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We present a traveling-wave analysis of a reduced mathematical model describing the growth of a solid

tumor in the presence of an immune system response in the framework of Scale Relativity theory.

Attention is focused upon the attack of tumor cells by tumor-infiltrating cytotoxic lymphocytes (TICLs),

in a small multicellular tumor, without necrosis and at some stage prior to (tumor-induced)

angiogenesis. For a particular choice of parameters, the underlying system of partial differential

equations is able to simulate the well-documented phenomenon of cancer dormancy and propagation

of a perturbation in the tumor cell concentration by cnoidal modes, by depicting spatially hetero-

geneous tumor cell distributions that are characterized by a relatively small total number of tumor

cells. This behavior is consistent with several immunomorphological investigations. Moreover, the

alteration of certain parameters of the model is enough to induce soliton like modes and soliton packets

into the system, which in turn result in tumor invasion in the form of a standard traveling wave. In the

same framework of Scale Relativity theory, a very important feature of malignant tumors also results,

that even in avascular stages they might propagate and invade healthy tissues, by means of a diffusion

on a Newtonian fluid.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Cancer is a disease derived, with few exceptions, from muta-
tions on single somatic cells that disregard the normal controls of
proliferation, invade adjacent normal tissues, and give rise to
secondary tumors (metastasis) on sites different from its primary
origin (Kumar et al., 2004). This excessive, autonomous and non-
homeostatic cell growth occurs in multicellular organisms,
i.e., animals and plants. In the animal kingdom it was observed
even among the most primitive invertebrates of the Arthropoda
and Mollusca phyla (McGee et al., 1992). Paleopathologists
reported neoplasias in dinosaurs whose fossils were dated from
around 100 million years. In human beings, authentic cancer—an
osteosarcoma—was found in a mandibular fragment of a Pleisto-
cene hominid alive approximately 100 thousand years ago
(McGee et al., 1992).

In the human population, cancer refers to more than 100 forms
of a disease that can develop in almost every tissue in the body
(Kumar et al., 2004; McGee et al., 1992). In the United Kingdom,
ll rights reserved.

zea).
one in four people will die of cancer, whilst one in three will at
some point in their life be diagnosed to have cancer (http://www.
cancerresearchuk.com/). Of the 135,000 people who died in The
Netherlands in 2006, 77,000 (or 57%) died from a chronic disease,
yet cancer was the most frequent cause of death (40,000) (van der
Velden et al., 2009). Figures show that 20% more French men die
from cancer each year than British, while Sweden has the EU’s
lowest male mortality rate from cancer in the EU, with 196 deaths
per 100,000 compared to France’s 283.3. Cancer is the main cause
of premature (before the age of 65) death on the continent, and
kills around 960,000 Europeans every year. Moreover, cancer is
one of the main causes of morbidity and mortality in the world
(http://www.who.org/). Therefore, developed countries are
investing large amounts of money into cancer research in order
to find cures and improve existing treatments.

Ninety percent of human cancers are carcinomas, invasive
malignant tumors derived from epithelial tissues. A majority of
cancers are caused by changes in the cell’s DNA because of
damage due to the environment. Cancer arises from an interac-
tion of the environment upon the genome. In truth, the double
helix structure of the DNA has a limited chemical stability
(Lindahl, 1993) and, over time, DNA accumulates damage caused
by external mutagens (mutation-causing agents), spontaneous

http://www.cancerresearchuk.com/
http://www.cancerresearchuk.com/
http://www.who.org/
www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2011.05.001
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reactions which disintegrate some chemical bonds in DNA under
physiological conditions, and errors made during DNA copying in
proliferating cells. In Fig. 1, the sites on the DNA strand suscep-
tible to spontaneous intracellular decay are shown. Also, in this
figure the main DNA lesions generated by hydrolytic, oxidative,
and non-enzymatic methylation processes, as well as the muta-
tions induced by these changes after DNA replication are illu-
strated. The slow transcription and replication in mammalian
cells, which exposes DNA locally in a single-stranded form for
longer periods, increases the rates of both hydrolytic depurination
and cytosine deamination. So, since the DNA is submitted to
millions of replications during the lifespan of an individual, even
DNA damage triggered by such natural decay processes has a
large chance to occur.

