 1 and qg, as follows:

[0,1] — [0, max(Xg,)]
{t -y (X' Kgua)1 (¥ (0, p\ BD))-

Let y be a function satisfying the conditions stated above. Then,
for all integers m between 1 and qg;, the function:

t> X Kgan)1 (¥ (©), p\ 1Y)

h™

is also continuous and monotonous as the composition of
the two continuous and monotonous functions, y and x+—

X (Kga)1 (% P\ D).
0
By definition of the mapping ag i and from the monotony of
the function t — x; ' (Kg.an)1(¥ (), p\ pP). it follows that h" is

monotonous for all integers m between 1 and qg,, which implies,
from Eqs. (14)-(16), that the following conditions hold:

(i) either, for all m € [1, qg,] and for all j € [0, k —1]:

o< (17)
(ii) or, for all m € [1, qg;] and for all j € [0, k — 1]:
I > (18)

Moreover, by definition of the mapping Olg? and from the con-
tinuity of the function t — x; ' (Kg.an)1(¥ (). p\ p?). it follows,
from Eqs. (14)-(16), that the following conditions hold, for all j
[0,k —1] and all m € [1, qg,]:

! =Bl < 1. (19)
Therefore, from Egs. (17)-(19), the following conditions hold:
(i) either, for all r € [1, qg] and for all j € [0, k — 1]:
-l =0or ' -1l =1,
(ii) or, for all r € [1, qg,] and for all j [0, k —1]:
Bl =0or B -1l = -1,
which ends the proof. O

Property 2. Let (G, I', sign, T) be a regulatory graph, and g; a compo-
nent of G. Let (Lj)o-j <k be an element of Pé‘;i' where, for all integers

Jj between 0 and k:
Li = { Ko 1) Ky, 13,0

such that, for all j e [0,k —1] and for all r € [1, qg,]. we have lﬂ <
11

Let, for all m € [0, max(U(gi_g,)EI- te. gl ICé"im be the subset of Kg,
for which, for all j € [0,k — 1] and for all K /Cé’im, the value of K in
Lj is m.

Let lcé;m'”p be the subset of Ky, defined, for all integers m from 0
to max(Ug, gyer tg.g) — 1, as follows:

KM = (K € Kg, | U > 1, 1 = m),

and ICé’i”p the union of these sets Kém‘”p for all the integers m from 0
to max(U(gi‘g')Er tgi~g’) -1
jup _
]Cgi -
me[[O.max(U(gi‘g,)Er tgiAg,)—l]]

Jj.m.up
Kchmue,

We define the partially ordered sets (Kg,, 5};), for all integers j be-
tween 0 and k — 1, as follows:

(i) (Kg,-yﬁ;%) = (Kg,-v‘ﬁlc);
(ii) for all (K,K") ¢ Kg"P, we have:

: iy
K<l K =K <" K';

(iii) for all m € [0, max(Ug, gyer tg, o) — 11, for all (K.K') e Ici;’im'”p,
we have:

K <" K and K’ <J*' K;
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(iv) for all m € [0, max(Ug, gyer tg, o) — 11, for all K e Icé'im'””, and

forall K’ e }Cé‘im n K‘é}“", we have:

K <t K.

Let M# be the set Qf the maximal elements of the par-
tially ordered set (Ky",<1.), for all je[0,k—1] and for all m e
[0. max(U g, g)er tg.g) — 11 and M/ the union of these sets M{n for
all m e [0, max(U(g, g)er by, o) — 11, for all j e [0,k —1]:

M = U M.
me[[O,max(U(gi_g,)Er tgi_g,)—l]]

Then, we have, for all integers j from 0 to k — 1:

Kk M,

Before proving Property 3, we give the following two lemmas:
Lemma 1. Let i€ [1, n] and p, a parameter involved in the equation
of evolution of x; of a class of PWLD models:

dx;
d—t’ =ai+ Yy Y s, 00 —di-x;,

8j€Ry; lety; g

where:
s(x.0) =0, ifx <0,
s(xi. 0) =K. ifx; > 6],
or:
S(Xl‘, Qll]) = ki’j’ if Xi < ei’j*
S(Xive;‘lj) =0, iin > 9,’1

