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a b s t r a c t

I investigate the stability of the homogeneous equilibrium of a discrete-time metapopulation assuming

costly dispersal with arbitrary (but fixed) spatial pattern of connectivity between the local populations.

First, I link the stability of the metapopulation to the stability of a single isolated population by proving

that the homogeneous metapopulation equilibrium, provided that it exists, is stable if and only if a

single population, which is subject to extra mortality matching the average dispersal-induced mortality

of the metapopulation, has a stable fixed point. Second, I demonstrate that extra mortality may

destabilize the fixed point of a single population. Taken together, the two results imply that costly

dispersal can destabilize the homogeneous equilibrium of a metapopulation. I illustrate this by

simulations and discuss why earlier work, arriving at the opposite conclusion, was flawed.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Discrete-time metapopulation models, cast in the form of
coupled map lattices (CML) and related modelling frameworks,
exhibit very rich dynamics even in the simplest case of a single
species with passive (density-independent) dispersal. These
riches include cyclic and chaotic behaviour with complicated
bifurcation patterns, multiple attractors with fractal basins of
attraction, and spatial pattern formation of various kinds (e.g.
Kaneko, 1990, 1998; Hastings, 1993; Gyllenberg et al., 1993;
Doebeli, 1995; Lloyd, 1995; Doebeli and Ruxton, 1998; Utz et al.,
2007). Because of this inherently complex dynamics, much work
on discrete-time metapopulations falls back on numerical analysis
and simulations, and hence is forced to commit to particular
choices such as using the logistic map, or assuming nearest-
neighbour dispersal or a Gaussian dispersal kernel. There are
preciously few generalizations that hold true independently of the
map chosen to describe the within-population dynamics and the
pattern of coupling via dispersal between populations at various
distances.

One such general result was given by Rohani et al. (1996) and,
under more relaxed conditions, by Jang and Mitra (2000); both are
special cases of the multi-species model of Jansen and Lloyd
ll rights reserved.
(2000). These authors proved that in a homogeneous metapopu-
lation of a single species, where local populations are unstruc-
tured and interact solely via passive and cost-free dispersal, the
metapopulation equilibrium where all local populations are
characterized by the same equilibrium population density N̂ is
locally stable if and only if N̂ is a stable equilibrium of a single
population in absence of dispersal. Changes in cost-free passive
dispersal thus do not affect the stability of the homogeneous
equilibrium of a metapopulation.

The appeal of this result is twofold. First, it holds for a large
class of metapopulation models since it is independent of the
form of local population dynamics and of the spatial pattern of
dispersal (the fraction of individuals dispersing to various
distances). Second, it establishes a simple link between the
behaviour of an arbitrarily large metapopulation and the well-
understood dynamics of a single isolated population. The result is
however subject to the restrictive assumption that dispersal is
free of any cost such as mortality during dispersal. In reality,
dispersing individuals are often exposed to extra sources of
mortality; passive dispersal in a fragmented habitat is especially
likely to entail a high risk of death due to landing outside any
suitable habitat fragment.

In this paper, I extend the analysis to costly dispersal, retaining
arbitrary local dynamics and an arbitrary pattern of dispersal. I
prove that the homogeneous equilibrium ðN̂ ; . . . ; N̂Þ of a metapo-
pulation is stable if and only if N̂ is a stable equilibrium of an
isolated population, which is subject to extra mortality that equals

www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2009.09.032
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Fig. 1. Destabilization by extra mortality: (a) an example for the map af ðNÞ in the

single-population dynamics in Eq. (4) such that extra mortality destabilizes the

fixed point. Thick line: the map without extra mortality (a=1, the fixed point is

stable); dashed line: the map with extra mortality (a=0.7, the fixed point is

unstable). f was obtained as an interpolation function of Mathematicas with points
0
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the average dispersal-related mortality in the metapopulation.
This direct link between the dynamics of the metapopulation and
the dynamics of an isolated population is an intuitive and
straightforward extension of the result obtained by Rohani et al.
(1996), Jang and Mitra (2000) and Jansen and Lloyd (2000), but it
does not guarantee that the stability of the metapopulation is
independent of dispersal. It is easy to construct examples of the
single-population dynamics such that adding extra mortality
destabilizes the equilibrium. With such dynamics within the local
populations, increasing dispersal destabilizes the homogeneous
equilibrium of the metapopulation.