External mutagens include environmental agents (ultraviolet
light, ionizing radiation, and numerous chemical compounds such
as benzo(a)pyrene present in cigarette smoke) and infectious
pathogens (the bacterium Helicobacter pylori, more than 100
human papillomaviruses—HPVs, hepatitis-C virus—HCV, Aids
virus—HIV, etc.). The damage they create in the genome fre-
quently induces either point mutations affecting single genes or
large-scale chromosomal mutations, which may involve multiple
genes (Alberts et al., 2002; Lodish et al., 2000). Specifically,
chemical carcinogens typically cause point mutations in the
DNA sequence. Ionizing radiation causes double-strand DNA
breaks which presumably lead to chromosomal mutations when
incorrectly repaired. Oncogenic viruses introduce exogenous
(alien) DNA in normal cells. In Fig. 2 are shown examples of point
mutations and translocations, which play a major role in cancer
formation.
Fig. 1. Reactive oxygen species, (by)products of normal cell aerobic metabolism and of lipid

oxidative damage in, and non-enzymatic methylation of DNA. In (a) the target sites for these

depurination generates apurinic sites in DNA and, in consequence, a loss of genetic informatio

to 8-hydroxyguanine in DNA are the two major spontaneous premutagenic events in livin

nucleotides (adapted from Martins et al., 2007).
There are two main stages in cancer progression: the initial,
relatively benign phase of avascular growth and the subsequent
more aggressive vascular phase. Solid tumors in avascular phase
are limited in size to no larger than 1–2 mm in diameter. For a
tumor to become metastatic, it needs to be able to nourish the
cells at the center of its mass that are too far away from blood
vessels. This is achieved by angiogenesis, which is a normal
process in growth and development, as well as in wound healing.
However, this is also a fundamental step in the transition of
tumors from a dormant state to a malignant state. It provides a
route for the cancer cells to escape into the new blood vessels and
circulate throughout the body, where they can deliver to other
organs forming metastases. Avascular tumor growth in vivo

receives vital nutrients (oxygen, glucose, etc.), and eliminates
waste products via diffusive transport (Araujo and McElwain,
2004a, b; Byrne et al., 2006). Multicellular spheroids formed by
transformed cells are widely used as an in vitro avascular tumor
models for metastasis and invasion research and for therapeutic
screening (Sutherland, 1988). The saturated spheroid (106 cells)
has a characteristic three-layered structure consisting of an outer
rim of nourished dividing cells, an intermediate layer of quiescent
cells and a relatively large central necrotic core, where the cells
die at a rate which depends on the local nutrient concentration.
Dead cells are also found adjacent to both proliferating and
quiescent cells (Sutherland, 1988). Quiescent cells are said to be
in phase G0, in which they are not participating in the cell cycle,
but are still viable, metabolically active and they can recover after
the restoration of sufficient nutrient (Freyer and Schor, 1987). As
the spheroid continues to develop, the rim of viable cells at the
surface becomes roughly constant in size, leading to a phase of
peroxidation, as well as other small reactive molecules promote hydrolytic attack to,

spontaneous reactions in one strand of the DNA double helix are shown. (b) Hydrolytic

n. (c) Hydrolytic deamination of cytosine to uracil and (d) oxidation of guanine residues

g cells. (e) Mutations produced after replication by such chemical alterations of the



Fig. 2. Many and varied external carcinogens trigger cancer by creating mutations on

DNA. Therefore, they are really mutagens. For instance, (a) a single point mutation in

normal human ras gene (five thousand DNA bases long) transforms it into the bladder

carcinoma oncogene. This minimal change can be the result of an unrepaired oxidation

of guanine to 8-hydroxyguanine, which pairs preferentially with adenine rather than

cytosine. (b) Exposure to ultraviolet light causes formation of dimers between two

successive pyrimidinic bases (cytosine or thymine), which induce copying errors.