Let p\ p® be a vector of values of all the parameters except p.
Let (f, F) and (f, F') be two distinct elements of F;, such that f and
f depend on pj. Then, the following condition holds:

(i) either f(p\ pY.pr) < f'(p\ pY. pr). for all p; € R* if pr=a;, or
for all py e R** if py = kgj or pr =d;;
(i) or f(p\ p2. pr) = f'(p\ . pr). for all p; e R* if pr = a;, or for
all pr e R* if py = kf]. or pr =d;;
(iii) or f(p\ p%. pr) > f'(p\ p%. pr), for all p; € R* if p; = a;, or for
all py e R* if pr = kfj or pr =d;.
Lemma 2. We consider the class of PWLD models associated to a reg-
ulatory graph (G, T",sign, T). Let g; be a component of G, and (f, F)
and (f, F') two distinct elements of the set F;.

If (f,F) =< (f',F'), then, for all vectors of parameter values p° e
(R*T)IPFpl=1 « (R*)" of the parameter vector, we have:
f(°) < F ().

Proof. We take the same notations as in the statement of
Property 2.

Let g; be a component of G. Let (L;)oj < be an element of Pll";gg_,
where, for all integers j between 0 and k: [
Lj = {(Kg,ap 14)7 cees (Kg,aqga lég)}

Then, according to Definition 6, there exists:

(i) a parameter p;;

(ii) a set @? of threshold values of the outgoing interactions of g;;
) asetp)\ p? of values of all the parameters except p;;

(iv) two values pi” and p, i of the parameter p;;

(iii

such that the conditions of Definition 6 are satisfied.

Let j be an integer between 0 and k — 1. Then, (L;) _is also

0<j'<j
an element of Pé‘;‘gg , and, for all integers j’ between 0 and j, there
i

exists a value p{/ € R* of parameter p;, such that:

(i) for all m  [0. max(Ug, gor ty, ) — 1. for all (K.K') € K™,
we have:

X7\ Y. p) = XKD (p\ Y. p)),

(ii) for all m e [0, max(Ug, g)er tg,¢) — 11, for all K e Kéz’m’”p, and

(20)

for all K’ e Ké;’m n Ké';’“p, we have:

X K\ B P < 7 EO1 (0 \ B p).

Moreover, by hypothesis, the values of the logical parameters
increases along (Lj’)og/gj' Therefore, x;”' (K)1(p\ p?. p;) increases
along (L]-/)O<j,<j for all K € Kg,.

It follows, from Lemma 1, that, for all integers j/ between 0 and
Jj, and for all values q > max{p{/ | j' €0, j]} (resp. for all values q <

. il . I . .
mm{p{ | j’ € [0, j]}) of parameter p; if p; Xf] )1 (p\ P?v py) is
an increasing function (resp. if p; — Xi‘l(K)1(p\p?, p;) is a de-
creasing function) for all K € Kg,, Eqs. (20) and (21) are satisfied,
for all integers j’ between 0 and j, that is to say that:

(21)

(i) for all m e [0. max(Ug, gor ty, ) — 1. for all (K.K') € K™,
we have:

X TE1(p\ pY.g) = x, T KD (p\ P q).

(ii) for all m e [0, max(Ug, gyer tg,¢) — 11, for all K e Kéz’m’”p, and

(22)

for all K’ € ICQ’“ n Kég’“p, we have:

X' KD1(p\ P q) < x; 'K (p\ P, q).

We can assume without loss of generality that p;+—
Xf] K)1(p\ p?, p;) is an increasing function for all K € Kg,.

Moreover, from Property 7, we have, for all pairs of logical pa-
rameters (K, K') such that K <x K’:

Xi_l K1 =F X,‘_1 (K.

Since y; is bijective (Property 7), it follows, from Lemma 2, that,
for all pairs of logical parameters (K, K’) such that K+#K’, we have,
for all g > 0O:

K= K' = x7 'K 1(p\ p}. @) < x;7 " KD)1(p\ P, @).

_Therefore, it follows, from Eqs. (22)-(24), and by definition of
jfc, that the following condition holds, for all pairs of logical pa-
rameters (K, K') such that K#K':

K=K = x '()1(p\ @) < x, " K)1(p\ PP, @)

(23)

(24)

(25)

for all g > max{p{/ | j’ €0, j]}.
Now let us prove that ICé’i“p C MJ by proving its contraposition.

