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a b s t r a c t

We analyze here the evolutionary consequences of selection with delay in a population genetics context.

In the classical works on evolutionary dynamics, an individual produces off-springs in direct proportion

to its fitness, a process in which mutations may occur. In the present scenario of delayed selection,

individuals that acquire deleterious mutations can still reproduce unharmed for several generations.

During this time delay, the damage passed on to off-springs can potentially be repaired by subsequent

compensatory mutations. In the absence of such a repair, the individual becomes sterile. Here we study

the population-genetic effects of such a time delay by means of both numerical simulations and

theoretical modeling. The results show that delayed selection lowers the extinction threshold,

endangering the survival of the population. Surprisingly, however, no traces of this delay effect are

encountered in the sequence diversity of the population. These conclusions suggest that delayed

selection is hard to detect in genetic data and thus could be a wide-spread but rarely detected

phenomenon.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Darwinian evolution is the interplay of the production of
variation and subsequent selection. Due to the complexity of
biological organism, selection tends to act at all times, punishing
or rewarding small differences among individuals. This is not
necessarily the case at the level of (small) genetic subsystems,
however. The intuitive rationale for this claim is that an
‘‘emergency subsystem’’, for instance, may not need to be
activated for several generations. While unused and inactive, it
tends to escape the forces of selection and conceivably, acquire
damages. Once conditions change and it is needed again, however,
there are severe (fitness) penalties if its functionality has not been
maintained or repaired. We expect such ‘‘delayed selection’’ to
leave detectable traces in the genome. Hence we study here the
dynamical implications of delayed selection in some detail.

It may come as a surprise that the best studied example is a
generic component of the eukaryotic replication machinery,
namely the reconstruction of telomere ends. Mice deficient for
the mouse telomerase RNA (mTR-/-) are fertile and show initially
little if any pathologies. However, they can breed only for about
six generations due to decreased male and female fertility and to
ll rights reserved.

. Munteanu), studla@bioinf.
an increased embryonic lethality in later generations. Even late
generation (mTR-/-) mice are viable to adulthood, only showing a
decrease in viability in old age (Lee et al., 1998; Herrera et al.,
1999). These effects appear to be linked to the shortening of the
telomeres (Verdun and Karlseder, 2007). Similar effects can be
observed in cell culture, again establishing a relationship between
viability and telomere length: Terc-deficient embryonic stem cells
show gradual reduction of growth rate after about 300 divisions,
and proliferation virtually stops after 450 generations (Niida et al.,
1998). At the same time, telomerase RNA exhibits extremely high
rates of evolution (Xie et al., 2008). The speculation that delayed
selection may be part of the explanation for the unexpected
evolutionary plasticity of telomerase RNA motivated this work.

Delayed selection is also likely to occur in species for which
environmental conditions vary periodically at timescales longer
than generation time. A spectacular example is the monarch
butterfly (Danaus plexippus) (Urquhart, 1960). The ‘‘migratory’’
generation migrates from Eastern North America to overwintering
sites in Mexico. This long-lived generation is characterized by
reproductive diapause persisting until next spring, when the
butterflies reproduce and start the journey back north. Another
two to three generations of reproductively competent, short-lived
‘‘summer’’ butterflies follow the progressive, northward emer-
gence of milkweed. Significant differences in gene expression
between summer and migratory butterflies (Zhu et al., 2008)
suggest that some parts of the butterflies genetic system may be
unused over a few generations. Whether this is indeed the case
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could be tested directly if characteristic genomic fingerprints of
delayed selection can be detected.

A more subtle context in which delayed selection may play a
role is that of synthetically lethal genes. A pair (or a larger set) of
genes is called synthetically lethal if knocking out the entire set is
lethal, while the knockout of all smaller subsets retains viability
(Hartman et al., 2001; Kaelin, 2005; Le Meur and Gentleman,
2008). Note that synthetically lethal gene pairs typically share
their primary function but cannot be redundant in all their
functional aspects. The reason is that exact redundancy is
evolutionarily unstable: it is quickly resolved by the loss of one
copy (Force et al., 1999). This type of genetic buffering may,
however, delay the detrimental effects of functional loss in one
partner until a rarely employed secondary function of the affected
gene is required. Again, a recognizable signal in the genomic DNA
would be of utmost interest.

The paper is organized as follows: in Section 2 we introduce
the methodology and the results of the stochastic simulations for
a population of RNA molecules. In Section 3, we confront these
results with a mean-field model that captures the evolution of the
population in a delayed-selection scenario. We quantify the
amount of diffusion in the sequence space for various time delays
in search of a signature on the evolutionary rates of such altered
selection. Finally, we discuss the findings, with special emphasis
on the lack of such an inequivocable signature, in the context of
genomic studies in Section 4.
2. RNA-based simulations

2.1. A simple model of telomere damage

The simulation framework used in this contribution is
motivated by the telomerase RNA (TR) system briefly discussed
in the Introduction. For simplicity we distinguished only between
fitness-neutral and lethal mutations. Each individual is character-
ized by its TR gene and the length of its telomere. Off-springs with
intact TR have full-length telomeres, while telomeres shrink by a
constant amount with each replication step in which the
telomerase is inactive. Individuals whose telomeres have shrunk
to zero are sterile, i.e., their fitness is set to 0.

