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� The growth of Arabidopsis leaves follows a conformal map.

� A general mechanism that ensures at growth in plant leaves.
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a b s t r a c t

I show that Arabidopsis leaf growth can be described with good precision by a conformal map, where
expansion is locally isotropic (the same in all directions) but the amount of expansion can vary with
position. Data obtained by tracking leaf growth over time can be reproduced with almost 90% accuracy
by such a map. The growth follows a Möbius transformation, which is a type of conformal map that
would arise if there were an underlying linear gradient of growth rate. From the data one can derive the
parameters that describe this linear gradient and show how it changes over time. Such a rule has the
property of maintaining the flatness of a leaf.

& 2016 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The study of leaf growth has a long history (Goebel, 1905), and
mapping the process has become increasingly precise over the
years (Avery, 1933; Richards and Kavanagh, 1943; Erickson, 1966;
Rolland-Lagan et al., 2003; Remmler and Rolland-Lagan, 2012;
Rolland-Lagan et al., 2014; Cui et al., 2010; Green et al., 2010;
Kennaway et al., 2011; Kuchen et al., 2012; Sauret-Gueto et al.,
2013). The pattern of leaf growth has been accounted for by
models in which growth regulators operate within specified re-
gions of the leaf (Kuchen et al., 2012), polarity fields control the
predominant direction of growth (Sauret-Gueto et al., 2013), and
gene networks regulate the succession of morphogenetic events in
a combinatorial fashion (Cui et al., 2010; Green et al., 2010; Sauret-
Gueto et al., 2013).

A different type of explanation, with its roots in physics and
td. This is an open access article u
engineering, goes back to D′Arcy Thompson and his famous book,
On Growth and Form (Thompson, 1917). Thompson discusses leaf
growth in terms of transformations extending over the whole leaf
area, and points to possible underlying physical mechanisms. In a
footnote (Thompson, 1917, p. 1084), he draws attention to the re-
semblance of certain mappings to conformal transformations.
These are transformations of the plane that preserve angles locally,
and are generated by isotropic local expansion. The amount of
expansion can vary with position, but at any point expansion oc-
curs to the same extent in all directions. Conformal maps are very
important in physics and engineering, because they are intimately
connected with diffusion, hydrodynamics and electrical fields.
There is also a close connection with complex analytic functions,
which are maps from the complex plane to itself (the complex
plane, or Argand diagram, represents complex numbers +x iy).
Every complex analytic function is conformal and vice-versa.

By comparison, conformal maps have played only a small part
in the study of biological structures. There is an intriguing paper
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by Schwartz (1977), showing that the mapping of retinal ganglion
cells to the cortex or the optic tectum can be well approximated by
a complex logarithm. And more recently, Jones and Mahadevan
(2013) revived and generalised D'Arcy Thompson's approach by
considering the larger class of quasi-conformal mappings, where
the expansion is not necessarily isotropic. They show how to use
these mappings for various kinds of morphometry.

Another contribution comes from Wolfram, in a footnote in his
magnum opus A New Kind of Science (Wolfram, 2002), where he
proposes that leaf growth might follow a conformal mapping,
pointing out that this would preserve the flatness of the leaf sur-
face. He also observes that conformal mappings might be gener-
ated biologically by a diffusion-based mechanism, arguing that the
growth rate underlying such a mapping must satisfy the equili-
brium diffusion equation.

In a certain sense, Wolfram's assertion about flatness is a tau-
tology, since a conformal map is planar and a planar map will
preserve flatness. The real content lies in the proposal that leaf
growth is locally isotropic. If this is true, then to be planar amounts
Fig. 1. The displacement of beads between day 7 and day 8 for four leaves, the one wi
margin of the leaf at day 7 and the blue outline that at day 8. The beads are shown as sm
The axes show the size of the leaves in microns. Note that the origin of the x- and y-co
to being conformal. Erickson (1966), using Avery's classic data on
the growth of tobacco leaves (Avery, 1933), concluded that leaf
growth was largely isotropic, but the leaves in question were large
(several centimetres in length), and Richards and Kavanagh (1943)
emphasise that early leaf growth is ‘strongly non-isotropic’ in
contrast to the later stages. This is supported by more recent work
using clones, which become markedly elongated in petals (Fig. 2 in
Sauret-Gueto et al., 2013) and leaves (Fig. 2 in Kuchen et al., 2012).
At first sight, therefore, it seems unlikely that early leaf growth can
be treated as locally isotropic.

The surprise is that Wolfram's assumption turns out to be
largely correct. I show here that, using data kindly made avail-
able by Professor Rolland-Lagan, that the growth of Arabidopsis
leaves approximates remarkably well to a conformal mapping,
about 90% of the growth being accounted for by such a map. A
fascinating question is then raised by the relationship between
this kind of explanation and the gene-based interpretation
discussed initially.
th the greatest number of beads (leaf 1) and three others. The green outline is the
all circles at the start of the arrow, which ends at the position of that bead at day 8.
ordinates lies at the approximate centre of the leaves.
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2. The pattern of local growth

The data used here consist of a set of observations of individual
Arabidopsis leaves (Remmler and Rolland-Lagan, 2012; Rolland-
Lagan et al., 2014), each of which has a number of beads attached
to its surface that are tracked day by day (see Appendix A.1). The
earliest time point is day 7 after sowing, and there are altogether
thirteen leaves that were tracked till day 12. As we shall see, the
earliest time step, day 7 to day 8, provides the most interesting
data, since uniform expansion, with a constant relative growth
rate (RGR) over the entire leaf, increasingly takes over with in-
creasing age. Fig. 1 shows the displacement of beads between days
7 and 8 for several leaves.

