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Blood Oxygen Level Dependent (BOLD) signal indirectly characterizes neuronal activity by measuring
hemodynamic and metabolic changes in the nearby microvasculature. A deeper understanding of how
localized changes in electrical, metabolic and hemodynamic factors translate into a BOLD signal is crucial
for the interpretation of functional brain imaging techniques. While positive BOLD responses (PBR) are
widely considered to be linked with neuronal activation, the origins of negative BOLD responses (NBR)
have remained largely unknown. As NBRs are sometimes observed in close proximity of regions with
PBR, a blood ‘‘stealing” effect, i.e., redirection of blood from a passive periphery to the area with high neu-
ronal activity, has been postulated. In this study, we used the Hagen-Poiseuille equation to model hemo-
dynamics in an idealized microvascular network that account for the particulate nature of blood and
nonlinearities arising from the red blood cell (RBC) distribution (i.e., the Fåhraeus, Fåhraeus-Lindqvist
and the phase separation effects). Using this detailed model, we evaluate determinants driving this
‘‘stealing” effect in a microvascular network with geometric parameters within physiological ranges.
Model simulations predict that during localized cerebral blood flow (CBF) increases due to neuronal acti-
vation—hyperemic response, blood from surrounding vessels is reallocated towards the activated region.
This stealing effect depended on the resistance of the microvasculature and the uneven distribution of
RBCs at vessel bifurcations. A parsimonious model consisting of two-connected windkessel regions shar-
ing a supplying artery was proposed to simulate the stealing effect with a minimum number of param-
eters. Comparison with the detailed model showed that the parsimonious model can reproduce the
observed response for hematocrit values within the physiological range for different species. Our novel
parsimonious model promise to be of use for statistical inference (top-down analysis) from direct blood
flow measurements (e.g., arterial spin labeling and laser Doppler/Speckle flowmetry), and when com-
bined with theoretical models for oxygen extraction/diffusion will help account for some types of NBRs.

� 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

The blood-oxygen-level dependent (BOLD) contrast constitutes
the foundation for the most popular neuroimaging modality to
study neuronal activity, i.e., functional magnetic resonance imag-
ing (fMRI). A typical BOLD response comprises an initial dip (absent
sometimes), a positive rise that peaks ~3–5 s after the stimulus
onset, and a post-stimulus overshoot (Ogawa et al., 1998). The pos-
itive peak is associated with an increase in cerebral perfusion due
to vessel dilation, namely the functional hyperemic response. As
many experiments linked these vasodilations to neuronally-
triggered vasoactive mechanisms (Riera and Sumiyoshi, 2010),
the positive BOLD response has become a widely used neuroimag-
ing modality in the community to study brain activity in normal
(Rosen et al., 1998) and pathological conditions (Matthews et al.,
2006). The discovery of a negative BOLD response (NBR) almost
two decades ago by Shmuel et al. (2002), has slowed down further
progress in the field, as its link to neuronal activation remains elu-
sive. Understanding the physiological mechanisms underlying the
NBR has been the focus of attention of many research groups.

The most accepted mechanism for NBR is neuronal deactivation
due to either local (Shmuel et al. 2002; Boorman et al., 2010;
Maggioni et al. 2016) or remote inhibition (Boorman et al., 2010;
Klingner et al., 2010; Schäfer et al. 2012). NBRs due to neural inhi-
bition have also been associated to the deactivation of default
mode network (Raichle et al., 2001; Gusnard and Raichle, 2001).
A mechanistic model linked to this neuronal inhibition hypothesis
for NBR has been recently proposed (Sten et al., 2017). An increase
in oxygen demand in an activated region without the necessary
blood supply constitutes another possible mechanism of NBR. Such
a neurovascular/metabolic decoupling has been reported in normal
(Devor et al., 2008; Schridde et al., 2008; Nagaoka et al., 2006) and
preclinical (Song et al., 2016) animal studies. Based on recent find-
ings of regional decrease in cerebral blood flow (CBF), together
with an unexpected increase in cerebral blood volume (CBV)
(Goense et al. 2012), Bandettini (2012) suggested a back pressure
phenomenon from venous compartment as a potential mechanism
underlying NBR. Goense et al. (2012) findings are in line with 2-P
microscopy data from behaving mice showing large increases of
venous diameter in motor areas for which arteriole diameter
apparently decreases (Patrick Drew, personal communication).
NBR has also been linked to a decrease in CBV, induced by endoge-
nous neurotransmission (Shih et al., 2009).

An alternative—purely vascular in nature—mechanism for an
NBR, was put forth by Harel et al. (2002), soon after the discovery
of the phenomenon. The authors suggested that reallocation of cor-
tical blood resources from the nearby penetrating vasculature
might occur to meet local metabolic demand in areas with
increased neural activity, a phenomenon termed arterial blood
stealing (ABS). This hypothesis was strongly refuted by Smith
et al. (2004) based on experimental data from five healthy adults.
Despite that, another independent study (Kannurpatti and
Biswal, 2004) supported the hypothesis in the same year. More
2

recently, two experimental studies in rats (Hu and Huang, 2015)
and cats (Ma et al., 2017) also provided substantial evidence for
a non-neuronal origin for the NBR and directly suggested the pos-
sibility of a vascular blood stealing. Yet, an issue that remains
unclear is whether blood stealing from arterioles sharing the same
blood-feeding artery is feasible from a fluid dynamics perspective,
given normal physiological compositions of suspended hematocrit
(Hct) in blood vessels. A preliminary theoretical work by Boas et al.
(2008) suggested that blood stealing was possible in vessels sur-
rounding a brain area undergoing a hyperemic response. However,
this study did not take into account the dynamics of red blood cells
(RBCs) at vessel bifurcations (phase-separation) and the effect of
changes in the hematocrit, and thus the viscosity, with vessel
diameter (Fåhraeus, Fåhraeus-Lindqvist effect). Detailed computa-
tional models of incompressible/laminar fluid dynamics are helpful
to explore further the blood-stealing hypothesis. The use of such a
theoretical approach might also help finding simplified parametric
representations to phenomenologically model the NBR and other
types of CBF observations, as well as to design experimental para-
digms to determine circumstances under which ABS occurs in the
brain vasculature.

