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Market trade-routes can support infectious-disease transmission, impacting biological populations and
even disrupting trade that conduces the disease. Epidemiological models increasingly account for
reductions in infectious contact, such as risk-aversion behaviour in response to pathogen outbreaks.
However, responses in market dynamics clearly differ from simple risk aversion, as are driven by other
motivation and conditioned by “friction” constraints (a term we borrow from labour economics).
Consequently, the propagation of epidemics in markets of, for example livestock, is frictional due to time
and cost limitations in the production and exchange of potentially infectious goods. Here we develop a
coupled economic-epidemiological model where transient and long-term market dynamics are
determined by trade friction and agent adaptation, and can influence disease transmission. The market
model is parameterised from datasets on French cattle and pig exchange networks. We show that, when
trade is the dominant route of transmission, market friction can be a significantly stronger determinant
of epidemics than risk-aversion behaviour. In particular, there is a critical level of friction above which
epidemics do not occur, which suggests some epidemics may not be sustained in highly frictional
markets. In addition, friction may allow for greater delay in removal of infected agents that still mitigates
the epidemic and its impacts. We suggest that policy for minimising contagion in markets could be
adjusted to the level of market friction, by adjusting the urgency of intervention or by increasing friction
through incentivisation of larger-volume less-frequent transactions that would have limited effect on
overall trade flow. Our results are robust to model specificities and can hold in the presence of non-trade

disease-transmission routes.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

processes with the inherent dynamics of markets remains unclear.
Economic markets can propagate diseases among market agents

While it is widely accepted that trade can drive disease
epidemics and other biological invasions, the interaction of these
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(e.g. farms) through the exchange of contaminated products (e.g.
animals). Conversely, market dynamics are influenced by complex
adaptive behaviour of trade agents in response to regulation and
individual awareness of epidemics. Markets that contribute to
infectious disease epidemics include livestock trade of cattle
(Rautureau et al.,, 2011), swine (Lentz et al., 2011), and sheep
(Kiss et al., 2006); prostitution (Rocha et al.,, 2011); and airline
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transportation (Colizza et al., 2006). Other types of epidemics
occur through exchange of information on the Internet (Lloyd and
May, 2001) and exchange of debt in financial markets (May and
Arinaminpathy, 2010; Haldane and May, 2011).

The likely possibility that there may be an interaction or
feedback loop between epidemic dynamics and host behaviour
has generally not been considered in studies for identifying
effective strategies for the control of infectious diseases. Recent
modelling studies, however, have explored the epidemiological
impact of one particular response that can cause such an interac-
tion, namely, adaptive risk-aversion (RA) behaviour (Funk et al.,
2009, 2010; Durham and Casman, 2012; Nicolaides et al., 2013). RA
behaviour is a form of disease prevention where asymptomatic
hosts reduce exposure to infection by reducing their contact rate
(e.g. by staying home) and/or their probability of infection per
contact (e.g. by wearing protective masks); it implies that hosts
have some information about a given disease outbreak and act on
their own initiative rather than relying on community-wide
measures by regulatory bodies. If this behaviour is determined
by the ongoing perception of a variable risk, then it is said to be
‘adaptive’ RA. In the literature, RA has been expressed as a simple
function of disease prevalence or outbreak awareness (Funk et al.,
2010), or evaluated via complex optimisation of a host's economic
weighing between the benefits of interacting with other hosts and
the cost of infection that may be acquired through such contacts
(Fenichel et al., 2011; Morin et al., 2013). Naturally, epidemiologi-
cal models that neglect RA behaviour tend to overestimate the
probability of occurrence and severity (e.g. infectious peak and
cumulative cases) of epidemics (Funk et al., 2009, 2010; Fenichel
et al, 2011; Morin et al,, 2013). To the best of our knowledge,
epidemiological modelling studies have focused on adaptive
human behaviour that is altered solely in response to awareness
of outbreaks.

In this paper, we investigate the epidemiological effects and
implications for disease control of more general human adaptive
behaviour, which may be difficult to anticipate. We focus on markets
of goods, where the dynamics of potentially infectious contacts are
driven, primarily, by economic decisions very different from those
underlying disease RA. Specifically, we aim at modelling the
influence of market dynamics on the dynamics of infectious-
disease epidemics, and in turn, the influence of epidemics on market
dynamics. Indeed, when an epidemic shock occurs in a market, the
subsequent actions and behaviour may either help us to restore or
further disturb the balance between supply and demand. Sanatory
regulation and RA aimed at reducing infectious contacts can
diminish supply and demand. Conversely, the responses exhibited
by market agents can have either positive or negative impacts on
disease dynamics. For example, agents that try to establish alter-
native but potentially infectious trade relationships could outweigh
the effect of regulation and RA efforts, i.e. the effort of individual
agents to adjust their own supply and demand to changing price
could worsen disease outbreaks. Furthermore, the establishment of
trade relationships, which underpin the epidemiological contacts, is
conditioned by physical impediments such as the minimum time
and effort involved. These resources are limited by (i) producing
profitable goods (e.g. reproduction and growth of livestock),
(ii) searching business partners and cutting deals (e.g. a buyer needs
to find a seller with whom to trade a given number of goods at a
given market price), and (iii) delivering goods (e.g. organising
transport from a buying to a selling holding). In labour economics,
such interaction constraints shaping relationships between work
sellers and work buyers are known as ‘friction’ (see the model of
Diamond, Mortensen and Pissarides (Pissarides, 1985; Mortensen
and Pissarides, 1994; Pissarides, 2011)). We transpose this concept to
exchange-markets that can conduce infectious diseases. Therefore,
by limiting the development of potentially infectious trade contacts,

friction may have a suppressive effect on epidemics. Phenomena
such as friction and adjustment in supply and demand illustrate that
human behaviour in response to disease epidemics that are sup-
ported by trade does not simplify to regulation and RA.

To the best of our knowledge, existing mathematical models of
market dynamics do not seem to represent explicitly the variety of
transient non-equilibrium dynamics that occur when a market is
disturbed and until it eventually reaches a steady-state equili-
brium (see ESM Section A); therefore, they may not fully incorpo-
rate processes and parameters that establish a time scale for
market steady-state equilibration, which is expected to vary
widely among markets for rapidly changing external conditions
such as those induced by epidemic outbreaks. In order to repre-
sent the joint-dynamics of markets and epidemics at appropriate
and mutually consistent time scales (see Section 2.1), we have
developed a novel economic-market model, the frictional-trade
market (FTM) model (see Section 2.2), where transient and long-
term dynamics are determined by the level of trade friction and
agents’ decisions to supply or demand goods. Subsequently, we
integrate market and epidemiological processes in a market-
epidemiological (ME) modelling framework where trade influences
disease transmission and disease control actions affect trade (see
Section 2.3).

We first study the behaviour of the FTM model in the absence
of epidemics (see Section 3.1). Then, we investigate how market
dynamics affect epidemic development, and, conversely, how
epidemics disrupt short- and long-term market dynamics (see
Section 3.2). We consider two forms of response to disease out-
breaks taken from the literature: the removal (inactivation) of
market agents found to be infected by regulators and their later re-
introduction or replacement, and an adaptive RA behaviour of
market agents. Therefore, we highlight differences in concept and
impact on epidemic development between market dynamics and
RA; market dynamics are influenced by centrally regulated actions
and by collective behaviour that drives changes to supply and
demand in response to changing conditions, while RA behaviour is
determined solely by individual decision-making. Finally, we
extend our study beyond an isolated (e.g. national) market, by
contrasting scenarios where infectious diseases are propagated
through trade pathways with differing degree of openness to
international trade and non-trade disease-transmission pathways.
We expect our central results to apply to a range of different types
of markets, and illustrate applications to cattle and swine livestock
markets in France.

