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Abstract
    A major challenge in understanding spike-time dependent information encoding in the neural 
system is the non-linear firing response to inputs of the individual neurons. Hence, quantitative 
exploration of the putative mechanisms of this non-linear behavior is fundamental to formulating 
the theory of information transfer in the neural system. The objective of this simulation study 
was to evaluate and quantify the effect of slowly activating outward membrane current, on the 
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non-linearity in the output of a one-compartment Hodgkin-Huxley styled neuron. To evaluate 
this effect, the peak conductance of the slow potassium channel (gK-slow) was varied from 0% to 
200% of its normal value in steps of 33%. Both cross- and iso-frequency coupling between the 
input and the output of the simulated neuron was computed using a generalized coherence 
measure, i.e., n:m coherence. With increasing gK-slow, the amount of sub-harmonic cross-
frequency coupling, where the output frequencies (1-8 Hz) are lower than the input frequencies 
(15-35 Hz), increased progressively whereas no change in iso-frequency coupling was observed. 
Power spectral and phase-space analysis of the neuronal membrane voltage vs. slow potassium 
channel activation variable showed that the interaction of the slow channel dynamics with the 
fast membrane voltage dynamics generates the observed sub-harmonic coupling. This study 
provides quantitative insights into the role of an important membrane mechanism i.e. the slowly 
activating outward current in generating non-linearities in the output of a neuron.

Keywords: Cross-frequency coupling, Hodgkin-Huxley neuron, sub-harmonic coupling, 
slow potassium conductance

Introduction
    In biological neurons, the action potential spike is the principal basis of information encoding 
and this property is remarkably preserved across different organisms and neuronal types. Besides 
the classical view of information being carried by modulation of the firing rates of neurons [1], it 
is well recognized that spike timing is also used as the coding scheme in neural systems [2, 3]. 
The relative timing of firing has been shown to be an important computational property in 
neuronal assemblies for a diverse set of functions like distributed information processing in 
cortical microcircuits [4],  pattern recognition [5-8], encoding of behaviorally relevant 
information in the somatosensory and auditory systems [9] and Hebbian learning [10]. In the 
terms of the motor system, although rate coding plays a predominant role due to different 
recruitment thresholds of motor units [11], millisecond-scale variations in the timing of spikes 
have been shown to play a crucial role in predicting and causally controlling behavior [12]. 
Recent work has shown that spike timing codes are ubiquitous, consistent, and essential for all 
motor coordination [13]. 

   A major factor that influences the temporal activity of individual neurons is the non-linearity of 
spike train output in response to a time varying input they receive from a multitude of synapses. 
Different types of neuron have their own repertoire of ion channels that is responsible for their 
characteristic non-linear firing patterns and also their unique neurocomputational properties [14]. 
For example, activation of the L-type calcium channels in nigral dopaminergic neurons results in 
intrinsic bursting behavior which has been shown to exhibit low-dimensional determinism and 
likely encodes meaningful information in the awake state [14]. Persistent inward currents 
mediated by their voltage-gated sodium and calcium channels are an important source of non-
linear behavior of spinal motoneurons and is instrumental for generating the sustained force 
outputs required for postural control [15].  Indeed, modulation of these channels by descending 
monoaminergic inputs acts as a gain control mechanism for the somatic motor system [16-18]. 
Fast kinetics of the post-hyperpolarizing potassium channel is responsible for maintaining the 
firing state of cortical interneurons near the Andronov-Hopf bifurcation point thereby making 
them ideal candidates for processing information restricted to specific oscillatory phases [19]. 



Thus, quantitative exploration of the role of individual ion channels in the modulation of the 
output behavior of neurons is essential for understanding the general principles of information 
encoding employed by the neural system.

    The nonlinear relation between the time-varying input to the neuron and its spike train output, 
mediated by its component ion channels, can generate various types of input-output interactions 
such as harmonic, subharmonic and/or intermodulation coupling [20]. Since a linear system can 
only generate iso-frequency coupling (quantified by linear coherence or cross-correlation) 
between an input and the output, nonlinearity of a system can be easily detected in the frequency 
domain by measuring the input-output interactions across different frequencies [21-24]. 

Spike-frequency adaptation (SFA) i.e. the slowing of neuronal firing rate in response to a 
constant stimulus is a ubiquitous neuronal process that has a prominent effect on its dynamics 
[25]. Ionic mediators of SFA are diverse and include: (i) M-type currents generated by voltage-
dependent, high threshold potassium channels [26], (ii) post-hyperpolarization-type currents 
mediated by calcium-dependent potassium channels [27], (iii) slow recovery from inactivation of 
the fast sodium channel [28], (iv) sodium-sensitive potassium currents [29] and, (v) calcium-
sensitive chloride current [30]. Each of these has been observed in a variety of systems and is 
involved in different neurocomputational functions [31]. However, all the mediators have the 
same underlying mechanism of membrane hyperpolarization operating on a relatively slower 
time scale as compared to those membrane mechanisms that generate the action potential (i.e. the 
fast sodium and potassium currents). 

