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We model the stages of a T cell response from initial activation to T cell expansion and contraction
using a system of ordinary differential equations. Results of this modeling suggest that state transitions
enable the T cell population to detect change and respond effectively to changes in antigen stimulation
levels, rather than simply the presence or absence of antigen. A key component of the system that gives
rise to this emergent change detector is initial activation of naive T cells. The activation step creates a
barrier that separates the long-term, slow dynamics of naive T cells from the short-term, fast dynamics
of effector T cells. This separation allows the T cell population to compare current, up-to-date changes
in antigen levels to long-term, steady state levels. As a result, the T cell population responds very
effectively to sudden shifts in antigen levels, even if the antigen were already present prior to the
change. This feature provides a mechanism for T cells to react to rapidly expanding sources of antigen
stimulation, such as viruses, while maintaining tolerance to constant or slowly fluctuating sources of
stimulation, such as healthy tissue during growth.

In addition to modeling T cell activation, we also formulate a model of the proliferation of effector T
cells in response to the consumption of positive growth signal, secreted throughout the T cell response.
We discuss how the interaction between T cells and growth signal generates an emergent threshold
detector that responds preferentially to large changes in antigen stimulation while ignoring small ones.
As a final step, we discuss how the de novo generation of adaptive regulatory T cells during the latter
phase of the T cell response creates a negative feedback loop that controls the duration and magnitude
of the T cell response. Hence, the immune network continually adjusts to a shifting baseline of (self and
non-self) antigens, and responds primarily to abrupt changes in these antigens rather than merely their
presence or absence.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

require activation before carrying out immune function? Stated
negatively, why do T cells not emerge, instead, as fully functional

Two seemingly disparate questions converge to form the basis
of this paper: (1) can the immune system detect change, and
(2) why do T cells have states? To address the first question, we
develop a mathematical model of the T cell response and present
the novel hypothesis that the immune system responds effec-
tively to changes in the level of antigen stimulation, rather than
simply responding to the presence or quantity of stimulation. This
feature allows the system to tolerate slowly fluctuating, back-
ground levels of antigen, while still remaining able to react to
shifts in antigen stimulation. Building on this hypothesis, we also
propose a mechanism that enables the immune system to func-
tion as a change detector.

Interestingly, this mechanism relates to the second principal
question of this paper: why do T cells begin in a naive state and
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effectors? Two explanations that may seem straightforward are as
follows:

1. First line of protection against autoimmunity.
Activated cytotoxic T cells effectively eliminate pathogens. On
the other hand, cytotoxic T cells may occasionally kill healthy
cells. Thus, the T cell activation step creates a barrier that
reduces the supply of activated T cells into the system under
noninfectious conditions.

2. Conservation of resources.
Activated T cells tend to multiply more quickly, consume more
resources, and turnover more frequently than their inert
counterparts. Therefore, the presence of a T cell resting state
reduces unnecessary resource consumption under noninfec-
tious conditions.

In this paper, we go beyond these two immediate explanations
and use our mathematical model to propose the novel connection


www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2011.01.031
mailto:kim@math.utah.edu
mailto:ppl@stanford.edu
dx.doi.org/10.1016/j.jtbi.2011.01.031

60 P.S. Kim, P.P. Lee / Journal of Theoretical Biology 275 (2011) 59-69

that the presence of a latent T cell state provides a simple, robust
mechanism for the T cell response to effectively detect and
respond to changes in antigen stimulation levels.

Although we focus on T cells, our modeling and analysis are
not restricted to the T cell response, since the motif of immune
activation is prevalent in other cell populations throughout the
immune system. A variety of immune cells undergo transitions
from dormancy to activation when stimulated appropriately. For
example, the stimulation of natural killer (NK) cells by type 1
interferon induces elevated cytotoxicity, proliferation, and cyto-
kine secretion (Biron et al., 1999). The stimulation of macro-
phages by type 2 interferon induces activation and upregulation
of MHC class I and class II molecules (Janeway et al., 2005,
Fig. 8.32). The stimulation of dendritic cells (DCs) by inflamma-
tory signals induces a transition from an immature (tolerogenic)
to a mature (immunogenic) state (Janeway et al., 2005, p. 331). In
addition, the antigen-specific stimulation of naive T cells induces
a transition to the effector T cell state, characterized by rapid
proliferation, cytokine secretion, and cytotoxicity (Janeway et al.,
2005, pp. 418-419).

Mathematical models of immune interactions have frequently
incorporated an activation step, and the phenomenon is often
viewed as a fundamental characteristic of immune cell behavior.
For example, Merrill (1981) formulates a model in which natural
killer cells are activated from a pre-NK to an NK state after
stimulation with interferon. De Boer et al. (1985) present a model
in which macrophages progress to a cytotoxic state by interacting
with lymphoid factors. Moore and Li (2004) formulate a model in
which precursor T cells are activated by interactions with cancer
cells. Also, Fouchet and Regoes (2008) present a model in which
precursor T cells activate to effector T cells after interaction with
activated antigen-presenting cells (APCs), and non-antigen-bear-
ing APCs transition to antigen-bearing APCs after interacting with
free antigen.

In all the examples above, immune activation is modeled
precisely by the following ordinary differential equation (ODE):

% =s—dx—a(t)x, 1.1
where x is the population of dormant immune cells prior to
activation, s is the supply rate of dormant immune cells, d is the
death rate, and a(t) is the rate at which dormant immune cell
become activated due to some stimulating factor. Moreover, the
supply and death rates, s and d, are constant in every example
above (at least in quasi-steady state for De Boer et al., 1985).

Eq. (1.1) is merely a small part of more sophisticated mathe-
matical models that include the dynamics of activated immune
cells. However, this initial transition is a common kernel among a
large number of immune models considering a wide range of
distinct mechanisms. From the modeling examples described
above, not to mention numerous others, we see that the notion
of immune activation is a recurring motif throughout the immune
system and that mathematical modelers and experimentalists
widely agree on the dynamics of how it works. Perhaps this is not
surprising, since the idea is well-understood compared to other
immune phenomena and unambiguously simple: an inactivated
immune cell changes state under appropriate stimulation.