The effect of costly dispersal on metapopulation stability has
been investigated by Ruxton et al. (1997a,b). My results contradict
their conclusions: I explain in the Discussion why part of the
results of Ruxton et al. (1997a,b) are not generalizable to arbitrary
metapopulations and another part of their results is not correct.
and derivatives as follows: ðN; f Þ ¼ ð0;0Þ with derivatives f ð0Þ ¼ 4:25 and

f 00ð0Þ ¼ � 4:25; ðN; f Þ ¼ ð1;1:275Þ with derivatives f 0ð2Þ ¼ � 1:275, f 00ð1Þ ¼ 6:8 and

f
000

ð1Þ ¼ � 12:75; ðN; f Þ ¼ ð2;0Þ with slope f 0ð2Þ ¼ � 1:36 and (b) bifurcation

diagram of the single-population model with af as in (a).
2. The model

Consider a metapopulation of a single species, where all
ecological interactions are local and populations are connected
only by dispersal. Local populations are unstructured such that
the within-population dynamics is given by

Nðtþ1Þ ¼ f ðNðtÞÞ ð1Þ

where f : Rþ-Rþ may be arbitrary (e.g. may include an Allee-
effect and may have several nontrivial equilibria, stable or not) but
is the same in each population. L local populations are connected
via passive dispersal, such that a fixed fraction m of individuals
disperse, and a fraction jij of dispersers from population j enter
population i. The matrix ðjijÞ describes the pattern of dispersal.
The dynamics of the metapopulation is thus given by

Niðtþ1Þ ¼ ð1�mÞf ðNiðtÞÞþm
XL

j ¼ 1

jijf ðNjðtÞÞ ð2Þ

for i¼ 1; . . . ; L. At a homogeneous equilibrium ðN̂ ; . . . ; N̂Þ,

N̂ ¼ ½ð1�mÞþm
XL

j ¼ 1

jij�f ðN̂Þ ð3Þ

must hold for every index i. Hence for a homogeneous equilibrium
to exist, one has to assume that

PL
j ¼ 1 jij ¼ s is the same for each

destination patch i.
I make no assumption on the dispersal pattern ðjijÞ other thanPL

j ¼ 1 jij ¼ s being the same for all i, i.e., that a homogeneous
equilibrium exists. In particular, dispersal can have a mortality
cost such that some of the emigrants die during dispersal and do

not immigrate into any population. This implies that
PL

i ¼ 1 jijr1

(with equality only for cost-free dispersal); the sum
PL

i ¼ 1 jij may

in general be different for different source patches j. The mean
probability of survival during dispersal (averaged over all source
patches at the homogeneous equilibrium) is

s¼
1

L

XL

j ¼ 1

XL

i ¼ 1

jij:

This general model subsumes, among others, the following cases
of special interest:
(i)
 L local populations (with arbitrary spatial locations) are
connected via a global dispersal pool; each dispersing
individual dies with probability 1� s. In this particular case,
jij ¼ s=L for all pairs of patches (i,j).
(ii)
 L populations form a 1-dimensional lattice with periodic
boundaries, where dispersal depends on the distance be-
tween patches and dispersal mortality is also distance-
related. In this case, jij is determined by ji� jj. More
generally, jij may depend on the (signed) difference i� j,
such that dispersal (and/or mortality) differs between left
and right (e.g. there is a prevailing direction of wind). In these
cases ðjijÞ is a circulant matrix (cf. Rohani et al., 1996).
(iii)
 As in (ii), but the L populations form a 2-dimensional lattice
of size L1 � L2 with periodic boundaries; a vector of length
L¼ L1L2 contains the local population densities Ni of Eq. (2).
In this case, ðjijÞ is a ‘‘circulant of circulants’’, i.e., a block
circulant where each block itself is a circulant. (Rohani et al.,
1996 assumed erroneously that ðjijÞ itself is a circulant also
for a 2-dimensional lattice: this is not the case, see e.g. Fig. 1
of White and White, 2005.)
3. Stability of the homogeneous equilibrium