2. Market-epidemiological modelling framework
2.1. Overview

We develop a novel theoretical framework for the propagation
of infectious diseases in economic markets where the exchanged
goods can transmit an infectious organism between market agents
(Fig. 1A). In order to represent this process, we link a model of an
economic market system and a model of an epidemiological
system. Each model dynamics can exist per se, i.e. epidemics can
occur in host populations unaffected by markets, and markets
often operate without disease outbreaks through trade routes.
However, by building a system that links the dynamics of these
subsystems we can study their interdependencies. As the epide-
miological model we use is a simple adaptation of a standard
compartmental epidemiological model, it is introduced later with
brief explanation. The dynamic economic-market model, however,
is novel, and is derived in detail. A key property of this model is its
coefficient of friction, which characterises a market's inherent
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Fig. 1. Joint market-epidemiological modelling framework. (A) General structure and key links between the market and epidemiological subsystems. (B) Components of the
frictional-trade market (FTM) model. (C) Components of the market-epidemiological (ME) model. Yellow (red) arrows represent direction of disease transmission through
trade (non-trade) routes. The market agents host the disease-causing pathogen. N4 represents the number of agents of arbitrary type A that can vary over time. Nsp, Nsnp
and Nps denote the numbers of strict suppliers, wholesalers (supplier and demander) and strict demanders respectively. From an epidemiological point-of-view, each agent
can be in the Susceptible (X), Infectious (Y), or Removed (Z) state. Susceptible agents become infectious at rate A(t); infectious agents are removed at rate y; and removed
agents re-enter the market (recover) at rate v. Here, ‘removal’ means that an infectious agent is detected and removed from the market by a regulator and becomes inactive.
Each agent, whether a strict supplier, wholesaler, or strict demander, can be in each of the epidemiological states. For example, N§ and NY denote the number of susceptible
and infectious suppliers, respectively. Therefore, there are N = N)S(X\ D +N’5§‘£, active suppliers. Accumulated supply and demanded stocks S and D quantify the willingness to
trade or frustration of suppliers and demanders respectively. Supply stock consists of goods available for sale, while demanded stock represents potential goods that buyers
want to purchase and are virtual. The trade flow @ out of the supply and demanded stocks aggregates all exchanges between supply and demand agents that agree to trade
some of their stock at price p. Transactions occur at transaction rate @ and in each transaction an average transaction stock q is exchanged. At the reference market steady-state
equilibrium, q is equal to k, the coefficient of friction. If trade flow were kept at the corresponding equilibrium level @*, then the transaction of goods would occur at a lesser
frequency ©* = @* /x if the number of goods exchanged per transaction q =« would increase (see ‘Results’). (For interpretation of the references to colour in this figure
caption, the reader is referred to the web version of this paper.)

Our model market is defined, at each time t, by an overall price
per good p(t), and overall accumulated supply stock S(t) and
demanded stock D(t) (see Table 1 for an explanation of relationship
with common economic terminology and concepts). Accumulated
supply stock consists of goods available for sale but not yet sold,

dynamics and response to disturbance caused, for example, by
disease outbreaks (see the ‘Results’ section).

2.2. A frictional-trade market (FTM) model

Here we develop a FTM model for the dynamics of markets
(without epidemics) where goods of a single type are exchanged
for money in transactions between suppliers (sellers) and deman-
ders (buyers), and all transactions at given time are based on a
single price per good. The model tracks the dynamics of extensive
state variables (i.e. with a ‘size’ or a ‘scale’) such as stocks, number
of agents, and trade flow, and intensive state variables (i.e. global
indices) such as price of goods. Usually, price, trade flow, and
number of agents are observable market quantities, while overall
stocks are not observable.

while demanded stock represents potential goods that buyers
want to purchase but have not yet been purchased. These
accumulated stocks quantify the willingness to trade of suppliers
and demanders. These accumulated stocks quantify the suppliers’
and demanders' willingness to trade. The supply stock is part of the
inventory stock (e.g. total animals within farms), which also
includes goods not for sale owned by sellers. The demanded stock
cannot exceed the physical capacity of demanders (e.g. maximum
number of animals), which is similar to a carrying capacity in
ecology. Our FTM model integrates many complex mechanisms
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Table 1
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Relationship between terminology in the frictional-trade market (FTM) model and in economics.

Terminology adopted
(notation/equation)

Meaning

Related economic concept

References

(Accumulated) supply
stock (S) ((1) and
(8))

Supply flow, or rate of
generation of
supply stock (Xg,
(3)

(Accumulated)
demanded stock
(D, (1) and (8))

Demand flow, or rate
of generation of
demand for
purchase of stock

(45, (3))

Reference transaction
rate (min{Zg;A44},

(6))

Trade friction (x> 0,
(6) and (9))

Transaction rate
(0= min{Ze:44) )
K

(6))

Average transaction
stock (q, (5))

Trade flow (=0 q,
(4))

Occurrences of ‘non-
equilibrium’ in the
FTM model

Amount of goods available for sale (e.g. in a farm,
may be a fraction of the total number of animals)

Increase in amount of goods available for sale per
unit time

Number of goods wanted for purchase but not yet
purchased, including accumulated demand that has
so far not been satisfied (e.g. farmers who have been
losing livestock during an undetected disease
outbreak have accumulated the will to purchase D
replacement animals; depending on current
conditions of supply of stock, there may be multiple
subsequent transactions that gradually satisfy this
demand, but which can spread over an economically
significant time period

Increase in potential amount of goods to be
purchased per unit time

Reference number of transactions per unit time
when as few as one good can be exchanged per
transaction

Physical impediments to the trade of goods:
constraints in production, effort and delay in the
search for business partners and negotiation of deals,
and logistical constraints in the delivery of goods. In
steady-state equilibrium « is the average number of
goods exchanged per transaction, implying that x > 1
for most systems where it is not possible to trade less
than one unit of goods (6)

Number of stock exchanges in the market (deliveries
from sellers to buyers) per unit time

Average number of goods exchanged per transaction
which we currently set to the maximal match
between current supply stock and demanded stock
in each transaction

Market-level amount of goods actually exchanged
per unit time

Overall rates of change are not zero, i.e. non-negligible
rate of change of market state variables: supply stock

dp) in (8)

ds dD .
(E)’ demanded stock (E) or price (dt

A part of the inventory, capital, or stock of
natural resources (e.g. in a farm, may be the
total number of animals)

(in excess or equal to) The amount of goods
sold per unit time, known as ‘supply’

In excess or equal to the amount of goods
purchased per unit time (rate of depletion of
stocks not including losses), known as
‘demand’, where ‘demand’ is often assumed to
equal ‘supply’

Transaction costs; friction in labour markets,
e.g. intensity of search and matching

‘Matching function’ in labour market
economics: number of successful matches per
unit time between job vacancies and
unemployed workers

Related to actual quantity exchanged at a given
point in time, but not identical when the
period during which exchanges occurred was
not specified (see also ESM Section A.3.3)

The absence of steady-state or inter-temporal
equilibrium

The two possibilities below may associate with the occurrence of a non-steady-state:

Imperfect transactions, i.e. the supply and demanded
stocks of trading partners do not necessarily match,
causing residual stocks that subsequently
accumulate (q (5) is the smallest of S/Ns and D/Np)
Imbalance between net generation rates of supply and
demanded stocks, i.e. net rates of generation of supply
stock and demanded stock differ (X # 4, (2)). The
level of imbalance depends on how much the market
is competitive, as determined by parameter y in our
model which sets a timescale for price dynamics ((7)
and (8)), and may or not preclude an eventual steady
state

Disequilibrium

Imperfect competition, potentially leading to
unbalanced long-run profits between selling
and buying firms. Potential causes of such
market failures include epidemic outbreak,
monopolistic behaviour, externalities, free-
riding, information asymmetries, transaction
costs, and price rigidities

Clark (1976), Barro and Sala-i Martin
(2003), Khan and Thomas (2003),
Caputo (2005)

Fair and Jaffee (1972), Hahn (1982),
Mas-Colell et al. (1995), McCauley
(2009)

Fair and Jaffee (1972), Hahn (1982),
Mas-Colell et al. (1995), McCauley
(2009)

Klaes (2008), Pissarides (1985, 2011),
Mortensen and Pissarides (1994),
Williamson and Masten (1999), Klos and
Nooteboom (2001), Tesfatsion (2001)

Pissarides (1985, 2011), Mortensen and
Pissarides (1994)

Fair and Jaffee (1972)

Clark (1976), Pindyck (1982), Barro and
Sala-i Martin (2003), Khan and Thomas
(2003), Caputo (2005), Nowak (2006),
McCauley (2009)

Fair and Jaffee (1972), Quandt (1988)

Mas-Colell et al. (1995), Williamson and
Masten (1999), Klos and Nooteboom
(2001), Klein et al. (2007), Klaes (2008),
Silvestre (2008)

We focus on notions that may help readers with economics background. A dot ( -

of our knowledge).