We would like to understand these maps at the level of in-
dividual cells and their growth rates. To do this, we need to
characterise the local growth map, i.e. the way that tissues expand
on a small scale. This information is captured by the derivatives of
the map and in particular by the Jacobian matrix, which is the
analogue, for growth between two time points, of the growth
tensor (Kennaway et al., 2011). If we write the map as
( ) → ( ( ) ( ))x y u x y v x y, , , , , then the Jacobian J is defined by

⎛
⎝⎜

⎞
⎠⎟=

( )
J

u u

v v 1

x y

x y

where ux stands for ∂ ∂u x/ , uy for ∂ ∂u y/ , and so on.
We are particularly interested in those growth rules that lead to a

flat leaf surface, since many leaves are approximately flat, including
the Arabidopsis leaves in our data set (e.g. see Fig. 3 of Rolland-Lagan
et al., 2014). Some of the growth rules of this type lead to a dis-
tinctive form for the Jacobian. For example, suppose that the rate of
growth is the same at every point of the leaf lamina. The growth
could be anisotropic (greater along one axis than the other), but the
amount of growth is assumed not to vary with position. Fig. 2A
shows an example of such growth applied to an initial square array;
each small square expands to a larger rectangle and these all have
identical shape. If growth is by a factor a along the x-axis and by a
factor b along the y-axis, the Jacobian at every point is:

⎛
⎝⎜

⎞
⎠⎟=

( )
J a

b
0

0 2

Another type of map has properties that are in a sense the
opposite of the foregoing: the growth rate does not have to be
constant over the leaf surface, but it is locally isotropic. Fig. 2B
shows an example; notice how each small square deforms into a
square (approximately) because of local isotropy. Notice also that
the greater growth at the bottom of the grid leads to rotation of
the small squares. This is passive rotation produced by expansion
of adjacent tissue (Kennaway et al., 2011). The matrix for rotation
Fig. 2. Some examples of growth maps that preserve the flatness of a leaf. A: growth is t
rate can vary with position. In this case, the growth rate increases as one moves downw
through an angle θ is ( )= θ
θ

θ
θ

−A cos ,
sin ,

sin
cos

. When combined with the

effect of isotropic relative growth ( )g x y, , this gives rise to a Ja-
cobian of the form

⎛
⎝⎜

⎞
⎠⎟=

( ) − ( )
( ) ( ) ( )

J
a x y b x y

b x y a x y

, ,

, , 3

where θ( ) = ( ) ( )a x y g x y x y, , cos , and θ( ) = ( ) ( )b x y g x y x y, , sin , .
Comparing Eq. (3) with Eq. (1) shows that ux¼vy and = −u vy x.
These are the celebrated Cauchy-Riemann equations that define a
conformal map; Appendix A.2.

The next question is whether the Jacobian calculated for the
observed leaf growth has a distinctive signature. Fig. 3 shows that
there is a striking agreement with the conformal pattern (see
Appendix A.3). The top left (ux) and bottom right (vy) derivatives
are roughly equal, as expected from Eq. (3), and are positive (red)
because θ=a gcos and both g and θcos are positive. Whereas the
top right (uy) and bottom left (vx) derivatives are of opposite sign
(blue is negative), also as expected from Eq. (3). The fact that the
signs switch around the midvein is a consequence of the sym-
metry of the leaf shape and the fact that growth leads to rotations
in opposite directions in the two halves of the leaf. The other
leaves show similar patterns, though with considerably more
noise in the relationship between uy and vx; see the last two col-
umns in Table A2. This may partly be explained by the smaller size,
and hence vulnerability to noise, of these components compared
to ux and vy (note the difference in scale in Fig. 3).

It is interesting to compare these patterns to earlier observa-
tions of growth rates and vorticity (Richards and Kavanagh, 1943;
Erickson, 1966; Silk and Erickson, 1979) (see Appendix A.5 for
explanations of these quantities). These authors plotted the di-
vergence ( + )u vx y and the vorticity ( − )v ux y

1
2

in various leaves, and
found patterns resembling those in Fig. 3, namely larger values of
the divergence towards the base of the leaf and opposite patterns
of vorticity around the midline (see Silk and Erickson, 1979, Fig. 3).
They were not, however, measuring what for us are the crucial
variables, namely the individual components in the divergence
and vorticity. The divergence will not reveal whether ux and vy are
equal; it just gives their sum. Likewise, the vorticity will not reveal
whether = −u vy x, but if this Cauchy-Riemann equation does hold
then the vorticity will coincide with vx (or −uy).
3. Fitting a conformal map to growth

In the preceding section we found that the growth map has the
characteristics of a conformal map. Our strategy now will be to
find the conformal map that best fits the data.
he same at all points, but can be anisotropic. B: growth is isotropic, but the growth
ards, and this causes the tissue to rotate.



Fig. 3. The components of the Jacobian, Eq. (3), the linear transformation that defines the local expansion and rotation due to growth. This is based on the data for leaf
1 shown in Fig. 1. The radius of the beads is the (scaled) size of the derivative, with red for positive values and blue for negative. The 'a' components (ux and vy) have been
displayed at 1/4 the scale of the 'b' components (uy and vx).