In this paper, we investigate whether ABS is a feasible phe-
nomenon in the cortical vasculature by performing simulations
in an idealized microvascular network upon dilating an arteriolar
segment. Simulations are based on established physical principles
(Hagen-Poiseuille equation) and account for nonlinearities in
hemorheology observed in-vivo (i.e., the Fåhraeus, Fåhraeus-
Lindqvist and the phase separation effects; Pries and Secomb,
2008). Furthermore, we investigate how changes in vascular
parameters affect the ABS phenomenon, i.e., basal hematocrit, inlet
pressure, the length of arterioles, and resting diameter of arteri-
oles. The detailed model is highly complex with approximately
dozens of equations and five state variables per segment. For the
present study, we had to solve a linear system of 36 algebraic equa-
tions to obtain the CBFs (Q) and drop pressures (DP) in the 22 ves-
sel segments of the idealized microvascular network used in this
study. These state variables were then inserted into 66 (22 � 3)
equations to finally estimate the other three state variables (hema-
tocrit – H, resistance – R, and viscosity – g) in each vessel segment.
Therefore, the problem quickly scale-up for more complex/branchy
microvascular network. In previous literature, parsimonious
hemodynamic models of a local (e.g., voxel) microvascular network
have been useful to reduce the complexity and to make statistical
inference feasible (Riera et al., 2007). Here, we proposed a com-
partmental model based on empirical relationships combining
two regions modelled as windkessels (Mandeville et al., 1999) con-
nected to the same feeding artery. We included a solenoid to
account for the inertial forces of the fluid upon dilating an arteriole.
We demonstrated that simulation results obtained from our
detailed fluid dynamics model, for a range of physiological hemat-
ocrit percentages, can be successfully fitted by the parsimonious
windkessel-based model upon optimizing selected parameter val-
ues. Although the ABS hypothesis was motivated from BOLD signal



Table 1
Physiological parameters and boundary conditions of the microvascular network.

Diameters (lm) Lengths (lm)
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observations, our study only focuses on the mechanisms for hemo-
dynamic/RBC changes. In a recent study (Suarez et al., 2021), we
have used our theoretical framework to model NBR in epilepsy.
1st order arteriole 27.5 1st order arteriole 100
2nd order arterioles

(feeding DF )
17.5
[15.5,19.5]

2nd order arterioles
(feeding LF)

100
[70,130]

3rd order arterioles
(daughters DD)

11 [10,12] 3rd order arterioles
(daughters LD)

100
[70,130]

Capillaries 8 Capillaries 250
3rd order venules 13 3rd order venules 100
2nd order venules 19.5 2nd order venules 100
1st order venule 33 1st order venule 100

Boundary conditions
Inlet arteriole pressure (PA) 60 [50,70] mmHg
Outlet venule pressure (PV ) 25 mmHg
Basal hematocrit (H0) 0.45 [0.32, 0.50]
Note: Ranges provided are within physiological range and were used to study

their effect on the stealing. In this table, bold case is used to showparameters
with a known range of values.
2. Methods

This section is divided into two subsections: 2.1) Biophysical
modeling and 2.2) Simulated data analysis. Both the detailed and
parsimonious models are described in subsection 2.1, which
includes the main hypotheses underlying the model and the final
equations/parameters. Sub-section 2.2 presents the methods used
for the analysis of the simulated data: (a) a global sensitivity anal-
ysis of certain parameters of the detailed fluid dynamics model and
(b) the strategy for estimation of equivalent parameters in the par-
simonious windkessel-based model.

2.1. Biophysical modeling

To formulate a detailed fluid dynamics model for blood flow with
RBCs suspension, an idealized microvasculature network must be
created. Inspired by the work of Boas et al. (2008), a simplified
symmetric microvascular network was used in this study (Fig. 1),
with a similar vessel branching structure and the same diameter
range. This microvasculature network is consistent with experi-
mental data from rodents and cats (Gagnon et al., 2015). In combi-
nation with steady-state equations for laminar flow and empirical
formulations accounting for the nonlinearities arising from the
non-continuum nature of blood, the idealized vascular network
was utilized to model the global vessel responses to a localized
vasodilation in small parenchymal arterioles. This theoretical
framework allows the evaluation of the dependencies of the steal-
ing phenomenon with basal hematocrit within the physiological
range for the human brain (Yang et al., 2015); the inlet pressure
of the network, which can be interpreted as resistive changes
upstring in the macro-vasculature; and both length and diameter
of the feeding and daughter arterioles. The network was defined
by a combination of vessel segments and bifurcation nodes. At each
node, the feeding higher-order arteriole with a greater diameter
bifurcates into two lower-order daughter arterioles with smaller
diameters. The arterioles further extend into the capillaries (seg-
ments with the smallest diameter) before converging into draining
venules. The inlet and outlet nodes represent a large pial artery and
vein, respectively. The pressures at the inlet (Artery) and outlet
Fig. 1. The microvascular network: arterioles (red), capillaries (green), and venules
(blue). Numbers [1 – 22] denote segments.
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(Vein) nodes were kept constant (Boas et al., 2008). Parameters
for the microvascular network and the ranges for the evaluated
parameters are listed in Table 1.

All equations used in the detailed fluid dynamics model, the
hypotheses underlying these equations, and the references where
they were originally proposed are presented in Appendix A. A flow-
chart describing state variables dependency and boundary condi-
tions in our detailed fluid dynamics model is shown in Fig. 2.

To characterize the stealing phenomenon, we defined the steal-
ing percent/ratio as qsteal ¼ 1�min Qp tð Þ� �� �

=
�

max Qa tð Þð Þ�ð
1Þ� � 100%, which quantifies the relationship between the maxi-
mum absolute value of CBF decrease in the passive arteriole
QpðtÞ and the CBF increase in the actively-dilated arteriole QaðtÞ.

In order to make statistical inference from actual mesoscopic
data (e.g., local CBF and BOLD), a parsimonious windkessel-based
model was formulated/validated, and specific parameters were
adjusted to the detailed fluid dynamics model. The model consists
of two windkessel regions connected with the same feeding artery
and draining vein as shown in the equivalent electric diagram
(Fig. 3). The model consists of three differential equations per brain
region, including values of the relative CBF (f a), the delayed vessel
compliance (a) and the relative CBV (v). We also included a sole-
noid to account for the inertial forces of the fluid (Spronck et al.,
2012). The details about this model are presented in Appendix B.
Equations, state variables, and parameters are presented in tables
which their respective reference source. Windkessel models have
been very useful to phenomenological explain CBF and BOLD signal
Fig. 2. Flow-chart for dependency of components of the flow-based model. Black
arrows denote the direction of the iterative process, state variables appear within
brackets, and boundary conditions are inside the red circumference. The red section
represents the iterative process of hemodynamic response, and the blue section
represents the stimulation. Red arrow represents a feedback that set the saturation
limit of blood flow increase.