The objective of this simulation study was to evaluate and quantify the effect of this slow 
membrane hyperpolarization mechanism (using the M-type current which mediates SFA induced 
spike-time modulation) on the non-linearity in the output of a one-compartment Hodgkin-Huxley 
styled neuron (spike-trains convolved with an EPSP) driven by a time-varying input current. We 
hypothesized that the slow time scale of this mechanism generates increased subharmonic 
coupling between the input and the output. To test our hypothesis, we systematically varied the 
peak conductance of the M-type potassium channel of our model which resembles the strength of 
its coupling with the membrane voltage. We showed how changes in this parameter produce 
systematic changes in the non-linear input-output coupling of the model neuron using a 
generalized coherence measure i.e. n:m coherence [32]. Furthermore, we explored the underlying 
mechanisms of the observed changes in non-linearity using power spectral and phase space 
analysis.
    
Methods

Neuron model

A one-compartment Hodgkin-Huxley styled neuron model was used for our simulations. The 
minimalist model incorporated the following ionic currents (with the corresponding channel 
conductances): fast sodium (INa with maximal conductance gNa) [33], delayed-rectifier potassium 
(IK with maximal conductance gK) [33], slow non-inactivating M-type potassium (IK-slow with 
maximal conductance gK-slow ) [34], and leakage (IL with constant conductance gL) currents:

       (1)𝐼𝑁𝑎 = 𝑔𝑁𝑎 × 𝑚3
𝑁𝑎 × ℎ𝑁𝑎 × (𝑉 ― 𝐸𝑁𝑎)



                            (2)𝐼𝐾 = 𝑔𝐾 × 𝑚4
𝐾 × (𝑉 ― 𝐸𝐾)

        (3)𝐼𝐾 ― 𝑠𝑙𝑜𝑤 = 𝑔𝐾 ― 𝑠𝑙𝑜𝑤 × 𝑚𝐾 ― 𝑠𝑙𝑜𝑤 × (𝑉 ― 𝐸𝐾)
        (4)𝐼𝐿 = 𝑔𝐿 × (𝑉 ― 𝐸𝐿)

where V is the membrane potential of the neuron. ENa, EK, and EL are the reversal potentials for 
sodium, potassium, leakage currents, respectively. The voltage gated sodium and fast potassium 
channel is responsible for the spiking behavior while the M-channel serves as an abstraction for 
the slowly activating outward membrane current that mediates spike-frequency adaptation. The 
variables m and h (with subscripts indicating ionic channels) represent the activation and 
inactivation variables of the corresponding ionic channels, as described by the following 
differential equations:

        (5)𝜏𝑚,𝑖(𝑉)
𝑑
𝑑𝑡𝑚𝑖 = 𝑚∞,i(𝑉) ― 𝑚𝑖

        (6)𝜏ℎ,𝑖(𝑉)
𝑑
𝑑𝑡ℎ𝑖 = ℎ∞,i(𝑉) ― ℎ𝑖

where i indicates the name of the channel, m∞,i(V) and h∞,i(V) represent the voltage-dependent 
steady-state activation and inactivation, and τm,i(V) and τh,i(V) are the corresponding time 
constants. The steady-state activation and the time constant are given by:

        (7)𝑚∞,𝑖 (𝑉) =
𝛼𝑚,𝑖(𝑉)

𝛼𝑚,𝑖(𝑉) +  𝛽𝑚,𝑖(𝑉)

        (8)𝜏𝑚,𝑖 (𝑉) =
1

𝛼𝑚,𝑖(𝑉) +  𝛽𝑚,𝑖(𝑉)

and similarly, for h.  and  are the forward and backward rates of the first order gating kinetics 𝛼𝑖 𝛽𝑖
of the ith ion channel between the closed (C) and open (O) states:

           𝛼𝑖(V)
             (9)𝐶     ↔     𝑂

           𝛽𝑖(V)
 

The membrane potential of the neuron (V) was computed from the following first-order 
differential equation:

                              (10)𝐶
𝑑𝑉
𝑑𝑡 = ― 𝐼𝑁𝑎 ― 𝐼𝐾 ― 𝐼𝐾 ― 𝑠𝑙𝑜𝑤 ― 𝐼𝐿 + 𝐼𝑖𝑛𝑗

where C is the membrane capacitance (1 μF/cm2),  is the time-varying input as described 𝐼𝑖𝑛𝑗 
below and t is time. The parameters of this model are based on experimentally fitted values of 
cortical interneurons [35] (see Appendix for details of these parameters and values of all 
constants).

Input signal

The input to the neuron was designed as a beta-band signal (15-35 Hz, 1 Hz resolution, sum of 
sinusoids with uniform random phase ϵ [0, 2π]) with power values of each frequency being 
drawn from a Gaussian profile (μ = 25 Hz, σ = 3.3 Hz), mimicking the cortical oscillations 



observed experimentally during the awake state [36]. Subsequently we added a membrane noise 
to this signal (see Figure 1). The membrane noise represents stochastic membrane perturbations 
of biological neurons [37] and we modeled them as a zero-mean Wiener process [38].

     

Figure 1: Input design. The input to the neuron model was designed as a combination of beta-
band (15-35 Hz) Gaussian signal with added membrane noise. The signal-to-noise ratio was -3.3 
dB.