Let K be a logical parameter which does not belong to the set M,
that is to say that:

K¢ M,

and let m be the value of K in L;. Then, by definition of M/, there

exists K'#K of value m in L; such that K ﬁfc K'. 1t follows, from
Eq. (25), that:

X O (p\ pY.a) < 7T KD (p\ P q).

for all q = max(p] | J' € [0. j]). Since py > %, (K)1(p\ PO py) s
an increasing function, it follows that:

(i) either a5 (1 ()1 (\ P, p1)) = & (7 (K1 (0 PO, 0)),
(ii) or g G (O (p\ B0, PD)) < ey G (KD (P \ PP, ),
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for all q > max{p{, | j" €10, jl}.
Therefore, the value of K remains the same from L; to Lj ;.
Thus, we have:

K ¢ K.

We have thus proved by contraposition that:
Kk M,

which ends the proof. O

Property 3. Let (G, I", sign, T) be a regulatory graph, and g; a compo-
nent of G. We assume that max(Xg,) = 1 (Boolean case). Let (Lj)o<j<
be an element of (Vgi)*, where, for all integers j between 0 and k:

L = {(Kgcor, 1), ..., (K g l{]'gi)},
such that, the following conditions hold, for all integers j from 0 to
k—1:
(i) for all r € [1, qq,], we have l{ < l{“, and
(ii) k3P < MJ,
where the sets )Cé’i“” and M are defined in Property 2.
We define the subset C; of the set (R**)IP7pl=n x (R*)", where

|DFp| denotes the number of all the parameters except the thresholds,
as follows, for all integers j between 0 and k:

(i) peCo, if and only if, for all (r,1") € [1, qg]? such that I = 0 and
15 =1, we have:
Xf] (Kg,-,a,)l (p) < X;l (Kgi.a,/ )1(D);

(i) peG, for all integers j between 1 and k, if and only if:

(a) for all (r.1) e [[1,(1&.]}2 such that l{’1 < l{ and lj, =0, we
have:

X;l (K0, )1(P) < X,‘i1 (Kg;.a,)1(D);

(b) for all (r.1") € [1.qg]? such that =" <1 and 17" <1,
have:

Xiil (Kg.o,)1(P) = Xiil (Kgi.a, )1(D);

and the set C as the intersection between the sets C; for all integers j
between 0 and k:

k
c=G.
j=0

Then, (L j)

we

0<jek € PIIJZii if and only if C # 9.
Proof. We take the same notations as in the statement of
Property 3.

Let g; be a component of G and let us assume that max(Xg,) = 1
(Boolean case). Let (Lj)o <j<x be an element of (Vgl_)*, where, for all
integers j between 0 and k:

L = {(Kgc,, 1), ..., (K g, l{,’gi)},

such that, we have, for all integers j from 0 to k — 1:

(26)

(i) for all r € [1, gg,], we have l{ < lﬁl, and

.. jup :

(i) kg~ M/,

where the sets lcé’_“p and M are defined in Property 2.

We start by first proving the necessary condition of the prop-
erty, that is to say that:

1
(Lj)Ogjgk € Pb(t)ii =C # 2 (27)

Assume that (Lj)
7, there exists:

e P!% Then, according to Definitions 6 and
O<j<k bdg;

(i) a parameter p;;
(i) a set @9 = {09} of threshold values of the outgoing interactions
of g; ((9? is a singleton since Xg; is Boolean);
(iii) a set p\ p? of values of all the parameters except p;;

(iv) two values pi“ and p; in of the parameter p;;
such that, there exists a continuous and monotonous function y
from the set [0, 1] to the set [p’;”, p,fi"] satisfying y (0) = pf” and

y(1) = p,fi", and a subdivision ty <t; <...
that, for all m € [1, gg,], we have:

< ty_1 of [0, 1] such

()
h' ([0, tol) = I, (28)
(ii)
W (Jtj1. G0 = b, (29)
for all integers j between 1 and k — 1,
(iii)
W (1. +o0l) = I, (30)

where h" is the function from the set [0, 1] to the set [0, max(Xg,)]
defined for all integers m between 1 and qg, as follows:

m . [10, 1] — [0, max(Xg,)]
b {t = o (X7 Kgan)1 (¥ (0. P\ PD)).