) means the corresponding concept does not appear to be defined in economics (to the best
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and dynamical feedbacks that have seemingly not been explored
concurrently in the literature (see ESM Section A). To keep our
model parsimonious, we hence model market dynamics at a
whole-market level, where agent-level stocks and transactions
are approached by average values per agent. Inspired by well-
known population dynamics models (e.g. May, 1977; Durrett and
Levin, 1994), our whole-market-scale model is a population-level
description of agents and stocks with mass-action interactions
(transactions). At this simplified level of description, we define the
market model through temporal change in overall stocks. Each
stock (S and D) is created at a specific net generation rate and
depleted through a trade flow, represented by the rate equation:

%: [net generation rate] —[trade flow]. M

The net generation rate of supply stock X or demanded stock A
is composed of (1) a generation rate, X4 (p,Ns) or Ag(p,Np),
respectively, that depends on current price p and numbers of
supply agents Ns and demand agents Np, (2) a net loss rate L, e.g.
spoilage of supply goods and loss of demanders interest (positive
loss) or multiplication of goods such as reproduction of livestock
(negative loss), and (3) an external flow of stock E, e.g., import or
export of raw materials or goods:

[net generation rate] = [generation rate]—[loss rate]+[external flow],

2 =24({,Ns)—Ls+Es (net supply flow),
A=A4(p,Np)—Lp+Ep (net demanded flow). 2)

Following the economic literature (see ESM Section A for
details), generation rates are defined as

2 & (p,Ns) = Nsoop®s,
A (p,Np)=Npdop ™, 3)

where oy and dy are respectively the reference per-agent genera-
tion rates in supply and demanded stocks at the reference price
pP=Dpo =1, and & >0 and ¢p > 0 are the price elasticities of supply
and demand respectively. €5 and ¢p are assumed constant and are
defined, respectively, as the relative changes in the generation
rates of supply and demanded stocks in response to the relative
change in price. Notice that X (p, Ns) increases while A 4 (p, Np)
decreases with increasing price. Furthermore, we assume that the
loss rates are directly proportional to stocks, i.e. Ls=rsS(t) and
Lp =rpD(t) with rs and rp being constants, and that external flows
(Es,Ep) are constant.

The trade flow @(t) out of the supply and demanded stocks
aggregates all exchanges between supply and demand agents that
agree to trade some of their stock (i.e. exchange of supply stock for
demander's money). Transactions occur at transaction rate O(t)
and in each transaction an average transaction stock q(t) is
exchanged; therefore, the trade flow is

[trade flow] = [transaction rate] [average transaction stock],
D(t) = O()q(1). 4)

First we define q. The average per-agent supply and demanded
stocks are S(t)/Ns and D(t)/Np respectively. Here we take the
number of market agents to be constant in time, but later, when
considering epidemics in markets, we allow for removal of
infectious agents and their subsequent re-introduction after sani-
tation measures. In this model we assume that, once a pair of
supply and demand agents has been identified and agreed to
transact, they exchange the maximum possible per-agent stock (a
best-possible match): S(t)/Ns if there is excess accumulated
demand (D(t)/Np > S(t)/Ns), and D(t)/Np if there is excess accu-
mulated supply (S(t)/Ns > D(t)/Np). Hence, the average transac-
tion stock, conditional on best-possible matching, is

q(t) = min{S(t)/Ns; D(t)/Np}. (6

The transaction rate @(t) in (4) is determined by a driving factor,
the reference transaction rate, and a limiting factor that compounds
multiple constraints, such as the time-consuming production of
goods, the search for trading partners, and the logistics of stock
delivery. Hence

[reference transaction rate]
[limiting factor]

min{X¢ (p, Ns); A (p, Np)}

K

[transaction rate] =

>

o) =

©)

We assume that the reference transaction rate is determined
predominantly by present decisions to increase stocks and, thus,
by the generation rates in (2) and (3); more specifically, it is
determined by the current maximum possible rate of exchange of
indivisible goods between the two sides of the market, min
{4 (p,Ns),Aq (p,Np)}. Here, the reference transaction rate is not
determined by the net generation rates in (2) because these
include loss rates L and external flows E that are likely to depend
on the overall stocks S and D, which usually are imperfectly known
or unquantifiable; however, the current price p(t), which deter-
mines the production rates, is known to market agents. In
addition, we represent the limiting factor of the transaction rate
by a dimensionless coefficient k that, through physical analogy, we
call coefficient of friction or inverse fluidity of the market (see more
below).

To finalise the specification of our market model, we need to
specify price dynamics. The net willingness to trade or frustration of
agents at a given time is the excess in accumulated demanded
stock, D(t)—S(t). While different relationships between price and
other state variables can be specified, we assume for definiteness,
and in agreement with literature (see ESM Section A), that changes
in log price are directly related, via a dimensionless coefficient y,
to changes in net willingness to trade:

dlprice] d[net willingness to trade]
a_ M dr
dp d(D-95)
a~Ha P
which can be solved explicitly as an exponential relationship (see
(8)).
With these specific assumptions, and in the absence of dis-
turbances such as epidemics, our FTM dynamics are defined by the
equations (represented diagrammatically in Fig. 1B)

[price],

@)

D
e ey .

g =Nsoop®s —rsS+Es —MZeds) min{NiS N }

Ze o _\r—’

A b
dD — ~~
——=Npoop~*» —1pD+Ep— Oq,
dr —290r
Ag

p(t) = p(0) exp{u[D(t)—S(t)— (D(0) - S(0))]}. (8)

The special case where r¢ =1p =0 and Es = Ep = 0 is referred to as
the reference market. Hereafter, we use a star in superscript to
denote market variables at steady-state equilibrium in the refer-
ence market in the absence of disturbances (e.g. @* is the
reference trade flow at steady-state equilibrium).

At a market (macroscopic) level, our model has two determi-
nants of trade flow (see (4)-(6)): the coefficient of friction x, and
the average transaction stock q.

We explain first the interpretation and significance of friction.
An increase in the coefficient of friction x reduces the transaction
rate (see (6)) as in physical systems, friction is a macroscopic
manifestation of microscopic resistance to movement. The
microscopic-level constraints that underlie friction in trade (trans-
actions) are a result of ‘viscosity’ in production of tradable good,
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search of partners, and delivery of stock; therefore, we may con-
sider that k has at least three components:
K = Kproduction + Ksearch + Kdelivery - 9
As an example, let us consider livestock markets and suppose Kgeiivery
is the dominant component and 1000 animals are produced, con-
sumed and traded per farmer per year. If a minimum of x =10
animals are delivered in a single shipment, the transaction rate is at
most & = 1000/10 = 100 per farmer per year. If, however, the nature
of the animals (for instance pigs are smaller than cattle) and tran-
sportation mean it is more viable to ship a minimum of 100 animals,
then the transaction rate would be at most @ =1000/100 = 10 per
farmer per year. This illustration involves simplifications; in practice
the macroscopic coefficient « is unlikely to associate so directly with a
microscopic quantity like minimum shipment size. In our reference
market, k turns out to be the average stock exchanged per transaction
when the market is at steady-state equilibrium ¢* (Results section
Trade without stock loss: the reference market); this suggests x must
exceed, but can still be arbitrarily larger than the minimum shipment
size. In markets of money and financial products, for example, goods
can be subdivided almost indefinitely, so we expect k to be potentially
close to 0, which translates into an almost frictionless market, in line
with the high liquidity of monetary and financial markets. In contrast,
for indivisible goods such as livestock, the minimum shipment size is
at least one, so we expect k¥ > 1. Due to a combination of production
constraints and costly transportation of single animals, farmers often
exchange batches of animals rather than individual animals, which
further implies that x > 1. For simplicity, x is estimated assuming the
French cattle and swine markets are in steady-state equilibrium in
years 2009 and 2010 respectively. Temporal analyses at both monthly
and yearly scales indeed suggest that these markets seem to be in
steady-state equilibrium in years 2005-2009 for cattle and year 2010
for swine (unpublished data). While we estimate x under the
assumption of market steady-state equilibrium, we expect friction to
exist both at equilibrium and outside of equilibrium (see Table 1 for
explanation of non-equilibria accounted for by our FTM model). We
also expect the coefficient of friction to be independent of whether the
system is at steady-state equilibrium or not at least in the model as
formulated; although we expect the effect of friction to be more
apparent outside of equilibrium. Moreover, we expect estimation of
friction to rely only weakly on the accuracy of the equilibrium
assumption because the model is only weakly sensitive to linear
variation in x (Fig. 2A). We find k = g* ~ 3 for cattle and x = g* ~ 72
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for pigs, where ¢* is mean number of animals exchanged per
transaction at steady-state equilibrium (calculated at the reference
market steady-state equilibrium, see Material and Methods and ESM
Section B). In fact, in line with this interpretation of the coefficient of
friction, we find from direct inspection of the datasets that the
empirical average (q), calculated based on pairs of trading agents, is
(q) ~ 3 (SD ~ 6) for cattle in 2009 and (g) ~ 63 (SD ~ 102) for swine in
2010, where SD is the empirical standard deviation.