(c) Uncorrected rejoining of chromosomal breaks caused by, for instance X-rays or

radiation, can juxtapose DNA segments that were previously in different chromosomes

(translocations). In Burkitt’s lymphoma, a normal myc proto-oncogene becomes

improperly fused to sequences regulating the expression of antibodies in B cells. The

translocated myc gene, now regulated by the antibody enhancer, is persistently

expressed and drives the excessive proliferation of the mutated B cells. This kind of

mutation explains why cancers of the immune system are the most frequent in people

exposed to radiation (adapted from Martins et al., 2007).
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near linear growth (Conger and Ziskin, 1983; Freyer and
Sutherland, 1986) or later by the combined action of necrotic
disintegration, accumulation of waste products (Vaupel et al.,
1981), mitotic inhibitory factors (Freyer, 1988), and cell shedding
(Landry et al., 1981) reduces the rate of tumor growth, leading to
a spheroid of a maximal (saturation) size (Folkman and Hochberg,
1973; Haji-Karim and Carlsson, 1978; Inch et al., 1970). Tumors
in vivo continue to develop, due to the mentioned angiogenesis, to
sizes over the saturation level (Folkman, 1971) and at last become
invasive (metastatic), utilizing the body’s cavities and vasculature
to settle elsewhere, forming secondary growths in the host.

Over the last decade, activity in mathematical modeling and
computational simulation of cancer has increased dramatically (e.g.,
reviews such as Araujo and McElwain, 2004a, b; Byrne et al., 2006;
Adam, 1996; Bellomo et al., 2003; Quaranta et al., 2005; Sanga et al.,
2006). A variety of modeling strategies have been developed, each
focusing on one or more aspects of cancer. Cellular automata and
agent-based modeling, where individual cells are simulated and
updated based upon a set of biophysical rules, have been developed
to study genetic instability, natural selection, carcinogenesis, and
interactions of individual cells with each other and the microenvir-
onment. Because these methods are based on a series of rules for
each cell, it is simple to translate biological processes (e.g., mutation
pathways) into rules for the model. However, these models can be
difficult to study analytically, and computational costs can increase
rapidly with the number of cells. Because a 1-mm tumor spheroid
may have several hundred thousand cells, these methods could
become unwieldy when studying tumors of any significant size. See
Alarcón et al. (2003), Anderson (2005), and Mallett and de Pillis
(2006) for examples of cellular automata kn, and Abbott et al. (2006)
and Mansury et al. (2002) or examples of agent-based modeling.
In larger-scale systems where the cancer cell population is on the
order of 1,000,000 or more, continuum methods may provide a
more suitable modeling technique. Early work including Byrne and
Chaplain (1996a, b) and Greenspan (1976) used ordinary differential
equations to model cancer as a homogeneous population, as well as
partial differential equation models restricted to spherical geome-
tries. Linear and weakly non-linear analyses have been performed to
assess the stability of spherical tumors to asymmetric perturbations
(Araujo and McElwain, 2004a, b; Byrne et al., 2006; Byrne and
Matthews, 2002; Chaplain et al., 2001; Cristini et al., 2003; Li et al.,
2007) in order to characterize the degree of aggression. Various
interactions of a tumor with the microenvironment, such as stress-
induced limitations to growth, have also been studied (Ambrosi and
Guana, 2007; Ambrosi and Mollica, 2002; Ambrosi and Preziosi,
2002; Araujo and McElwain, 2004a, b, 2005; Jones et al., 2000; Roose
et al., 2003). Most of the modeling has considered single-phase (e.g.,
single cell species) tumors, although multiphase mixture models
have also been developed to provide a more detailed account of
tumor heterogeneity (Ambrosi and Preziosi, 2002; Byrne and
Preziosi, 2003; Chaplain et al., 2006).