Fig. 4. The residual movement of beads after subtracting the best-fitting linear map, for four leaves and the time period 7–8 days. Note the rotation of the arrows at twice the
speed of the radius, and compare with the quadratic function in Fig. 5.
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We have seen that the Jacobian signature of conformal growth
is equivalent to the Cauchy-Riemann equations. These tell us that a
conformal map can be regarded as a complex analytic function
(see Appendix A.2 and Eqs. (A1) and (A2)). Given this, our strategy
will be to interpret the plane in which a leaf grows as the complex
plane. This means that a point with coordinates (x,y) is regarded as
the complex number = +z x iy (Needham, 1997). We can then
look at any function of z, e.g. a polynomial + +a bz cz2, as a map
from the complex plane to itself, and we can ask how well this
approximates the growth of the leaf – regarding this also as a map
of the complex plane to itself. By varying the coefficients a, b and c
(which are themselves complex numbers) we can find the poly-
nomial that minimises the error in predicting the positions of the
beads.

Consider the linear function ( ) = +f z a bz , where = +z x iy,
and = +a a ia0 1 and = +b b ib0 1 are complex constants. This map
takes the point (x,y) to (u,v), where = + −u a b x b y0 0 1 and

= + +v a b y b x1 0 1 . This amounts to a shift of origin to the point a in
the complex plane, a rotation by = ( )b b barg arctan /1 0 , and a con-

stant RGR everywhere on the leaf of | | = +b b b0
2

1
2 . Thus a linear

complex map can capture the relative positioning and orientation
of the leaf between successive days, which have to do with the
experimental set-up; it can also account for a constant RGR, which
is a parameter with biological significance.

Thus the best-fitting linear complex map, found by least squares
fitting of the bead data points (see Appendix A.4), gives us an esti-
mate of both the experimental parameters and the intrinsic uniform
isotropic growth. The difference between the final bead position
predicted by this linear model and the true position, i.e. the linear
model residual, indicates how much of the growth involves variation
of growth rate with position in the leaf, with consequent rotation of
the tissue, as depicted in Fig. 2B. The size of this residual can be
measured by summing the lengths of the residual vectors and di-
viding this by the sum of the total bead displacement observed ex-
perimentally. This normalised residual has an average value over all
the leaves of 0.33; see Table A2. Equivalently, one can say that 67% of
the displacement is accounted for by a linear model.

The distribution of this residual over the leaf lamina is shown
in Fig. 4. This is very striking: as one follows a path round the
perimeter of the leaf, the residual vectors rotate twice as fast as the
radial vector. This is what is expected of a quadratic complex
function, as shown in Fig. 5. Note that the origin of the leaf's co-
ordinate system is in the approximate centre of the leaf, and that
of the complex quadratic lies at the centre of the circle.

Given this pattern in the residual, we expect to get a better fit to
the data with a quadratic complex polynomial ( ) = + +f z a bz cz2,
and this is indeed the case, as shown by the substantially smaller
Fig. 5. Two complex functions, represented by arrows: the linea
normalised quadratic residuals in Table A2, with an average of 0.14,
(86% of the displacement accounted for). Adding a cubic term,

( ) = + + +f z a bz cz dz2 3, gives a further small improvement, with
0.11 residual or 89% of the displacement accounted for; see Table A2.
Additional higher power terms give negligible improvement.

In addition to fitting a polynomial, one can also fit a Möbius
transformation (Needham, 1997; Arnold and Rogness, 2008),
which has the form

( ) = +
+ ( )f z

a bz
c dz

,
4

where a b c, , and d are complex numbers. Möbius transformations
have the attractive property that the composition of two of them –

i.e. following one by the other – is again a Möbius transformation.
Furthermore, they have a matrix representation that is very useful
for interpolating between the observations, as will be discussed
later. It turns out that one gets almost as good a fit from a Möbius
transformation as from a cubic, with an average residual of 0.12, or
88% of displacement accounted for; see Table A2.

To summarise so far, a linear conformal map, which is equiva-
lent to constant RGR, can account for about 67% of the displace-
ment of beads, whereas a nonlinear conformal map, cubic or
Möbius, accounts for 88–89% of the displacement (these are fig-
ures averaged over all leaves, for days 7–8). There is therefore a
substantial nonlinear component to the conformal growth.

The fact that the observed growth is mostly conformal is a
strong statement about the growth of the leaves: the basic me-
chanism of leaf growth must be able to generate such a map. It
also tells us something about the residual, i.e the remaining small
part of the map that is not conformal. In many of the leaves this
highlights regions where some kind of systematic directional
growth is concentrated. As can be seen from Fig. 6, there is con-
siderable variation between individual leaves, some having
marked anisotropic basal growth and others having very little.
Basally localised anisotropic growth has previously been observed
in averaged leaf data, e.g. Fig. 7 in Remmler and Rolland-Lagan
(2012). What is new here is the large amount of individual varia-
bility in this anisotropic component.

The leaves also show a strong basal bias in the isotropic growth
rate, which can be seen in the best-fitting conformal map. Unlike
anisotropic growth, this pattern is found in all the leaves. This is well
documented in the literature (Kuchen et al., 2012; Rolland-Lagan
et al., 2014), though fitting a conformal map clarifies the distinction
between oriented and isotropic components in this gradient.

The data set allows one to follow the pattern of residuals for
five successive time steps, beginning with 7–8 days. Fig. 7 shows
residuals averaged over all leaves: the linear residual gets steadily
r function, ( ) =f z z0.4 and the quadratic one ( ) =f z iz0.4 2.



Fig. 6. The residual from the best fitting complex polynomial, for four leaves from days 7–8. The small circles representing beads have been removed so that the arrows can
be seen more clearly.