Simulations

    To test the effect of slow outward membrane current, we varied the peak conductance gK-slow 
of the M-type slow potassium channel,  which controls the amount of slow hyperpolarizing 
current in our model, from 0.0 mS/cm2  (i.e. no M-channel) to 0.18 mS/cm2 in steps of 0.03 
mS/cm2. These values covered the entire range of experimentally fitted values of gK-slow for 



different types of cortical interneurons [35]. Since the output spike train of a single neuron (given 
an input with SNR -3.3 dB) has very low power in the input signal frequencies, the coherence 
estimation between its input and output will not be significant (unless it has an unnaturally high 
firing rate of the order of kHz, see for example Figure 5B of [39]). Thus, to obtain significant 
input-output coherence we needed to sum together the output across several simulation runs. For 
this purpose, if we fixed the firing rate at any particular value, it would have been difficult to 
demonstrate the generalizability of our results across different firing rates. Therefore, we decided 
to adopt a biologically plausible firing rate range of 5-50 spikes/s across 30 simulation runs. If 
we keep all other parameters constant, increasing gK-slow decreases the firing rate of the neuron 
and vice versa. Hence, we adjusted the recruitment threshold of the neuron (by tuning the 
equilibrium potential  [40]) so that for different values of gK-slow we have the same firing rate. 𝐸𝐿
For each value of gK-slow, our code first optimizes the range of  values needed to produce firing 𝐸𝐿
rates in the range of  5-50 spikes/s across the 30 simulations. In other words, for each value of ≈  
gK-slow  we have a particular range of optimized  values so that the range of the resultant firing 𝐸𝐿
rates is the same. One issue with artificially manipulating the  in this way could be that even 𝐸𝐿
though the range of the resultant firing rates remain the same, the distribution is altered because 
of a non-linear relation between the two. Fortunately, we found this not to be the case. Using the 
optimized values, for each gK-slow, the distribution of the firing rates was found to be the same 𝐸𝐿 
(see Figure 2). All simulations were performed in Julia using the stiff stochastic differential 
equation solver SkenCarp of the DifferentialEquations package [41]. Each run of the 
simulation was conducted at a sampling rate of 100 kHz for 200s. The 1st 10 seconds were 
thereafter discarded to consider only the steady-state behavior of the neuron. The resulting data 
was sufficient for a robust neural coupling analysis [42].



     

Figure 2: Distribution of firing rates. For every level of peak slow potassium conductance (gK-

slow), a set of 30 simulations were conducted by varying the leakage potential EL of the neuron to 
get the same distribution of firing rates in each case.

Data analysis

    The data of each 190 s simulation were divided into 1 s non-overlapping epochs and the spike 
trains of each epoch were obtained in 1 ms bins. Subsequently, to convert the output spike trains 
to continuous signals, they were convolved with a normalized alpha function (time constant of 
5ms) to construct a continuous signal resembling a train of excitatory post-synaptic potentials 
(EPSP) [43]. Figure 3 shows a sample trace of the membrane voltage and the corresponding 
EPSP. The EPSP signals from the set of 30 simulations per step of gK-slow  were summed together 
to constitute the output signal for subsequent analysis. 



Figure 3: Sample trace of the membrane voltage of the simulated neuron and its 
corresponding EPSP signal: The EPSP signal was obtained by convolving the spike train with 
an alpha-function. [Neuron parameters: peak slow potassium conductance, gK-slow = 0.09 mS/cm2, 
epoch-averaged firing rate = 50 spikes/s, epoch no. = 100, ] 𝐸𝐿 = 34.6 𝑚𝑉

We used our recently developed generalized coherence measure, i.e.,  n:m coherence (NMC) 
[44], to assess cross- and iso-frequency coupling between the simulated input and the output 
signals. The n:m coherence is a straightforward extension of the linear coherence based on high-
order statistics [45] for distinguishably determining cross- and iso-frequency coupling between 
signals. Thus, the iso-frequency coupling obtained by this method is comparable to linear 
coherence. 

Let X(f), Y(f) be the Fourier Transform of two time series (e.g. the input and output signals). 
The NMC between them is defined as: 

      (11)𝑁𝑀𝐶(𝑓𝑋,𝑓𝑌) =
|𝑆𝑋𝑌(𝑓𝑋,𝑓𝑌)|
𝑆𝑛

𝑋(𝑓𝑋)𝑆𝑚
𝑌 (𝑓𝑌)

for assessing cross-frequency ( ) and iso-frequency ( ) coupling between signals, 𝑓𝑋 ≠ 𝑓𝑌 𝑓𝑋 = 𝑓𝑌
where  is the simple whole number ratio of  (e.g. if  ,  then m = 1, n =  𝑚/𝑛 𝑓𝑋/𝑓𝑌 𝑓𝑋 = 8 𝑓𝑌 = 16
2) and

      (12)𝑆𝑋𝑌(𝑓𝑋,𝑓𝑌) =< 𝑋𝑛(𝑓𝑋)(𝑌𝑚(𝑓𝑌)) ∗ > ,

                 (13)𝑆𝑛
𝑋(𝑓𝑋) =< 𝑋𝑛(𝑓𝑋)(𝑋𝑛(𝑓𝑋)) ∗ >  



where <·> represents the averaging over epochs and .      (14) X𝑛 = 𝑋(𝑓𝑋) ∙ 𝑋(𝑓𝑋) ∙ … ∙ 𝑋(𝑓𝑋)
𝑛

The NMC reflects the strength of iso- or cross-frequency coupling between signals. When 𝑓𝑋
, we have m = n =1, then the NMC is equivalent to the classical (linear) coherence for iso-= 𝑓𝑌

frequency coupling [46]. When , then the NMC indicates the non-linear coupling 𝑓𝑋 ≠ 𝑓𝑌
between signals across different frequency components (i.e. cross-frequency coupling) [47]. 
Thus, the n:m mapping can generate both integer and non-integer harmonic (m > n) and sub-
harmonic (m < n) coupling between the input and the output in the frequency domain [44]. As a 
generalized coherence method,  the NMC is a metric indicating cross-frequency coherence 
between signals, which is different from other cross-frequency coupling methods such as the 
phase-amplitude coupling [48] reflecting how a low-frequency phase modulates a high-
frequency amplitude. 