Recently, non-linear modeling has been performed to study the
effects of morphology instabilities on both avascular and vascular
solid tumor growth: Cristini et al. (2003) used boundary integral
methods to perform the first fully non-linear simulations of a
continuum model of tumor growth in the avascular and vascular-
ized growth stages with arbitrary boundaries. These investigations
of the non-linear regime of shape instabilities predicted encapsula-
tion of external, non-cancerous tissue by morphologically unstable
tumors. Li et al. (2007) extended upon Cristini et al. (2003) in 3-D via
an adaptive boundary integral method. Zheng et al. (2005) built
upon the model in Cristini et al. (2003) to include angiogenesis and
an extratumoral microenvironment by developing and coupling a
level set implementation with a hybrid continuum-discrete angio-
genesis model originally developed by Anderson and Chaplain
(1998). As in Cristini et al. (2003), Zheng et al. found that low-
nutrient (e.g., hypoxic) conditions could lead to morphological
instability. Their work served as a building block for recent studies
of the effect of chemotherapy on tumor growth by Sinek et al.
(2004) and for studies of morphological instability and invasion by
Cristini et al. (2005) and Frieboes et al. (2006). Hogea et al. (2006)
have also begun exploring tumor growth and angiogenesis using a
level set method coupled with a continuum model of angiogenesis.
Macklin and Lowengrub (2007) used a ghost cell/level set method
(Macklin and Lowengrub, 2008) for evolving interfaces to study
tumor growth in heterogeneous tissue and further studied tumor
growth as a function of the microenvironment (Macklin and
Lowengrub, 2007). Finally, Wise et al. (in preparation) and
Frieboes et al. (in preparation) have developed a diffuse interface
implementation of solid tumor growth to study the evolution of
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multiple tumor cell species, which was employed in Frieboes et al.
(2007) to model the 3-D vascularized growth of malignant gliomas
(brain tumors).

In the case of biological systems the fractal structure of space
in which cells interact and differentiate is essential for their self-
organization and emergence of the hierarchical network of multi-
ple cross-interacting cells, sensitive to external and internal
conditions. Hence, the biological phenomena take place in the
space whose dimensions are not represented only by integer
numbers (1, 2, 3, etc.) of Euclidean space. In particular, malignant
tumors (Waliszewski et al., 1998, 1999, 2000, 2001) and neuronal
cells (Isaeva et al., 2004; Pastor et al., 1998) grow in a space with
non-integer fractal dimension. More precisely, it was proved that
the analytical formulae describing the time-dependence of the
temporal fractal dimension and scaling factor very well reproduce
the growth of the Flexner–Jobling rat’s tumor in particular and
growth of other rat’s tumors in general, also, the results of some
test calculations indicated that the formulae derived for the time-
dependent temporal fractal dimension and the scaling factor
satisfactory describe the experimental data obtained by Schrek
for the Brown-Pearce rabbit’s tumor growth in the fractal space–
time (Waliszewski et al., 1998, 1999, 2000, 2001). Moreover, the
hypothesis that tumorigenesis has a lot in common with the
neuronal differentiation and synapse formation comes from the
fact that they are qualitatively described by the same Gompertz
function of growth and take place in the fractal space–time whose
mean temporal fractal dimension is lost during progression
(Isaeva et al., 2004; Pastor et al., 1998).

Since in the vast literature of mathematical modeling and
computational simulation of cancer we did not find any works
accounting for the fractal (non-differentiable) nature of the
space(–time) itself, where malignant tumors evolve, in this paper
we aim to study a model of tumor progression and immune
competition by generalized kinetic models, which focus on the
development of tumor heterogeneities as a result of tumor cell
and macrophage interactions, in the framework of the Scale
Relativity theory.
2. The theory of scale relativity

The theory of scale relativity is an extension of the theories of
relativity, achieved by applying the principle of relativity not only to
motion transformations, but also to scale transformations of the
reference system. Recall that, in the formulation of Einstein (1916),
the principle of relativity consists of requiring that ‘‘the laws of
nature be valid in every systems of coordinates, whatever their
state’’. Since Galileo, this principle had been applied to the states of
position (origin and orientation of axes) and of motion of the system
of coordinates (velocity, acceleration). These states are characterized
by their relativity, namely, they are never definable in an absolute
way. This means that the state of any system (including reference
systems) can be defined only relatively to another system.