Fig. 7. Change in the average residuals (linear and cubic) over time, showing the
decrease in the linear residuals, and hence the increasingly large component of
constant RGR, as the leaves age.
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smaller, implying that the component of constant RGR increases
steadily, so that some 85% of the growth is constant expansion by
days 11–12. The pattern of linear residuals for an individual leaf
(leaf 1) over five successive days is shown in Fig. 8, and it tells the
same story, with the initially large residuals at the apex and base
of the leaf gradually diminishing.

4. The biological meaning of conformal growth

A conformal map is a very special type of map, and it is natural
to ask how it could be generated biologically. Wolfram's answer
(Wolfram, 2002) is that conformal growth will occur precisely
when the RGR has the special property of being a harmonic
function, i.e. when it satisfies the equilibrium equation for diffu-
sion (see Appendices A.6 and A.7). He also proposed that the RGR
might therefore be specified by the concentration of a diffusing
signal molecule, though I will point out some difficulties with this
proposal in due course.

Now it turns out that for the leaves in our data set the con-
formal component of their growth is well approximated by a
Möbius function, Eq. (4), and that the underlying RGR that gen-
erates these functions is of a particularly simple kind, namely a
linear gradient (see Appendix A.8). All that is required, therefore, is
that cells set their RGR – their rate of isotropic expansive growth –

according to a linear gradient at any moment in time. A linear
gradient is a harmonic function, but a very special one.

Let us run through the steps that lead to this conclusion. A
Möbius function (Needham, 1997; Arnold and Rogness, 2008) has
the attractive property that one can ‘wind back the clock’ and
recreate intermediate steps in the growth pattern. This is possible
because one can associate to the Möbius transformation

( ) = ( + ) ( + )f z a bz c dz/ the matrix ( )=F b
d

a
c
, and composing two

Möbius transformations is equivalent to multiplying their ma-
trices. Thus given an observed map over some time period (24 h
for the data used here), one can take a fractional power of the
associated matrix and estimate the map for a shorter time period
than the original 24 h (for background on fractional powers of
matrices and Möbius transformations, see Appendix A.9). Fig. 9
illustrates the method by taking the square root of the matrix A for
the best-fitting Möbius transformation for leaf 4 between days
7 and 8; the matrix A gives an estimate of growth in half the
period of observation, i.e. 12 h.

By taking smaller fractional powers one retrieves the growth
pattern for shorter times, and in the limit this enables one to



Fig. 8. The linear residual for leaf 1 from day 7 to day 12.

Fig. 9. Factorising the growth into two 12 h periods, using the Möbius transfor-
mation with matrix A , where A represents the best fit for the 24 h between days
7 and 8 (leaf 4). The composition of the two maps, i.e. the result of following the red
arrows and then the blue arrows, is equivalent to the 24 h best fit.

Table 1
The constants specifying the linear gradient in the RGR for leaf 1 over five suc-
cessive day-lengths. The gradient is given by Eq. (A.16) as

( ) = ( − ) − −RGR x y b c d x d y, 2 20 0 0 1 . Growth is over 24 h, so the units for −b c0 0
are per day, and for d0 and d1 are per millimetre per day.

days −b c0 0
d0 d1

7–8 0.4457 0.038 0.574
8–9 0.4362 0.015 0.271
9–10 0.3391 0.004 0.120
10–11 0.2686 -0.006 0.051
11–12 0.2099 0.003 0.026
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calculate the infinitesimal generator (Eqs. (A9), (A12) and (A15)),
and hence the distribution of the RGR everywhere on the leaf. A
straightforward calculation, Eq. (A.16), shows that the RGR dis-
tribution is linear, that is to say, linear in cartesian (rectangular)
coordinates, not, for example, in polar coordinates. It is possible to
estimate the constants that determine this linear gradient from
the bead movements. Table 1 gives these constants for leaf 1 over
five successive day periods. There is a steady decrease in the
average growth rate with time, ( −b c0 0), and also a decrease in the
slope in the direction of the leaf axis, d1, which accords with the
decreasing nonlinear terms shown in Figs. 7 and 8. Fig. 10A and B
show what the gradients look like for this particular leaf.
5. Discussion

The growth patterns of the leaves studied here have a sig-
nificant nonlinear component (Fig. 4), yet it turns out that they can
be explained by a linear gradient of growth rate (Fig. 10A and B),
that is to say, a gradient that is linear in cartesian coordinates and
not, for instance, in polar coordinates (which would not generate a
conformal map). It is interesting to ask how this linear gradient
could be generated. Linear gradients of a diffusible signal molecule
were originally postulated as the underlying mechanism for pat-
tern formation (Lawrence, 1966; Wolpert, 1969), and this seems
natural for certain geometries, e.g. a segment in an insect embryo,
since diffusion will interpolate in a linear fashion between a source
and sink. However, a linear diffusion gradient in a leaf can only
arise in a somewhat contrived way, since the outline of the leaf is
irregular, and there needs to be a special layout of sources and
sinks to ensure linearity (see Fig. 11). Furthermore, the gradients
that have been found are not linear; in the case of Bicoid, the
gradient is exponential (Driever and Nüsslein-Volhard, 1988, 1988;
Gregor et al., 2007).

Thus Wolfram's (2002) proposal of read-out of the RGR from an
equilibrium diffusion gradient seems implausible here, though one
abandons this idea with regret since it would have meant that any
source or sink arrangement on the margin of a leaf would create a
signal distribution that was guaranteed to produce a conformal
map and hence a flat leaf. If this is not the explanation, then it is an
intriguing question what mechanism leads to a linear gradient of
RGR over the leaf lamina. It also invites investigation of other
leaves to see if their growth is also conformal and whether it is
also well approximated by a Möbius transformation.