Returning to our original hypothesis of immune change
detection, we ask whether we can learn anything from this
simple, yet recurring motif? Our claim is that this elementary
phenomenon of activation at the cellular level produces an
unexpected, emergent dynamic at the population level that
allows the overall immune response to operate as a highly
efficient signal processor, specifically a change detector.

The paper is organized as follows. In Section 2, we analyze a
simple equation for naive T cell activation and discuss how the

mechanism gives rise to an elementary change detector.
In Section 3, we analyze a system of ODEs modeling the secretion
and consumption of positive growth signal by effector cells. We
then discuss how the system gives rise to a threshold detector
that also operates as a stability on/off switch. In Section 4, we
analyze a system of ODEs modeling the negative feedback
regulation of the T cell response via de novo generated adaptive
regulatory T cells that appear during the course of an immune
response. We then discuss how the feedback loop causes the
system to reliably return to a stable, low-level equilibrium after
the immune response. In Section 5, we analyze a system of ODEs
modeling the combined system consisting of naive T cells, effector
T cells, positive growth signal, and adaptive regulatory T cells. We
discuss how the combined system discriminates between fast and
slow changes in antigen stimulation level, elicits an effector
response when the rate of change in stimulation exceeds a
threshold, and reliably returns to the original equilibrium.
In Section 7, we first discuss key assumptions that were used in
formulating the model. Then, we broaden our scope to a discus-
sion of how the T cell response can be viewed as a network of
interacting signal processors, or functional components, that give
rise to useful and unexpected emergent behavior. In addition, we
present several possibilities for future work.

2. T cell activation: change detection

T cells, key players in the adaptive immune response, begin in
a naive state and reside primarily in lymph nodes until activated.
Naive T cells can be activated by antigen-specific stimuli, where-
upon they mature into activated (effector) T cells and exhibit a
significant change of behavior. Whereas naive T cells are quies-
cent and long-lived (order of several years Vrisekoop et al., 2008),
activated T cells proliferate rapidly, secrete molecular signals, and
are short-lived (order of a few days De Boer et al., 2003).
Previously activated T cells can return to a long-lived, latent state
as memory T cells that may later be reactivated upon reinfection
by the same antigen. Memory T cells require less stimuli for
activation than naive T cells, but possess similar characteristics of
being latent and long-lived, distinguishing them from effector
T cells.

Our mathematical model for naive T cell activation follows the
same form as the general equation for immune cell activation,
given in (1.1). However, since the lifespan of naive T cells is very
long (half-lives of 4.2 to 6.5 years Vrisekoop et al., 2008)
compared to the duration of an acute T cell response (a few
weeks or less De Boer et al., 2003), we make the simplifying
assumption that the death rate of naive T cells is 0. (The dynamics
of the model remain essentially the same for all small death rates,
and the critical assumption is that this rate is slow compared to
the timescale of an acute infection.)

Fig. 1 shows a state diagram of our model for T cell activation
and corresponds to the ordinary differential equation

dN
4p =S—aON, (2.1)

where the variable N denotes the concentration of (antigen-
specific) naive T cells, the constant s denotes the supply rate of

S a(H)N
;/1-\1\ © » Effector T cells
supply v activation
Naive
T cells

Fig. 1. State diagram for the activation of naive T cells, N. Naive T cells are
replenished at a constant supply rate s and are stimulated in an antigen-specific
manner at rate a(t).
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naive T cells into the system, and a(t) is the rate at which naive T
cells are stimulated at time t. In the case of T cells, the stimulation
rate is primarily determined by the frequency of antigen-specific
interactions with mature APCs.

Although naive T cells have a low death rate (Vrisekoop et al.,
2008), Mohri et al. (2001) experimentally measure that new naive
T cells are supplied into the system at a rate of 3.3% per day for
CD4+T cells and 4.0% per day for CD8+T cells, corresponding to a
doubling period of approximately one month. (In these
numbers, Mohri et al., 2001 have already accounted for T cell
proliferation rates, which contribute only 0.4% of turnover for
CD4+ cells and 0.3% of turnover for CD8+ cells.) It follows that
normal T cell turnover must be due to other causes than natural
death. One possibility is that T cell turnover is partly maintained
by low-level, persistent stimulation from low-level cross-reactiv-
ity with self antigen (Stephens et al., 2005). We can capture this
phenomenon by requiring that the baseline antigen stimulation
level, a(t), always remains above 0.

If we assume a(t)=a is a positive constant, then (2.1) can be
solved to obtain

N(t) = % +(No)- %) et

Hence, the activation rate, aN(t), approaches the supply rate, s, for
any antigen-specific simulation rate a > 0. Furthermore, the naive
T cell concentration, N(t), stabilizes at s/a, and aN(t) approaches s
exponentially fast. This result is intuitive once we realize that to
maintain equilibrium, the supply and activation rates must
balance. It follows that having a reservoir of naive T cells does
not create a long-term barrier to the steady state supply of
effector cells. In fact, the steady state behavior of the model with
T cell activation is the same as the behavior of the model without
activation (see Fig. 2).

If having an activation step does not provide a long-term
barrier against the production of effector cells, what is the
advantage of having a reservoir of naive T cells? We shed light
on this question by examining what happens if the activation rate
of naive T cells suddenly changes. Suppose a(t) starts at a steady
state value of 0.04/day, which corresponds to the 4.0% daily
turnover rate of CD8+T cells measured in Mohri et al. (2001).
Then, suppose a(t) suddenly jumps to a value of 2.36/day, which
corresponds to a stimulation rate of 90% of naive T cells per day.
Such a rate is plausible during acute infection, since the experi-
ments of Mercado et al. (2000) show that nearly all potentially-
reactive T cells are stimulated within the first 24 h of infection by
L. monocytogenes. Finally, suppose a(t) returns to its previous
value of 0.04 after a short while. To capture this temporary jump,
we let a(t) be given by the step function 0.04+2.32 - 130 40)(0).