Let ¥ be a function satisfying the conditions stated above. Then,
for all integers m between 1 and qg;, the function:

£ X7 Kgan)1 (¥ (©, P\ DY)

is also continuous and monotonous as the composition of
the two continuous and monotonous functions, y and x>

inl (I<gi.0tm)1 (X, p \ p?)'

0
By definition of the mapping a]g" and of the functions h", it
follows:

(i) from Eq. (28), that, for all te [0, to[ and for all (r,1’) € [[1,qgi]}2
such that [? =0 and I9 = 1, we have:
X Kea)1 (v ©. 2\ D)) < X7 Kga )1 (v (©). p\ D)), (31)
(i) from Eq. (29), that, for all j e [1,k—1], for all t € Jtj_q,¢;[, for
all (r,r) e [1, qgi]]2 such that lf,’l < Ij, and lﬂ' =0, we have:
X Kga)1 (Y (0. P\ D)) < %7 Kgo )1 (v (). p\ D). (32)
(iii) from Eq. (30), that, for all t € ]t,_q, +oo[, for all (r,1") € [1, qgl.]]2
such that lf,‘1 <l and I} =0, we have:

X7 Keo)1(¥ ©). P\ D) < X7 Kgo )1 (¥ (©).p\ D). (33)

Now let je[1, k] and re[1,qg] such that lﬁl_1 <l£. From
the continuity of the function t — x; ' (Kg.a,)1(¥ (t). p\ DY), we
have:

X Kga)1 (v (ti21). p\ pf) = 6.
It thus follows, for all (r,1') € [1,qg]? such that ' <1/ and

U7 < that:
T T

X (Kga )1 (V(tj—l)a p\ P?) = X (Kg.o )1 (J/ (t-1). p\ P?)~
(34)

From Lemma 1, it follows that Eqs. (31)-(34) are satisfied for all
t > t,_q, that is to say that, by definition of C:

Y (Jtg_1, +o0[) € C,
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which implies, in particular, that:
C+#49,

which ends the proof of the necessary condition of the property.
Let us now prove the sufficient condition of the property, that
is to say that:

I
C#I= (Lj)Ogjgk € Pb?ji' (35)

Assume that C # ¢. Then, by definition of C, there exists a vector
pO e (R*H)IPFpl=n  (R+)" of the parameter values such that we
have:

(i) for all (r,1") € [1, qg]? such that I? = 0 and IS = 1:

X Kga)1(P%) < X' (Kgio, )1(P°), (36)
(ii) for all integers j between 1 and k, and:
(a) for all (r,1") €1, qgi]]2 such that I{‘l < Iﬂ' and lf, =0:
X (Kgo, )1(P°) < X7 (Kga )1 (P9). (37)
(b) for all (r.') e [1,qg]? such that ™" <1} and 17" < 1/:
X (Kg)1(P%) = X' (Kgio, )1(P°). (38)

Let us choose such a value pO. Let us further choose:

(i) d; as the parameter of bifurcation;
(ii) a positive threshold value Ol.o; and
(iii) the vector of values p®\d; for the values of all the parameters
except d;.

By definition of the set F;, lel (K) depends on d; for all K € Kg,.
It follows, from Lemma 1, that Eqs. (36)-(38) are satisfied for all
d; e R**, that is to say that, the following conditions hold, for all
d,‘ e R*t:

(i) for all (r,1") € [1, qg]? such that I? =0 and I% = 1:

X (Kgo)1(P° \ di di) < X7 (Kg, )1 (P°\ di. dp), (39)
(i) for all integers j between 1 and k, and: )
(a) for all (r, ') e [1, g;]? such that )" < I/ and l,=0:
Xi_l (Kgi.ot,/ )1 (pO \ di’ di) < Xi_l (Kg,,ar)l (pO \ dis di)’ (40)
(b) for all (r, )1, g]? such that I]”" </ and 17" <)
Xf] (Kgi.0,)1 (»° \dj, dy) = X;1 (Kgi.a, )1 (° \ d;, dy). (41)

Moreover, the function d; — X,-_l (K)1(p° \ d;, d;) is continuous and
decreasing from the set R** to the set R**, for all K € Kg,, as it is
inversely proportional to d; by definition of the set F;.