Fig. 10. A: The linear gradient in RGR. Its minimum value is at the distal tip of the leaf, where growth is slowest, and its largest values at the base. B: The gradual flattening of
the gradient in RGR with successive days. Each line represents the gradient along the midvein.

Fig. 11. The flux pattern associated to a linear gradient set up by diffusion, and the
distribution of sources (red) and sinks (green), calculated for the outline of leaf 1,
that would be needed to generate the gradient. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
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There is already a fairly detailed analysis of leaf growth in terms of
developmental programs (Rolland-Lagan et al., 2003; Remmler and
Rolland-Lagan, 2012; Rolland-Lagan et al., 2014; Cui et al., 2010;
Green et al., 2010; Kennaway et al., 2011; Kuchen et al., 2012; Sauret-
Gueto et al., 2013), and it would be interesting to bring this into
register with the fact that growth is largely conformal. One obvious
question is how the local isotropy of a conformal map can be re-
conciled with the elongation of clones in Kuchen et al. (2012). A
different staging criterion is used in Kuchen et al. (2012) and Re-
mmler and Rolland-Lagan (2012); Rolland-Lagan et al. (2014). How-
ever, judging by leaf size, 6 DAI (‘days after initiation’) in Kuchen et al.
(2012) corresponds to day 7 in our data set from Remmler and
Rolland-Lagan (2012), Rolland-Lagan et al. (2014), where ‘days after
sowing’ are used. The elongated clones seen on 6 DAI (Fig. 2A, Ku-
chen et al., 2012) were initiated 3 days earlier, so a 2:1 elongation
factor over 3 days, which seems a reasonable estimate by eye, would
require an elongation factor of ≈2 1.263 per 24 h. Thus, if λ and μ
denote the relative growth in 24 h along the axis of the leaf and in
the orthogonal direction, respectively, we require λ μ =/ 1.26. Now
consider a simplified model in which these growth rates are constant
over the leaf, and where the conformal model has a constant relative
growth per 24 h of λ μ( + )/2. Then if we represent the collection of
beads by two instances, one bead on the y-axis and another of the x-
axis, the normalised residual (Table A2) is λ μ λ μ( − ) ( + )/ . Equating
this to the average value of the cubic residual, 0.12, we get λ μ =/ 1.27,
which is not far from the value given above for achieving a 2:1 an-
isotropy in the clones. Thus there need be no contradiction between
the elongation of clones over 3 days of growth and the good match
achieved by a conformal map.

Turning to the network of factors controlling growth hy-
pothesised in Kuchen et al. (2012), can the action of the factors
PGRAD and LATE be explained by the linear growth rate in the
conformal picture and its diminishing slope with time (Table 1 and
Fig. 10)? One difference is that PGRAD levels are assumed to be
inherited by lineage and therefore to deform with the growth of
the tissue (Kuchen et al., 2012), whereas the linear RGR in our
conformal picture changes dynamically with time so as to main-
tain its linearity. There is also no indication of a distinction be-
tween lamina and midvein growth (formalised by the factors LAM
and MID Kuchen et al., 2012) in the residuals from the best-fitting
conformal map (e.g. Fig. 6). However, this may just be a matter of
resolution, since the domain of operation of MID is quite narrow.

It would be interesting to understand how the mechanism
proposed to explain indentations in Arabidopsis leaves (Bilsbor-
ough et al., 2011; Engelhorn et al., 2012) fits with a conformal
viewpoint. Is this a developmental subroutine added onto the
conformal growth plan of the lamina, or is it integrated into the
underlying RGR distribution to make a complete conformal map?

Finally, one would like to extend these ideas to the realm of
curved surfaces, since a flat leaf is only a special case of a large
variety of three-dimensional leaf or petal shapes seen in the plant
world. Some steps have been taken in this direction: a framework
for combining genetic growth rules and physical constraints has
been proposed (Green et al., 2010; Kennaway et al., 2011), and the
mechanics of leaves has been modelled using the theory of thin
elastic plates (Mahadevan and Liang, 2009; Liang and Mahadevan,
2011). How can the notion of a conformal map be extended to the
realm of curved surfaces? Wolfram's approach gives a useful clue,
by relating the curvature to the growth rate (see Appendix A.7),
thus suggesting possible mechanisms for making curved surfaces.
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Table A2
Normalised residuals after least-squares fitting to linear, quadratic or cubic complex
polynomials and a Möbius transformation. The normalised residual is defined as
∑ | − | ∑ | |v l v/k k k k k , where vk is the vector between bead positions on successive

days, lk is the vector predicted by the complex function, and k runs over all beads.
Also shown are the measures ( )E u v,x y and ( )E u v,y x of accuracy with which the

Cauchy-Riemann equations ux¼vy and = −u vy x hold; see Eqs. (A.6) and (A.7). If

E¼0, the relevant equation holds exactly for every bead. As can be seen, ( )E u v,x y is

small, whereas ( )E u v,y x is larger, especially for leaves 5, 11 and 12. Leaves 5 and 11

also have large cubic and Möbius residuals.