Fig. 3. Electrical circuit of the windkessel-based model. Two windkessel regions are
connected to the same higher order arteriole, which is represented with a resistor
(RA) and a solenoid (LA) to account for the inertial forces. The inlet pressure (P0),
windkessel pressure (Pwi), arteriole resistances (Rai), windkessel resistances (Rwi),
and compliances (capacitors, Cwi) are also shown. Relative flows in (f a i) and out
(f wi) of each windkessel region and their respective direction are represented using
blue arrows. Doted lines separate different compartments of the model.
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in both basic research (Riera et al., 2007) and clinical practice
(Suarez et al., 2021). Hence, we believe our extension of the wind-
kessel theoretical framework to account for ABS due to hematocrit
and nonlinear vascular effect at a mesoscopic scale will be very
useful to explain some types of NBRs.
2.2. Simulated data analysis

2.2.1. Sensitivity analysis – detailed fluid dynamics model
A global sensitivity analysis was performed to assess the sensi-

tivity of stealing percent/ratio to variation in certain physiological
parameters of the network, i.e., inlet hematocrit, inlet pressure,
length and diameter of the feeding arteriole, length and diameter
off the daughter arterioles. Each parameter was allowed to vary
within their physiological range (Table 1). We used Latin hyper-
cube sampling (LHS) method with uniform distribution to select
1000 random parameter sets to perform the sensitivity analysis
(Moshkforoush et al., 2021). The detailed fluid dynamics model
was solved for each parameter set in the microvascular network
and the stealing percent/ratio was then calculated. The partial rank
correlation coefficient (PRCC) for each parameter was then com-
puted to determine the magnitude of the parameter influence
(positive or negative) on the stealing. A 95% confidence interval
was chosen to determine if the exerted influence is statistically
significant.
2.2.2. Parameter estimation – parsimonious windkessel-based model
Multiple realizations of CBF variations (Eq. A5) at the two seg-

ments (active arteriole – Qa tð Þ, passive arteriole – Qp tð Þ) of the
bifurcating penetrating arteriole were generated using the detailed
fluid dynamics mode upon a neuronally-induced vasodilation of
the active arteriole, named simulated data. An additive Gaussian
white noise was introduced to represent instrumental errors in
CBF measurements. We then performed parameter estimation of
the parsimonious windkessel-based model to fit the simulated
4

data via minimization of the following optimization function at
discrete time instants tk:

Fopt RA;R
0
a

� �
¼ 1

N

XN

k¼1
Qa tkð Þ � f a1 tk;RA;R

0
a

� �� �2
�

þ Qp tkð Þ � f a2 tk;RA;R
0
a

� �� �2
�

where Fopt is optimization function, N is number of time steps in the

data, k is the time step index. The parameter (RA;R
0
a) estimation was

performed by finding the global minima of the optimization func-
tion using MATLAB’s function fmincon.

3. Results

3.1. Evaluation of the ABS phenomenon using the detailed fluid
dynamics model

Relative changes in CBF in both active and passive vessel seg-
ments (arterioles), originating from the same bifurcation
(Fig. 4A), were obtained in response to an assumed increase in
the relative neuronal activity (the green trace) in the active seg-
ment, which resulted in a relative change of ~30% in the diameter
of the active arteriole (segment 4) (Fig. 4B). Fig. 4C illustrates an
increase in the CBF in the active region (segment 4) as opposed
to an apparent decline in the passive segment (segment 5), sug-
gesting a stealing effect. The black dotted lines represent CBF
changes when the discharge hematocrit was kept constant in each
vessel (Fig. 4D), indicating that in the absence of changes in hema-
tocrit in the daughter arterioles, the ABS effect is almost com-
pletely abolished. Thus, model simulations suggest that the
presence of ABS in our network is primarily attributed to an
increase in hematocrit in the passive arteriole, likely due to the
phase separation effect (Pries and Secomb, 2008). The rise in the
hematocrits results in an increase in the apparent viscosity
(Fig. 4E), and subsequently, the CBF resistance. The blood viscosity
in the active arteriole, however, showed a substantial decline upon
vessel dilation, and also with hematocrit decreasing (Fig. 4F), con-
tributing to the drop in the vessel’s resistance to CBF. Nonetheless,
the decrease in resistance is primarily caused by vessel dilation, as
diameter has the highest contribution in the overall flow resistance
(Eq. A5).

We next evaluated the dependency of the observed ABS effect
to a) basal hematocrit (H0) (Fig. 5A), b) inlet pressure (PA)
(Fig. 5B), c) the length of the feeding arterioles (LF) (Fig. 5C), d)
the length of the daughter arterioles (LD) (Fig. 5D), e) the resting
diameter of the feeding arterioles (DF) (Fig. 5E), and f) the resting
diameter of the daughter arterioles (DD) (Fig. 5F). All these param-
eters were varied within the range provided in Table 1. Changes in
basal hematocrit caused changes in stealing percent that ranged
from 27.4% (H0 = 0.32) to 23.3% (H0 = 0.50) (Fig. 5A). Fig. 5B shows
no variations in the CBF in both passive and active regions after
changes in the inlet pressure. We observed an increase in the steal-
ing percent/ratio with increasing the resting diameter of the
daughter arterioles (Fig. 5F, from 14% – DD ¼ 10lm to 37% –
DD ¼ 12lm) as well as increasing the length of the feeding arteri-
oles (Fig. 5C, from 24.8% – LF ¼ 70lm to 25.6% – LF ¼ 130lm), this
last being very small. On the other hand, increasing the length of
the daughter arterioles (Fig. 5D) and increasing the resting diame-
ter of the feeding arterioles (Fig. 5E) caused a decrease in the steal-
ing percent/ratio from 35% % (LD ¼ 70lm) to 17.6% (LD ¼ 130lm)
and from 28.1 (DF ¼ 15:5lm) to 23.2% (DF ¼ 19:5lm), respectively.
These results show the inverse effect of length and diameter on the
resistance (Eq. A5). These results were theoretically corroborated
by means of the global sensitivity analysis. The PRCC for each
parameter is shown in Fig. 5G. Changes in basal hematocrit, length



Fig. 4. Arterial blood stealing – simulations performed with the detailed flow dynamics model. A) Highlighting the two observed vessel segments (actively-dilated (a)
segment 4 in red and passively-responding (p) segment 5 in blue). B) Relative diameter changes in the active arteriole due to neuronally-evoked (n) vasoactive signaling (s), C)
relative changes in blood flow. D) hematocrit, E) and viscosity during dilation of the active arteriole; red: active arteriole, blue: passive arteriole, black dotted lines: constant
hematocrit (Hct) for both arterioles. F) Viscosity values for different hematocrit and diameters calculated using equations 1–3. Parameters of the detailed flow dynamics
model are kept constant in these simulations.