In addition, let the initial naive T cell concentration, N(0), equal
0.04 k/pL as estimated in Kim et al. (2010). Let naive T cells be
supplied at a rate of 4% per day (as measured in Mohri et al.,
2001), so that s=N(0) - 4%/day = 0.0016 k/uL day™'. Using these
parameters, we can explicitly solve (2.1) to obtain solutions for

s aN(@ )
4>®—> Effector T cells
supply activation

l/Model with activation approaches model

without activation exponentially fast for all a > 0

S
supply

» Effector T cells

Fig. 2. Dynamics of the model with T cell activation approaches the dynamics of
the model without T cell activation exponentially fast for any constant stimulation
rate a > 0. At steady state, effector cells are supplied at rate s in either case.
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Fig. 3. (Top) Antigen stimulation rate, a(t) = 0.04+2.32 - 1j30,40)(t). (Bottom) Time
evolution of the naive T cell population, N(t), and the activation rate, a(t)N(t). The
steady state value of the activation rate is the same as the supply rate s=0.0016.
When the antigen stimulation rate is constant at a, the equilibrium population of
naive T cells equals s/a. The activation rate spikes at the moment that the
stimulation rate increases.

Area (shaded) under activation spike is

Time (days)

Fig. 4. If we assume the system starts at steady state with a stimulation rate of a;,
which then shifts to a, at time t,, then the area under the activation spike in the
time interval [to,to +7] is s((1/a2)—(1/a;))(1—e~%%).

the naive T cell population, N(t), and the activation rate, a(t)N(t),
which are shown in Fig. 3.!

In Fig. 3, we see that when the stimulation rate changes from
0.04 to 2.36 at day 20, the activation rate, a(t)N(t), spikes and
gradually restabilizes to steady state. At the same time, the
population of naive T cells drops from s/0.04 =0.04 k/puL to
5/2.36 = 0.00068 k/uL, showing that nearly all naive T cells get
activated. After the stimulation rate returns to 0.04 on day 40, the
naive T cell population gradually recovers to its original
equilibrium.

The spike in T cell activation occurs shortly after day 20 when
the stimulation rate jumps from 0.04 to 2.36/day. Furthermore,
the area below the activation spike is approximately the differ-
ence in equilibrium populations of naive T cells before and after
the change in stimulation. To be precise, if we assume the system
starts at steady state with a stimulation rate of a,, which then
shifts to a, at time to, then the area under the activation spike in
the time interval [ty,to+17] is

1 1 gyt
S(a‘a)““’ )

(See Fig. 4.)

From the analysis of (2.1), it appears that the presence of an
activation step creates a latent reservoir of naive T cells that
rapidly transitions to effector cells in response to a sudden rise in
stimulation, e.g., during an infection. Moreover, a sudden rise in
antigen-specific stimulation causes the naive T cell population to
deliver an immediate pulse of effector cells at the moment the
stimulation rate changes. In this way, the T cell response is tuned
to respond particularly to changes in antigen levels and not only
to the mere presence or absence of antigen. Responding to

1 All plots are generated in Matlab R2008a, and all numerical simulations are
obtained using the Matlab ODE solver “ode45”.



62 P.S. Kim, P.P. Lee / Journal of Theoretical Biology 275 (2011) 59-69

) Input.: | Output:
antigen signa P :
T cell activation signal
a, activation
4 S5

Fig. 5. The T cell activation step gives rise to an elementary change detector that
translates antigen signals into activation signals. In particular, a change in the
antigen stimulation level from a; to a, causes approximately s/a; —s/a, naive T
cells to suddenly activate and transition to the effector cell population.

changes in antigen levels is, in fact, a more versatile mode of
detection, since the introduction of a novel, foreign antigen into
the system, would be detected as a change. Furthermore, this
mode of detection provides a natural means for the T cell
response to tolerate antigens that are constitutively present at
high levels or nearly constant levels, such as self antigens during
growth.

Because of the T cell activation step, the T cell response
functions more as an antigen change detector and not as a static
detector of antigen. This change detector responds drastically to
shifts in stimulation, but also resets quickly to equilibrium. The
capability of the system to return to a neutral mode is an essential
characteristic of this change detector, since it allows the T cell
response to maintain a memory of the long-term, steady state
level of stimulation.

We also stress that change detection is an emergent property
of the entire naive T cell population. No individual cell or cell type
possesses an intrinsic change detection mechanism. On the
contrary, it is the transition of T cells from the naive to the
effector state that produces this unexpected, emergent signal
processor. (See Fig. 5.)

3. Effector proliferation: the stability on/off switch

In Section 2, we hypothesized that the naive T cell population
operates as a signal processor that continually receives antigen-
specific stimulation and outputs an activation signal. A natural
question is how effector cells should interpret and respond to
these activation signals. If there is a substantial pulse in the
activation signal, the effector cells should translate the activation
pulse into a full-blown immune response. On the other hand, if
the pulse falls below a certain threshold, the effector cells should
ignore the signal and return to a resting state. To discriminate
among activation signals from the naive T cell population, the
dynamics of the effector population should give rise to a second
signal processor that measures the intensity of activation pulses
and responds accordingly. The system cannot simply amplify all
signals uniformly.

To understand how the effector population processes signals
from the naive population, we study the interaction between
effector cells and positive growth signal. We use the general term
“positive growth signal” to refer to the collection of signals
secreted by effector T cells to promote proliferation. A significant
part of this role is carried out by the cytokine interleukin-2 (IL-2),
although other signals are also involved. Following activation, T
cell proliferation is primarily driven by signals, especially IL-2,
which are produced by the activated T cells themselves (Janeway
et al., 2005, pp. 337-338). As a result, we have a system in which
effector T cells both secrete and consume their own growth
signal.

Fig. 6 shows a state diagram of our model for effector
cell proliferation. The model corresponds to the system of

proliferation consumption
r,pE kpE \
a(t)N(t)
secretion
E
dgE 2 d,p |decay

Effector T cells Positive growth signal
Fig. 6. State diagram for the proliferation of effector T cells, corresponding to (3.1).
Effector cells, E(t), enter the system at rate, a(t)N(t), die at rate dgE(t), and
proliferate at rate r; p(t) E(t) in response to positive growth signal. Positive
growth signal, p(t), is secreted by effector cells at rate r,E(t), is consumed at rate
kp(t)E(t), and decays at rate d,p(t).