The second determinant of trade flow is the average transaction
stock g (see (4) and (5)). A characteristic of this market model is
that the match between supply and demand is generally imper-
fect, in the sense that there can be residual supply or demanded
stock after each transaction (imposed by the min function in (5)
when there is excess accumulated stock per agent). These resi-
duals lead to a transient ‘excess frustration’ in market agents
whose duration depends on the ‘fluidity’ (or conversely, the
‘friction’) of the market. As trade flow depletes both stocks S and
D and is an observable quantity, the cumulative trade flow over a
period, T([to,tf]) = fé’ &(t) dt, is a measurable indicator of the
evolution of satisfaction (or frustration) of market agents. Detailed
analyses of our market model (ESM Section C.5 and Fig S.3) show
that supply stock and demanded stock in the model's steady-state
equilibrium are typically lower than the inventory stock of cattle
in holdings recorded in France. These results support our defini-
tions of supply and demanded stocks and suggest that the
inventory stock of a farm is close to its maximal capacity. Our
explicit representation of market transactions driven by imperfect
and frictional individual-level supply and demand, from which
potentially long-lasting out-of-steady-state market dynamics can
emerge depending on the coefficient of friction (Results section
Market dynamics without shocks — effect of trade friction), seems
fundamentally different from some economic models (see Table 1
for explanations of potential differences relative to terminology or
concepts in economics literature, ESM Section A for a comparative
review of existing market models, and ESM Section C.1 for further
details on the microeconomic foundations of our FTM model).

2.3. Market-epidemiological (ME) model with risk aversion

To investigate how disease epidemics and economic markets
can influence each other, we model the spread and control of
infectious diseases in markets by incorporating a standard epide-
miological (E) model into our FTM model. We call this aggregate
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Fig. 2. The influence of frictional-trade on transient and long-term market dynamics. Evolution of normalised trade flow (&(t)/®*) for variable levels of friction (from
x=10"% in light grey to x = 100 in dark) when losses are negligible (r = 0 yr~! (A)) or non-negligible (r € { —0.05, 33} yr~! in dashed and plain lines respectively (B)). Initial
conditions are set to [S(0) = 0, D(0) = 0, p(0) = 1.2p*]. We take u=10"5, &5 = 0.4 and ¢ = 0.8. Other parameters are set from the French cattle estimates (see Table 3).
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market-epidemiological (ME) model. In order to compare and
integrate our framework with the literature, we include in the
model adaptive risk aversion (RA) behaviour by the market agents.

The market agents are the population hosting the disease-
causing pathogen. We use notation A4 to represent a set of agents
of arbitrary type A, and N4 to represent their number, which can
vary over time. An agent can be a strict supplier, a wholesaler
(supplier and demander), or a strict demander (Pautasso et al.,
2010). The corresponding sets of agents are A'sp, N'snp, and N ps;
and, the total number of agents is N=Ng¢p+Ns,p+Nps. The
markets are hence composed of Ns=Ngp+Nsnp suppliers and
Np = Nsnp+Nps demanders. We use a standard ‘SIRS’ epidemio-
logical model (Anderson and May, 1991) where each agent (host)
can be in the Susceptible (X), Infectious (Y), or Removed (Z) state
(the notation XYZ is preferred to SIR to avoid confusion with the
market model notation). Susceptible agents become infectious at
rate A(t) (the force of infection); infectious agents are removed at
rate y; and removed agents re-enter the market (recover) at rate v
(Fig. 1C). Here, ‘removal’ means that an infectious agent is detected
and removed from the market by a regulator and becomes inactive.
The infectious period (1/y) is, therefore, the average time during
which an infectious agent remains active, which is determined by
the swiftness of the regulators (we assume that removal occurs
immediately after detection and before the end of the biological
infectious period). The recovery period (1/v) is the quarantine and
sanitation time during which an infectious agent remains inactive,
and is generally determined by regulators and agents. Each agent,
whether a strict supplier, wholesaler, or strict demander, can be in
each of the epidemiological states (Fig. 1C). For example, Nﬁm p and
N¥ ., denote the number of susceptible and infectious wholesalers,
respectively. Therefore, there are N5, =N% , 4+ N¥., active whole-
salers and N§* = N5, +N%, active suppliers.

In specifying how disease spreads in the market model, we
consider the general case where the pathogen can be transmitted
both through trade routes (tr) and non-trade routes (tr). We
assume that transmission through trade occurs in the direction
of transactions, i.e. through the shipment of contaminated stock
from active infected suppliers (N }/) to active non-infected deman-
ders (/\/),5), while transmission through non-trade routes occurs
from active infected agents (MY) to active non-infected agents
(VX). We also allow for import of contaminated stock though
external flow E (see (2)). In this case, the force of infection on
demanders has terms associated with transmission through trade
and non-trade routes, and a risk-aversion factor:

A(t) = [Ax () + Az (1) Pra(b). (10)

The term for trade routes is Aq(t)=f, - Ni/Ni', ie. a rate of
transmission via trade f3,,, times the probability of transacting with
an active supplier that is infected, Nt /Ni'. The rate f3, = Py (q)-
O(t)/NY, i.e. the probability P,(q) of acquiring infection from the
average transaction stock q(t) shipped from an infected supplier
during a single transaction, times the transaction rate per active
demander @(t)/NﬁY. If each of the g units of stock has similar and
independent probability of infection ¢, the probability of no
infection from the stock is (1—¢)?, and the probability that the
demander is infected during a single transaction by at least one
unit of stock is Pi(q) = 1—(1—¢h)%. Similarly, the force of infection
via non-trade routes is Az(t) = Bz - N'/N*, the rate of transmis-
sion g per active agents via yet unspecified transmission routes,
times the probability of contacting an infected active agent,
NY/NXY_ Finally

ﬂtr

e
6 N{
Ar=[1-(1=)] — —5
tr [ ( ¢)]N)[§YN§Y

Per(q)

NY
Ay =Py e (11)

Following the literature (Funk et al., 2010), we include RA in
our model by allowing agents to reduce their probability of
infection per transaction, or per non-trade contact, according to
the level of disease detection. We assume that RA reduces the
probability of infection per contact by a factor 0 < Pgq < 1 given by

7 (04
Pra = <1—1;’V) , 12)

where a >0, and N? is the number of inactive (detected) agents.
When a = 0 there is no RA (P4 = 1), while in the limit @ — oo RA is
maximal (Pgs = 0).

In addition to how epidemics affect the active agent population,
we consider how epidemics affect their stocks. When an infected
supplier is removed (at rate ) its share of the stock, S/N2, is also
removed; hence the rate of removal of infected supplier stock is
ps =yNY(S/NXY). As the generic stock-loss rates in the FTM model
without epidemics (Egs. (2) and (8)) are analogous to p, in this
paper we neglect losses other than pg by setting rs =1p =0.