Consider an isolated population

Nðtþ1Þ ¼ af ðNðtÞÞ ð4Þ

with 0oar1. From Eq. (3) it is obvious that with a¼ 1�mþms,
the equilibrium density of this isolated population, N̂ , equals the
local densities of a metapopulation at the homogeneous equili-
brium, ðN̂ ; . . . ; N̂Þ. In the metapopulation context, a is the
probability of not dying due to dispersal (either not dispersing
or surviving dispersal). The behaviour of the metapopulation is
linked to the local dynamics by the following proposition:

The homogeneous equilibrium ðN̂ ; . . . ; N̂Þ of the metapopulation

model in Eq. (2), provided that it exists, is locally asymptotically

stable if and only if the fixed point N̂ of the single-population

dynamics in Eq. (4), with extra mortality matching the average

dispersal-induced mortality at the homogeneous metapopulation

equilibrium [a¼ 1�mþms], is locally asymptotically stable.
To prove this claim, perform a standard stability analysis by

substituting NiðtÞ ¼ N̂þniðtÞ into Eq. (2). Linearization yields
nðtþ1Þ ¼ f 0ðN̂ÞBnðtÞ, where matrix B has the elements

bij ¼
1�mþmjii for i¼ j

mjij for ia j

(
ð5Þ

and, by the assumption that the homogeneous equilibrium exists,

XL

j ¼ 1

bij ¼ 1�mþm
XL

j ¼ 1

jij ¼ 1�mþms¼ a for all i ð6Þ
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É. Kisdi / Journal of Theoretical Biology 262 (2010) 279–283 281
ð1=aÞB is therefore a stochastic matrix (all elements are non-
negative and each row sums to 1). Since the leading eigenvalue of
a stochastic matrix is 1, the leading eigenvalue of B must be a; and
the eigenvalue of the Jacobian matrix f 0ðN̂ÞB with greatest
modulus is af 0ðN̂Þ. Hence ðN̂ ; . . . ; N̂Þ is stable if jaf 0ðN̂Þjo1, which
is precisely the same as the condition for the single-population
dynamics in Eq. (4) having a stable equilibrium at N̂ .

This proof is a straightforward extension of Jang and Mitra
(2000) to the case of costly dispersal (but as Silva et al., 2001 also
noticed, matrix ðjijÞ need not be irreducible as Jang and Mitra,
2000 required for the proof to hold; indeed, two unconnected
networks of populations with identical within-population dy-
namics and identical value of a yield a reducible matrix for ðjijÞ,
yet the two networks will independently equilibrate to the same
homogeneous equilibrium upon a small perturbation). The same
result can also be obtained from the framework of Jansen and
Lloyd (2000) by introducing some cost to dispersal (but their
technical assumption that ðjijÞ is diagonalizable is not necessary
for the proof above). The pattern of dispersal need not be shift
invariant, i.e., ðjijÞ need not be circulant as assumed by Rohani
et al. (1996).

If dispersal entails no cost (a¼ 1), then the homogeneous
equilibrium of the metapopulation is stable whenever jf 0ðN̂Þjo1,
i.e., whenever a single population has a stable equilibrium, as
found earlier. Costly dispersal destabilizes the metapopulation
under precisely the same conditions as when extra mortality
destabilizes a single population. I shall thus explore when
decreasing a in Eq. (4) leads to loss of stability.
4. Destabilization by extra mortality

A fixed point N̂ of the single-population model in Eq. (4)
undergoes a bifurcation when jaf 0ðN̂Þj ¼ 1. Here I shall focus on
the case when af 0ðN̂Þ ¼ � 1 and extra mortality (somewhat
counter-intuitively) increases the propensity for ‘‘boom and bust’’
behaviour, such that population cycles replace a stable equili-
brium. In the alternative case of af 0ðN̂Þ ¼ 1 (with N̂ 40), the fixed
point generically undergoes a tangent bifurcation and disappears.
Extra mortality can then drive the population extinct or can send
it to some other attractor, and destabilization can occur because
the population may be attracted to a limit cycle or to chaos when
N̂ is lost. What happens, however, depends on the concrete model
at hand and cannot be predicted from the local properties of N̂ .