In order to include a genetic component with a realistic
genotype–phenotype map, we use RNA secondary structures to
represent phenotypes. In this approach, each sequence s is folded
into its minimum energy secondary structure jðsÞ and then
fitness is evaluated by comparing jðsÞ with a target structure j�
(see e.g., Fontana et al., 1989; Schuster et al., 1994; Huynen et al.,
1996a). Here, we stipulate that only the target secondary structure
is functional. The fitness f of an individual with genotype s and
telomere length k is given thus by

f ðs; kÞ ¼
1 if jðsÞ ¼ j�or k40

0 if jðsÞaj�and k ¼ 0

(
ð1Þ

Since the computational effort for RNA folding computations is
cubic in sequence length, vertebrate TR gene with 300–500nt are
too long to be practical for our simulations. Instead of a real TR
structures, we defined an arbitrarily chosen target structure of
length 100 to represent the viable phenotype. RNA secondary
structure predictions are performed using the Vienna RNA

Package (Hofacker et al., 1994).
We simulate a population of N individuals in a flow reactor

under stochastically controlled constant organization as described
in e.g., Fontana et al. (1989). Individuals replicate proportional to
their fitness. During replication, each letter is mutated with a
probability m. Then the structure jðs0Þ of the offspring s0 is
computed. If jðs0Þ ¼ j�, we set k0 ¼ K , otherwise k0 ¼ k0 � 1,
where K is the number of generations for which a defective TR
is tolerated. In other words, if after K replications, such an
incorrect fold has not encountered the neutral network, its fitness
becomes 0 and thus loses the capacity of replication.

In the following, we shall discuss the results of the simulations.
Based on these data, we introduce a theoretical model associated
to the simulation framework, a model that provides a reasonably
good fit of the simulation results and also a tool to better
understand the implications of the delayed-selection effect.
2.2. Extinction threshold

As a first observation, we notice that one of the consequences
of the delayed selection is a reduced critical value of the mutation
rate at which the population goes extinct. An erroneously
replicating haploid population shows the so-called error threshold

phenomenon, by which the population loses coherence and
quickly approaches a uniform distribution in sequence space as
soon as the mutation rate exceeds a critical value. Originally
described on single-peak landscapes (Eigen, 1971; Eigen et al.,
1989), an analogous phenomenon can be observed at the
phenotypic level (Forst et al., 1995; Huynen et al., 1996a; Wilke,
2001). With instantaneous fitness effects, the critical value of m
can be estimated from a m-dependence of the equilibrium
concentration of the ‘‘poor’’ phenotypes.

Before we comment in detail the results obtained for the
current framework, we wish to discuss the distinction between
error threshold and extinction threshold, a distinction often
disregarded in the literature. Extinction can be the consequence
of a process such as lethal mutagenesis (Bull et al., 2007), with the
latter being a demographic process occurring, for example, in the
context of within-host population of viruses that become extinct
with an elevated mutation rate. In this case, the population is
overwhelmed by deleterious mutations and cannot sustain itself.
Eigen’s error catastrophe or error threshold, although inspired by
the idea of lethal mutagenesis, is a distinct process. The error
threshold is defined as the mutation rate beyond which the mean
fitness of the population does not decrease exponentially with the
mutation rate but remains constant, as all genotypes are
insensitive to mutations (the information is lost from the
population). Contrary to the intuition, Eigen two-class fitness
landscape (population of only high- and low-fitness genotypes)
actually retards population extinction (Bull et al., 2007). In the
light of these comments, we witness in the current framework the
process of stochastic extinction rather than an error threshold,
and thus we refer to the mutation threshold as extinction
threshold.

The upper panels of Fig. 1 represent the mean fitness (i.e., the
fraction of reproducing or fit individuals) for several examples of
simulations, showing that the stochastic extinction of the
population at finite times is largely driven by an increase of the
fluctuations. That is, for a fixed mutation rate m, the average
fraction of reproducing individuals is the same for various values
of K, but the standard deviation increasing with K. For large K, due
to these large excursions, the reproducing population may reach a
threshold value at which extinction occurs. The main effect of
delayed selection is thus a strong increase in fluctuations, that
causes stochastic extinction in finite populations at mutation
rates significantly lower than the non-delayed selection (K ¼ 1).
This can be seen in the lower panels of Fig. 1 where the extinction
threshold or survival probability (panel b) is illustrated as
resulting from the simulations. A rough estimation of the
survival probability was considered to be the fraction of the
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simulations that have not gone extinct after a number M ¼

100 000 of mutations. From these simulations, we have also
estimated the dependency of the mean fitness (panel c) and its
standard deviation (panel d). It can be seen that the mean fitness
is not influenced by the telomere’s length, while the fluctuations
level (standard deviation) increases with the telomere’s length. In
Section 3 we shall pinpoint the causes of this premature
extinction by means of a deterministic model.
2.3. Recoveries

The delayed selection has a direct effect on the extinction
threshold in a negative way through the fluctuations described
above, and in a positive one through the recoveries that might
originate from damaged but still fit individuals.