Finally, the ME model is defined by the dynamics of market
stocks (which generalises (8)) and agents under an epidemic (we
show wholesaler equations as regard to epidemics, see the ESM
Section D for other agents):

x D
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dN?
%:VNganAN)S(nDa
dNY
;rﬂD:AN)S(mD_yN}/nDs
dN?
;tﬂD:yN}/mD—yNng, (13)

where the market price p(t) is given by (7) and the forces of
infection by (10)-(12).

We will compare epidemics in the ME model with those in
simpler models. In particular, we will consider the disease-free
market steady-state equilibrium (q* =k and @*=®*/k)) as a
system without explicit market dynamics, whose trade transmis-
sion rate (in (11)) is

e e
By = Pn<q*)N@—LX)y= [1-(-¢] K%Lgy. (14)
In addition, when comparing with the literature on epidemiologi-
cal models with RA, we will take the limit of (14) in a frictionless
(immediate steady-state equilibration) market (x —0):

1\ o*
fr=in(125) N (15)
which is identical to known functional forms of the transmission rate
(see e.g. Keeling and Rohani, 2008). As in previous epidemiological
models incorporating host adaptive behaviour driven by health
economics and other factors (Funk et al., 2009; Fenichel et al., 2011;
Morin et al., 2013), we allow for RA-driven reduction in transmission
rate ((15) or, more generally, that in (11)) through the RA factor (12), as
in (10). However, by incorporating frictional-market dynamics, our
model differs from those in the epidemiological literature, which, to
our knowledge are comparable to frictionless markets.
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3. Insights on market dynamics out-of-steady-state
equilibrium and their interaction with epidemics

To help understanding the implications of our new theoretical
framework, we study the FTM and ME models using a bottom-up
approach (Table 2). We first analyse our FTM model in the absence
of epidemics (Fig. 1B), and then explore the integrated ME model
where epidemics and trade influence each other (Fig. 1A-C). The
FTM and ME models are described mathematically by systems of
non-linear ordinary differential equations ((8) and (13) respec-
tively). We derive key analytical insights on the FTM and the ME
models (see ESM Sections C and D respectively) using standard
tools in the study of dynamical systems: existence and uniqueness
theorem; steady-state equilibria, stability and bifurcation analyses.

Our FTM and ME models incorporate a variety of parameters,
the values of which may not be well known. To assess the
robustness of our findings to uncertainty or variation in these
parameters, as well as uncertainty about initial conditions, we
carried out two global sensitivity analyses (GSA) on key economic
and/or epidemiological outputs. Specifically, we did one GSA for
the FTM model, and another one for the ME model. We ranked the
relative importance of parameters and initial conditions of interest
using an improved version of the Morris method, a suitable GSA
technique for high-dimension models (Campolongo et al., 2007).
In a nutshell, the improved Morris method can discriminate the
sign and overall influence of factors at a low computational cost
and minor risk of error (see ESM Section B).

To parameterise the FTM model and estimate the range of
values of the coefficient of friction that encompasses real markets
(Table 3), we analysed trade records in two livestock markets:
cattle (BDNI dataset) and swine (BDPorc dataset). The BDNI and
BDPorc datasets are respectively managed by the French ministry
in charge of Agriculture and the French professional union BDPorc.
Each dataset details the movement of livestock within France
among all economic agents involved in the supply chain, from

Table 2
Overview of the models investigated in our study.

strictly breeding farms to slaughterhouses, with various categories
of wholesalers in between (e.g. breeding-fattening farms, strictly
fattening farms, markets, dealers). To estimate model parameters,
we extracted and reconstructed a table of individual transactions
from a subset of each dataset. This table details, for each transac-
tion: the supplier-demander pair, the date and associated volume
of goods exchanged (see ESM Section B for details on the specific
subset of the dataset that we have used). Traceability is imposed
by the regulator at the scale of individual animals for cattle and
batches of animals for swine. As a result, transactions could be
directly extracted from the BDNI dataset but not from the BDPorc
dataset. We explain in the ESM Section B how detailed transac-
tions can be inferred from the BDPorc dataset.

3.1. Market dynamics without shocks - effect of trade friction

The FTM model introduces the notion of imperfect transactions
with friction, bringing together differing economic models (see
ESM Section A). To assess the impacts of friction on transient and
long-run trade dynamics per se, we analyse the FTM model in the
absence of epidemic shock (system (8)). We start by exploring the
reference market where stock losses and external flows are
neglected. We then analyse the cases of non-negligible stock
losses (rs# 0 or rp # 0) and symmetric imports (Es =Ep =E >0).
In all cases, transients and steady-states are investigated analyti-
cally and numerically.

3.1.1. Trade without stock loss: the reference market

In the reference market we neglect stock loss (Ls=Lp =0, i.e.
rs=rp=0) and external flows (Es=Ep=0), and denote the
steady-state equilibrium value of state variables with a star in
superscript. This market has an infinite number of steady-state
equilibria (see ESM Section C for proof):
(S* = Spins D* = Dy p = P%),

min>

Model Frictional trade Price dynamics Stock loss External flows Epidemics Risk aversion
Market dynamics without shocks (FTM)
Reference market v v .
Trade with stock loss (special case) v . v
Trade with stock loss (general case) v v v .
Trade with external flows v v . v
Numerical illustrations v v v .
Market dynamics with epidemics
Frictionless epidemiological model - . - - v v
Market-epidemiological (ME) model v v v v v v
Ticks (dots respectively) represent the mechanisms included (not included respectively) in each model.
Table 3
Parameter values calculated for French cattle and swine markets.
Notation Meaning Cattle Swine Unit
K Coefficient of friction 34 71.7 None
* Trade flow 7,578,476 8,075,973 Animals per year
o* Transaction rate 2,224,182 112,683 Deliveries per year
6o Per-agent generation rate of supply stock 39 1474 Animals per year
So Per-agent generation rate of demanded stock 64 761 Animals per year
Ns Number of suppliers 193,354 5480 None
Np Number of demanders 118,503 10,619 None
Ns\p Number of strict suppliers 88,761 1314 None
Nsnp Number of wholesalers 104,593 4166 None
Nps Number of strict demanders 13,910 6453 None
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(S* = Spins D* = Dipyins P = P¥), (16)
where S}, =kNs and D}, =kNp are respectively the minimal

supply and demanded stocks for which the market is in steady-
state equilibrium, and p* = (Npdy/Nsoo)/ ) is the unique
equilibrium price, obtained by solving X4 (p*)=A44(p*). The
steady-state equilibria in supply and demand depend on the initial
conditions (see ESM Section C); there is hence an infinite number
of unstable equilibria (5*,D*) with a switched fixed point: either
S§* =Sk, or D* =Di . . Since p* is unique, trade flow at steady-state
equilibrium is unique and given by

D =35 (p*) = Ao (p*) = [Nsoo]?/ €5 DN S s/ €5 ), a7

The market converges asymptotically to reference flow (®(t) » @)
and price (p(t)— p*) for any initial conditions or external perturba-
tions (see ESM Section C for proof). The famous law of supply and
demand (LSD) is a particular case (see ESM Section C for proof).
The LSD implies that supply should equal demand (both in terms
of accumulated stocks and flows of stock) when price is equili-
brated; which is a very special case of our model with unique
steady-state equilibrium S* =D* = max({S},,, Di;,} (Fig. S2D). We
study this case analytically, and then return to the general model
formulation (system (8)) as there is little empirical support for the
LSD (McCauley, 2009).