Fig. 5. Variation in the stealing phenomenon depend on physiology – simulations performed with the detailed flow dynamics model. A) Variations of basal hematocrit (H0)
within the physiological range (0.32–0.50) show small changes in CBF. B) Changes in the value of the inlet pressure (PA) did not caused any changes in the CBF. C) Varying the
length of the feeding arterioles (LF ) (Seg. 2 and 3). Stealing percent increases with length. D) Varying the length of the active arteriole (LD) (Seg 4–7). Stealing percent/ratio
decrease with length increasing. D) Varying baseline diameter (DF ) of the feeding arteriole (Seg. 2 and 3). Stealing percent/ratio decreases with vessel diameter increases. E)
Varying baseline diameter of the active arteriole DD (Seg 4–7). Stealing percent/ratio increases with vessel diameter increasing. G) Global sensitivity analysis. PRCC was
calculated from 1000 parameters sets and their respective stealing ratio. PRCC equals to �1 means that changes in the parameter are maximally anticorrelated with the
stealing percent; PRCC equals to 1 means that changes in the parameter are maximally correlated with the stealing percent. P-values for statistical significance are shown
below each parameter. H) 100 trials of CBF simulation using randomly chosen parameter set from normal distribution within the same range shown in A-G. The stealing
percent ranged from 16.4% to 40.5%.
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5



Fig. 6. Effect of the stimulation of the active arteriole on the CBF response in all 3rd order arterioles – simulations performed with the detailed flow dynamics model. A) All
3rd order arterioles are highlighted on both sides of the network. B) Small increase in CBF in segments 6 and 7 is observed in response to dilation of segment 4 arteriole. C)
Decreasing hematocrit and consequently decrease in viscosity. If more hematocrit goes into the side where flow is increased, less RBCs will go into the non-stimulated side,
which will result in decreasing viscosity (D), decrease in resistance, and thus increase in flow.
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of the daughter arterioles, and of diameter of the feeding arterioles
are anticorrelated with the stealing percent. On the contrary,
changes in length of the feeding arteriole and the resting diameter
of daughter arterioles are correlated to the stealing percent. There
was not significant correlation found between the stealing percent
and the inlet pressure. Furthermore, we modeled 100 trials ran-
domly generating each of the parameters evaluated for each vessel
using normal distribution (Fig. 5H). The maximum and minimum
values obtained for the stealing percent were of 40.5% and 16.4%,
respectively.

Additionally, we analyzed whether dilation of an arteriolar seg-
ment (segment 4) can result in an ABS from regions of the network
that are not directly supplied by the same feeding arteriole (seg-
ments 6 and 7 in Fig. 6A). Results from Fig. 6B shows a small
increase in CBF in these two 3rd order arteriolar segments (seg-
ments 6 and 7), upon dilation of the active arteriole in segment 4
(Fig. 6B). This increase is because red blood cells preferentially go
in the direction of higher blood flow when both daughter vessels
have the same diameter; which means that the feeding arteriole
of segments 4 and 5 will get more hematocrit due to its increased
flow (Fig. 6C), resulting in a decrease in viscosity in segments 6 and
7 (Fig. 6D); hence a decrease in resistance and the subsequent
increase in the CBF.

3.2. Complexity reduction via a parsimonious windkessel-based model

Lastly, we examined whether the proposed parsimonious
windkessel-based model on bifurcating vessels can reproduce the
results obtained from our detailed fluid dynamics model for a
physiological range of hematocrit percentages. A ground-truth pro-
6

file, representing the blood flow distribution in segments 4 and 5
upon dilation of the vessel in segment 4, was generated using
the detailed fluid dynamics model and a Gaussian noise
[ N 0;r2

� �
, with r ¼ 0:003] was added to the synthesized traces

to account for potential instrumental noise (simulated data,
Fig. 7, left panel). We then fitted the noise-added ground-truth pro-
file using the parsimonious windkessel-based model upon opti-
mizing select parameters of the model. As illustrated in Fig. 7,
the parsimonious windkessel-based model (black traces) was cap-
able of accurately representing CBF data generated with the
steady-flow model via optimizing two phenomenological parame-
ters: 1) the resistance of the feeding 2nd order arteriole (RA) and 2)
the baseline resistance of the 3rd order bifurcating arterioles (R 0ð Þ

a ).
Furthermore, we evaluated the dependency of these two parame-
ters to hematocrit percentages in the vascular network (Fig. 7,
right). Results show a parabolic decrease in RA, and a parabolic
increase in R 0ð Þ

a .
4. Discussion

In this work, we performed CBF simulations in a simplified,
microvascular network using a Hagen-Poiseuille-based theoretical
framework to examine conditions under which ABS could occur in
the neocortical vasculature. Results show that during a hyperemic
response, blood from the surrounding vasculature is reallocated to
the perfused vessel if they share a common feeding vessel (Fig. 4).
Stealing percent/ratio was obtained to be consistent with previous
experimental reports (Harel et al., 2002; Kannurpatti and Biswal,
2004; Shmuel et al., 2002). Additionally, the plasma and RBCs are



Fig. 7. Fitting of the simulated data. Left panel: observational data plus instrumental noise generated using the detailed flow dynamics model with hematocrit value of 0.41
(red – active segment and blue – passive segment) and the corresponding data fitting (optimization, black curve) using the parsimonious windkessel-based model. Right
panel: Estimated parameters (RA;R

0ð Þ
a ), solid line: mean, dotted line: standard deviation, for physiological range of hematocrit after 30 trials for each value. Black vertical

dotted line represents the value of the parameters used in left panel.

Fig. 8. Inertial time dependence to vessel diameter and hematocrit. Black numbers
on the top right denotes respective hematocrit values. Doted rectangular region
denote the rage of vessel diameters for two different species (black – human; red –
mice).
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also not equally distributed between the two daughter arterioles
due to nonlinear phase separation dynamics at vessel bifurcations.
The hematocrit percentage in a vessel decreases as we move away
from its centerline. In contrast, plasma flows preferentially near
the vessel wall. Therefore, plasma flowing near the vessel wall will
easily fill the gaps created in a dilating arteriole. The associated
drop in the relative hematocrit (and hence, in viscosity), together
with the increase in vessel diameter, result in a noticeable decrease
in the resistance of the actively dilated vessel. On the contrary,
plasma refilling of a dilating arteriole occurs at a cost of reducing
plasma in the surrounding ‘‘passive” vasculature, resulting in an
increase of viscosity and thus, in the resistance. Interestingly,
ABS seems to be related to changes in all parameters that define
the resistance of both the feeding and daughter arterioles. In the
absence of a vessel dilation at a bifurcation, RBCs tend to flow pref-
erentially toward the direction of an increased blood flow. This
effect can be observed as a relative decrease in viscosity in distant
vessels that are not sharing a common feeding arteriole with the
dilated segment (Fig. 6). We demonstrated that the relationship
between the diameter of the feeding vessel and its bifurcating
daughter branches play a key role in the magnitude of stealing per-
cent/ratio. Finally, we proposed a parsimonious model based on
windkessel theory to reproduce ABS observed in the detailed flow
dynamics model. We fitted the changes in CBF in the active and
passive arteriolar segments obtained by the steady-flow theoreti-
cal framework upon optimizing select parameters of the
windkessel-based model.