According to Cauchy-Schwarz-inequality, we have:

   1/2 1/22 2*( )( ( )) ( ) ( )n m n m
X Y X YX f Y f X f Y f            (15)

Thus, the NMC is bounded by 0 and 1, where 1 indicates that two signals are perfectly coupled at 
the tested frequency pair (fX, fY). As the NMC values are computed by comparing different 
frequency pairs between signals, the significant threshold was adapted with a Bonferroni 
correction to control the type I error (family-wise error rate: 0.05) [44]. There are 2100 
frequency pairs that were included for Bonferroni corrections (15-35 Hz in the input × 1-100 Hz 
in the output). More details of the NMC method is available in [44]. Since the input to our 
neuron model has a noise component, each coupling analysis was repeated 100 times, each time 
with a different realization of the Wiener noise added to the beta-band input in the same signal-
to-noise ratio as the original input (i.e. -3.3 dB, see Simulations and Figure 1). For each level of 
gK-slow, the total amount of iso-frequency coupling (IFC), harmonic coupling (HC) and sub-
harmonic coupling (SHC) between the beta-band input and the neuron output was computed 
using n:m coherence. Thus, there were 100 values of IFC, HC and SHC for each gK-slow. All the 
data groups for the following analysis were first tested for homogeneity of variances using 
Bartlett’s test and normality using Anderson-Darling test. To test for the effect of gK-slow on IFC, 
HC, and SHC, we used one-way ANOVA followed by Tukey’s post hoc test. Where the 
condition of homogeneity of variances was not met, we used Welch’s ANOVA followed by 
Games-Howell’s post hoc test. Likewise, where the condition of normality was not met, we used 
the non-parametric Kruskal-Wallis followed by Dunn-Sidák post hoc test. A significance level of 
0.05 was used for all the statistical tests. 

Results

    The n:m coherence was analyzed between the time-varying input and the EPSP output of the 
neuron for every step of gK-slow.  Both iso- and cross-frequency coupling (IFC and CFC) was 
detected between the input and the output (see Figure 4). Moreover, the detected CFC included 
both harmonic and sub-harmonic coupling. Using Kruskal-Wallis test, we found no significant 



effect of the peak M-channel conductance (gK-slow) on the amount of IFC [F(6,693) = 0.97, p = 
0.98] (see Figure 5). Using one-way ANOVA, we found that gK-slow had a significant effect on 
both harmonic [F(6,693) = 52.36, p < 0.001] and sub-harmonic [F(6,693) = 214.09, p < 0.001] 
CFC. Using the Tukey’s criterion for post hoc comparisons, we found that while there was a 
slight decrease in harmonic CFC, sub-harmonic coupling increased progressively with increasing 
gK-slow from 0.0 to 0.12mS/cm2 after which there was saturation (see Figure 6). This shows that 
the strength of the slow potassium conductance has a strong positive correlation predominantly 
with the subharmonic component of the cross-frequency coupling wherein frequencies (15-35 
Hz) in the time-varying injected current are phase-amplitude coupled with lower frequencies 
(<15 Hz) in the EPSP output of the neuron consistently across multiple epochs. 



                                             

Figure 4: Neural coupling between the beta-band (15-25Hz) input and the output of the 
neuron (peak slow potassium conductance, gK-slow = 0.09mS/cm2). Both iso-frequency (1:1) 
and cross-frequency coupling (m:n, where m ≠ n) was detected. Cross frequency coupling 
includes both integer and non-integer harmonic (m > n) and sub-harmonic (m < n) coupling. 
Thus, harmonic coupling includes all the coupling values above the iso-frequency (1:1) coupling. 
Integer harmonic coupling (n = 1 and m > n) is shown by green-dashed lines (2:1 and 3:1). 
Integer sub-harmonic coupling ((m = 1 and n > m) is shown by blue-dashed lines (1:2 and 1:3). 
Non-integer harmonic (m > n and m, n ≠ 1) and sub-harmonic (n > m and m, n ≠ 1) coupling is 
also visible.



Figure 5: Linear (iso-frequency) coupling between the beta-band (15-35Hz) input and the 
output of the neuron for all levels of gK-slow. No changes were seen in linear coupling with 
increasing levels of peak slow potassium conductance, gK-slow (p = 0.986). The shaded area 
indicates ± SEM. 