Laurent Nottale has suggested that the observation scale, i.e., the
space and time resolution at which a system is observed or
experimented, should also be considered as characterizing the state
of reference systems. It is an experimental fact known since Greek
philosophers that the scale of a system can be defined only in a
relative way: only scale ratios do have a physical meaning, never
absolute scales. This may be understood, as briefly explained in
what follows. Since the physical parameters we operate with are
fractal functions, they will be invariant not only on space–time
coordinates but on scale ratios, as well. The presence of the scale
ratio introduces a new invariance of the physical parameters on
dilations and contractions of the space–time operator, which con-
tains a derivative of the type @=@ lne, where e is the resolution scale.
Since e is defined as a space–time scale ratio, we conclude that only
scale ratios have physical meaning. As a result, every space–time
scale will characterize a physical process associated to a specific
complex system (neuronal cells, tumoral cells, etc.). This led to the
proposal that the principle of relativity should be generalized to
apply also to the transformations of the scale of reference systems
(Nottale, 1989, 1992, 1993). In this new approach, one re-interprets
the length and time resolutions, not only as a property of the
measuring device and/or of the measured system, but more gen-
erally as a property that is intrinsic to the geometry of space–time
itself: in other words, space–time is fractal. The principle of relativity
of scale then consists of requiring that ‘‘the fundamental laws of
nature apply whatever the state of scale of the coordinate system’’.

2.1. Motivation

Let us now consider an essential part of the theory of scale
relativity, namely, the description of the effects in standard
space–time that are induced by the internal fractal structures of
its geodesics. The paper (Auffray and Nottale, 2008) introduced
pure scale laws describing the dependence on scale of fractal
paths at a given point of space–time. The next step consists of
considering a displacement of such a structured point, i.e., the
consequences on motion of the non-differentiability. As it was
proved, these consequences are radical since they amount to a
transformation of Newton’s equation of dynamics into a general-
ized Schrödinger equation.

Note that, in the perspective of potential applications to
biological systems, we consider here only the non-relativistic
case (i.e., velocities small with respect to the velocity of light c).
One can show (Nottale, 1993) that this case corresponds to a
fractal space, while time keeps its regular behavior.

As a first step, we shall mainly consider only the simplest case
of fractal internal structures, namely, the self-similar ones that
are characterized by a constant fractal dimension, and more
precisely fractal dimension DF¼2 that plays a critical role in the
theory (Nottale, 1996a, b). As we have seen in Auffray and Nottale
(2008), this behavior can be derived from a simple, scale-inertial
differential equation of first order. It was proved that the laws of
mechanics constructed from such internal structures of the
geodesics of a fractal space become a quantum-type mechanics.
Therefore the various generalizations of internal scale laws that
have been considered in Auffray and Nottale (2008) naturally lead
to generalized quantum laws.

Actually, the discovery that typical quantum mechanical paths
(those that contribute mainly to the path integral) are non-
differentiable and of fractal dimension 2 is due to Feynman
(Feynman and Hibbs, 1965), even though the word ‘‘fractal’’ was
coined by Mandelbrot (1975). But the various properties of
quantum paths described by Feynman in his approach (which is
not a return to determinism, since his paths are in infinite
number) correspond very closely to the later definition of fractals
(Abbott and Wise, 1981; Nottale and Schneider, 1984; Ord, 1983).
Now, Feynman derives the fractal and non-differentiable proper-
ties of quantum paths from quantum mechanics and its sets of
axioms, while the scale relativity approach attempts to do the
reverse, namely, found quantum mechanics on the non-differen-
tiable and fractal geometry of space–time.

2.2. Method

The method is as follows. We start from a generic description
of the displacements in a non-differentiable and continuous
space, which is fractal as a consequence, following the funda-
mental founding theorem of the theory, i.e., Lebesgue’s theorem,
which states that a curve of finite length is almost everywhere



Fig. 3. Dependence on the time-scale, ln(dt/T), of the logarithm of the velocity ln(V/V0)

on a fractal geodesic, including a classical (differentiable) part, which is dominant at

large scale (it tends to a scale-independent velocity toward the right in the figure), and

a fractal (non-differentiable) fluctuating part, which is dominant at small scales (to the

left). The fluctuation has been taken here to be Gaussian. The fluctuating fractal part dx
is of order dt1/2 for fractal dimension 2, so that the velocity diverges toward small scales

as dt�1/2, which expresses the non-differentiability of the fractal coordinate.