3.1.2. Trade with stock loss: detailed analysis of a special case

To study market transient behaviour, we consider initial con-
ditions and parameter values that enable us to solve system (8)
analytically. We set [S(tg) = D(tp) > 0; p(tp) = p*] at initial time ¢
and track trade flow @ until steady-state equilibration. This set of
initial conditions is compatible with the LSD since S(t) = D(t() and
p(to) =p*. Once accumulated over time at rates X, and Ag,
supply and demanded stocks are converted through trade (@)
and losses (at rates rsS and rpD). For simplicity, we consider
symmetrical losses (rs =rp =r). In this case, Egs. (8) are symme-
trical, which, with the above initial conditions ensuring that stocks
remain symmetrical (S(t) = D(t) for t > 0) and price remains con-
stant, p(t) = p* (see ESM Section C). Therefore, system (8) reduces
to

sk
s':cb*_<r+af )s, (18)

where a=min{1/Ns,1/Np} is a dimensionless constant, and can
be solved analytically to give (see ESM Section C):

¢*
oK

a

D(t) = P [1—e—tr+a®*/my 19)

In the long term (t—o0), flow diverges (@ — o) if r < —ad*/k,
while, if r > —a®*/k flow converges to
¢*
ALY
a

By = D (20)

where eq in subscript denotes steady-state equilibrium values in
the general case (in contrast with the special case of the reference
market where steady-state equilibrium is denoted by a star in
superscript). In the more realistic case where losses are strictly
positive (r > 0), trade flow is sub-optimal (Deq < D*), i.e., friction k
and r have an overall negative impact on steady-state equilibrium
flow. If, however, the losses were negative with re]—a®*/k,0],
trade flow would be over-optimal (@4 > @*). When losses are
negligible (r=0), we recover the reference market flow (Peq = @*).

3.1.3. Trade with stock loss: the general case
We now consider the more general case of a market with
asymmetric positive losses (rs > 0 and rp > 0), and no external flows

(Es = Ep = 0), and consider arbitrary initial conditions [S(0); D(0); p(0)]
(see ESM Section C for derivations). From (8), we deduce that the
steady-state equilibrium flow is always suboptimal:

Deg <min{ XY, A%} < &* = min{T%,, AT ). 21

Then, two cases arise. When the steady-state equilibrium limit of the
average transaction stock ¢, = min{Seq/Ns, Deq/Ns} is bounded by
the per-agent supply (i.e. goq = Seq/Ns), we find
g MIn{XZY AT}

Cmin{Z%, AT} +rskNs’

B = (22)
Conversely, when ¢, is bounded by the per agent demand
(Geqg = Deg/Np), we have, by symmetry, that q,, is given by (22) but
with Ns and rs replaced by Np and rp respectively. Importantly, Eq. (22)
generalises the special case of Eq. (20) and, likewise, imply that rs, rp
and x have a negative impact on steady-state equilibrium flow. Since
the dynamics with stock loss are not fully analytically tractable in the
general case, we resort to extensive numerical simulations to confirm
the key influence of rs, p and x on trade dynamics (see Global
Sensitivity Analysis (GSA) of the FTM model in the ESM Section C).

3.14. Trade with external flows

To examine the impact of external flows on market dynamics,
we consider, for simplicity, positive and symmetric external
inflows (Es = Ep = E > 0) and neglect losses (rs =rp =0). Symme-
try ensures that the steady-state equilibrium price and trade rate
are the same as in the reference market, Deqg =D* and O = o,
while trade flow and average stock exchanged per transaction
increase to @q = D*+E, the solution to dS/dt=dD/dt=0, and
Qoq = K(D* +E)/D* >k, as q=D/O. Similar to (16), steady-state
equilibrium supply and demanded stocks have two infinite sets of
possible values: either Seq = kNs(D* +-E)/D* and Deq > kNp(D* +E)
/D, or Seq=KkNs(®P*+E)/®P* and Deg = kNp(P* +E)/P*. Hence,
external flow increases trade flow through the average stock
exchanged, but not the transaction rate, which is determined by
number of agents, trade friction, and price.

3.1.5. Numerical illustrations

To confirm and extend the analytical insights on the impact of
trade friction and losses on trade dynamics, we now explore the
market model numerically. We use [S(0) = 0; D(0) = 0; p(0) = 1.2p*]
as initial condition, and consider symmetric losses (rs = rp =1) and
no external flows (Es = Ep = 0). As the initial price is not equili-
brated, trade flow equilibrates over time in a way that depends on
market characteristics such as trade friction x and stock loss rate r
(Fig. 2). Increasing « drastically slows down market steady-state
equilibration (Fig. 2A, B). In addition, the steady-state equilibrium
flow depends on r. Without stock losses (r=0), flow converges to
the reference market level @* (Fig. 2A). However, equilibrium flow
is sub-optimal, ®@.q < ®@*, when there are positive losses (r > 0)
and friction is large enough; conversely, flow is over-optimal when
losses are negative r <0 and friction is large (Fig. 2B). Scenarios
with a wide range of loss rates rs and rp, external flows Es and Ep,
and initial conditions, explored via GSA, confirm these findings
(see ESM Section C), which also agree with our previous analytical
findings ((20) and (22)). Note that a negative loss rate corresponds
to exponential inflows of supply and demanded stocks, a scenario
that may appear to contrast real markets; we include it to show
the general scope of the model. Overall, we find that, in the model,
friction can increase market steady-state equilibration time by
several orders of magnitude, while stock loss and external stock
flow can alter the long-term steady-state equilibrium of the
market. We expect these parameters to play a central role in
understanding trade dynamics in markets and, therefore, in the
epidemiology of trade-driven diseases.
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Fig. 3. Impacts of frictional-trade dynamics with risk aversion for contrasted delays in enforcement of regulation. Evolution of total infected agents normalised by the
number of agents as a function of time for various types of frictional-trade dynamics with risk aversion and contrasted delays in enforcement of regulation. We assume trade
is the only path of transmission (R =Rp) and parameterise our model to replicate an XYZ outbreak (¢ =0.9780, y >0, v =0). Friction is either low (x=0.01, A-C) or
moderate (x = 1, B-D). The trade transmission rate is either set to its frictionless reference value g9 (in grey; see also (15)) or to its frictional-market value 4 (in black; see
also (11)). RA is either negligible (@ =0, plain lines) or non-negligible (« =8, dashed line). Enforcement of disease regulation is either quick (1/y=11days (A, B);
corresponding to a reference value of Ry = 4 without friction) or slow (1/y = 30 days, C-D; corresponding to a reference value of Ry = 11 without friction). Initial conditions
are set to start from a steady-state equilibrated market [S(0) = xNs, D(0) = kNs, p(0) = p*] and one agent per market category is initially infected (one strict supplier, one

wholesalers, one strict demander). Other parameters are as in Fig. 2.

3.2. Market dynamics with epidemic shocks

We now explore the dynamics of the ME model, where
epidemics and trade dynamics can influence each other (Fig. 1A-
C and system (13)).

3.2.1. Relative impacts of trade friction and adaptive risk aversion for
contrasted delays in enforcement of regulation

We parameterise our model to investigate epidemics with con-
trasted delays in enforcement of regulation, and explore the impacts
of frictional-trade and RA behaviour on epidemic dynamics (Fig. 3).
We assume that the market has reached steady-state equilibrium
before epidemic onset and trade is the only path of pathogen
transmission. The trade-transmission rate has either a frictionless-
market value 9 (Eq. (15); grey in Fig. 3) or its corresponding
frictional-market value f, (Eq. (11); black in Fig. 3). When market
friction is very low (Fig. 3A-C), infection reaches the same endemic
level with or without friction. The inclusion of RA (dashed lines)
reduces the number of infected agents, and does so similarly with or
without friction (Fig. 3A-C). This reduction in infections in the
frictionless market is in agreement with the literature (e.g. Funk
et al,, 2010), and is expected as RA decreases the force of infection in

response to an outbreak (10). As expected intuitively, increasing the
delay in enforcement of regulation results in a lower effect of RA
(Fig. 3A-C). When market friction has a significant level and provided
the speed of regulation is quick enough (Fig. 3B), the endemic level is
considerably lower in the frictional than in the frictionless market.
Compared with the frictionless market, delaying regulation enforce-
ment does not change the endemic level but slows down the
epidemic (Fig. 3D). Again, the inclusion of RA has a similar effect on
the endemic level with and without friction, but this is comparatively
less important than the effect of a significant increase in friction (x
from 0.01 to 1, Fig. 3A-C and Fig. 3B-D). Overall, our results suggest
that trade friction can mitigate trade-driven disease transmission
significantly, possibly more than in Fig. 3B-D, and to a significantly
greater extent than RA behaviour, as our analyses of cattle market data
suggest k =3.4> 1. In addition, the combined effects of market
friction and RA can lead to epidemic elimination (Fig. 3B) when trade
is the only pathway of transmission and the delay to enforce
regulation is small enough.