ODEs below:

% = a(t)N(t)—dgE + 1 pE,

dp

P roE—dpp—KkpE. 3.1

In the model, effector cells, E(t), enter the system by the activation
of naive T cells at rate aN(t) as presented in Section 2. In addition,
effector cells die at rate dgE(t) and proliferate at rate ryp(t)E(t).
Positive growth signal, p(t), is secreted by effector cells at rate
roE(t), is consumed at rate kp(t)E(t), and decays at rate d,p(t). The
rates of interaction between effector cells and positive growth
signal follow the law of mass action with coefficients r; and k.

For convenience, we group the effector cells into one popula-
tion consisting of both CD4+ and CD8+T cells. This assumption
simplifies the model and focuses on fundamental interactions
that give rise to the key emergent dynamic presented in this
section. However, this simplification does not consider the het-
erogeneous roles of CD4+ and CD8+T cells in driving the overall T
cell response. In particular, CD4+T cells are the primary source of
positive growth signal, e.g., IL-2, while CD8+T cells are the
primary consumers of positive growth signal and proliferate more
extensively than CD4+T cells (Kasaian et al., 1991). Therefore, in
addition to this model, we also develop a more extensive model
that includes separate CD4+ and CD8+ subpopulations. The
extended model is developed in Section 6, where we show that
it exhibits the same change detection behavior and emergent
phenomena as the simplified model in this section. At this point,
we present the model in Section 6 as a basis for subsequent study.
However, an adequate development and investigation of the
extended model is beyond the scope of the current paper, and
we leave it for a future work.

Returning to the model given by (3.1), we assume that positive

growth signal, p, is at quasi-steady state with respect to the
effector cell population, E, so we set
% =nE—dpp—kpE=0=p= dp%b;d:"
In addition, we assume the supply rate, a(t)N(t), of effector cells
by naive cell activation equals the supply rate s of naive T cells,
since this is the steady state behavior of the model under constant
stimulation (see Fig. 2). Hence, we obtain

dE _ rirE
@ =St (d,,+1<£ *dE>E 3-2)

For parameter estimates, we let s=0.0016 k/uLday~' as
estimated in Section 2. De Boer et al. (2001) estimate a CD8+
halflife of 2 days during contraction, so we let the effector cell
death rate dr=1log(2)/2=0.35/day. Based on the kinetic
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interaction rate estimated in Kim et al. (2010), we let the kinetic
coefficient k =20 (k/pL)"! day~!. In addition, we suppose the
secretion rate r, of positive growth signal by effector T cells is
100/day and that positive growth signal decays quickly with a
halflife of 3 h, which yields a decay rate d, of log(2)/(3 h)=5.5/
day.

As the effector population, E, approaches infinity, the effector
growth rate (ry12E)/(d,+kE)—dg from (3.2) increases toward 75/
k —dg. Thus, we estimate that the proliferation rate ry of effector
cells upon interacting with positive growth signal is given by

k(4log(2)+dE)
n=———=

0.62 (k/uL)~" day .
)

We choose this expression of rq, because it allows the maximum
effector growth rate (rr2/k)—dg to equal 4 log(2)) which corre-
sponds to a maximum effector doubling rate of four times per day
that coincides with the estimate from Janeway et al. (2005, p. 19).

Because of the quadratic form of (3.2), the system may have up
to one stable and one unstable fixed point for appropriate
parameters. Fig. 7 shows a plot of the derivative dE/dt given
by (3.2) as a function of E for the parameters estimated above.

From Fig. 7, we predict that the effector population tends to a
stable resting state unless a strong activating signal, drives the
population above a certain threshold. In this case, the population
transitions immediately to instability and grows exponentially.
This change in stability causes the system to function like an on/
off switch that turns on when the effector population is driven
above a certain threshold. This behavior is analogous to a well-
studied phenomenon in bacterial dynamics known as quorum
sensing and provides a means for a decentralized system to make
a collective decision about whether or not to respond to a
perceived threat.

In this case of the T cell response, a low population of effector
cells produces insufficient positive growth signal to overcome the
extracellular decay rate of the signal, causing the population to
remain at a low equilibrium. On the other hand, a sufficiently
large population of effector cells produces ample positive growth
signal to overcome the effects of extracellular decay, causing the
population to grow exponentially without bound. As a result, the
process of intercellular signaling provides effector cells with a
mechanism for simple communication, allowing decisions to be
made on a group, rather than an individual, level.

x1073
27 1
threshold
1
1
1
1r 1
1
1
1
dE 0 stable 1/ unstable

dt 1
1
1
1
-1 1
1
1
1
1

-2 . . |

0 0.01 0.02 0.03

Fig. 7. Plot of dE/dt as a function of E, given by (3.2). For initial values x(0) below
the stability threshold, x(t) will move toward the stable fixed point. For initial
values x(0) above the threshold, x(t) grows exponentially. Parameters: s=0.0016,
dg=0.35, k=20, r;=0.62, r,=100, d,=5.5.

4. Contraction: regulation via adaptive regulatory T cells

In Section 3, we hypothesized that the interaction between
effector cells and positive growth signal produces a threshold
detector that converts sufficiently large activation signals into
unbounded exponential growth of the effector population. Since it
is undesirable for the immune system to produce an uncontrolled
response, a mechanism must also exist to limit the extent of T cell
expansion.

The mechanism of T cell contraction is based on the model
developed in Kim et al. (2010), which proposes that effector T cell
contraction is induced by the appearance of adaptive regulatory T
cells (iTregs) that differentiate from effector cells during the
course of a T cell response. These iTregs suppress effector cells,
creating a negative feedback loop that limits the extent of a T cell
response. Fig. 8 shows a state diagram for a basic model of iTreg-
induced contraction and corresponds to the system of ODEs
below:

dE

E == r3E—kRE,

dR

5 = ¢E—diR 4.1

In the model, effector cells, E, grow at a net rate of rsE and are
suppressed by interactions with iTregs at rate kRE. In addition,
iTregs, R, differentiate from effector cells at rate ¢E and die at rate
dgR. For simplicity, we assume effector cells and iTregs interact
according to the same mass action coefficient, k, as in the
proliferation model (3.1).