Fig. 4. A fractal function. An example of such a fractal function is given by the

projections of a fractal curve on Cartesian coordinates, in function of a continuous and

monotonous parameter (here the time t), which marks the position on the curve. The

figure also exhibits the relation between space and time differential elements for

such a fractal function, and compares the differentiable and non-differentiable parts

of the space elementary displacement. While the ‘‘classical’’ coordinate variation

dx¼odX4 is of the same order as the time differential dt, the fractal fluctuation

becomes much larger than dt when dt)T, where T is a transition time scale, and it

depends on the fractal dimension DF as: dxpdt1=DF . Therefore the two contributions

to the full differential displacement are related by the fractal law dxDF
pdx, since dx

and dt are differential elements of the same order.
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differentiable, while a curve of infinite length is almost every-
where non-differentiable (fractal curve) (Nottale 1993, 1996a, b;
Cresson 2001, 2003). As we shall see, the paths in a fractal space
are characterized by three minimal properties: fractality, infinite
number, and time irreversibility.

These three conditions are mathematically expressed at the
level of the elementary displacements, then their effect on a
physical quantity is described in terms of a ‘‘quantum-covariant’’
derivative. This means that, since the dynamical effects of a space
geometry are internal (instead of being external as in the case of
an externally added force or field), they are included in the
differential calculus itself (Einstein, 1916).

In general, in the complex systems (biological systems
included), it is difficult to explicitely give all the mathematical
factors which intervene in the considered processes. As an
example, in plasma physics it is hard to explicitely give the
collision terms, the source terms, etc. Then, by postulating that
motion takes place on continuous and non-differentiable curves,
i.e., on fractal curves (we name this approximation—fractal
approximation of motion), one can drop all the parameters which
describe the classical motion (e.g., in plasma one can drop notions
like collision cross section, mean free path, etc.) and consider
motion as being free. This method is similar to the one used by
Einstein in General Relativity. In such a conjecture, it is necessary
to build new differential operators to describe motion, operators
which have particular corresponding covariant derivatives. As an
example, in Nottale’s theory, the covariant derivative correspond-
ing to the motion on Brownian curves (fractal dimension DF¼2) is
dependent on a diffusion coefficient specific to the fractal-non-
fractal transition. This coefficient has different expressions
according to the physical process analyzed (Nottale, 1993). More-
over, if an external field exists, e.g., the electromagnetic field, the
covariant derivative may contain specific elements of this field, as
well, (e.g., the vector potential r-rmþ igA) (Nottale, 1993).

But in addition to the general (motion) relativity case, in the
scale relativity case we have to deal not only with the effects of
the geometry, but also with those of the non-differentiability
(which does not mean that we cannot define differential
elements, but that their ratios, i.e., the derivatives, are sometimes
undefined).

Finally, the principle of relativity–equivalence–covariance
allows one to write the equation of geodesics as a free form

motion equation, which expresses the acceleration d̂
2
=dt2 ¼ 0 in

terms of the new covariant derivative d̂ (see its construction in
what follows). This means that one writes that, locally, there is
rectilinear uniform motion, so that all the final complexity comes
from the change of reference system itself. The final step amounts
to make changes of variables (without any change of the number
of degrees of freedom) which transform the classical type of
physico-mathematical tool into a quantum-type tool.

2.2.1. Fractality of the paths

Strictly, the non-differentiability of the coordinates means that
the standard velocity

VðtÞ ¼
dX

dt
¼ lim

dt�40

XðtþdtÞ�XðtÞ

dt
ð1Þ

is undefined. Namely, when dt tends to zero, either the ratio dX/dt

tends to infinity, or it fluctuates without reaching any limit.
However, as recalled above, continuity and non-differentiabil-

ity imply an explicit dependence on scale (and even a divergence)
of the various physical quantities. As a consequence, the coordi-
nate X(t) and the velocity, V(t) are themselves re-defined as
explicitly scale-dependent functions X(t,dt) and V(t,dt). We can
therefore use again all the arguments developed in Auffray and
Nottale (2008), and conclude that, in the simplest case, we expect
it to be solution of a first order scale differential equation, i.e.,