In Fig. 2 we illustrate this effect by plotting the fraction of fit
individuals characterized by a certain number of damage-and-
repair cycles. It comes as a surprise that already after a very short
time there are no lineages whose ancestry has had functional
genes. The individuals without repairs (dotted black line) quickly
disappear, as the ones with one damage–repair cycle (thick black
line) appear, which in turn will be damaged and repaired again,
transforming into the individuals with two cycles (red lines), and
so on. We see that there is a characteristic time scale by which
individual lineages acquire a damage and find their way back to
the neutral network through subsequent mutations that repair
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Fig. 2. The time-series illustrating the dynamics of repairs in the population (N ¼ 1000

repairs (up to 25 repairs) that sweep through the population as time increases. The da
the damage. That is, waves of repaired sequences swap the
population, with newly repaired sequences displacing the old and
less repaired sequences.

By comparing different simulations with identical ðN;K;mÞ
values, we noticed that the stochastic effects dominate, i.e., there
are dramatic fluctuations in the times between subsequent
damage/repair events entirely due to stochasticity.

Through the simulations, we have measured the parameter R

defined as the probability that a damaged telomerase recovers,
i.e., the fraction of the replications occurring off the neutral
network that give rise to an off-spring on the neutral network
through mutation/mutations. We expect the recovery fraction R

not to depend on the length K � i of the telomere, where K � i also
has the meaning of the number of replications off the neutral
network. From the stochastic simulations we see that this first
approximation is acceptable, as it is illustrated in Fig. 3. For three
experiments of equal K and different values of m, we have recorded
the number of recoveries and the type of sequences the recovery
occurred from. The type of sequence refers to the length K � i of
the telomere and the number ‘ of mutations occurring off the
neutral network. Naturally, at least two off-mutations are needed,
one originating the fall off the neutral network (the damage), and
the second providing the recovery. In the lower panels we include
the sum Ri ¼

P
‘ Ri‘ , measuring thus the dependence of the

recovery fraction on the telomere length alone, irrespective of
the number of off-mutations needed. It can be seen that Ri � R is
roughly independent on the telomere length (or number of
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Fig. 3. Distribution of recoveries Ri‘ measured as a function of the telomere length K � i and the number of off-network mutations ‘. Simulation runs use N ¼ 1000 and

K ¼ 10, and different mutation rates (a) m ¼ 0:001, (b) m ¼ 0:003, (c) m ¼ 0:005. The lower panels show Ri ¼
P

‘ Ri‘, illustrating a reasonable independence on the telomere

length, supporting the model from Fig. 5. Upper panels have been drawn using Dislin Scientific Plotting Software.
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replications occurring off the neutral networks), as the recovery
mutation can occur with equal probability during the K � 1
replications prior to ‘‘death’’. As detailed in the next section, this
observed independence allows us to construct a model of K þ 1
variables, thus based only on the telomere length, without
considering the number of off-mutations.

Returning to the notation Ri‘ , we find that, contrary to Ri, R‘ ¼P
i Ri‘ is not independent of the number of mutations off the

neutral network ‘, see Fig. 3. In fact, the recovery probability
rapidly drops with ‘. A more realistic model would take into
account the ðK þ 1Þ �M variables, where MrK is the maximal
number of off-mutations. Implicitly, such a model would need to
include more details on the structure of the neutral network and
on the transition rates between neutral networks which could be
borrowed from the presentation of Reidys et al. (2001). Since the
purpose of this presentation is to provide a qualitative under-
standing of the consequences of delayed selection, we are content
here with the much simpler, analytically tractable, case. It is
worth noting in this context that the behavior of R is not an
idiosyncratic property of RNA folding but rather a consequence of
the generic properties of dense neutral networks. These can be
modeled as dense and connected subgraphs of the sequence space
(Reidys et al., 1997, 2001), a fact that accounts for the multiple
paths of ‘‘repair’’ of structural damage, and hence relatively large
values of R1. Protein folding models (Babajide et al., 1997, 2001;
Bastolla et al., 1999) show the same generic features.

From the stochastic simulations it can be seen that a rough
estimate of this recovery fraction is on the order of 10% of the
mutations occurring off the neutral network (Fig. 3). The repair or
recovery of damaged genotypes by compensatory mutations thus
has a dramatic effect on the long-time behavior of the population.
To estimate the effect we shall introduce in Section 3 a model of
the population dynamics which makes use of this observation of
equal recovery fraction.

In addition, since R is defined as a conditional probability, we
also expect that it will not depend strongly on the mutation rate m
for small values of m. The parameter R will strongly depend on the
size and structure of the neutral network, and on its embedding
the hypercube. This is the behavior followed also by the neutrality
n referring to the increased buffering, due to neutral networks, of
the phenotype (the correct secondary structure) with respect to
genetic mutations (nucleotide mutations) (Huynen et al., 1996b;
Stadler et al., 2001). The strongest influence on the probability of
recovery R is exerted by the distance of the mutant individual
from the neutral network. As we shall see also in the modeling
approach, an appropriate measure of the recovery rate or
probability is defined through l ¼ pR, with p from Eq. (4) being
the probability of replication with mutation. This rate defines the
probability that a replication leads to recovery. Considering a wide
interval of m-values, we expect lðmÞ to have an optimum for a
certain value of mc � m. For m5mc, the recovery probability is low
as, once off the network, a new mutation is improbable to occur (p
is small) in the next K � 1 replications. For mbmc, once off the
neutral network, several nucleotides can mutate in a replication
event, and thus destroy the repair. In addition, this regime of
relatively large m is limited by the extinction threshold, as we have
seen that large fluctuations can lead the system into extinction.