3.2.2. Impact of market friction level on epidemics
Increasing trade friction reduces the severity (Fig. 3 and GSA of
the ME model in the ESM Section D) and magnitude of the peak
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(Fig. S4 and GSA in the ESM Section D) of epidemics when trade
routes are the only pathway of transmission. Trade friction is also a
key determinant of the epidemic threshold as assessed by the
basic reproduction number Ry, a fundamental epidemiological
summary. Ry is the average number of susceptible agents infected
by a single infectious agent propagated in an initially disease-free
agent population (Anderson and May, 1991). In a deterministic
framework, the pathogen eventually dies out if Ry <1; while if
Ro > 1, the pathogen eventually invades the population. In the
general case with both trade and non-trade pathogen transmission
(10), Rg is given by (see ESM Section D)

Ry +RY + \/(Rg—Rg_’)2+4RgRg_’ NsNo
Ry = NNsnp
5 .
Rtr Z&NSOD
0 }/ NS >
RY :%, (23)

where R§ (R respectively) is the value of Ry when trade (non-
trade) provides the only pathway of pathogen transmission. When
trade is the only transmission route (RY =0), and inserting
expression (11) for /3, yields (noting that N3’ = Nj, in this context)

:Prr(qeq)NSmD@eq<1NSﬁD(p*
4 NpNs  ~y kNpNs”’

since Py(Qeq) <1 and Oy = min(X%, AT} /k < @*/k. Therefore, Ro
vanishes in the limit when the market friction is large:

Ro

(24

Result (25) stands for any modelling choice for P(q), including our
current Py(q) =[1—(1—¢)%]. In addition to its mechanistic inter-
pretation, this choice has the advantage of yielding a finite value
for Ry (Eq. (24)) in the limit of negligible friction (x—0, when
By— P2 given by (15)):

1
R
1—¢ ) Nsqp®
Ro=— - (26)
which allows comparison with existing epidemiological models
that implicitly assume x = 0. Increasing trade friction can cause
decrease in Ry up to the critical point where Ry <1 (Fig. 4A).
Provided that the delay in enforcing regulations is small enough,
this result also stands when trade is not the main transmission
pathway (Fig. 4B). Therefore, accounting for trade friction is
central to the estimation of epidemic thresholds in markets. This
finding is confirmed by a GSA of Ry in response to variation of its
composing parameters (see GSA in ESM Section D). We can also
use our expression of Ry to rank the relative risk of sustaining an
epidemic for various markets. As an example, French swine
markets are characterised by a larger coefficient of friction
(k=71.7; see Table 3) than the French cattle market (x =3.4).
Since Rj (swine)/Rg (cattle) ~ 0.8 for ¢ and y kept constant, trade of
swine is less likely to sustain epidemics than trade of cattle. This
result would appear counter-intuitive for typical epidemiological
models, because trade flow is larger in swine than cattle (Table 3).

3.2.3. Open international market versus closed national market
When we consider an open market by including imports in the
model, we find that international trade can boost epidemics
moderately in comparison with closed national markets (Fig. S5).
Imports increase stocks, and thus the average stock exchanged g
(5) and probability of infection Pg(q) = 1—(1—¢)? per transaction.
However, imports do not affect the transaction rate @. Therefore,
as the force of infection involves the product P,(q)® and P, <1,
the effect of imports on the force of infection, and thus on

epidemics, is limited. Another limiting factor is the current level
of control measures, i.e. removal of infected agents after a given
period of infectiousness.

3.2.4. Markets with different types and intensities of disease
regulation

In our model, regulation to control or prevent disease spread in
markets can be implemented in two ways: by removing infected
agents at rate y or by limiting their re-introduction, after sanita-
tion, at rate v. We show that epidemics can be mitigated by
increasing the exit rate of infected agents and/or decreasing their
reentry rate (Figs. 3 and S5B). The GSA suggests that increasing the
removal rate y may be more efficient at mitigating disease than
decreasing the rate of agent re-introduction v (see ESM Section D).
In particular, epidemics can be mitigated (Fig. 3B-D) and even
eradicated by increasing y (Fig. 4A-B). Our analytical summaries of
Ro (Egs. (23)) provide estimates of the maximal delay in the
enforcement of regulation 1/y,,, that still allows prevention of
epidemics for various types of markets and combinations of
transmission pathways.

4. Discussion

Market trade routes propagate epidemics differently from other
transmission pathways due to the unique contact structure that
emerges from the willingness of agents to sell and buy goods
(Fig. 1). This willingness arises from the business motivation of
economic agents and inherent features of trade dynamics that
differ from other epidemic-conducive human behaviour. In the
model the we propose, trade markets involve recurrent interac-
tions (transactions) between suppliers and demanders (consumers
are demanders), and in each transaction there is a variable volume
of goods exchanged (q) that may be contaminated and lead to the
spread of infection. This notion of ‘transaction’ is somewhat
different from that in the economics literature, particularly from
the notion of ‘match’ in labour economics (see ESM Section A).
Epidemiologically, it essential to precise this concept beyond an
economic perspective because the transaction of goods, in addi-
tion to a market function, also provides a dynamic contact
structure that can support disease transmission among agents
and consumers. In our model, the frequency of transactions is
limited by multiple constraints that we summarise in a single
coefficient of friction, k. Causes of such friction include production
of exchangeable goods, the search for a trading partner, and the
logistics of stock delivery. While there is much scope for discussing
interpretation, this coefficient can be easily measured as a char-
acteristic feature of markets; we have estimated « relatively easily
from data on trade flow of livestock (see ESM Section B for
application to exchanges of swine and cattle in France). In relation
to the concepts in economics of "matching friction”, and other
types of friction induced for example by transaction costs (see
Table 1), the concept of trade friction used by us accounts
additionally for production constraints, e.g., when the minimum
tradable unit is one living animal. This tangible mechanism has
significant epidemiological consequences as well as economic
implications, and is absent in models that implicitly assume
exchange of continuous amounts of goods, including ‘infinitesimal
pieces of animals’. We believe that the notion of frictional
dynamical transactions is an improvement on existing market
models (see ESM Section A for details) as it may help to better
understand the interactions between trade and the epidemiology
of infectious diseases.

Taken together, our findings show that frictional markets are
associated with a specific response to infectious diseases that contrasts
with the response of other complex systems that sustain epidemics
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Fig. 4. Maximal delay in enforcement of regulation that still allows prevention of epidemics depending on market fluidity and other paths of transmission. Probability of
invasion P, for various levels of market fluidity 1/x, delays in enforcement of regulation 1/y and intensity of other paths of transmission (A, B). For each panel, the black curve
represents the equation Rp =1 that separates the (1/«x,1/y) space into two subspaces: the area under (above) the curve leads to an extinction (invasion) of the disease, i.e.
P;=0 (P;=1). The epidemic is either only caused by trade (the black curve is given by R} (xc,7.) = 1Ry = 1; A) or by trade and other paths of transmission (the black curve is
given by Rf (kc,7.) = 0.2Ry = 0.2;B), where 1/y, is the maximal delay to enforce regulation corresponding to the critical amount of friction 1/x, the only value of 1/x for
which Ry = 1. The dashed red (blue) line represent the estimated level of market fluidity of the French cattle market (French swine market). Other parameters are as in Fig. 3.
(For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

and are often assumed to be frictionless. In particular, the coefficient of
friction x is a central parameter governing trade and disease
dynamics: k can increase market steady-state equilibration time by
several orders of magnitude (Fig. 2) and suppress trade-driven disease
transmission to a significantly greater extent than RA behaviour
(Fig. 3). Our findings hence suggest that while frictional markets can
still be responsible of disease introductions, trade itself cannot sustain
epidemics in such markets. This counter-intuitive implication should
be taken with care until confirmed by subsequent studies grounded
on agent-based models.