Leaf Linear
residual

Quadratic
residual

Cubic
residual

Möbius
residual

( )E u v,y x

( )E u v,x y

1 0.289 0.124 0.101 0.103 0.090 0.058
2 0.449 0.202 0.141 0.148 0.307 0.072
3 0.381 0.158 0.135 0.130 0.434 0.112
4 0.376 0.164 0.138 0.141 0.342 0.072
5 0.406 0.209 0.165 0.178 0.546 0.094
6 0.247 0.083 0.052 0.065 0.154 0.044
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A.1. Data and data-analysis programs

The two papers from Prof. Rolland-Lagan's laboratory, (Re-
mmler and Rolland-Lagan, 2012; Rolland-Lagan et al., 2014), give a
thorough description of growth patterns and point the reader to-
wards a website (http://hdl.handle.net/10393/30401) where the
bead data for individual leaves are available, and also a package of
Matlab programs for leaf shape analysis. Leaves are referred to by
pot and plant numbers in their data sets, and Table A1 shows how
this relates to the numbering used here.
Table A1
The numbering of leaves used here (in order of decreasing number of beads), and
the numbering in Remmler and Rolland-Lagan (2012), Rolland-Lagan et al. (2014),
defined by the pot and plant. Also given is the number of beads on each leaf.

My numbering POT PLANT Number of beads

1 19 1 231
2 19 2 82
3 1 2 80
4 3 3 71
5 7 1 68
6 3 2 62
7 3 1 57
8 7 2 55
9 5 1 51
10 20 1 36
11 17 1 32
12 1 1 26
13 7 3 22

7 0.325 0.117 0.110 0.112 0.221 0.043
8 0.348 0.145 0.092 0.116 0.231 0.047
9 0.301 0.121 0.099 0.107 0.309 0.070
10 0.261 0.123 0.097 0.118 0.226 0.061
11 0.360 0.178 0.180 0.193 0.608 0.092
12 0.253 0.101 0.101 0.105 0.716 0.081
13 0.327 0.104 0.080 0.088 0.272 0.018
Average 0.333 0.141 0.115 0.123 0.343 0.067
A.2. Complex functions and their derivatives

Let f be a complex analytic function. This means that f is dif-
ferentiable as a complex function (as are all the functions one is
likely to encounter in the present context). We can write the
function in terms of its real and imaginary parts as

( ) = ( ) + ( )f x y u x y iv x y, , , , where +x iy is the point with co-
ordinates x y, in the complex plane. Calculating the derivative of f
by a real δx gives ′ = +f u ivx x (where ux denotes ∂ ∂u x/ , etc.),
whereas making the calculating with an imaginary δi y gives

′ = − +f iu vy y. Equating these two definitions yields the Cauchy-
Riemann equations,

= ( )u v , A.1x y

= − ( )u v . A.2y x

These in turn imply that

+ = ( )u u 0, A.3xx yy

+ = ( )v v 0, A.4xx yy

(where = ∂ ∂u u x/xx
2 2, etc.), showing that both u and v satisfy La-

place's equation, which is the equation for the equilibrium dis-
tribution of a diffusing substance (Crank, 1975). A function sa-
tisfying this equation is called a harmonic function. Thus both the
real and imaginary parts of f are harmonic. Conversely, given a
harmonic function u, the Cauchy-Riemann equations can always
be solved to give v, and this yields a conformal map with real and
imaginary parts u and v.

A.3. Calculating derivatives

To compute the terms in the Jacobian, Eq. (1), at each bead we
need to estimate the derivatives ux, uy, vx, and vy. For this we need
a map ( ) → ( ( ) ( ))x y u x y v x y, , , , that interpolates smoothly between
the values at beads. Following Rolland-Lagan et al. (2014), we as-
sume that u and v are each third-order polynomials in x and y, and
choose values of the polynomial coefficients that minimise the
sum-of-squares error. If the coordinates of bead k at time 1 are
( )( ) ( )x y,k k

1 1 and at time 2 are ( )( ) ( )x y,k k
2 2 , the error is given by:

( ) ( )∑= ( ) − + ( ) −
( )

( ) ( ) ( ) ( ) ( ) ( )S u x y x v x y y, , ,
A.5k

k k k k k k
1 1 2

2

1 1 2

2

where the index k runs over all beads. The minimisation is a linear
problem that can be done very rapidly by linear algebra functions
in Matlab.

No assumption is made about the form of the polynomials, and
there is no presumption that they lead to a conformal map.
However, as Fig. 3 shows, for leaf 1 the map shows the diagnostic
sign pattern of A conformal map. To quantify this for all the leaves,
we would like to test how precisely the Cauchy-Riemann equa-
tions ux¼vy, = −u vy x hold. One way to quantify this is to take the
absolute value of the differences | − |u vx y and | + |u vy x , evaluated at
each bead position, and suitably normalised. More precisely we
take
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where k runs over all beads. Then ( )E u v,x y and ( )E u v,y x lie between
0 and 1, and ( ) =E u v, 0x y means that ux¼vy holds precisely for all
beads, and similarly ( ) =E u v, 0y x means that = −u vy x for all the
beads. The last column of Table A2 shows that ( )E u v,x y is close to
zero for all leaves. The last column but one of Table A2 shows that

( )E u v,y x is generally larger, which can be partly accounted for by
the fact that the derivatives uy and vx are on average about 4 times
smaller in absolute magnitude than ux and vy, (different scales
have been used in Fig. 3). ( )E u v,y x for leaves 5, 11 and 12 is par-
ticularly large, which is consistent with leaves 5 and 11 having the
largest residuals from the best-fitting conformal map.