4.1. Using a solenoid to parsimoniously account for flow-response
inertia

The diameter of the vessels used in our simulations with the
detailed flow dynamics model are relatively small (from 8 to 33
lm). However, we demonstrated that the stealing effect does not
depend on the diameter of an isolated single vessel segment, but
on their relative ratio of the feeding (anti-correlated) and daughter
(correlated) segments. Therefore, the stealing effect can in princi-
ple occur at any vessel bifurcations within the cortex, even at the
biggest pial arteries. In mice, large pial arteries could have a diam-
eter of up to 200 lm (Qian et al., 2018). However, the diameter of
vessels in the human neocortex could range from 10 lm (smallest
arterioles) to 3 mm (large arteries) (Reina-De La Torre et al., 1998;
Gutierrez et al., 2014), in which case the inertial time constant in
the neocortex should not be neglected (Fig. 8): mice (1.4 ms) and
humans (0.3 s). Time shifts (~1–5 s) between the peak of the pos-
itive hemodynamic response and that in the surrounding negativ-
7

ity have been reported in different studies using MRI-based
(Goense et al., 2012; Harel et al., 2002; Shmuel et al., 2002,
2006) and optical-based (Hu and Huang, 2015) techniques. Based
on our simulations, a blood stealing effect at a single vessel bifur-
cation is not likely to cause these temporal shifts. Although these
shifts could in principle arise from non-vascular effects, e.g., delays
in neuronal communications, there are two vascular mechanistic
scenarios that could explain them: 1) the existence of nonlinear
auto-regulatory mechanisms (e.g., myogenic tone) that might shift
the increase/decrease of flow in any specific vascular brain region,
and/or 2) an averaging effect of local, inertia-induced blood steal-
ing in various bifurcating vessels at different time points. Also,
departure from the steady-state assumptions could cause shifts
in the time of these hemodynamics peaks. Exploring these
hypotheses is beyond the scope of this study. However, incorporat-
ing a solenoid in the parsimonious windkessel-based model can
accommodate all these effects by just introducing different inertial
time constants. Note that the shift between the positive and nega-
tive CBF peaks cannot be accounted for using a solely resistive
windkessel model. The typical sampling rate for an fMRI BOLD sig-
nal is 1 s, for which this effect in a single vessel bifurcation would
not be detectable. However, our extended model can be applied to
optically-based observations of CBF (e.g., laser Doppler/Speckle
flowmetry), which due to their higher sampling rate (up to
64 Hz) have the resolution to detect temporal shifts caused by a
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single vessel bifurcation. Our work constitutes a proof-of-concept
that the stealing phenomenon can theoretically occur even without
introducing other non-linear phenomena in vessel dynamics, e.g.,
vessels autoregulatory processes.
4.2. Quasi-steady-flow assumption

Decrease in resistance due to vessel dilation (maximum 30%)
implies the expanded region have to be refilled with blood. Our
model assumes that, compared to the impulse response function
of the system, the refilling is instantaneous. This assumption can
be justified with several mathematical estimations that we discuss
as follows. Using the conservation of mass, the time that the
increased blood flow will take to fill the empty volume created
by this maximum 30% dilation was about 0.5 s, which is smaller
compared to the hemodynamic impulse response function (~2–
3 s to reach the peak). As dilation is not happening in the passive
arteriole, this assumption may have just minor implications in
the shape of the negative CBF response. Also, the two main factors
modifying the stealing phenomenon explored in this study, the
phase separation effect and resting diameter relationship between
the feeding and daughter vessels, are independent of time. Further-
more, the matching of our stealing percent/ratio with previous
experimental data (Harel et al. 2002; Shmuel et al., 2002;
Kannurpatti and Biswal, 2004) proved that the amplitude of the
positive and negative response is less related to transient flow. In
future work, we might include transient approximations in order
to evaluate any potential impact. Previous studies involving tran-
sient variations in vessel diameters, venous in this case, have also
assumed quasi-stationarity regime in blood refilling (Grubb et al.,
1974). Most of the models for hemodynamic response have been
built on the quasi-stationary relationship between CBF and CBV
(f ¼ v1=/, Mandeville et al., 1999; Riera et al., 2004; Boas et al.,
2008). Including a time-invariant visco-elastic effect (Zheng and
Mayhew, 2009) had minor implication in the hemodynamic
response function.
4.3. CBF-diameter mismatch

Our results show a ~10% maximum peak of the relative CBF in
the dilated arteriole after a ~30% relative change in the vessel
diameter, which is not in complete agreement with some previous
theoretical and experimental work in the literature. For example,
using simulations in a vascular anatomical network (VAN) model,
Boas et al. (2008) reported 2.3% change in arterial CBF after
changes in vessel resistance equivalent to a 15% change in diame-
ter. A more recent study by the same group (Gagnon et al., 2015)
applying the VAN theoretical framework to mice brain voxel of
600 � 600 � 600l m (real network) reported 25% increase in
CBF for a 10% change in vessel diameters. The proposed 10% change
in diameter was based on experimental measurements with two-
photon microscopy. As we used similar physiological parameters
in our simulations, we were expecting comparable relative CBF
changes in our results. To obtain the CBF distribution, the VAN
model combines an equivalent electrical circuit with two resistors
per each vessel segment and the windkessel theory. Each vessel
resistance and flow were computed using the Hagen-Poiseuille
equation. However, they did not consider the dynamics of RBCs
at vessel bifurcations (the phase separation effect), nor did they
account for changes in blood apparent viscosity with vessel diam-
eter (Fig. 4F). An experimental study (Driscoll et al., 2013) reported
an increase in perfusion of about 100% for a 40% diameter change
in rats undergoing a forelimb stimulation paradigm. However,
CBF was indirectly estimated using a time/space approach to deter-
mine RBCs velocity from contrast-image streaks using two-photon
8

laser scanning microscopy. The diameters were simultaneously
measured using two-photon microscopy upon a tail injection of a
fluorescent dye. Their results were based on some considerations
regarding the blood velocity profile and homogeneity of RBC size
that could introduce uncertainties in the reported values. The sim-
plicity and symmetry of our network, alongside with the fact that
we imposed a constant pressure difference between the inlet and
the outlet nodes, allows for pressure reconfiguration in response
to a resistance drop at the dilated arteriole. Furthermore, previ-
ously mentioned reports of CBF changes were based on the dilation
of a larger number of arterioles and more complex vascular net-
work structures, which may be another explanation for the CBF-
diameter mismatch. This work is mainly focused on CBF changes
after dilating only one specific small arteriole in order to provide
a proof-of-concept for the blood stealing effect. The future use of
larger and more realistic microvasculature with vessel dilation in
an extended region might result in diameter-CBF relationships
consistent with those proposed in previous studies.