In the context of these considerations, we have measured the
recovery rate from the simulations. Based on the definitions
introduced above, we monitored the temporal evolution of the
number of repairs and that of replications with mutations
occurring for sequences that are off the neutral network. The
parameter R, the ratio of these two quantities, stabilizes after a
transient period. We show these post-transient values from
simulations for various m and K in the upper panel of Fig. 4. Due
to stochasticity, simulations of identical ðN;K;mÞ may lead to
slightly different values of R. The dependence on m is evident, as
well as on K, with the former being more pronounced than the
latter. In the lower panel, as commented above, an optimum value
mc is apparent for which l, the recovery probability, has a
maximum. It is interesting though that lower K implies higher
recovery probability. This can be explained by the structure of the
neutral networks of RNA secondary structures. These are dense
and fairly homogeneous only within the set of sequences that are
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compatible with the target structure (Schuster et al., 1994;
Gruener et al., 1996; Sumedha et al., 2007; Jorg et al., 2008).
Mutations that destroy compatibility (i.e., those that violate the
base pairing rule), however, may lead away from the neutral
network of the functional structure. Two or more incompatible
substitutions therefore lead to regions in sequence space from
where recovery in a single step is impossible.
3. Deterministic model

3.1. Replication kinetics

Since we are interested in the basic effects of delayed selection,
we neglect the influence of complex genetics and restrict
ourselves to the simplest case of a population of haploid
individuals. Naturally, this leads us to a variant of Eigen’s
Quasispecies Model (Eigen, 1971; Eigen et al., 1989). While certain
issues, such as the influence of delay on the extinction threshold,
could be studied in an even simpler setting, we explicitly include
the redundancy of the genotype–phenotype mapping (Schuster et
al., 1994). For simplicity, we only model the loss of fertility of
individuals whose telomeres have disappeared. The population is
structured into K þ 1 distinct groups of sequences characterized
by a certain telomere length between 0 and K (Fig. 5). We index
these classes by the amount of telomere loss, so that x0 denotes
the fraction of all sequences that fold into the correct secondary
structure, while xK is the fraction of sterile individuals. With each
replication event, the telomere length decreases by 1 if the
telomerase is not functional.

With sequence length L, per-nucleotide mutation rate m and a
probability n that an offspring retains a functional telomerase (the
density of the neutral network, Huynen et al., 1996a; Ofria and
Adami, 1999; Wilke, 2001; Reidys and Stadler, 2001), the
probability with which a viable sequence gives birth to an off-
spring that also resides on the neutral network is

Q ¼ ½1� mð1� nÞ�L � exp�Lmð1�nÞ ð2Þ

Once outside the neutral network, when a sequence Xi, i 2 ½1;K �
1� replicates, it can either become a member of xiþ1 if it does not
recover the correct fold or become a member of x0 if it does. More
precisely, the replication occurs through (see also Fig. 5)

X0-
Q

X0 ð3aÞ

X0 -
1�Q

X1 ð3bÞ

Xi-
1�p

Xiþ1; i 2 ½1;K � 1� ð3cÞ

Xi -
pð1�RÞ

Xiþ1; i 2 ½1;K � 1� ð3dÞ

Xi-
pR

X0; i 2 ½1;K � 1� ð3eÞ

with Eqs. (3c) and (3d) distinguishing between replication with or
without mutation. Here p is the probability of replication with
mutation and is defined as

p ¼ 1� ð1� mÞL ð4Þ

Notice that we have considered the approximation discussed in
the previous section for which R is independent on the telomere
length of the sequence, as Fig. 3 justifies. Under the assumptions
detailed above, it is now straightforward to derive the temporal
evolution of xi: through the differential equations

_x0 ¼ pR
XK�1

i¼1

xi þ Qx0 �Fx0

_x1 ¼ ð1� Q Þx0 �Fx1

_xi ¼ ð1� pRÞxi�1 �Fxi; i 2 ½2;K�

where F is a dilution flux that keeps the sum of relative
frequencies constant,

P
i xi ¼ 1. As usual, F equals the net

production of off-springs. Since the fitness is 1 by definition for
all reproducing phenotypes and 0 for the sterile ones, we observe
that

F ¼
XK�1

i¼0

xi ¼ 1� xK

directly measures the fraction of reproducing individuals in
the population. Employing the shorthand q � 1� Q , the final
form of the equations describing the evolution of the population
is thus