Figure 6: Harmonic and sub-harmonic coupling (HC and SHC) between the beta-band (15-
35Hz) input and the neuron output for increasing values of peak slow potassium 
conductance gK-slow. Each coupling analysis was repeated 100 times, each time with a different 
realization of the Wiener noise added to the beta-band input in the same signal-to-noise ratio as 
the original input (i.e. -3.3 dB, see Simulations and Figure 1). For each level of gK-slow, the total 
amount of iso-frequency coupling (IFC), harmonic coupling (HC) and sub-harmonic coupling 
(SHC) between the beta-band input and the summed EPSP signals from the set of 30 simulations 
was computed using n:m coherence. Thus, there were 100 values of IFC, HC and SHC for each 
level of gK-slow. On each box, the central mark indicates the median, and the bottom and top edges 
of the box indicate the 25th and 75th percentiles, respectively. Individual datapoints are plotted 
using the '+' symbol. Asterisks in superscript of the nth level indicate a significant change of the 
value from the previous (n-1)th level. (Tukey’s post hoc test, ** p < 0.001, * p < 0.05).

    To further investigate how subharmonic input-output coupling is generated, we examined the 
power spectrum of the neuron outputs. The power spectrum showed a progressive increase in the 
amplitude of low-frequencies (predominantly in 1-4 Hz) with an increase of gK-slow while the 
amplitude of higher frequencies ( > 8 Hz) remained constant (see Figure 7 and 8). Thus, with the 
increase of gK-slow, there is de novo increase in power of the low-frequency oscillations in the 
EPSP output of the neuron. Since the power of the input frequencies remain constant, selective 
increase in power of the low-frequencies in the output, results in progressive increase of 
subharmonic cross-frequency coupling, as shown by the n:m coherence measure.



Figure 7: Power spectrum of the neuron output for increasing levels of peak slow 
potassium conductance gK-slow. For each level of gK-slow, the summed EPSP signals from 30 runs 
of 190 s simulations were divided into 1 s non-overlapping epochs and the power spectrum was 
computed using the fast Fourier transform at 1 Hz resolution. With increasing levels of gK-slow, 
there is a progressive increase in power in the low frequencies ( < 8 Hz) whereas there is no 
change in power in the higher frequencies.



Figure 8: Changes in power spectrum in the low frequencies (1-8Hz). See label of Figure 7 
for details of the power spectrum was computed. On each box, the central mark indicates the 
median power value, and the bottom and top edges of the box indicate the 25th and 75th 
percentiles, respectively. Individual epoch-wise power values are plotted using the '+' symbol. 
There was progressive increase in power in the lower frequencies, especially in 1Hz (Welch’s 
ANOVA: F(5,528.53) = 159.50, p < 0.001), 2Hz (one way ANOVA: F(5,1134) = 54.51, p < 
0.001), 3Hz (one way ANOVA: F(5,1134) = 70.73, p < 0.001) and 4Hz (one way ANOVA: 
F(5,1134) = 67.0415, p < 0.001). Asterisks in superscript of the nth level indicate significant 
change of the value from the previous level. (Games-Howell/Tukey’s post hoc test, ** p < 0.001, 
* p < 0.05).

    Finally, we wanted to definitively implicate the slow potassium channel as the sole source of 
the increase in low-frequency oscillations in the neuronal output. To do this, we first examined 
the temporal profile and the corresponding power spectrum of the activity of the gating variables 
of the three ion channels in our model i.e. sodium, delayed rectifier potassium and the M-channel 
(see Figure 9a and b). For the same time-varying input, the temporal dynamics of the slow 
potassium channel activation gate showed significantly higher power in the low-frequencies (1-4 
Hz) as compared to the gating variables of the other ion channels. So, the question that arises 
from this observation is how do the low-frequency oscillations in the activity of the slow 
potassium gate percolate to the neuronal membrane dynamics? To investigate this, we examined 
the dynamics of the neuron on a phase plane. The state of the neuron at any time-point 
corresponds to a point on the phase plane. Since our neuron model is five-dimensional 
(comprising of the neuronal output, activation, and inactivation sodium gates and one activation 
gate each for the fast and slow potassium currents), the complete phase plane for this model 
would be a five-dimensional hyperplane. However, as observed earlier, because of the slow time-
scale of operation, low frequencies are predominantly present in the activation variable 𝑚𝐾 ― 𝑠𝑙𝑜𝑤 



of the M-channel. Hence, we restricted the phase-plane analysis to the neuronal output (i.e. the  
pooled EPSP) and because these are the most pertinent state variables for examining 𝑚𝐾 ― 𝑠𝑙𝑜𝑤 
the emergence of observed sub-harmonic input-output coupling. We conducted the phase-plane 
analysis for low frequencies by band-pass filtering the pooled EPSP and  for each level 𝑚𝐾 ― 𝑠𝑙𝑜𝑤 
of gK-slow (1-4 Hz cut-off, 2nd order Butterworth filter, see Figure 10). Due to the presence of 
noise in the input, the trajectory of the orbits exhibited jitter. Despite the jitter, with increasing 
gK-slow the trajectory progressively converged to a limit cycle attractor in a tighter fashion. This 
result shows that with increasing gK-slow there was increased low-frequency phase-locking 
between neuronal output and  across epochs. Furthermore, to quantify the strength of 𝑚𝐾 ― 𝑠𝑙𝑜𝑤 
phase locking, we measured the phase-locking value (PLV) between the slow potassium channel 
activation gate and the neuronal output across all the epochs for the different values of  gK-slow  
using a generalized phase coupling measure called multi-spectral phase coherence (MSPC) [49]. 
For any two time series  and  with K epochs (i.e. trials), let and be their 𝑥(𝑡) 𝑦(𝑡) 𝑋(𝑓) 𝑌(𝑓) 
Fourier transforms. The multi-spectral MSPC at the dth order is defined as the magnitude 
(denoted as ψ) of the complex measure called multi-spectral phase coherency (denoted as Ψ): ψ 
= |Ψ|, for quantifying the dth phase coupling. The multi-spectral phase coherency Ψ is defined by:

     (16)Ψ𝑋𝑌 (𝑓1,𝑓2,…𝑓𝑅;𝑎1, 𝑎2,…𝑎𝑅)𝑑 =
1
𝐾∑𝐾

𝑘 = 1𝑒𝑗∑𝑅
𝑟 = 1(𝑎𝑟𝛷𝑥𝑘(𝑓𝑟) ―  𝛷𝑦𝑘(𝑓𝛴))

where  is an output frequency of as defined before, are the input frequencies of 𝑓𝛴 𝑌(𝑓) 𝑓1,𝑓2,…𝑓𝑅 
,  is the phase of at the kth epoch, are the weights of input 𝑋(𝑓) 𝛷𝑥𝑘(𝑓𝑟) 𝑋(𝑓𝑟) 𝑎1, 𝑎2,…𝑎𝑅 

frequencies to corresponding output frequency   and,𝑓𝛴

 .      (17)∑𝑅
𝑟 = 1|𝑎𝑟| = 𝑑

    Details about the computation of MSPC are given in Appendix A of [49]. As the magnitude of 
, MSPC( ) reflects the consistency of phase difference over epochs. Like other phase-Ψ𝑋𝑌 𝜓𝑋𝑌

synchrony measures, MSPC reflects the pure phase relationship between two signals, 
independently of the signal’s amplitude. The value of MSPC varies between 0 and 1, where 1 
indicates that the phase relationship is perfectly consistent across epochs, and 0 indicates that the 
phase relationship is completely random. In our case, both the input and output frequencies are 
1-4 Hz and d = 1 i.e. we are measuring the iso-frequency PLV (see Figure 11). As in NMC,  16 
frequency pairs were included for Bonferroni corrections (1-4 Hz in the input × 1-4 Hz in the 
output). With increasing peak slow potassium conductance ( ), the PLV was found to 𝑔𝐾 ― 𝑠𝑙𝑜𝑤
increase till 0.12 mS/cm2 beyond which there was saturation. 



Figure 9A: Time profile of activation of the ion channel gating variables (peak slow 
potassium conductance, gK-slow = 0.09mS/cm2). The sodium activation and inactivation gates 
( ) and the fast potassium activation gate ( ) have dominant fast kinetics while 𝑚𝑁𝑎  𝑎𝑛𝑑 ℎ𝑁𝑎 𝑚𝐾 
the slow potassium gate ( ) has dominant slow kinetics. The traces show the activity of 𝑚𝐾 ― 𝑠𝑙𝑜𝑤 
the gates with the same input driving the neuron in its steady-state as described in Input signal in 
Methods.     B: Power spectrum of the activity of the channel gates in A. The slow potassium 
activation gate shows a larger amount of low-frequency activity ( ) as compared to the 𝑚𝐾 ― 𝑠𝑙𝑜𝑤 
other gating variables.



Figure 10: Phase-portrait of the pooled activity of the slow potassium activation variable ( 
) vs. neuronal output (EPSP). The signals were band-pass filtered (2nd order 𝒎𝑲 ― 𝒔𝒍𝒐𝒘 

Butterworth, 1-4 Hz cut-off) to examine the degree of phase-locking at low frequencies with 
increasing peak slow potassium conductance ( ). The phase portrait was constructed 𝑔𝐾 ― 𝑠𝑙𝑜𝑤
using data from 10 consecutive 1s epochs in the steady-state condition (epochs no. 101 to 110).



Figure 11: Strength of phase locking between the slow potassium channel activation gate ( 
) vs. pooled EPSP. The phase-locking value (PLV) was computed using the  multi-𝒎𝑲 ― 𝒔𝒍𝒐𝒘 

spectral phase coherence measure for 1-4Hz (see Results for details of this measure). With 
increasing peak slow potassium conductance ( ), the PLV was found to increase till 0.12 𝑔𝐾 ― 𝑠𝑙𝑜𝑤
mS/cm2 beyond which there was saturation. 

Discussion
    In this study, we examined the effect of a slowly activating outward membrane current, 
namely the M-type potassium current on the non-linearity in the output of a one-compartment 
Hodgkin Huxley neuron. The sub-harmonic cross-frequency coupling between the input and 
output of the neuron was found to increase progressively with an increase in the peak 
conductance of the slow potassium current while there was no change in the iso-frequency 
coupling. We showed that this slow membrane hyperpolarization mechanism generates low-
frequency oscillations, which are not present in the input, due to its slow time scale of operation. 
Increasing the strength of the peak conductance of the channel associated with this mechanism 
causes an increase in power in the low frequencies (1-4 Hz) of the membrane voltage. It also 
increases the low-frequency phase locking between the membrane voltage and the channel 
activation variable across epochs. 