As discussed in Section 3, we consider a simplified model that
groups T cells into one population, rather than separating CD4+
and CD8+ populations. As a result, we make the assumption that
iTregs differentiate from the collective effector population. How-
ever in Section 6, we formulate an extended model that separates
CD4+ and CD8+ populations. In the extended model, iTregs
differentiate from CD4+ cells (Cantor et al., 1976; Sakaguchi
et al., 2008; Walker et al., 2005), and we show that the feedback
loop between nonregulatory and regulatory CD4+ cells gives rise
to the same change detection behavior as the simplified model
considered here.

One key feature of our model of T cell regulation is that the
peak height of the T cell response is insensitive to the initial
concentration of effector T cells. Indeed, for initial concentrations,
E(0), ranging from 0.00001 to 1k/pL, the peak height of the
effector population only ranges from 61.5 to 62.1 k/pL. Instead,
the peak height of the effector response depends primarily on the
growth rate of effectors, the differentiation rate of iTregs, and the
interaction rate between iTregs and effectors.

suppression

net growth RE

rate

i@
S~ e T

differentiation dgR
Effector Adaptive regulatory
T cells T cells (iTregs)

Fig. 8. State diagram for the iTreg-induced contraction of effector cells, corre-
sponding to (4.1). Effector cells, E(t), have a net growth rate of r3E and are
suppressed by interactions with iTregs, R, at rate kRE. The iTregs, R, differentiate
from effector cells at rate ¢E and die at rate dgR.
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Fig. 9. Time evolution of the effector population, E(t), and iTreg population, R(t), in (4.1). Parameters: r3=2.08, k=20, ¢ =0.002, dr=0.23, R(0)=0. (a) Time evolution for

E(0) =0.00001 k/pL. (b) Time evolution for E(0) =1 k/uL.

Fig. 9 shows simulations of (4.1) for initial effector concentra-
tions, E(0), of 0.00001 and 1 k/puL. We see that although the peak
of the effector response in Fig. 9a occurs later than the peak
in Fig. 9b, the heights of the peaks differ by less than 1%. From this
example, we see that the regulation mechanism given by (4.1)
controls the size of the effector response, almost independently of
the initial effector cell concentration.

Although oscillations appear in the solutions to (4.1), they no
longer appear in the combined system presented in Section 5. The
oscillations appear because the linearization of (4.1) yields two
complex, stable eigenvalues. On the other hand, the stability on/
off switch produced by the effector population in the combined
system serves as gate that shuts down the system once the
effector population returns below the detection threshold after
the initial peak in the T cell response.

5. The combined system of activation, proliferation, and
regulation

In Sections 2-4, we discussed how different components of the
T cell response lead to different emergent dynamics. In this
section, we will consider how the combined system operates.
Fig. 10 shows a state diagram for the combined model of T cell
activation, proliferation, and regulation and corresponds to the
system of ODEs below:

dN

dt =s—a(t)N,

% = a(t)N—dgE+r;pE—KRE,

dp

P r,E—d,p—kpE,

dR

P e¢E—dgR. (5.1

In the model, naive T cells, N(t), are replenished at a constant
supply rate s and are activated to the effector state in an antigen-
specific manner at rate a(t)N(t). Effector cells, E(t) die at rate
dgE(t), proliferate at rate ry p(t) E(t) upon interacting with positive
growth signal, and are suppressed at rate kRE upon interacting
with iTregs. Positive growth signal, p(t), is secreted by effector
cells at rate r,E(t), is consumed at rate kp(t)E(t), and decays at rate
dpp(t). The iTreg cells, R, differentiate from effector cells at rate
¢E(t) and die at rate dgR(t).

The three components of the T cell response can be viewed as a
network of dynamic groups that interact to produce a collective,

positive growth

/ signal
consumption
kpE dyp
secretion
decay nE
proliferation
r,pE \l
S a(t)N
;@ > E Effector T cells
supply activation
Naive
T cells dgE
suppression
death kRE
differentiation
¢E \
Adaptive regulatory
T cells
dgR
death

Fig. 10. State diagram for the combined model of T cell activation, proliferation,
and regulation, corresponding to (5.1). Naive T cells are replenished at a constant
supply rate s and are activated in an antigen-specific manner to become effector
cells at rate a(t)N(t). Effector cells, E(t), die at rate dgE(t), proliferate at rate
r1p(t)E(t) upon interacting with positive growth signal, and are suppressed at rate
KR(t)E(t) upon interacting with iTregs. Positive growth signal, p(t), is secreted by
effector cells at rate r,E(t), is consumed at rate kp(t)E(t), and decays at rate d,p(t).
The iTregs, R, differentiate from effector cells at rate ¢E(t) and die at rate dgR(t).

emergent behavior. In this light, the functional features of the T cell
response are the ability to detect change, the ability to proliferate
extensively in response to change, and the ability to return to a
latent equilibrium. The emergent behavior does not arise from any
single cell type or from intrinsic mechanisms within individual
cells. Instead, it is the result of shared decision making based on the
dynamics of the interacting group. Fig. 11 depicts the T cell
response from the conceptual framework of a collection of signal
processors that give rise to a combined control system.

To investigate how the combined system (5.1) responds to
different stimuli, we consider the following antigen stimulation
function:

a(t)=0.04+0.04 - 1[20’30)(t)+ 1.96- 1[1207130)(1')

+0.04 - 1220,230)(£)+-0.46 - 1(320,330)(0). (5.2)
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Fig. 11. Conceptual diagram depicting the T cell response as a collection of
elementary signal processors that interact to produce an emergent group beha-
vior. The system is characterized by three functional features: the ability to detect
change, the ability to proliferate extensively in response to change, and the ability
to return to a latent equilibrium.