Suppose that the parameters of f are chosen such that
af 0ðN̂Þ ¼ � 1 occurs at a¼ a0; for example, one can set a0 ¼ 1 by
choosing the parameters of f such that the dynamics is at a
period-doubling bifurcation point in absence of any extra
mortality. Implicit differentiation of the equilibrium condition
af ðN̂Þ � N̂ ¼ 0 yields ½dN̂=da�a ¼ a0

¼ f ðN̂Þ=½1� a0f 0ðN̂Þ� ¼ N̂=2, and
therefore

d½af 0ðN̂Þ�

da

����
a ¼ a0

¼ f 0ðN̂Þþa0f 00ðN̂Þ
dN̂

da

����
a ¼ a0

¼ �
1

a0
þ

1

2
a0f 00ðN̂ÞN̂

ð7Þ

Adding extra mortality (decreasing a) will destabilize the fixed
point (decrease the value of af 0ðN̂Þ beyond �1) if the right hand
side of Eq. (7) is positive, i.e., if f is sufficiently convex such that

f 00ðN̂Þ4
2

a2
0N̂

ð8Þ

holds at the bifurcation point a0f 0ðN̂Þ ¼ � 1. In the opposite case,
adding extra mortality stabilizes the fixed point.

It is straightforward to construct biologically plausible maps f

for which condition (8) is satisfied and therefore extra mortality
has a destabilizing effect. To do this, simply choose a0 (where the
bifurcation is to occur) and N̂ (which can be scaled to 1 without
loss of generality). Then choose f to satisfy the local conditions
a0f ðN̂Þ ¼ N̂ , a0f 0ðN̂Þ ¼ � 1 and f 00ðN̂Þ sufficiently large positive such
that condition (8) holds; the rest of the function can be chosen
arbitrarily and such that it is biologically interpretable [e.g.
f ð0Þ ¼ 0]. An example is shown in Fig. 1a. Increasing extra
mortality by decreasing a shifts the fixed point to the left, and
makes the function af ðNÞ less steep at every point: hence to
destabilize the fixed point, f must be sufficiently convex such that
the shift towards the left makes the slope steeper (more negative)
at the fixed point, despite that at every individual point the
function is becoming less steep [this verbal condition is quantified
by (8)]. The example in Fig. 1 was chosen to make this visually
clear; but the function does not have to be so exaggerated as this
example. Note that the shape of f right to the fixed point with
a¼ 1 (N41:15 in Fig. 1a) is irrelevant for the stability of the fixed
point with any extra mortality (ar1).

Fig. 1b shows the bifurcation diagram of the single-population
dynamics in Eq. (4) with the map af as in Fig. 1a. The population is
viable for a40:24; the nontrivial fixed point is unstable and the
population has an attracting 2-cycle for 0:5oao0:78. There is
another attracting 2-cycle that appears at a¼ 0:9 via a tangent
bifurcation of the second iterated map af ðaf ðNÞÞ and undergoes a
rapid period-doubling cascade, but this does not affect the
stability of the fixed point of af ðNÞ.
5. Destabilization by costly dispersal

As proven in Section 3, the homogeneous equilibrium of a
metapopulation is stable if and only if the fixed point of the
single-population dynamics with a¼ 1�mþms is stable, where
m is the fraction of individuals who disperse and s is the average
survival of dispersers. If the single-population fixed point is
unstable in the interval ða1;a0Þ, then the homogeneous metapo-
pulation will be unstable, irrespectively of the pattern of dispersal,
for the dispersal fractions ð1� a0Þ=ð1� sÞomo ð1� a1Þ=ð1� sÞ.