    An important question to address is what our results imply in terms of the functional 
consequences of the observed changes in neurocomputational properties. The ability of spike-
frequency adaptation (SFA) to influence information processing depends on both the nature of 
the input the neuron receives as well as the nature of sampling employed by its downstream 
targets [31]. SFA has been proposed to be a mechanism of high-pass filtering that preferentially 



selects for fast stimuli over slow ones [50]. This has been shown to be particularly important for 
sensory discrimination. For example, the rapidly adapting electroreceptors in Apteronotus 
leptorhynchus have a predilection towards fast communication stimuli [51]. The frequency 
selectivity of pyramidal neurons in the cortical map of these electroreceptors has also been 
shown to be dependent on the expression of slow-potassium channels.  However, as our 
simulation results show, the same slow membrane mechanisms, when driven by a high frequency 
input (15-35 Hz), can generate its own low-frequency (1-4 Hz) rhythm (Fig. 8A) that 
subsequently leaks out into the neuronal activity (Fig. 6). Thus, there is non-linear distortion of 
the output of the neuron in the form of cross-frequency coupling between the input frequencies 
to the neuron and these intrinsically generated low frequencies. In fact, previous experimental 
studies have indeed implicated the role of slow potassium currents in <1 Hz neo-cortical 
oscillations [52, 53]. Additionally, cholinergic blockade of these currents have been shown to 
abolish the slow wave oscillations [54]. A previous computational study showed how transition 
to down states mediated by the slowly adapting sodium-dependent potassium current is 
responsible for generating slow (<1 Hz) neuronal oscillations [55]. In line with these evidence, 
our work provides a quantitative approach to estimating the low-frequency generation 
mechanism of slow-potassium currents while also showing how the high-pass filtering function 
of these currents may be distorted by the input-output cross-frequency coupling induced by them.

    The role of neuromodulators on slow outward membrane currents can also be insightful in the 
context of our results. For example, acetylcholine is a central nervous system neuromodulator 
that is of significant behavioral and functional importance. The level of acetylcholine is elevated 
during alert, vigilant states and it is associated with a global EEG desynchronization[56], 
increased power in higher frequency bands [57] and increased synaptic plasticity [58]. 
Acetylcholine has also been shown to block slow membrane hyperpolarization and SFA 
mediated by potassium currents [59, 60]. From the dynamical systems point of view, 
acetylcholine mediated modulation of slow potassium current causes transition between Type 1 
and Type 2 excitability [61, 62]. A notable difference between the two firing states is that the 
firing rate vs. injected current (FI) curve is discontinuous in Type 2 neuron whereas it is 
continuous in Type 1 neuron. A related difference between the two neuron types is the phase 
response curve (PRC) where the effect of short depolarizing perturbations given during different 
phases of the spiking cycle of the neuron is measured when it is being driven by a stable periodic 
frequency [63]. While Type 1 neurons show a monophasic response meaning a positive 
perturbation will uniformly advance a spike generation, Type 2 neurons are biphasic meaning 
depending on the timing of the perturbation relative to the spiking cycle, the next spike maybe be 
either advanced or delayed [64]. Such biphasic modulations of the inter-spike intervals can  in 
turn lead to increased cross-frequency input-output coupling [65-67]. Our results provide 
quantitative evidence of how this transition from Type 1 to Type 2 excitability changes the input-
output frequency relationship of the neurons. In fact, the reduction in cross-frequency input-
output phase coupling is another line of evidence of how high-acetylcholine states may increase 
the fidelity of rate coding (i.e. iso-frequency coupling). 

    The monoaminergic neuromodulatory system (serotonin and noradrenaline) has profound and 
powerful effects on spinal motoneuron excitability which in turn regulate their response to 
cortical motor commands [68-70]. One of the dominant mechanisms of serotonergic raphe 
system-mediated cranial and spinal motoneuron excitability is the suppression of the calcium-
dependent slow potassium current [69]. Likewise, at the local spinal circuitry level, cholinergic 



interneurons promote motoneuron excitability via M2 receptor-mediated reduction in the same 
slow potassium currents [24]. Thus, based on the results of our study, increased neuromodulatory 
drive should reduce the input-output cross-frequency coupling of the motoneurons. However, in 
our previous study we had also observed a progressive increase in cross-frequency phase 
coupling between the supraspinal input and the output of the motoneuron pool as the number of 
interneuron layers increased between them (i.e. as the drive to the motoneurons shifted from the 
mono-synaptic to the multi-synaptic descending pathways) [71]. These observations open up the 
avenue of future studies for further exploring the combined effects of mono vs multi-synaptic 
descending pathways and the neuromodulatory systems (via their effect on the slow potassium 
currents) on the input-output cross-frequency coupling of spinal motoneurons.