Vðt,dtÞ ¼ vðtÞþwðt,dtÞ ¼ vðtÞ 1þZðtÞ T

dt

� �1�1=DF

( )
ð2Þ

This result means that the velocity is now the sum of two
independent terms of different orders of differentiation, since
their ratio v/w is, from the standard viewpoint, infinitesimal (see
Fig. 3). The v component is what we have called the ‘‘classical
part’’ (or differentiable part) of the velocity (Célérier and Nottale,
2004), and w is its ‘‘fractal part’’ (or non-differentiable part). The
new component w is an explicitly scale-dependent fractal fluctua-
tion (see Fig. 4), which is described in terms of a dimensionless
normalized stochastic variable Z(t) connected to the type of
fractality. In particular, Nottale chooses Wiener–Markov pro-
cesses (Nottale, 1993; Feynman and Hibbs, 1965) such that
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oZ4¼0 and oZ24¼1. As we shall see later on, the final result
is totally independent of the probability distribution of this
variable.

Here the position on the curve is now located by using the
time t itself as a parameter, while the resolution is a time
resolution. The scale T must be introduced for dimensional
reasons, and appears as a constant of integration. Its presence
manifests once again the fact that only scale ratios do have a
physical meaning, not the scales themselves.

Eq. (2) multiplied by dt gives the elementary displacement, dX,
of the system as a sum of two infinitesimal terms of different
orders

dX ¼ dxþdx ð3Þ

which are such that

dx¼ vdt ð4Þ

dx¼ Zð2DÞ1�1=DF dt1=DF ð5Þ

where the parameter D is a reformulation of the previous scale T

of Eq. (2).
Only the critical case of fractal dimension DF¼2 will be now

considered (see (Nottale, 1995, 1996a, b) for generalization to a
different fractal dimension). The fluctuation becomes

dx¼ Z
ffiffiffiffiffiffiffi
2D
p

dt1=2 ð6Þ

The fundamental parameter D is bound to play a very
important role in what follows. It can be considered to be defined
by the above relation, namely

D¼ 1

2

/dx2S
dt

ð7Þ

It looks like a coefficient of diffusion, but here its meaning is of
geometric essence, namely, it manifests the intrinsic diffusive
property of a fractal space, but no external agent or particle is the
cause of this ‘‘diffusion’’. This coefficient intervenes in the
determination of the fundamental transition from scale depen-
dence (fractality) to scale independence (see Fig. 3). But, as we
shall see, it may also be identified, modulo fundamental con-
stants, to a generalization of the Compton scale, _/mc, that is the
fundamental wavelength which has phenomenologically
appeared in quantum mechanics (without having, up to now,
been theoretically understood from first principles).
2.2.2. Infinite number of geodesics

One of the main geometric consequences of the non-differ-
entiability is that there is an infinity of fractal geodesics relating
to any couple of points of a fractal space (Nottale, 1993; Cresson,
2001). This can be easily understood already at the level of fractal
surfaces, which can be described in terms of a fractal distribution
of conic points of positive and negative infinite curvature
(Nottale, 1993). As a consequence, we are led to replace the
velocity V(t,dt) on a particular geodesic by the fractal velocity field
V[x(t,dt),t,dt]¼v[x(t),t]þw[x(t,dt),t,dt] of the whole infinite
ensemble of geodesics. This representation is similar to that of
fluid mechanics (Landau and Lifchitz, 1959), in which the motion
of a fluid is described in terms of its velocity field v(x(t),t), its
density r(x(t),t) and possibly its pressure. We shall indeed recover
the fundamental equations of fluid mechanics (Euler and con-
tinuity equations), but written in terms of a density of probability
(as defined by the set of geodesics) instead of a density of matter,
and with an additional term of quantum pressure which occurs as
a manifestation of the underlying fractal geometry (see below).
2.2.3. Discrete symmetry breaking from irreversibility

A last fundamental consequence of the non-differentiability is
the breaking of a discrete symmetry, namely, of the reflection
invariance on the differential element of time (it is said to be
discrete since it is not a continuous symmetry, such as e.g.,
translation or rotation, but a discontinuous one such as a
mirrored symmetry). It implies a two-valuedness of velocity,
which can be subsequently shown to be the origin of the
fundamental use of complex numbers in quantum mechanics
(Célérier and Nottale, 2004). This use determines a large part of
the particularities of quantum mechanics with respect to classical
mechanics.