Table 1

Parameters for the combined model given by (5.1). Concentrations are in units of
k/uL, and time is measured in days. Initial concentrations of naive T cells, effector
cells, positive growth signal, and iTregs are calculated using parameters
given above.

Parameter Description Estimate
s Supply rate of naive T cells 0.0016 k/pL day ™!
a(t), ao Antigen stimulation rate, steady state value ap=4%/day
r Effector cell growth rate upon interacting 0,62 (k/pL)~! day
with positive growth signal
) Positive signal secretion rate by effector cells 100/day
k Mass action coefficient 20 (k/pL)~! day ™!
dg Effector cell death rate 0.35/day
d, Positive growth signal decay rate 5.5/day
dr iTreg death rate 0.23/day
€ iTreg differentiation rate from effector cells 0.002/day
Initial concentrations Values
N(0) slao 0.04 k/pL
E(0) Stable solution to 0.0056 k/uL
dE e ek,
ar ~STUE g e gt 0
p(0) r2E(0) 0.010 k/pL
d, +KE(0)
R(0) diE(o) 49 x107° k/uL
R

This stimulation function has a steady state value of 0.04/day,
interrupted by four jumps on days 20, 120, 220, and 330 to
stimulation levels of 0.08, 2.00, 0.08, and 0.50/day, respectively.
Each jump lasts for ten days before returning to the baseline
value. In our simulations, we use the same parameters estimated
in Sections 2-4, which are summarized in Table 1. In addition, we
assume the initial concentrations of each population start at their
(stable) steady state values. Fig. 12 shows a numerical simulation
of (5.1) in response to the antigen stimulation function (5.2).

In Fig. 12, we see that the system produces an effector cell
response only at the second and fourth jumps in stimulation rate.
The system detects and reacts to the larger jumps while ignoring
the smaller ones on days 20 and 220. Furthermore, although the
second jump is four times as high as the fourth one, the size of the
effector cell response is nearly the same in both cases. On the
other hand, the effector response to the second jump peaks earlier
at 129.6 days, 9.6 days after the start of the second jump in
stimulation, while the response to the fourth jump peaks at 134.6
days, 14.6 days after the start of the fourth jump. From this
example, we see that the timing the T cell response is influenced

2 -
Activation rate, a(t)
1 -
0 [
0 50 100 150 200 250 300 350 400
100 r Effector cells, E(t)
50 r
. . . \{/IIOOXiTIregs, IOO.R(t) . b .
0 50 100 150 200 250 300 350 400

Time (days)

Fig. 12. (Top) Antigen stimulation rate, a(t), given by (5.2). (Bottom) Time
evolution of effector and iTreg populations, E(t) and R(t), from system (5.1). The
system produces an effector response against the second and third jumps
beginning on days 120 and 320, but ignores the two smaller jumps beginning
on days 20 and 220. The effector cell concentrations, E(t), peak on days 129.6
and 134.6.

by the level of change in stimulation, whereas the size of the
response remains roughly constant as long as there is enough
stimulus to elicit a full effector response.

We also consider the following antigen function, characterized
by gradual increases in stimulation:

a(t) = 004+003(f720) . 1[20_35)(0
+0.49 - 135.45,(H)—0.03(t—60) - 1145,60,(£)
+0.01(t-130) - 1130,175)(t)+0.49 - 1}175 205)(¢)
—0.01(t—205) - 11205,250)(t)
+0.05(t—320) - 1j320,320)(t) +0.49 - 1320 351)(t)
—0.05(t—351) - 1351,360)(1)- (5.3)

This stimulation function also has a steady state value at 0.04/day,
but gradually increases three separate times to a level of 0.49/day.
The first and third increases occur with slopes of 0.03 and 0.05,
respectively, while the second increase occurs with a lower slope
of 0.01. (See Fig. 13(top) for a graph of a(t)).

In Fig. 13, we see that the system produces an effector cell
response only at the first and third increases in stimulation rate,
while ignoring the second one. As in the previous example, shown
in Fig. 12, the peak heights of the effector responses are nearly the
same for both responses. On the other hand, the response to the
third increase peaks faster on day 344.3, which is 24.3 days after
the start of the increase, whereas the response to the first increase
peaks more slowly on day 50.8, which is 30.8 days after the start
of the increase. This example corroborates the observations in the
first example, shown in Fig. 12, that more rapidly changing
stimulation rates produce earlier T cell responses, whereas T cell
responses peak at roughly the same level as long as the stimulus
is sufficient to turn the immune response on.

6. Extended model including separate CD4+ and CD8+T cell
populations

In this section, we present an extended model of T cell
activation, proliferation, and regulation that incorporates separate
CD4+ and CD8+ dynamics. The extended model is given by the
following system of ODEs:

dH
d_to =sy—a(t)Ho,
dK
T;) = sg—a(t)Ko,
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Fig. 13. (Top) Antigen stimulation rate, a(t), given by (5.3). (Bottom) Time evolution of effector and iTreg populations, E(t) and R(t), from system (5.1). The system produces
an effector response against the first and third increases in stimulation starting on days 120 and 320. The effector cell concentrations, E(t), peak on days 50.8 and 344.3.

Table 2
Parameters for the combined model given by (6.1). Concentrations are in units of
k/pL, and time is measured in days.