_x0 ¼ pRð1� xK Þ � x0ðqþ pR� xK Þ ð5aÞ

_x1 ¼ qx0 � ð1� xK Þx1 ð5bÞ

_xi ¼ ð1� pRÞxi�1 � ð1� xK Þxi; i 2 ½2;K� ð5cÞ

3.2. Equilibria

The fixed points xi can be expressed in terms of the relative
frequency xK of the sterile individuals. We have either the trivial
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solution (xK ¼ 1; xi ¼ 0, ioK) or we obtain, for (xi40; ipK),

x0 ¼
pRð1� xK Þ

qþ pR� xK
ð6aÞ

x1 ¼
q

1� xK
x0 ð6bÞ

xi ¼
1� pR

1� xK
xi�1; i 2 ½2;K�; ð6cÞ

with the last equation providing the condition

xK ¼
qpR

qþ pR� xK

1� pR

1� xK

� �K�1

ð7Þ

This can be rearranged as

xK ½qþ pR� xK �ð1� xK Þ
K�1
¼ qpRð1� pRÞK�1

ð8Þ

Since the r.h.s. is positive for m40, we can immediately conclude
that xKa0. Moreover, in order to clarify the solutions of this
equation, we shall rewrite it in the variable y � 1� xK :

FðyÞ ¼ �yKþ1 þ ð1þ aÞyK � ayK�1 � b ¼ 0 ð9Þ

with new parameters a � 1� q� pR40 (as it is expected that
Q4pR) and b � qpRð1� pRÞK�140. The behavior of this function is
sketched in Fig. 6. Notice that the function F, as the system from
Eq. (5), is valid for K � 2. For the classical case of non-delayed
selection, K ¼ 1, the two fixed points are the trivial one (or
extinction), ðx0; x1Þ ¼ ð0;1Þ, and the coexistence fixed point,
ðx0; x1Þ ¼ ðQ ;1� Q Þ, with the former being unstable, and the
latter being stable (for m lower than the extinction threshold). In
this K ¼ 1 case, the above notation gives the stable fixed point as
y ¼ Q . Returning to the general case of K41, the stable fixed point
remains in the neighborhood of y1 � Q , with y1 from Fig. 6. Due to
the existence of recoveries, one has y1]Q . For example, for K ¼ 2,
one has y1 ¼ 0:5½Q þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 4pRð1� Q Þ

p
�. The second root y2 from

Fig. 6 does not satisfy the simplex conditions,
P

xi ¼ 1, and it is
thus not a fixed point of the system in Eqs. (5). More precisely,
considering xK ¼ 1� y2 � 0, together with the approximation
1� pR � 1, one has

P
xi ¼ pRð1þ KqÞ=ðqþ pRÞo1. A numerical

verification has been performed too using the values from Fig. 4.
For completeness, we remark that for the even-K cases, the
function FðyÞ has another root in the negative quadrant, yo0,
which again is not a physically accessible fixed point for our
system, as it does not satisfy xi � 0 for all i 2 ½0;K�.
Fig. 6. The schematic representation of FðyÞ defined in Eq. (9), with y � 1� xK .

This function is defined only for y 2 ½a;1�, as it results from the condition xK � 0 in

Eq. (7). The representation also indicates y1 to be a fixed point. See below the

discussion on y2. Remember that y ¼ 0 implies extinction.
In addition, using estimates of the recovery fraction R

from simulations with various parameter settings, we have
calculated F numerically. The position of y1]Q is nearly
independent of K (Fig. 7a), with a pronounced dependence
on m (Fig. 7b). Analytically, for small m, the Taylor expansion
leads to q	Lmð1� nÞ (from Eq. 2) and p	Lm (from Eq. 4), implying
xKpLm. By setting xk ¼ xmþOðm2Þ and expanding all quantities in
Eq. (8) to first order in m, one gets the following quadratic
equation for x which indeed does not depend on K:

x½ð1� nþ RÞL� x� ¼ ð1� nÞL2R ð10Þ

The roots of Eq. (10) are x1 ¼ Lð1� nÞ and x2 ¼ LR. It can be seen
that x1 can be recovered also from the case K ¼ 1 for which x1 ¼

q � Lð1� nÞm (from Eq. (2)). For the reproductive but damaged
species we observe, by the same arguments employed above, that
their dependence on m, for small m, also follows xipm for all i,
again independent of K.

In order to compute FðyÞ in Fig. 7, the knowledge of Q from
Eq. (2) was required, which in turn relies on an estimate for the
neutrality n. The latter can be determined from the case K ¼ 1,
considering the approximation x0 ¼ Q	exp½�Lmð1� nÞ� (Wilke,
2001) (Fig. 8).