4.4. Interspecies variability

Studies involving hemodynamics changes linked to CBF stealing
in brain vasculature have been performed among different animal
species. Kannurpatti and Biswal (2004) performed CBF measure-
ments using laser doppler imaging (LDI) in the rat somatosensory
cortex during whisker stimulation. Similarly, Hu and Huang
(2015) combined optical imaging and electrophysiology to study
positive and negative hemodynamic responses (PHR/NHR) in the
rat cortex during hindlimb electrical stimulation. In cats, Harel
et al. (2002) studied BOLD and CBV signal changes in the occipital
lobe in response to visual stimulation using T2*-weighted fMRI of
4.7-T. Also, Ma et al. (2017) measured CBV and blood oxygenation
changes related to the nearby neuronal activity in the visual cortex
of cats. In the latter, hemodynamics measurements were obtained
using intrinsic signal optical imaging (ISOI), while neuronal activity
was characterized by combining planar and laminar electrophysi-
ological recordings. As these studies were performed in cats and
rodents, we built our microvascular network consistent with phys-
iological data from these species (Boas et al., 2008, Gagnon et al.,
2015). However, variations in the CBF stealing effect can result
from interspecies variability in vessel network anatomy and
hematocrit.

Basal hematocrit constitutes a source of variability, as our
results indicated (Fig. 5B and 5G). Negative changes in CBF in the
passive arteriole are mainly caused by hematocrit variations in
response to the dilation of the active arteriole. In this work, we
used a basal hematocrit range from the human brain, ranging from
0.32 to 0.50 (Kiyohara et al., 1985). In the case of mice, brain hema-
tocrit ranges from 0.15 to 0.55 (Lyons et al., 2016), which will
imply a small increase in the stealing percent/ratio for the range
of values from 0.15 to 0.32 and a small decrease for the range of
values between 0.50 and 0.55. Normal brain hematocrit levels in
cats range from 0.20 to 0.45 (Bentzer and Grände, 2017; de
Courten-Myers et al., 1985; Muizelaar et al. 1992); thus, we expect
a small increase in the stealing percent/ratio for values from 0.20
to 0.32. Differences in cerebral microvascular complexity between
mice and humans are not marked, since both vascular networks
share very similar topological parameters (Smith et al., 2019). As
pointed out by Smith et al. (2019), small differences in complexity
could be reduced by the use of a simple scaling factor, which
means that these discrepancies are mostly based on vessel diame-
ters and lengths. Although the arteriole length only impacts blood
resistance linearly (Eq. A5), it impacts the stealing phenomenon as
much as arteriole diameter (Fig. 5C-G), which is powered to the
fourth and is inversely proportional to resistance. This happens
because the range of variation for arteriole length is much bigger
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than the range of diameter (Table 1). Blood vessels within the
range of diameters presented in this study are found in both spe-
cies. Results show that variations in the length and diameter of
either the feeding arteriole or the daughters may affect the stealing
percent positively (correlated) or negatively (anti-correlated). The
relationship between the length and diameter of the feeding arte-
riole and its bifurcating daughters will define the amount of blood
stealing from one to another.

Furthermore, it is very important to highlight that the empirical
relationships of apparent viscosity used in this study (Eq. A1-3)
were obtained from the experimental data in cats. The thickness
of the endothelial surface layer at the inner wall of the blood ves-
sels varies among species, which demands corresponding changes
to the model to account for other animal species. A more general
approach to account for viscosity dynamics was presented by
Pries and Secomb (2005). They introduced a correction factor based
on the thickness of the endothelial surface layer of different species
into a more general framework for viscosity dynamics obtained
using in vitro data.
4.5. Possible impact on BOLD signal

BOLD signal does not directly depend on CBF; rather, it depends
on CBV and changes in blood oxygenation (deoxyhemoglobin con-
centration). Therefore, in order to estimate neuronal oxygen meta-
bolism—directly linked to neuronal activity—from BOLD signal, a
fully characterization of the CBF dynamics (including ABS) is nec-
essary. Experimental methods, such as BOLD calibration and ASL
have been used to remove the CBF component from the BOLD
effect (Blockley et al., 2012). However, theoretical frameworks like
the parsimonious winkessel-based model offer an alternative
approach. Intuitively, blood oxygen content may be affected by
hematocrit variations, which have largely been sidelined in BOLD
response related studies. Thus, it is necessary to pay closer atten-
tion not only to the impact of CBF on BOLD signal, but also on
the interplay between tissue oxygenation and hematocrit variabil-
ity as a function of the CBF. Furthermore, it is important to high-
light that ABS is not the only mechanism of NBR. A recent work
by our group (Suarez et al., 2021) has integrated several NBRmech-
anisms in a single general framework to explain abnormal BOLD
responses in epilepsy.
Table A1
Set of equations used for detailed fluid dynamics model simulations.

Model type Equations

Blood viscosity in vivo
gðtÞ ¼ 1þ ðg�

0:45ðtÞ � 1Þ 1�HðtÞð ÞCðtÞ�1
1�0:45ð ÞCðtÞ�1

DðtÞ
DðtÞ�1:1

� �2
	 


Dð
�

g�
0:45ðtÞ ¼ 6e�0:085DðtÞ þ 3:2� 2:44e�0:06DðtÞ0:645 [A2]

CðtÞ ¼ 0:8þ e�0:075DðtÞ� � �1þ 1
1þ10�11DðtÞ12

� �
þ 1

1þ10�1

Hagen-Poiseuille law RðtÞ ¼ 128gðtÞL
pDðtÞ4 [A4]

Flow-pressure dependence DPðtÞ ¼ RðtÞ � QðtÞ[A5]
Continuity equation QP tð Þ ¼ P

dQdðtÞ[A6]
Phase separation effect logit FHaðtÞð Þ ¼ AðtÞ þ BðtÞlogit ðQa tð Þ

QF ðtÞ � X0ðtÞÞ=ð1�
�

Definition: logit xð Þ ¼ log x
1�x

� �
AðtÞ ¼ �13:29½ðD2

aðtÞ=D2
b � 1Þ=ðD2

aðtÞ=D2
b þ 1Þ�ð1� H

BðtÞ ¼ 1þ 6:98ð1� HF ðtÞÞ=DF [A9]
X0ðtÞ ¼ 0:964ð1� HF ðtÞÞ=DF [A10]

Mass conservation Ha tð ÞQa tð Þ ¼ FHa tð Þ � HF tð ÞQF ðtÞ[A11]
Hb tð ÞQb tð Þ ¼ HF tð ÞQF ðtÞ � Ha tð ÞQa tð Þ[A12]

Neurovascular coupling dsðtÞ
dt ¼ eSF nðtÞ � 1ð Þ � sðtÞ

ss � QaðtÞ=Qa0�1ð Þ
sf

[A13]
d£ðtÞ
dt ¼ lSF sðtÞ � lVD£ðtÞ[A14]

Da tð Þ ¼ Da0 1þ£ðtÞð Þ[A15]
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Appendix A. The detailed fluid dynamics model

The detailed fluid dynamics model is based on the following
assumptions:

� A simplified symmetric microvascular consistent with experi-
mental data from rodents and cats.

� Steady state equations for laminar flow (i.e., the Hagen-
Poiseuille equation).

� A parametric model for nonlinearities in hemorheology as
observed in-vivo (i.e., the Fåhraeus, Fåhraeus-Lindqvist).