Parameter Description Estimate

SH Supply rate of naive CD4+T cells 0.0024 k/pL day™!
Sk Supply rate of naive CD8+T cells 0.0016 k/pL day™!
a(t), ap Antigen stimulation rate, steady state value ao=4%/day
TH effector CD4+ growth rate upon interacting .33 (k/uL)~" day™'
with positive growth signal
' effector CD8+ growth rate upon interacting o5 (k/uL)! day™’
with positive growth signal
p Positive signal secretion rate by effector 100/day
CD4+ cells
k1 Mass action coefficient for iTreg-suppression 29 (k/uL)~! day™'
of effector cells
k> Mass action coefficient for consumption of 2 (k/uL)! day~!
growth signal by effectors
dy Effector CD4+ cell death rate 0.23/day
dy Effector CD8+ cell death rate 0.35/day
dg iTreg death rate 0.23/day
d, Positive growth signal decay rate 5.5/day
g iTreg differentiation rate from effector cells 0.01/day
Initial concentrations Values
Ho(0) su/do 0.06 k/pL
Ko(0) sk/do 0.04 k/puL
H(0) 0 (for simplicity)
K(0) 0 (for simplicity)
p(0) 0 (for simplicity)
R(0) 0 (for simplicity)
dH
dar = a(t)Ho—dHH-‘r erH—k1 RH,
dK
ar = a(t)Ko —dgK+ T[(pK—kl RK,
dp
e rpH—d,p—k,(H+K)p,
dR
—— =¢eH—dRR, 6.1
da R (6.1)

where Hy(t) and Ko(t) denote the concentrations of naive CD4+
(helper) and CD8+ (killer) T cells, H(t) and K(t) denote the
concentrations of effector CD4+ and CD8+T cells, p(t) denotes
the concentration of positive growth signal, and R(t) denotes the
concentration of iTregs at time t.

The first two equations of (6.1) correspond to the activation of
naive CD4+ and CD8+T cells. The T cell populations are replen-
ished at constant supply rates of sy and sy, respectively, and are
activated at a common antigen stimulation rate of a(t). The
second two equations correspond to the dynamics of the effector
CD4+ and CD8+ populations. The effector populations are sup-
plied by the activation of naive T cells at rates a(t)Hy and a(t)Ko,
respectively. They die at rates dyH and dgK, proliferate at rates
rypH and rgpK upon interacting with positive growth signal, and
are suppressed upon interaction with iTregs at rates kyRH and
k1RK, respectively. The fifth equation pertains to positive growth
signal. Positive growth signal, p, is secreted by effector CD4+T
cells at rate rpH, decays at rate d,p, and is consumed by CD4+ and
CD8+ effectors at rate kp(H+K)p. The final equation pertains to
iTregs, which differentiate from effector CD4+T cells at rate ¢H
and die at rate dgR.

Where applicable, we use the same parameters used in the
simplified model (5.1), which are summarized in Table 1. The
typical proportion of naive CD4+ to CD8+ cells in the lymph node
is 3 to 2 (Catron et al., 2004), so we estimate the initial
concentration, Ko(0), of naive CD8+ cells to be 0.04 k/uL accord-
ing to the previous estimate in Section 2, and we set the initial
concentration, Ho(0) of naive CD4+ cells to be 0.06 k/pL. As
before, we assume that the steady state turnover of naive T cells
is 4%/day and set the naive cell supply rates accordingly. For
simplicity, we set the initial concentrations of all other cells and
signals to 0, and let the numerical solver determine the correct
equilibrium concentrations. This simplification does not pose a
problem, because the first change in antigen stimulation does not
occur until day 20, and the numerical solution of the system has
converged to a steady state by then. All other parameter estimates
are reported in Table 2.

For ease of comparison, we simulate the response of the
extended model (6.1) to the same stimulation function (5.2) used
in Section 5. Fig. 14 shows the results of the numerical simulation.
From Fig. 14, we see that the extended system exhibits the same
type of change detection behavior of the simplified system shown
in Fig. 12. In particular, the effector CD8+ population only
expands in response to the larger jumps in stimulation level
starting on days 120 and 320. Furthermore, the magnitudes of the
effector CD8+ responses are nearly the same in both cases,
regardless of the size of the jump in stimulation. As a result of
this preliminary investigation, we conclude that the extended
system exhibits the same type of emergent behavior discussed
in Section 5. Fig. 15 shows a magnified portion of the graph
in Fig. 14 (bottom) to better display the time evolutions of the
effector CD4+, CD8+, and iTreg populations.
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Fig. 14. (Top) Antigen stimulation rate, a(t), given by (5.2). (Bottom) Time evolution of CD8+ effector (K(t)) and iTreg (R(t)) populations from system (6.1). The system
produces an effector response against the first and third increases in stimulation starting on days 120 and 320. The effector cell concentrations, K(t), peak on days 126.7

and 328.9.

100

CD8+ cells, K(t)

60 r

CD4+ cells
40 r  H@®

Cell concentration (k/uL)

100 x iTregs,

100R(t)
20

120 125 130 135
Time (days)

Fig. 15. Time evolution of CD4+ effector (H(t)), CD8+ effector (K(t)), and iTreg
(R(t)) populations from system (6.1).

7. Discussion
7.1. Modeling assumptions
Throughout the paper, we make several assumptions that

influence the structure of our models. Some key assumptions
are summarized below:

—

. ODEs are a good representation of the dynamics in the system.

2. The immune dynamics considered in this paper can be
captured by a deterministic model.

3. Interactions between agents in the system can be modeled

using mass action kinetics.

The first assumption is that ODEs provide an appropriate basis
for capturing the dynamics considered in the system. In reality,
numerous mathematical and computational approaches are pos-
sible and have been developed to study immune dynamics. For
example, apart from ODEs, there are age-structured partial
differential equations (Antia et al., 2003), cellular automata
(Perelson and Weisbuch, 1997) and agent-based modeling
(Kirschner et al., 2007), Boolean networks (Thakar and Albert,
2010; Weisbuch and Atlan, 1988), and a relatively recent

formulation known as stochastic stage-structured modeling
(Chao et al., 2004, 2003).

As discussed in Perelson and Weisbuch (1997), a standardized
framework for modeling immune dynamics has not yet been
established. However, ODE systems have emerged as a conven-
tional modeling technique. For example, ODE models have been
widely applied to a range of phenomena, including T cell
dynamics (primary response kinetics and immunodominance)
(De Boer et al.,, 2003; Nowak, 1996; Perelson and Weisbuch,
1997; Wodarz and Thomsen, 2005), cancer immunology (De Boer
et al., 1985; de Pillis et al., 2005; Kirschner and Panetta, 1998;
Moore and Li, 2004), T cell and HIV interactions (Altes et al., 2002;
Rong and Perelson, 2009), the immune response to influenza (Lee
et al.,, 2009), and Treg dynamics (Le6n et al., 2007, 2000). As a
result, ODE systems serve as a reasonable starting point for
immune modeling. Nonetheless, it will be fruitful to consider
alternative modeling frameworks as a future direction.