The value of xK can be computed numerically using a simple
root-finder to solve Eq. (9). The values of xi, iaK are then obtained
by rewriting Eqs. (6b) and (6c) as

xi ¼
1� xK

1� pR

� �K�i

xK ; i 2 ½K � 1;1� ð11aÞ

x0 ¼
1� xK

1� pR

� �K�1 xK ð1� xK Þ

q
ð11bÞ

This shows that, even though xK is approximately K-independent,
as discussed above (Figs. 7 and 9), the spread of population in the
K reproducing-groups is K-dependent. In other words, the unfit
(xK ) and consequently, the fit (

PK�1
i¼0 xi ¼ 1� xK ) levels are

independent on K. But the longer the telomere (i.e., the larger
the value of K), the wider is the spread or the dilution of the
population within the fit individuals, owing to the (K � i)
exponent. As K increases, x0 may reach values dangerously close
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0F

0 0.2 0.4 0.6 0.8 1
y
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0.006

0.008

F

K = 10

µ

Fig. 7. The function FðyÞ from Eq. (9) evaluated using the average values of the

recovery fraction R from Fig. 4a. (Upper panel) A fixed value of m ¼ 0:003 has been

chosen, and the function F drawn for K 2 f7;8;9;10g. (Lower panel) A fixed value of

K ¼ 10 was chosen, and the function was calculated for 10 values in

m 2 ½0:0005 : 0:005�. As expected, the root y1 of F is more sensitive to m than to Kl.
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Fig. 8. Decay of the steady state concentration, x0, as a function of m for K ¼ 1, and

the fit to estimate the neutrality n.
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Fig. 9. (Upper panel) The average fitness or fraction F ¼ 1� xK of reproducing

sequences in the population is shown for K 2 f2;4;6;8g. It illustrates that xK is

independent of K in very good approximation. (Lower panel) The value of x0

estimated through Eqs. (11) and based on the recovery probabilities from Fig. 4

with the symbols referring to different values of K 2 ½4;10�. The straight line

results from Fig. 8.
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to 0. We have used the data from Fig. 4 to evaluate x0 according to
Eq. (11b), and in so doing, illustrate the dependence x0ðK;mÞ. The
results are included in the lower panel of Fig. 9. The decrease of x0

with K implies that the survival of the species counts exclusively
on the probability of recovery. This dilution thus drives extinction
at large delays (large K) in a finite population. In other words, in a
finite population, delayed selection has the effect of lowering the
extinction threshold.

An example of simulation and comparison with the model
appears in Fig. 10. Following the reasoning discussed above, the
associated values xi from Eq. (11) have been calculated and are
shown in Fig. 10 as continuous lines. It can be seen that the mean-
field model provides a good fit to the simulations.
3.3. Genetic diversity

It is plausible to assume that lineages with many recoveries in
their history and/or recently recovered individuals will preferen-
tially be located at the fringes of the population. Thus they should
have a large influence on the sequence evolution. Since the
damage/recovery mechanism is capable of bridging gaps in the
neutral network, it is tempting to conjecture that this mechanism
will also lead to an increased speed of evolution, i.e., an increase in
the substitution rate given the same underlying mutation rate m.

In order to address this issue, we follow the ideas of Huynen
et al. (1996b) and investigate the Hamming distance distribution
in the population. For each sequence s 2 P, let sj denote the
nucleotide at position j. For each nucleotide a 2 fA;U;G;Cg and
j 2 ½1; L� we consider the fraction

pjðaÞ ¼
1

N

X
s2P

dsj ;a ð12Þ

of sequences in the population P that have nucleotide a at
position j. The profile, or center of mass, of the population is the
4� L dimensional vector ~p ¼ ððpjðaÞÞa2fA;U;G;CgÞLj¼1. The diversity of
the population is conveniently measured by the distribution of
pairwise Hamming distances dHðs

0; s00Þ, or the distances of the
individual sequences to the center of mass. A convenient distance
measure is given by the difference between the centroids of the
two populations (Derrida and Peliti, 1991; Huynen et al., 1996a;
Barnett, 1998). In terms of the profiles, it can be expressed as

D2
ð~p 0; ~p 00Þ ¼

XL

j¼1

X
a2fA;U;G;Cg

ðpj
0ðaÞ � pj

00ðaÞÞ2 ð13Þ

D2 therefore directly measures the divergence of the populations.
Note that any individual sequence s can be represented by a
profile vector ~ps with entries pjðaÞ ¼ dsj ;a. In particular, we have

D2
ð~ps0 ; ~ps00

Þ ¼ 2dHðs
0; s00Þ ð14Þ

as shown in the Appendix. The profile distance, Eq. (13), thus can
also be seen as a straightforward generalization of the Hamming
distance.

The speed of evolution can be measured in terms of the mean
square displacement of the population over time. More precisely,
the motion of the center of mass is captured by the diffusion

constant

D ¼ lim
dt-0

1

t/D
2
ð~pðt þ tÞ; ~pðtÞÞSt ð15Þ

where / 
St denotes the average over time t and simulation runs.
The diffusion constant D is a convenient way of estimating the
substitution rate directly from simulated populations (Huynen
et al., 1996a; Stadler, 2002; Stephan-Otto Attolini and Stadler,
2006), which is independent of the particular rules of the
selection/mutation process. It corresponds to the substitution
rate used in phylogenetic analysis.