A.4. Fitting conformal maps

Conformal maps are fitted by least squares. For instance, a
quadratic map ( ) = + +f z a bz cz2, with = +z x iy, can be written
in the form ( ) = ( ) + ( )f z u x y iv x y, , , where

( ) = + − + ( − ) −u x y a b x b y c x y c xy, 2 ,0 0 1 0
2 2

1

and

( ) = + + + ( − ) +v x y a b y b x c x y c xy, 2 ,1 0 1 1
2 2

0

with = +a a ia0 1, = +b b ib0 1, = +c c ic0 1. then we find the values
of a a b b c c, , , , ,0 1 0 1 0 1 that minimise the sum of squares error given
by Eq. (A.5).

The Möbius transformation is fitted by writing the function
( ) = ( + ) ( + )f z a bz c dz/ as a polynomial series, viz.

( )( ) = ( + ) − + − …f z a c bz c dz c d z c/ / 1 / /2 2 2 , and comparing its
terms up to quadratic order with those of the best-fitting cubic.
This determines a b c d, , , , up to an irrelevant shared factor. The
cubic term in the expansion is then found to be quite closely ap-
proximated by that of the best-fitting cubic (which is in any case a
very small term). In other words, the best-fitting cubic is already
quite close to a Möbius transformation. This can be seen in the
small changes in the residuals in Table A2.

A.5. Divergence and vorticity

Given any matrix ( )=A a
c

b
d
, its determinant = −A ad bcdet is

the area of the parallelogram whose sides are the vectors from the
origin to (a,c) and (b,d); this is because the determinant is the
cross product of these two vectors. Equivalently, since these two
vectors are the images of the vectors ( )1, 0 and ( )0, 1 under the
linear map determined by A, Adet is the ratio of the area after the
map is applied to its initial value, so Adet is the linear change of
scale under the map. Thus Adet gives the RG under the linear
map A.

Given any map ( ) → ( ( ) ( ))f x y u x y v x y: , , , , , not necessarily linear
or conformal, the local linear map at a point is given by the Ja-

cobian ⎜ ⎟
⎛
⎝

⎞
⎠( ) =J f u

v

u

v
x

x

y

y
evaluated at that point, and consequently

( )J fdet is the RG at that point.
Now suppose we have a time-sequence of maps, ft, beginning at

t¼0 with the identity map, ( ) = ( )f x y x y, ,0 . Then the relative
growth rate, RGRf, is defined to be the temporal derivative

= ( )RGR d RG dt/f f . We can write ( ) = ( + ϵ ( ) + ϵ ( ))ϵf x y x u x y y v x y, , , , ,
where (u,v) is the velocity field following the position of points on

the growing leaf. Then ⎜ ⎟
⎛
⎝

⎞
⎠( ) =ϵ

+ ϵ
ϵ

ϵ
+ ϵJ f u

v

u

v
1 ,

, 1
x

x

y

y
, and up to first order in

ϵ, ( ) ≈ + (ϵ + ϵ )ϵJ f u vdet 1 x y
1
2

. Thus = ( + ) = ∇ ( )RGR u v u v. ,f x y
1
2

1
2

,
which is half the divergence of the velocity field.

This is the measure of RGR derived in Richards and Kavanagh
(1943) and used in Erickson (1966), Silk and Erickson (1979)
(though these authors dropped the factor of 1/2 and just used the
divergence ∇ ( )u v. , , as they were concerned with the areal rather
than the linear RGR). They applied this measure to the velocity
field based on successive observations 24 h apart. Since the leaf
grew considerably between observations (20–40% length increase),
the assumption of a small ϵ is not fully justified. The approach
taken below (Appendices A.6 and A.8) is to interpolate the time
sequence between observations and thus minimise this
inaccuracy.

The vorticity is defined to be ( − )v ux y
1
2

. We can understand this
by combining the effect of a not necessarily isotropic expansion

( )g

g0
01

2
and a rotation ( )θ

θ
θ

θ
−cos ,

sin ,
sin

cos
to give the map ( )= θ

θ
θ
θ

−
A

g

g

g

g

cos ,

sin ,

sin

cos
1

2

1

2
.

The vorticity is then θ( + )g g sin1
2 1 2 . For a short time interval, we

can assume that g1 and g2 are ϵ-close to 1 and θ is of order ϵ, in
which case the vorticity is approximately θ, and is independent of
the expansion factors g1 and g2.

Thus for small time intervals, the divergence measures ex-
pansion and the vorticity measures the angle of rotation of the
tissue. A simple example shows that this is not true for longer time
intervals. Consider the map sending (x,y) to ( − )gy gx, , i.e. the

linear map ( )−
g

g0,
, 0

. This corresponds to a 90 degree rotation

combined with uniform expansion by a factor g. Yet its divergence
is zero and its vorticity is g.

A.6. The relative growth rate of a family of conformal maps

We begin with an assumption, that is only an approximation to
biological reality, that growth results from the repeated iteration
of the same map that operates over a short time period. Thus we
define the map f n1/ to be the map whose n-fold composition is the
map f(z) observed over some time interval (e.g. the 24 h of the
observations here). In other words,

( ) = ( (… ( )…))

( )

f z f f f z .

A.8
n n n

n

1/ 1/ 1/
  

We assume that such a map f n1/ exists for arbitrarily large n (i.e.
arbitrarily short times). The reason this is not biologically fully
plausible is that the map is likely to change as the leaf grows: what
we are calling f n1/ will not be quite the same map at the beginning
and end of a sequence of iterations. However, the simplifying as-
sumption makes the problem mathematically tractable, and is
enshrined in the concept of a semigroup of maps, where

( ) = ( ( ))+f z f f zs t s t , for all positive s t, (Bracci et al., 2007). Henceforth
we assume that ft(z), the map for a time period t, is defined for all t
in some range [ ]T0, , i.e. for the duration of observations. We also
assume that ft(z) is conformal for all t in this range, which is cer-
tainly true for the approximating functions (polynomials, Möbius
transformations) that we use.