Limitations and prospects

    We acknowledged that there are a few limitations to the current study. First, the range of peak 
conductances of the slow potassium channel explored in this study was limited by the set of 
parameters on which the neuron model was based (i.e. cortical interneurons). However, the 
model is sufficiently minimalistic and does not contain any specializations e.g. dendritic 
structures, special ion channels, etc. which might affect the generality of the findings. Second, 
since our study was at the single neuron level, we did not consider the effect of neuronal 
connectivity at the network level output while varying the strength of the slow conductance 
mechanism. Thus, the effect of slowly activating outward membrane currents on the emergence 
of low-frequency oscillations at the neuronal ensemble level can be the prospect of future 
studies. Thirdly, subtle differences in the mechanisms of different outward membrane currents 
may affect neuronal encoding differently. For example, a previous study showed that slow 
outward current mediated by calcium-dependent potassium channels implement noise shaping 
that improves spike-rate coding of low-frequency signals, whereas M-type currents implement 
high-pass filtering that improves spike-time coding of high-frequency signals [58]. The subtlety 
lies in the fact that calcium-dependent potassium currents activate in a spike-dependent manner 
while M-currents are spike-independent. Finally, as a logical extension, it will be interesting to 
compare and contrast the effects of slow membrane hyperpolarization vs. depolarization 
mechanisms (like those mediated by persistent inward currents) on the input-output non-linearity 
of neurons in future studies.
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Appendix

EPSP

𝑔𝑠𝑦𝑛(𝑡) = 𝑔𝑚𝑎𝑥( 𝑡
𝑡𝑐)𝑒

( ―
𝑡 ― 𝑡𝑐

𝑡𝑐 )
 

where gmax is the peak synaptic conductance and tc is the time constant: 

𝑔𝑚𝑎𝑥 = 1 mS/cm2

𝑡𝑐 = 5 ms

Equilibrium potentials

 𝐸𝑁𝑎 = 50 mV;    𝐸𝐾 =  ― 90 mV;  

*𝐸𝐿 =  ― 70 mV

* The leakage equilibrium potential was adjusted to vary the mean firing rate per epoch in the 
range of 5-50 spikes/s for the same time-varying input (see Input signal in Methods for details)

Neuron parameters [35]

𝑔𝑁𝑎 = 50 mS cm ―2;    𝑔𝐾 = 5 mS cm ―2; 

𝑔𝐾 ― 𝑠𝑙𝑜𝑤 ∗  = 0.0 ― 0.18 mS cm ―2;    𝑔𝐿 = 0.1 mS cm ―2;

* The  parameter was varied in the simulations (see Simulations in Methods for details)𝑔𝐾 ― 𝑠𝑙𝑜𝑤

Table 1. Formulation of voltage-dependent ionic channels [33, 34]

Ion 
channel

Activation variable (m) 

(m∞,i (V) = αm,i/(αm,i+βm,i)

(τm,i (V) = 1/(αm,i+βm,i))

Inactivation variable (h)

(h∞,i (V) = αh,i/(αh,i+βh,i)

(τh,i (V) = 1/(αh,i+βh,i))



𝑁𝑎 +

𝛼m =  
-0.32 (𝑉 -  𝑉𝑇 -  13)

𝑒
- 

𝑉 -  𝑉𝑇 -  13
4 ― 1

𝛽m =  
0.28 (𝑉 -  𝑉𝑇 -  40)

𝑒
𝑉 -  𝑉𝑇 -  40

5 ― 1

𝛼ℎ = 0.128 (𝑒 -(𝑉 -  𝑉𝑇 -  17)/18)

𝛽ℎ =  
4

𝑒
― 

𝑉 -  𝑉𝑇 -  40
5 + 1

𝐾 +
𝛼m =  

-0.032 (𝑉 -  𝑉𝑇 -  15)

𝑒
- 

𝑉 -  𝑉𝑇 -  15
5 ― 1

𝛽m =  0.5𝑒
― 

(𝑉 ―  𝑉𝑇 ― 10)
40

                         --------------

𝑠𝑙𝑜𝑤 𝐾 +

(M-type)

𝑚∞,𝐾 ― 𝑠𝑙𝑜𝑤 =  
1

1 +  𝑒
―

(𝑉 + 35)
10

𝜏𝑚,𝐾 ― 𝑠𝑙𝑜𝑤 =  
τ𝑚𝑎𝑥

3.3 𝑒(𝑉 +  35)/20 +  𝑒 -(𝑉 +  35)/20

  

                         --------------

*  = 4 s τ𝑚𝑎𝑥

 𝑉𝑇 𝑎𝑑𝑗𝑢𝑠𝑡𝑠 𝑡ℎ𝑒 𝑠𝑝𝑖𝑘𝑖𝑛𝑔 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑠𝑒𝑒 𝑇𝑎𝑏𝑙𝑒 1 𝑜𝑓 [35] 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑢𝑙𝑙 𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠
(𝑓𝑜𝑟 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑙𝑦 𝑠𝑝𝑖𝑘𝑖𝑛𝑔 𝑛𝑒𝑢𝑟𝑜𝑛𝑠, 𝑚𝑒𝑎𝑛 =  ― 61.5 ± 3.2 mV).𝐼𝑛 𝑜𝑢𝑟 𝑚𝑜𝑑𝑒𝑙, 𝑤𝑒 𝑢𝑠𝑒𝑑 
𝑉𝑇 =  ― 60.0 mV
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 We investigated the role of an important ionic conductance 
mechanism i.e. slow potassium channel in input-output cross-
frequency coupling of a Hodgkin-Huxley neuron 

 Increasing the peak conductance of this channel generates sub-
harmonic cross-frequency coupling

 The slow time-scale of operation of this channel generates low 
frequencies which phase-lock with the membrane voltage to generate 
the observed sub-harmonic coupling

 The observed sub-harmonic coupling provides quantitative insights 
into the putative mechanisms of non-linear behavior of individual 
neurons
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