Note that the definitions of D above depend on the ability to
explicitly compute the center of mass ~p of a population P.
Conceptually this means that we need to be able to treat the
individual members s 2 P as vectors. This is straightforward in the
absence of insertions and deletions because the Hamming
distance already is of the appropriate form, see Eq. (14). In the
presence of insertions and deletions, however, it seems non-trivial
to find a vector-space representation for the Levenshtein distance.
An alternative vector-based distance measure could be obtained
by first constructing an alignment of all sequences in the two
populations and then treating gaps as an additional letter in
Eq. (12). The need to compare populations at different times in
Eq. (15) complicates the issue, requiring at least alignments of
pairs of populations. In contrast, a distance measure between the
individuals of the population is sufficient to quantify e.g., the
diversity in the population. This begs the question whether
Eq. (15) can be generalized to a more general setting. In the
Appendix we show how this can be achieved by introducing an
equivalent measure of diffusion through ~D.

Finally, to answer the question whether the delayed selection
could leave a fingerprint in the population diversity, we have
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Fig. 10. The model from Fig. 5 and the associated Eq. (5) have been superposed on the stochastic experiments. More precisely (upper left panel), the recovery rate R is

estimated from this simulation (N ¼ 1000;K ¼ 10;m ¼ 0:005) as the ratio of the number of recoveries per mutations off the neutral network (replications with mutation for

individuals from xi with i 2 ½1;K � 1�): R ¼ 0:002359. Subsequently, the root y1 ¼ 0:7549543 of the function FðyÞ from Eq. (9) is obtained, having calculated a ¼ 0:754369

and b ¼ 0:00019. In this way, the values of xi are found through Eq. (11).
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Fig. 11. Measuring diffusion through ~D (see Appendix). Ten experiments have

been performed for each ðN;KÞ case, and two values of m ¼ 10�5 (circles) and

m ¼ 3� 10�5 (squares). Two tank capacities are used for verification: N ¼ 100

(upper panel) and N ¼ 500 (lower panel). The diffusion was measured as

~D ¼ /DS7
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ðDi �/DSÞ2=ðn� 1Þ

q
, with Di , the mean value of the ith

experiment.
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measured the diffusion coefficient ~D for various cases of mutation
rate. First, we do not expect to see any consequence of the delayed
selection when the mutation rate is low enough to impede
recoveries. Without recoveries, the enrichment of the population
does not occur. We have verified this statement by performing
simulations for two values of mutation rate and population
number (Fig. 11). Formally, we expect the recoveries to be
RpKp2

� KL2m2, where the exponent in the latter statement
refers to the minimum two mutations needed to fall off and return
to the neutral network, respectively. For the m values employed in
the examples from Fig. 11, recoveries are negligible and no
differential diffusion is observed for different time delays. Just for
verification, the population number does not affect the diffusion
coefficient.

For mutation rates that allow a significant number of
recoveries, we expect to see that recoveries lead to a higher
evolutionary rate identified by a higher diversity, and thus a
higher diffusion coefficient. The diffusion coefficient ~D was
measured for: only the replicating (viable) sequences (l.h.s panel
of Fig. 12), and only the undamaged sequences (on the neutral
network) (r.h.s panel of Fig. 12). Even though no increased
diffusion is observed for the viable individuals, a slight effect
can be observed for the neutral network. It illustrates the
expectation that, at significant mutation rates (high, but not
too high; see Fig. 4), a more efficient exploration of the
neutral network is provided by the delayed selection. When
measured at the level of the entire viable population (l.h.s panel),
this slight increase is lost in the accumulation of damaged
individuals.

These results show that the delayed selection leaves no
unequivocal traces of its presence in terms of population diversity.
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We conclude therefore that even massive delays in the effect of
selection do not appreciably affect substitution rates.
4. Discussion

The scenario of classical Darwinian selection considers that
selection instantaneously punishes or rewards changes in fitness
associated to the individual genomes. This scenario is employed in
the overwhelming majority of studies regarding fitness-driven
selection. Only a few studies considered fitness effects that reach
across generations. For instance, Wilke (2002) considers a model
in which fitness is the product of a maternal contribution and the
off-spring’s own genotype. Still, selection acts instantaneous to
remove lethal genotypes from the population. In our model, which
is inspired by eukaryotic telomere damage, individuals carrying
dysfunctional genomes are oblivious of this fact for several
generations. At least intuitively, this setup should emphasize the
effects of delayed selection as much as possible compared to more
realistic scenarios in which genetic damage is associated also with
some instantaneous fitness effects.

The model is investigated in two settings: stochastic computer
simulations based on neutral networks of RNA secondary
structures and a deterministic infinite-population-size model.
The RNA-based simulations show that damage-and-recovery is a
frequent phenomenon for a wide range of mutation rate values. In
particular, after a relatively short time, all individuals in the
population derive from ancestors that have sustained damage and
have subsequently recovered through compensatory mutations.
We have demonstrated, furthermore, that it is sufficient to
estimate a few parameters, namely the recovery rate R and the
degree of neutrality n to parameterize the deterministic ODE
model in such a way that it reproduces the phenomena observed
in the stochastic simulation.

For simplicity, the deterministic system was set up as a flow
reactor under constant organization like Eigen’s Quasispecies
Model. In this system, we observe a single stable equilibrium in
which x0, the fraction of undamaged individuals, and xK , the
fraction of sterile members, strike a balance that depends
primarily on the mutation rate m. For large values of m, x0

becomes very small and thus fluctuations can easily wipe out the
undamaged part of the population. This behavior roughly
corresponds to the extinction threshold. Therefore, the main
effect of delayed selection is to reduce the critical mutation
rate. In other words, as one may have expected, genetic
components evolving under delayed selection have an increased
risk of being lost.