The outcomes of our model suggest that to minimise contagion
in markets, k could be increased to allow for larger-volume, less-
frequent transactions, without necessarily affecting overall trade
flow, and therefore, business activity. However, increasing friction
may be difficult to achieve in practice due to practical constraints
underlying k (e.g. trucks have a limited size). The model also
suggests that in markets with a given level of friction «, interna-
tional trade (Fig. 3C) and regulatory measures (Figs. 3D and 4A, B)
have strong, but contrasting, influence on trade-driven epidemics.
In today's globalised world, a key question is how to mitigate
epidemics efficiently in open international markets. The GSA of the
ME model suggests that increasing the intervention rate y is more
efficient at mitigating disease than decreasing the business re-
establishment rate v, irrespective of imports (see ESM Section D).
In other words, an alternative policy for minimising contagion in
markets could adjust the delay of intervention 1/y depending on «.

From a cross-disciplinary perspective, the FTM model can be
used to approximate market dynamics when there is lack of
empirical data. The model can also be used to predict the impact
and potential non-equilibrium in trade dynamics caused by dis-
turbances such as unexpected disease outbreaks, for example in
livestock markets (Fig. S7). Three forms of non-equilibrium are
accounted for by the FTM model (see Table 1 for details). One form
is when the rates of change in supply stock, demanded stock, and
price are not zero, i.e. when the system is not in steady-state or
inter-temporal equilibrium. A second form is when there is
disequilibrium in state variables at a given time such as a
mismatch between supply and demanded stocks of trading agents;
this may be caused by past disturbances such as epidemic out-
breaks and abrupt loss or increase in supply or demanded stocks.
We allow for this possibility by limiting the stock exchanged in

each transaction to the match between supply and demanded
stocks (q). A third form is when there is a difference between the
rates of generation of supply stock and demanded stock at given
market price, which is a form of imperfect competition, which
could be caused by epidemics or market failures. The level of
competitiveness in our model is influenced by parameter x4, which
sets a timescale for price dynamics but does not necessarily
preclude an eventual steady state (see Table 1 for further details).
We indeed expect that disease epidemics where transmission is
predominantly driven by trade are likely to cause asymmetric
economic shocks, in the form of persistent excess of either supply
or demanded stock. For example, quarantine measures could cause
limited accumulated supply and thus excess accumulated
demanded stock, while disease-control measures or consumer
fright could cause excess accumulated supply of goods. Moreover,
with the exception of wholesalers, disease transmission will occur
from suppliers to demanders rather than in the opposite direction
(Section D.1.3 of the ESM). It follows that suppliers and demanders
would generally be differently impacted by disease, and would
also be differently targeted by disease-control measures. The
specific outcomes would depend on the specific market and
disease. Therefore, accounting for non-equilibrium in trade
dynamics is of central importance for understanding market-
epidemic feedbacks. However, some approaches have often
assumed that all transactions occur without mismatch between
supply and demand (e.g. Mas-Colell et al., 1995), i.e. without
focusing on differences between stocks and flows that are crucial
in a market-epidemiological context. In other words, these studies
consider that there is no accumulation of stock of goods or of
demand for goods over time by implicitly assuming that both
suppliers and demanders are fully satisfied through transactions
where there is perfect match between what is available for sale
and what is wanted for purchase. In contexts of market distur-
bance caused by disease outbreak it is essential to allow for such
unbalance over the time scale of the outbreak or longer. Hence,
following disequilibrium approaches from economics (Fair and
Jaffee, 1972), we have allowed for imperfect match between supply
and demanded stocks; this required defining accumulated stocks
in addition to what we called flows (or ‘rates of generation’) of
supply and demanded stock, which, formally, are the default
supply and demand in economics (Table 1). We note that while
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‘demanded stock’ seems not to be considered in economics, there
are good reasons for considering that demand can accumulate
over time when we do not assume the current needs of buyers are
fully satisfied in one time step but remain to be satisfied over an
economically significant period of time. For example, farm owners
who experience accumulating losses of livestock due to an
ongoing undetected infectious disease would increase demand
for livestock for sometime to replace ongoing animals deaths;
alternatively, their would interrupt business; either route would
have a lasting unbalancing influence on the wider market.

Further on the usefulness of a market-epidemiological model,
predictive assessments of market resiliency to disturbance such as
disease outbreak are important for health economics. However,
economic models applied to the study of epidemics often focus on
descriptive assessments that neglect temporal dynamics (e.g.
Soliman et al., 2010) or predictive equilibrium-based discrete-time
approaches (e.g. Zhao et al., 2006) that can be at odds with the
multiple and contrasting time scales encompassed by economic
and epidemiological processes. It is important to model in con-
tinuous time to adequately resolve the multiple processes of
infection and the market transactions. Even when economic model
of trade operate in continuous time, they apparently do not
consider explicit contact structures among economic agents (e.g.
Caputo, 2005), which render them inapplicable to describe epi-
demics. Epidemiologists, ecologists and network-scientists have a
long-standing expertise in formalising such contact structures,
which suggest the tools developed by those communities could
also benefit to the study economic systems, especially when
submitted to systemic shocks (see also May et al., 2008). The use
of Ry can also be of importance in economics; for example, in
assessing whether trade can drive epidemics that have the
potential to damage trade. Specifically, the ME model shows cases
where, depending on whether Ry is less or greater than 1,
contagion in markets can lead to either full recovery or long-
lasting recession of the economic sector. However, interestingly,
when considering the dynamics of a perturbed market per se, i.e.
the FTM model without coupling to an epidemiological model, we
typically find that the market is robust to disturbance as it returns
rapidly to the original steady-state equilibrium. A fundamental
aspect, therefore, lies in the feedback between dynamical pro-
cesses that are often left separated because they associate with
different disciplines or research communities. We note, however,
that Ry has limitations in its usefulness, and in particular is not a
good predictor of the severity of an outbreak. For example, our
model suggests that in face of an epidemic scenario (Ry > 1) (24)
swift regulation can eliminate the epidemic and mitigate the impact
on the market when there is risk aversion and moderate friction,
but not without risk aversion (Figs. 2B and S6, black-dashed versus
plain-black curves). However, risk aversion is a behavioural adapta-
tion that occurs over the course of the epidemic, and as such is not
incorporated in the calculation of Ry, which focuses on the early
stages of the epidemic. Another example is the case of an outbreak
occurring in markets outside of equilibrium (i.e. prior to supply
stock, demanded stock, and/or price having reached steady-state
equilibrium. We find that the market's initial supply and demanded
stocks generally have minor impact on trade and epidemics.
However, an initially non-equilibrated price can strongly influence
the size of the outbreak until the market reaches a steady-state
(GSA of the ME model; Section D.2.4. of the ESM). Therefore, the
same epidemiological system, characterised by a single Rq value, can
lead to contrasted epidemic and market outcomes, depending on
adaptive risk-aversion behaviour and the market conditions at the
time of epidemic onset. Both of these examples highlight the
importance of accounting for adaptive mechanisms of interacting
but apparently disparate dynamics, which bares resemblance to
ecological dynamics.

From an economic perspective, our study only stands for
emerging or re-emerging epidemics since agents adapt their
behaviour in response to outbreaks. Further work of interest could
transpose the current ME model to endemic diseases that are often
anticipated by market agents. Agent anticipation could be imple-
mented using explicit inter-temporal optimisation functions that
are widely used in economics (e.g. by Zhao et al., 2006; see ESM
Section C.1.5 for details and presentation of other potential exten-
sions inspired by the economic literature). In addition, we could
explicitly account for inventories and capacities of economic
agents (Khan and Thomas, 2003), for example, by dissociating
animals within a farm (an inventory) from animals for sell within a
farm (a supply stock); or by dissociating the maximal number of
animals that can be present within a farm (a capacity) from the
number of animals expected to be bought (demanded stock). Our
model can also be extended to account for heterogeneous contact
structure such as individual-based networks of trading agents (e.g.
Atalay et al,, 2011). An explicit trade-agent model would account
for transactions involving identified pairs of agents who jointly
decide to exchange goods against money. For simplicity, this
pairing process is assumed here to be governed by a homogeneous
mixing process. However, where trade flow and the number of
business partners are positively correlated at agent level, which is
likely in many cases, we expect heterogeneous contact structure to
boost epidemic development in comparison with homogeneous
settings (Kamp et al., 2013). A key open question we are currently
investigating concerns the conditions under which realistic levels
of friction can also mitigate epidemics propagated on heteroge-
neous markets.
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