It follows, from the continuity of the function d;+~
x; 1)1 (p° \ d;. d;) over the sets R*+, and:

(i) from Eq. (39), that there exists a value d,'.'" of d; such that:
-1 0\ 4. din 0 0_
(@) X' (Kg o)1 (p° \ dj. di") < 62, for all r such that I =0,
-1 0\ 4. din 0 0_
(b) %7 (Kgor)1 (P° \ dj, &) > 67 for all r such that [P =1,
(ii) from Eqgs. (39)-(41), that there exists a value dlfi" of d; such
that:
(@) %' (Kgo)1(P°\ di, dif’") <69, for all r such that I =0,
() X' (Kgua, )1 (PO \ dj. dlf"’) > 09 for all r such that I? = 1.

Now let y be the function defined for all t€[0, 1] as follows:
y () = @™ —d"y +din.

We have y(0) = d;f“, y(1)= dlfi” and y is straightforwardly con-
tinuous and monotonous (decreasing) over [0, 1].

From the continuity of t— X,.‘l(K)l(pO\di, y(t)) for all K e
Kg. and from Egs. (39)-(41), it follows that for all j e [0,k —1]

and for all m such that l,J,g < l,’;l, there exists t;€[0, 1] such that:

X;l (Kg,.ot,,.)l (pO \ di, y(tj)) = 91'0~
Let us choose such a subdivision ty <t; <...

(42)
<ty of [0, 1].

00
It follows, by definition of ot]g" and from the monotonicity of t —
X,-_l K)1(p° \ d;, y (¢)) for all K € Kg;,. that the following conditions
hold, for all integers m between 1 and qg,:

()
" ([0. to]) = I, (43)
(ii)
for all integers j between 1 and k — 1,
(iii)
R ()61, +o0[) = LK. (45)

where h" is the function from the set [0, 1] to the set [0, max(X;)]
defined for all integers m between 1 and qg, as follows:

[0.1] — [0, max(Xg)]
e, _
teag’ (Xi 1(1<gx~a,n)1 ()/ ®),p\ p?))'
Therefore, by Definition 6, we have:
I
(Lj)ogjgk € Pb‘;‘i,

thus proving the sufficient condition of the property. O

hm .

1

Appendix E. Algorithms

The high level procedure computing a logical bifurcation di-
agram of maximum length starting from an initial valuation of
the logical parameters is described in Algorithm 2. Given a logical
model (model), and a component g; (node):

(i) the algorithm first constructs, with the procedure GENBIFURCA-
TIONPATH, a sequence (Lo, ...,Lj,,...,Ly) of valuations of the
logical parameters associated to node (bifurcPath) which:

(a) belongs to the set Pé‘;i,

(b) contains the valuation lof the logical parameter L;  of model,
(c) is of maximum length,
(lines 1 and 2);

(i) then, for each valuation L; (function) of the sequence, the at-
tractors of the corresponding logical model are computed (lines
3-8);

(iii) finally, the algorithm returns the corresponding sequence of
pairs (function, associated model attractors) (attractorList).

The structure bifurcDiag contains information relative to model. The
procedure GENBIFURCATIONPATH receives bifurcDiag and a compo-
nent g; (node), and returns a sequence (Lg, Ly, ..., L) of valuations
of the logical parameters associated to node (bifurcPath) as follows:

(i) the procedure first gets the set of regulators (reglList) of the
component node, and the valuation L;; of the logical parame-
ters associated to the component node (funcRef) of the logical
model defined in bifurcDiag (lines 12-13);

(ii) it then verifies if the valuation funcRef is consistent with the
signs of the incoming interactions on node (lines 14-16);

(iii) if it is, it constructs the partial order <x in the set Kg of the
logical parameters associated to node (depGraph) and verifies if
the valuation funcRef satisfies Property 3 (lines 17-20);

(iv) if it does, the partial order depGraph is updated with the con-
straints imposed by funcRef (line 21);