To our surprise, however, delayed selection does not appear to
have a measurable effect on the substitution rates observed at
population level. Delayed selection therefore does not easily
reveal itself in genomic DNA sequences. For one, this begs the
question whether there are more subtle effects on substitution
rates. If they exist, they will presumably depend on the specifics of
the selection pressures of the particular protein or RNA in
question. On the other hand, the apparently small impact of
delayed selection at the sequence level could hide that this is
indeed a rather frequent phenomenon. The well-known observa-
tion that deletion of a highly conserved gene often has no
appreciable phenotype at least under laboratory conditions could
be related to our topic.

In conclusion, we have approached a question that has not
been addressed so far in neither modeling nor simulating
framework, by studying the scenario in which the selection of
the fittest is delayed for several generations. Such a scenario
occurs in very unrelated topics, from telomere damage–repair
system to plant breeding. By this study we have thus laid the
grounds of further explorations of the consequences of such a
scenario.
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Appendix A. Measuring diffusion in metric spaces

Let A ¼ f~x1 ; . . . ; ~xnA
g and B ¼ f~y1 ,..., ~ynB

g be two finite sets
of vectors in some vector space V. As an example, in the present
case, the sequence AACGT can be written in the base fA;G;C; Tg as
1000 1000 0010 0100 0001.

Our goal is to express the mean square displacement

D2
¼ D2

ðA;BÞ ¼
1

nA

X
i2A

~xi �
1

nB

X
i2B

~yi

 !2

ð16Þ

of the centers of gravity of A and B in terms of distances between
their elements. In a Euclidean vector space, we have canonical
distances given by d2

ij ¼ ð
~xi � ~xj Þ

2 for i; j 2 A, d2
ij ¼ ð

~yi � ~yj Þ
2 for

i; j 2 B, and d2
ij ¼ ð

~xi � ~yj Þ
2 for i 2 A and j 2 B. It is convenient to

introduce the following quantities, which can be computed in
terms of pairwise distances:

VA ¼
1

n2
A

X
i2A

X
j2A

ð~xi � ~xj Þ
2
¼

1

n2
A

X
i2A

X
j2A

d2
ij
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VB ¼
1

n2
B

X
i2B

X
j2B

ð~yi � ~yj Þ
2
¼

1

n2
B

X
i2B

X
j2B

d2
ij

W ¼
1

nAnB

X
i2A

X
j2B

ð~xi � ~yj Þ
2
¼

1

nAnB

X
i2A

X
j2B

d2
ij ð17Þ

In the following we will prove the identity

D2
¼W � VA=2� VB=2 ð18Þ

which shows that the mean square displacement can be expressed
in terms of pairwise distances.

First observe that ð
P

i2A
~xi Þ

2
¼
P

i;j2A
~xi~xj and hence

n2
AVA ¼ 2nA

X
i2A

~xi
2
� 2

X
i;j2A

~xi~xj ¼ 2nA

X
i2A

~xi
2
� 2

X
i2A

~xi

 !2

An analogous expression holds for VB. Next we rewrite the
definition of D2 in the form

D2
¼

1

n2
An2

B

n2
B

X
i2A

~xi

 !2

þ n2
A

X
i2B

~yi

 !2

� 2nAnB

X
i2A

X
j2B

~xi ~yj Þ

0
@

and use this expression to compute

n2
An2

BW � n2
An2

BD
2
¼ nAn2

B

X
i2A

~xi
2
þ nBn2

A

X
j2B

~yj
2
� n2

B

X
i2A

~xi

 !2

�n2
A

X
i2B

~yi

 !2

¼ n2
B nA

X
i2A

~xi
2
�

X
i2A

~xi

 !2
0
@

1
A

þn2
A nB

X
j2B

~yj
2
�

X
i2B

~yi

 !2
0
@

1
A ¼ n2

B

2
n2

AVA þ
n2

A

2
n2

BVB

Eq. (18) now follows immediately.
Returning to the definition of RNA sequences as vectors, Eq.

(16) coincides with Eq. (13) which employs a different notation for
the population profiles. And thus, the distance between two
vectors as included in Eq. (17) can be written as

d2ð~x;~yÞ ¼
Xn

j¼1

X
a2fA;U;G;Cg

ðxj;a � yj;aÞ
2
¼ 2dHð~x;~yÞ

where dHð~x;~yÞ is the Hamming distance between the two sequences.
The importance of Eq. (18) is twofold. First, it implies that the

diffusion coefficient

~D � lim
t-0

D2
ðAtþt;AtÞ

t ð19Þ

is a metric quantity at heart that does not necessarily require the
explicit computation of the ‘‘centers of gravity’’ of the populations
at the different time points. Second, it suggests Eq. (18) to be the
definition of D2 in situations where V is not given explicitly, or
where we only have a metric structure at our disposal. Eq. (18)
thus is of practical use, since pairwise distances of sequences in
related populations can be computed efficiently, while
the construction of good multiple sequence alignments may be
quite tedious.
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