� Three parametric equations for the phase separation effects
(Pries and Secomb, 2008).

Table A1 summarizes all equations in the detailed fluid dynam-
ics model, which were used to simulate changes in hemodynamic
state variables in all vessel segments of the idealized microvascular
network: viscosity g tð Þ, vessel resistance R tð Þ, blood flow Q tð Þ,
across-vessel pressure difference DP tð Þ, and hematocrit H tð Þ. The
blood viscosity g tð Þ in each segment is calculated at each time t
using empirical equations (Eq. A1-3), which were obtained from
in to vivo experiments in cats (Pries and Secomb, 2008). The vessel
resistance of each segment is then calculated using these viscosity
values via the Hagen-Poiseuille equation (Eq. A4), assuming a
steady state solution for laminar flow dynamics (Navier-Stokes
equations) in a cylinder (Eq. A5) of a fixed diameter. A basal dis-
charge hematocrit H0 t ¼ 0ð Þ ¼ 0:45 was set as the initial condition
for all segments of the network. For this study, the diameter of the
active arteriole Da tð Þ was allowed to vary with time; hence, a time
dependency for diameter DðtÞ was included in general. A discus-
sion about the validity of this particular assumption is included
in section 4. Parameter L represents the length of the segment.
The pressure drops DP tð Þ and volumetric blood flow, Q tð Þ, in all
segments must satisfy both the Ohm’s law (A5) and the continuity
equation (A6). A large system of algebraic equations must be
Variable Reference

DðtÞ
tÞ�1:1

�2
[A1]

Viscosity (Pries and Secomb, 2008)

1DðtÞ12[A3]

Resistance

CBF and Pressures
CBF

2X0ðtÞÞ
�
[A7] Hematocrit

F ðtÞÞ=DF [A8]

Vasoactive signal Friston et al., 2000

Relative active diameter Explained bellow

Active diameter



A. Suarez, P.A. Valdes-Hernandez, A. Moshkforoush et al. Journal of Theoretical Biology 529 (2021) 110856
solved at once to estimate Q tð Þ and P tð Þ in all segments and nodes
respectively.

We illustrate the process for the idealized microvascular net-
work (Fig. 1). The system matrix A tð Þ in this particular case is
formed as:
A tð Þ¼

1 0 0 ��� ��� 0 1=R1 tð Þ 0 0 ��� 0
0 1 0 ��� 0 �1=R2 tð Þ1=R2 tð Þ 0 ��� 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 ��� ��� 1 0 0 0 ��� �1=R22 tð Þ
� � � � � � � � ��� � � ����� � �
1 �1�1 0 0 ��� 0 0 0 0 ��� 0

0 1 0 �1�1 ��� 0 0 0 ..
. ..

.

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 0 ����1�1 1 0 ��� 0

2
6666666666666666664

3
7777777777777777775
Table B2
State variables of the parsimonious windkessel-based model.

State variables Steady state/ baseline value

Relative neuronal activity (n) 1
Vasoactive signal (s) 0
Relative arteriole resistance (ra) 1
Relative cerebral blood volume (t) 1
Relative CBF in the arteriole (f a) 1
Relative pressure to volume constant (a) 1
x tð Þ ¼

Q1ðtÞ
Q2ðtÞ

..

.

Q22ðtÞ
P1ðtÞ
P2ðtÞ
..
.

P14ðtÞ

2
6666666666666664

3
7777777777777775

; y tð Þ ¼

PA=R1ðtÞ
0
..
.

�PV=R22ðtÞ
�
0
0
..
.

0

2
666666666666666664

3
777777777777777775

from Eq. A5, we obtained Ns number of equations for all seg-
ments, and from Eq. A6, we obtained Nn number of equations for
all nodes, discontinuous line separates both groups of equations.
Which results in a Ns þ Nnð Þ square matrix, where Ns and Nn repre-
sent the number of segments and nodes in the network, respec-
tively. Ri tð Þ represent the vessels resistance at each segment i, PA

and PV are the inlet and outlet pressures as shown in Table 1.
The variables vector x tð Þ is formed with the CBF at each vessel seg-
ment and the pressures at each node.

Upon solving the system A tð Þx tð Þ ¼ y tð Þ at each time instant,
Q tð Þ and P tð Þ values are obtained at all vessel segments and nodes,
respectively. We use the computed blood flow values at each ves-
sel segment to update hematocrit throughout the network by
applying the phase separation effect and mass conservation at each
bifurcation (Eq. A6-11), as described by Pries and Secomb, (2008).
Indexes a; b and F denote both daughters and the feeding vessel at
each bifurcation respectively. FHa is the fraction of feeding vessel’s
RBCs entering daughter branch a. The updated hematocrit values
are used to update viscosity and the resistance in all vessel seg-
ments. This process was repeated iteratively until convergence of
the hematocrit values was achieved using a tolerance of 10�3. Flow
rate distribution in the vascular network is assumed to reach
steady state at each time step Dt following a step change in a
Table B1
Set of equations used in the parsimonious windkessel-based model.

Model type Equations

Hemodynamics
LAM

df a
dt ¼ 1� RAMf a � R 0ð Þ

a Raf a � R 0ð Þ
w

vb
1=a1
vb
2=a2

" #
[B1]

2RA þ R 0ð Þ
a þ R 0ð Þ

w ¼ 1[B2]

s dv1;2
dt ¼ f a1;2 �

vaþb
1;2
a1;2

[B3]

sw
da1;2
dt ¼ �a1;2 þ e�b

dv1;2
dt [B4]

Neurovascular coupling ds
dt ¼ eNS n� 1ð Þ � s

ss �
f a�1ð Þ
sf

[B5]
dra
dt ¼ �r2as[B6]
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vessel’s diameter, which we called the quasi-steady flow
approximation.

As proposed in previous studies (Friston et al., 2000; Riera et al.,
2004; Riera et al., 2007), the stimulus was generated via a vasoac-
tive signal s that connects the neuronal activity n tð Þ, a relative vari-
able and for now modeled as a Gaussian function, to diameter
changes in the dilated arteriole that we denote with a subindex
‘‘a” (i.e., DaðtÞ, QaðtÞ) (Eq. A12 and A13). £ denotes the relative
diameter of the active arteriole. eSF , ss, and sf are parameters
defined in the extended balloon model (Friston et al., 2000), repre-
senting the neurovascular strength and vascular dynamics time
constants, respectively. We have extended this model to include
limit saturation for the neurovascular signaling lNS and the vessel
dilation lVD. Parameters eSF = 0.52, lSF = 1 and lVD = 0.25 were fixed
to create a vasodilation compatible with those in the windkessel-
based model (i.e., Eq. B5 and B6). Finally, the diameter of the active
arteriole is then obtained using Eq. A14. Parameters
Da0 ¼ Da t ¼ 0ð Þ and Qa0 ¼ Qa t ¼ 0ð Þ represent the resting/baseline
values of the diameter and CBF in the active arteriole.