(v) it then initializes the bifurcation diagram (bifurcPath) with fun-
cRef (line 22), and:
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Algorithm 2 Computation of a logical bifurcation diagram and its
attractors.
Input: model, node
1: bifurcDiag < buildBi furcationDiagram(model)
2: bifurcPath < genBifurcationPath(bifurcDiag, node)
3: attractorList < @
4: for all function € bifurcPath do
5 newModel < bifurcDiag.getModel (node, function)
6: > model manipulation relies on the bioLQM library
7
8
9

pair < (function, computeAttractors(newModel))
> model attractors relies on the bioLQM library
attractorlList < attractorList + pair
0: end for
Output: attractorList
11: function GENBIFURCATIONPATH(bifurcDiag, node)
12: reglist < regulators(bifurcDiag, node)

—_

13: funcRef < referenceFunction(bifurcDiag, node)
14: if !consistent (funcRef, regList) then

15: return ¢

16: end if

17 depGraph < buildLogicParamDepGraph(len(reglist))

18: if !depGraph.satis fiesProp3 (4, getLPs(funcRef)) then

19: return ¢ > If funcRef does not satisfy Property 3
20: end if

21: depGraph.initRestrictions( funcRef)

22: bifurcPath < funcRef > new list to keep function ordering
23: f < funcRef > compute functions above funcRef
24: while (f < getParentFunction(depGraph, f)) # @ do

25: bifurcPath < bifurcPath + f > list push back
26: end while

27: f < funcRef > Compute functions bellow funcRef
28: while (f < getChildFunction(depGraph, f)) # ¢ do

29: bifurcPath < f + bifurcPath > list push front
30: end while
31: return bifurcPath

32: end function

(a) calls the procedure GETPARENTFUNCTION which, considering
the current depGraph and the current valuation of the log-
ical parameters L; (f), returns a valid valuation L;4 (ie. a

valuation such that (L]o’ ..

ical parameter values have been increased from L; to Lj,,
and updates depGraph accordingly (lines 24-26);

analogously calls the procedure GETCHILDFUNCTION to re-
turn a valid valuation Lj ; (ie. a valuation such that

(Ljq, Loy
have been decreased from L; to L;_;, and updates depGraph

accordingly (lines 27-30);
until the bifurcation diagram has reached its maximum length.

L L) e Pll;ii ), for which log-

(b

=

Lj,) € Pll;:ii, ), for which logical parameter values

Algorithm 3 describes three auxiliary procedures used in
Algorithms 1 and 2. The first one, GETPARENTFUNCTION, proceeds
as follows:

(i) it calls the procedure GETVALIDPARENTFUNCTION, described in
Algorithm 1, to compute a valid successor (func) if it exists (line
2);
(ii) the set of the logical parameters whose values have increased
(changingLPs) is retrieved (line 4);
(iii) the partial order depGraph is updated with the constraints im-
posed by changingLPs (lines 5-6).

The second procedure, GETCOMBINATIONS, computes all the sub-
sets of a given set of logical parameters.

Algorithm 3 Auxiliary functions.
1: function GETPARENTFUNCTION(depGraph, lastFunc)

2 func < getValidParentFunction(depGraph, lastFunc)
3 if func +# ¢ then

4 changingLPs < getChangingLPs(lastFunc, func)
5: depGraph.updateEqualLPs( func, changingLPs)

6 depGraph.updatelnequalLPs( func, changingLPs)
7 end if

8 return func

9: end function

10: function GETCOMBINATIONS(listLPs)

11: listO fCombs < ¢

12: for all I[p e listLPs do

13: for all comb < listOfCombs do

14: newComb < comb U Ip

15: listO fCombs <« listO fCombs U newComb

16: end for

17: listO fCombs < Ip

18: end for

19: end function

20: function 1SVALIDLPSET(depGraph, listLPs)
21: for all Ip < listLPs do

22: equalLPset < depGraph.getEqualLPs(lp)

23: if equalLPset # ¢ A equalLPset ¢ listLPs then
24: return false

25: end if

26: end for
27: return true
28: end function

The third procedure, 1SVALIDLPSET takes as inputs a partial order
(depGraph) and a list of logical parameters (listLPs), and proceeds as
follows:

(i) for each logical parameter in listLPs, it gets the set of logi-
cal parameters which are equal for the partial order depGraph
(equalLPset) (lines 21-22);

(ii) then, if equalLPset is not empty and is not a subset of listLPs,
the procedure returns false (line 24);

(iii) if, for each element of listLPs, equalLPset is either empty or is a
subset of listLPs, the procedure returns true (line 26).
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