As an example, consider a metapopulation like in Ruxton et al.
(1997a,b), where 10 patches are arranged in a circle and dispersers
are evenly divided between the two nearest neighbour patches.
Assume that local population dynamics is given by the map f

shown in Fig. 1a (thick line). As Fig. 2 illustrates, the homogeneous
equilibrium is stable in absence of dispersal, but costly dispersal
destabilizes the equilibrium for some values of m.
6. Discussion

In this paper, I obtained two results: (1) the homogeneous
equilibrium of a metapopulation, provided that it exists, is stable
if and only if a single population, which is subject to extra
mortality matching the average dispersal-induced mortality in the
metapopulation, has a stable fixed point; (2) extra mortality may
destabilize the fixed point of a single population. Taken together,
these imply that costly dispersal can destabilize the homogeneous
equilibrium of a metapopulation (see an example in Fig. 2). Costly
dispersal affects metapopulation stability exclusively due to the
extra mortality it implies: if extra mortality stabilizes the fixed
point of an isolated population then costly dispersal stabilizes the
homogeneous equilibrium of a metapopulation, and if extra
mortality destabilizes an isolated population then costly dispersal
destabilizes the metapopulation. Cost-free dispersal has no effect
(cf. Rohani et al., 1996; Jang and Mitra, 2000; Jansen and Lloyd,
2000). Because the effect on stability is independent of any aspect
of dispersal but the average cost, costly dispersal can destabilize
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Fig. 2. Simulated dynamics of a 10-patch metapopulation with periodic boundaries and nearest-neighbour dispersal with s=0.2; local population dynamics is given by the

map in Fig. 1a (thick line). Since the single-population fixed point is unstable for 0:5oao0:78, the homogeneous equilibrium of the metapopulation must be unstable for

dispersal fractions 0:275omo0:625 (see text). Starting from the vicinity of the homogeneous equilibrium (with an independent small perturbation added to each

population), 5000 generations were simulated to let the transients die out and the subsequent 50 generations are shown: (a) m¼ 0, the homogeneous equilibrium is stable

in absence of dispersal and (b) m¼ 0:5, the homogeneous equilibrium is unstable with costly dispersal and the metapopulation has converged to a synchronous 2-cycle.
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the homogeneous equilibrium even in the simplest metapopula-
tion model with a global dispersal pool.

Ruxton et al. (1997a,b) have previously investigated the effect
of costly dispersal on the dynamics of a metapopulation, and they
concluded that costly dispersal stabilizes the homogeneous
equilibrium. In particular, they found that extra mortality has a
stabilizing effect in isolated populations, and that the stabilizing
effect of costly dispersal in a metapopulation is even stronger than
the stabilizing effect of extra mortality in an isolated population.
My results contradict these conclusions. First, I have proven that
there is no difference between the stabilizing effect of extra
mortality and the stabilizing effect of costly dispersal; costly
dispersal affects stability only via the extra mortality. This
discrepancy is due to a simple algebraic error in the proof of
Ruxton et al. (1997b). [In Eqs. (B.2) and (B.3) of Ruxton et al.,
1997b, the derivative of the within-population map should appear
without being multiplied by 1� md, the probability of not dying
due to dispersal in their notation; but their Q contains this extra
multiplicative factor, so that they account for dispersal-related
mortality twice. The same results are reproduced as Eqs. (5) and
(6) of Ruxton et al., 1997a.] Second, Ruxton et al. (1997a,b) found
that extra mortality stabilizes the fixed point in an isolated
population, but their analysis assumed a particular form of local
population dynamics. Extra mortality indeed has a stabilizing
effect in the model they studied and also in other widely used
discrete-time population models, but this is not true in general for
all biologically plausible dynamics.