Appendix B. The parsimonious windkessel-based model

In this study, a parsimonious windkessel-based model was
developed to explain ABS at a mesoscopic level. All model equa-
tions are shown in Table B1. Applying the second Kirchhoff’s law
and the windkessel theory (Mandeville et al., 1999), we obtained
Eq. B1 and B2 to model the CBF dynamics in both regions (see
deduction below). To represent transient changes in the post-
capillary venous compliance, we used the extended viscoelastic
extension model (Eq. B3) proposed by Zheng and Mayhew
(2009). Eq. B4 models the relative variations in time of the vis-
coelastic compliance variable (a) that relates volume and wind-
kessel flow. We employed the relationship proposed by Friston
et al. (2000) to describe changes in vessel resistance as a function
of the vasoactive signaling in the dilated lower-order arteriole (Eq.
B5 and B6). A list summarizing the assumptions underlying this
model is:

� Steady state representation of pressure–volume relationship
(Mandeville et al., 1999)

� Viscoelastic compliance (Zheng and Mayhew, 2009)
Variable Reference

CBF Appendix B

Normalized total network resistance

CBV Zheng and Mayhew, 2009

Nonlinear viscoelastic

Vasoactive signal Friston et al., 2000

Arteriole resistance



Table B3
Parameters of the parsimonious windkessel-based model.

Parameter (units) Symbol Value Range of possible values Reference

Neurovascular coupling (input efficacy) (dimensionless) eWS 0.28 [0.2–0.5] (Friston, 2002)
Time constant of the vasoactive signal (s) ss 1.1 [0.91–1.25]
Autoregulation time constant (s) sf 1.2
Total tissue mean transit time (s) s 1.8 [1.2–2.4] (Friston, 2002; Havlicek et al., 2015)
Diminished reserved volume exponent (dimensionless) b 2 (Boas et al., 2008; Zheng and Mayhew, 2009)
Time constant of a (s) sw 6.68 (Zheng and Mayhew, 2009)
Gain modeling influence of variation of CBV on a (s) b 7.6
Arterial inertial time constant (msec) sA 1 Inferred Section below
Feeding arteriole resistance (dimensionless) RA estimated [0.154–0.177] See results
Basal daughter arterioles resistance (dimensionless) R0

a
estimated [0.38–0.41] See results
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� Electrical equivalence of the vessel resistance and compliance is
appropriate.

� An inductance with the resistance in series well describes blood
inertia (Spronck et al., 2012).

Equation (B2) across all vessel resistance must be hold, thus, we
can combine Eq. B1 and B2 in the form:

LAM
df a
dt

¼ 1� RAMf a � R 0ð Þ
a Raf a � 1� 2RA þ R 0ð Þ

a

� � vb
1=a1

vb
2=a2

" #

ðB7Þ

With f a ¼ f a1
f a2

" #
;Ra ¼ ra 0

0 1

� �
;M ¼ 1 1

1 1

� �
; and 1 ¼ 1

1

� �
:

Resistance changes in the dilated arteriole compartment (ra) are
computed using (Eq. B6), which relates to neuronal activity
through the vasoactive signal described using (Eq. B5). As M is a
noninvertible matrix, our model is represented by a system of dif-
ferential algebraic equations (DAE). Solutions were computed in
MATLAB (MathWorks, Inc.) using ‘‘ode15s”, a stiff differential
equation solver suitable for DAE systems. All parameters and state
variables used in this model are listed in Tables B2 and B3
respectively.

The inductance was determined using:

L ¼ 8qB

pD2 l ðB8Þ

with qB ¼ 1:056g=ml, the blood mass density. Then, computing
the arteriole resistance using Hagen-Poiseuille equation (Eq. A5),
the RL circuit time constant for the penetrating arteriole is defined
as:

sA ¼ LA
RA

¼ gD2

16qB
ðB9Þ

As we accounted for small arterioles in our theoretical model
(20–30 lm), inertial time effects can be neglected for these small
diameters. Thus, we assumed it sA = 1 ms, same as the time step
in our simulations.

Theoretical deduction of the equations for the CBF in the
active/passive regions

Applying Kirchhoff 2nd law in the arterial and veins compart-
ments in Fig. 3, we obtain:

(I) LA
dðFa1þFa2 Þ

dt ¼ P0 � RA Fa1 þ Fa2

� �� RakFak � Pwk

(II) 0 ¼ Pwk
� Rwk

Fwk

Applying windkessel theory and transforming absolute values
into relative,
11
Pwk
¼ Vb

k

Ak
;
Rwk

Rð0Þ
w

¼ V0

Vk

	 
a

; f ak ¼
Fak

F0
; f wk ¼

Fwk

F0
;

rak ¼
Rak

Rð0Þ
a

; vk ¼ Vk

V0
; ak ¼ Ak

A0

Where /¼ 2

(I) LAF0
dðf a1þf a2 Þ

dt ¼ P0 � RAF0 f a1 þ f a2
� �

� R0
arF0f ak �

vb
k

ak
ðA0V

�b
0 Þ

(II) 0 ¼ vb
k

ak
ðA0V

�b
0 Þ � v�a

k Rð0Þ
w F0f wk

Writing these two equations in matrix form we obtain:

(I) LAF0M
df a
dt ¼ P0

1
1

� �
� RAF0Mf a � Rð0Þ

a F0Raf a � VbA�1C
1
1

� �

(II) 0 ¼ VbA�1C 1
1

� �
� V�aRð0Þ

w F0f w

where:

f a ¼ f a1
f a2

" #
; f w ¼ f w1

f w2

" #
;Ra ¼ ra1 0

0 ra2

� �
;

V ¼ v1 0
0 v2

� �
;A ¼ a1 0

0 a2

� �
;M ¼ 1 1

1 1

� �
;C ¼ ðA0V

�b
0 Þ

At baseline values, equation (I) simplifies like this:

C
1
1

� �
¼ P0

1
1

� �
� RAM þ R 0ð Þ

a

� �
F0

1
1

� �

Then, substituting this expression in (II) we obtain

F0
1
1

� �
¼ P0 RAM þ R 0ð Þ

a þ R 0ð Þ
w

� ��1 1
1

� �

) F0 ¼ P0diag P0 RAM þ R 0ð Þ
a þ R 0ð Þ

w

� ��1
� �

Now, as we assume constant pressure, P0 ¼ 1 and F0 ¼ 1 0
0 1

� �
,

then we get:

2RA þ R 0ð Þ
a þ R 0ð Þ

w ¼ 1

Thus, C ¼ R 0ð Þ
w , and the substituting it into equations (I), we get:

LAM
df a
dt

¼ 1
1

� �
� ðRAM þ R 0ð Þ

a RaÞf a � R 0ð Þ
w VbA�1 1

1

� �
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