The second key assumption is that the immune response
considered in this paper can be accurately captured with a
deterministic model. Although a large number of models have
simulated the immune response as a deterministic system, a
recent paper by Milutinovic and De Boer (2007) has brought this
fairly standard assumption into question. Comparing modeling
results to experimental data, they challenge the notion that
deterministic models, particularly ODEs, are appropriate for
modeling the immune response. Instead, they propose that a
certain level of stochasticity, called process noise, is inherent in the
immune system and should be taken into account when devel-
oping mathematical models.

Based on these results, a relevant extension of our model
would be to incorporate process noise into the dynamics. The
addition of process noise might cause the change detection
behavior of our model to produce a smoother transition between
tolerance and immunity, i.e. more like a sigmoidal function rather
than a binary, switch-like transition. Furthermore, as implied
by Milutinovic and De Boer (2007), the addition of process noise
could make the quantitative behavior of the model more accurate
with regard to experimental T cell data. In the current work, we
assume, however, that a deterministic formulation captures the
principal dynamics of the T cell response, but as a future
extension, one could consider the influence of process noise.

The third assumption is that the dynamics of cell-to-cell or
cell-to-signal interactions follows the law of mass action. Mass
action, a principle in chemical kinetics, has been frequently
invoked in immunological modeling, e.g., see Perelson and
Weisbuch (1997). The law states that the rate of interaction
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between two agents in the system is proportional to the product
of the concentrations of the agents. The application and analysis
of the law of mass action is discussed extensively in Chen et al.
(2009), which also proves several important results such as the
nonnegativity of solutions to such systems.

7.2. The immune system as a network of change detectors

One of the questions motivating this paper was “Why do T
cells have states?” In addition, we hypothesized that the immune
system can detect changes in antigen levels rather than merely
presence or absence of certain antigens. From our mathematical
model, a novel prediction emerges that integrates this question
and hypothesis: the T cell network is organized in such a way that
the immune system responds not only to the presence or absence
of antigens, but also to excessive perturbations in ambient
antigen levels.

This change detection mechanism is, in fact, a product of the
collective behavior of antigen-specific naive T cells transitioning
rapidly into the effector state when stimulated by a detectable
increase in specific antigen levels. As a result, although T cell
activation is a phenomenon at an individual cell level, change
detection is a phenomenon at the population level. No single T
cell makes the “decision” about whether a perceived change in
antigen level is a threat. Instead, the decision is made as an
emergent group phenomenon.

Nonetheless, the overall T cell response depends on more than
T cell activation, for the activation step alone is not a sufficient
mechanism to differentiate between large perturbations, which
may constitute a real threat, and small perturbations, which may
be caused by noise or transient fluctuations in ambient antigen
levels. The effector population, which secretes and consumes
positive growth signal in an autocrine and paracrine manner,
gives rise to a simple and robust threshold detector that differ-
entially converts large activation signals into fully committed T
cell responses, while ignoring small signals. The detection thresh-
old that leads to a full T cell response depends primarily on the
rate of secretion of positive growth signal, the decay rate of
extracellular growth signal, and the rate of effector cell division in
response to growth signal.

If a stimulus elicits a full effector response, a population of
adaptive regulatory T cells appears later in the T cell response to
limit the extent of effector proliferation and to induce a timely
contraction phase that returns the effector population to a low-
level resting state that reduces the chance of potential autoim-
munity and re-enables the system to respond effectively to future
stimulation.

The interaction among naive, effector, regulatory T cells, and
positive growth signal gives rise to a system that detects and
reacts to antigen presentation levels in a dynamic instead of a
static manner. This dynamic detection method provides a natural
means by which the T cell response learns to tolerate constitu-
tively presented self antigen and some long-term chronic infec-
tions, while at the same time, reacting drastically to more virulent
immune challenges, such as viral or bacterial infections and even
some early-stage tumors.

A natural extension of this model is to separate the collective
effector T cell population into separate effector CD4+ and CD8+
populations. We present an initial extension of this type in Section 6
and show that the change detection, threshold detection, and
negative feedback mechanisms exhibit the same qualitative beha-
vior as the simplified model considered throughout this paper. The
main advantage of considering the simplified model is to focus on
the three specific mechanisms (activation of naive T cells, secretion
and consumption of positive growth signal, and negative feedback

via iTregs) that produce the underlying change detection behavior of
the system without isolating the separate roles of CD4+ and CD8+T
cells. Nonetheless, as a future work, we intend to separate the CD4+
and CD8+T cell populations and conduct a more comprehensive and
thorough analysis of the system presented in Section 6.

As a final point, there is no intrinsic biological mechanism
within individual cells that leads to change detection, rather it is a
variety of phenomena operating at the population level that gives
rise to the overall behavior of the system. Although we focus on
the transition from naive to effector T cells, subsequent T cell
responses to the same antigen are governed by state transitions
from memory to effector T cells. Since memory T cells respond to
less stimuli, develop more rapidly into cytotoxic effectors, and
proliferate more extensively than naive T cells, memory activa-
tion produces another change detector that may exhibit a similar
structure to the one considered in this paper, but that operates
with a different, possibly more sensitive, detection threshold.

In addition, our modeling and analysis are not restricted to T
cells, since a variety of immune cells exist in both latent and
activated states. In particular, dendritic cells (DCs) present anti-
gen in either tolerogenic or immunogenic manners, eliciting
different types of immune responses. The transition of DCs from
tolerogenic to immunogenic states is mediated by interactions
with inflammatory signals released by innate immune cells
during an infection. Thus, in the same fashion as for T cells, the
transition of DCs from tolerogenic to immunogenic states gives
rise to a signal processor that detects temporal changes in
inflammation level. Since naive T cells are activated by contact
with immunogenic DCs, the interaction of T cells and DCs leads to
a cascade of change detectors, one signal processor triggering
another. Therefore, one future direction of this work is to study
the dynamics of interacting change detectors and other emergent
signal processors that build the overall structure of the immune
network.
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