Adding extra mortality destabilizes the fixed point of a single-
population model if f 00ðN̂Þ42=N̂ holds at the bifurcation point
f 0ðN̂Þ ¼ � 1 (this is inequality (8) with a0 set to 1 by factoring it
into f), i.e., if the map f is sufficiently convex at the point of period-
doubling bifurcation. All overcompensating models with a
differentiable and positivity-preserving map f have convex parts
(the concave quadratic or logistic map needs to be truncated to
avoid negative population densities). The few widely used maps,
however, fail to satisfy condition (8), because the bifurcation does
not occur in the convex part or the function is not convex enough.
Consider the Ricker map, f ðNÞ ¼ lNe�aN , where a0 is factored
into l. The Ricker model has a single nontrivial fixed point at
N̂ ¼ ðlnlÞ=a and undergoes a period-doubling bifurcation at l¼ e2.
At the bifurcation point, therefore, N̂ ¼ 2=a and f 00ðN̂Þ ¼ 0; i.e., the
bifurcation happens exactly when the fixed point passes through
the point of inflection of f. Condition (8) is never satisfied in the
Hassell (1975) model [f ðNÞ ¼ lN=ð1þaNÞb] or in the Maynard
Smith and Slatkin (1973) model [f ðNÞ ¼ lN=ð1þðaNÞbÞ] either; the
latter was used by Ruxton et al. (1997a,b).
This of course does not mean that extra mortality could not
destabilize the fixed point with other maps, and indeed it is easy
to construct biologically reasonable maps where extra mortality is
destabilizing. Fig. 1 shows an example where the relevant
property of f is visually clear: multiplying f with ao1 makes
the slope steeper at the fixed point. But f does not have to be as
strongly convex as in Fig. 1a. A small ‘‘dent’’ added on the Maynard
Smith and Slatkin (1973) model, for example, is enough to satisfy
inequality (8) and to destabilize the fixed point under extra
mortality. We know relatively little about the underlying
mechanisms that create the discrete-time maps (see e.g. Gyllenberg
et al., 1997; Gamarra and Sole, 2002; Johansson and Sumpter,
2003; Thieme, 2003; Geritz and Kisdi, 2004; Eskola and Geritz,
2007; Eskola and Parvinen, 2007 for mechanistic underpinnings
of various discrete-time models), and therefore we do not have
a priori constraints on the convexity of f. Empirical data are
usually too noisy to ascertain the precise shape of f. There is thus
no ground for narrowing research to the few famous discrete-time
population models. As the present study also underlines, it is
dangerous to overuse just a few models, because results based on
them may not carry over to other models.

To put the present results into proper perspective, note that a
metapopulation may have alternative attractors next to its
homogeneous equilibrium. For example, equilibria with unequal
population densities exist when an Allee-effect operates within
local populations and dispersal is weak (see Gruntfest et al., 1997;
Amarasekare, 1998; Gyllenberg et al., 1999). Cyclic or chaotic
attractors may also coexist with the homogeneous equilibrium; in
fact, an asynchronous (possibly chaotic) attractor exists in the
example of Fig. 2 for some small values of m (not shown), where
the homogeneous equilibrium is also stable. The existence and
stability of these alternative attractors generally depend on
dispersal even if dispersal is passive and cost-free.

As shown here, costly passive dispersal can either destabilize
or stabilize the homogeneous equilibrium, depending on the
properties of local population dynamics (see condition (8)). It is
well known that destabilization can occur also in other ways. The
homogeneous equilibrium can be destabilized if dispersal is cost-
free but depends on local population density (Ruxton, 1996; Jang
and Mitra, 2000; Silva et al., 2001). Destabilization can result also
if the local population dynamics has more than one variable,
either because populations are structured e.g. by age or because
there are several interacting species (such as predator–prey or
host–parasitoid), provided that different age/stage classes or
different species differ in dispersal (Hastings, 1992; Rohani and
Ruxton, 1999a,b; Jansen and Lloyd, 2000; White and White, 2005;
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de Castro et al., 2006). Concerning the reverse case, cost-free
dispersal cannot stabilize the homogeneous equilibrium if it is
unstable in absence of dispersal: this holds for density-dependent
dispersal (Silva et al., 2001) and for multi-species systems (Jansen
and Lloyd, 2000) as well. A simple continuity argument shows
that adding dispersal cost can change this conclusion. If dispersal
cost is stabilizing (as it is the case for several widely used models
of within-population dynamics, see above) whereas density
dependence of dispersal is weak and different species have
sufficiently similar dispersal behaviour, then dispersal will have
an overall stabilizing effect on the homogeneous equilibrium of
the metapopulation. Because dispersal costs are ubiquitous in
nature and they may stabilize as well as destabilize the
metapopulation, general inferences on the effect of dispersal
seem unfortunately not possible.
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