For a small time, = ϵt , the map ( )ϵf z is close to the identity, and
can therefore be written approximately as

( ) ≈ + ϵ ( ) ( )ϵf z z g z , A.9

where g(z) is called the infinitesimal generator of the semigroup
(Bracci et al., 2007). Since ( )ϵf z is conformal, so is the infinitesimal

generator. As observed in Section A.5 above, ( ) = ( + )RGR z h kf x y
1
2t

,

where = +g h ik. From the Cauchy-Riemann equations, hx¼ky, so
we get

( ) = ( )RGR z h . A.10f xt

Now hx, which is the real part of the analytic function ( )dg z dz/ ,
is harmonic. So the growth rate could be specified by the con-
centration of a substance at diffusive equilibrium. These steps can
be reversed, since any harmonic function can be written as the real
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part of some complex function k(z) and we can take the conformal
infinitesimal generator to be ∫( ) = ( )g z k z . Since composition of
conformal maps is conformal, the resulting growth is conformal.
So specifying the growth rate by the concentration of a diffusible
substance produces a conformal map. In the next section we
outline Wolfram's very different argument that leads to the same
conclusion.

A.7. Growth rates and curvature: Wolfram's argument

Instead of confining oneself to planar maps one can consider
locally isotropic growth in the setting of curved surfaces. Suppose
growth in an initially flat surface is isotropic, and that this growth
gives rise to a curved surface. A rectangular coordinate system in
the flat surface will be carried into a coordinate system
( ( ) ( ))u x y v x y, , , that divides the surface into infinitesimal squares
(see for example the tesselated ‘Stanford bunny’, Fig. 2.5 in Zeng
and Gu, 2013). The coordinate system (u,v) is called an isothermal
system, and the infinitesimal length element ds is given by

λ= ( + )ds du dv2 2 2 (Struik, 1950), where λ( )x y, is the isotropic local
expansion. A well-known formula (Zeng and Gu, 2013, Eq. (2.13))
expresses the Gaussian curvature K of the surface as

λ
λ= − ∇

( )
K

1
ln ,

A.112
2

where ∇2 is the Laplacian ∂ ∂ + ∂ ∂x y/ /2 2 2 2.
Wolfram (2002) assumes that growth is locally isotropic, in-

vokes a version of Eq. (A.11), and observes that if K¼0, so the
surface remains flat, then λ∇ =ln 02 . He interprets λln as the RGR
and deduces that it must be a harmonic function. It is not clear
why λln should be the RGR in general. However, in the case where
λ is a function of time, assuming we can write λ ρ≈ ( )texp for small
t, then ρ is indeed the RGR and the time derivative of Eq. (A.11)
with K¼0 gives ρ∇ = 02 .

The connection with curvature given by Eq. (A.11) is intriguing,
and suggests mechanisms, perhaps combining reaction and dif-
fusion, for generating curved surfaces.

A.8. The relative growth rate of a Möbius transformation family

Calculating the infinitesimal generator is easy for a Möbius
transformation f. If A is the matrix representing f for a time interval
which we take to be t¼0 to t¼1, then At, i.e. A raised to the power
t, is the matrix representing ft (see Fig. 9 for an illustration of f1/2).
In the limit of small ϵ,

≈ + ϵ ( )ϵA Aid log , A.12

where Alog is the matrix logarithm of A. Writing

⎛
⎝⎜

⎞
⎠⎟=

( )
A b a

d c
log ,

A.13

and converting the matrix Aϵ back into a Möbius transformation
gives (neglecting terms in ϵ2 or higher powers)

⎡⎣ ⎤⎦⎡⎣ ⎤⎦( ) ≈ ϵ + ( + ϵ ) ( − ϵ ) − ϵ ≈ + ϵ ( ) ( )ϵf z a b z c dz z g z1 1 , A.14

where

( ) = + ( − ) − ( )g z a b c z dz . A.152

Thus the infinitesimal generator g(z) is a quadratic polynomial. Eq.
(A.10) now gives

⎡
⎣⎢

⎤
⎦⎥( ) = ( ) = ( ) = [( − ) − ]

= ( − ) − − ( )

RGR z h z
g z
dz

b c dz

b c d x d y

2

2 2 , A.16

f x

0 0 0 1

R R
where b c d, , are the entries in Alog defined above with
= +b b ib0 1, = +c c ic0 1, = +d d id0 1. Thus three real parameters are

needed to define the growth.

A.9. Powers and logs of matrices

The square root F of a matrix F is defined by the property that
( ) =F F2 . If F can be diagonalized (as will be the case for those
matrices considered in this paper), then we can write

( )= λ
μ

−F P P
0

0 1, for some invertible matrix P and eigenvalues λ and

μ, and then F is defined by ( )= λ
μ

−F P P
0

0 1. For 2�2 matrices,

there are in general four choices of square root corresponding to
the four choices of sign for λ and μ . In the applications here we
use the principal value of the square roots, which is also the value
provided by Matlab's matrix square root function. There is also a
simple formula for calculating the square root of a 2�2 matrix
which does not require diagonalising the matrix; see Sullivan
(1993).

Other functions of matrices are defined similarly. Thus, given
some function ϕ, such as an exponential, logarithm or any power,

and given ( )= λ
μ

−F P P
0

0 1, we define ( )ϕ( ) = ϕ λ
ϕ μ

( )
( )

−F P P
0

0 1.
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