The derivative with respect to the time t of a differentiable
function f can be written twofold (Nottale, 1993)

df

dt
¼ lim

Dtm0

f ðtþDtÞ�f ðtÞ

Dt
¼ lim

Dtk0

f ðtÞ�f ðt�DtÞ

Dt
ð8Þ

The two definitions are equivalent in the differentiable case. In
the non-differentiable situation, both definitions fail, since the
limits are no longer defined. In the new framework of scale
relativity, the physics is related to the behavior of the function
during the zoom operation on the time resolution dt, identified
with the differential element dt. The non-differentiable function
f(t) is replaced by an explicitly scale-dependent fractal function
f(t,dt), which therefore is a function of two variables, t (in space–
time) and dt (in scale space). The two functions f 0þ and f 0�
are therefore defined as explicit functions of the two variables t

and dt

f 0þ ðt,dtÞ ¼
f ðtþdt,dtÞ�f ðt,dtÞ

dt
ð9Þ

f 0�ðt,dtÞ ¼
f ðt,dtÞ�f ðt�dt,dtÞ

dt
ð10Þ

Here we have assumed that dt40. By taking dt algebraic, these
two functions would correspond, respectively, to the positive and
negative parts of a same unique function. One passes from one
definition to the other by the transformation dt2�dt (differen-
tial time reflection invariance), which actually was an implicit
discrete symmetry of differentiable physics. When applied to
fractal space coordinates x(t,dt), these definitions yield, in the
non-differentiable domain, two velocity fields instead of one, that
are fractal functions of the resolution, Vþ ½xðtÞ,t,dt� and
V�½xðtÞ,t,dt�. Each of these fractal velocity field can in turn be
decomposed in terms of a classical part and a fractal part, namely,
Vþ ½xðt,dtÞ,t,dt� ¼ vþ ½xðtÞ,t�þwþ ½xðt,dtÞ,t,dt� and V�½xðt,dtÞ,t,dt� ¼

v�½xðtÞ,t�þw�½xðt,dtÞ,t,dt�.
The important fact appearing here is that there is no a priori

reason for the two classical parts to be the same. In several works
Ord and Deakin (1996) and Ord and Galtieri (2002) also insist on
the importance of introducing entwined paths for understanding
quantum mechanics (but without giving a cause for this funda-
mental two-valuedness), while Jumarie (2006) supports the scale-
relativistic view that the use of complex-valued variables appears
as a direct consequence of the irreversibility of time.

A simple and natural way to account for this doubling consists of
using complex numbers aþ ib and the complex product, according
to which (aþ ib) (cþ id)¼(ac�bd)þ i(adþbc). This is the origin of
the complex nature of the wave function of quantum mechanics.
Actually, the choice of complex numbers to represent the two-
valuedness of the velocity can be proven to be a simplifying and
covariant choice (Célérier and Nottale, 2004; Nottale, 2008), in the
sense of the principle of covariance, according to which the form of
the equations of physics should be conserved under all transforma-
tions of coordinates. Indeed, the choice of the complex product
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allows one to suppress what would be additional infinite terms in
the final equations of motion.

Another consequence of the combination of the two velocity
fields into a single complex velocity field is that, in terms of this
physical tool, one recovers a global reversibility of physical laws,
as seen from the derivation of the Schrödinger equation.

2.2.4. Covariant total derivative operator

We are now led to describe the elementary displacements for
both processes, dX7 , as the sum of a classical part, dx7¼v7dt,
and of a fractal fluctuation dx7 , i.e.,

dXþ ðtÞ ¼ vþdtþdxþ ðtÞ
dX�ðtÞ ¼ v�dtþdx�ðtÞ ð11Þ

and similar relations for the other variables. One passes from one
process to the other by the transformation dt2�dt. More
generally we define two classical derivatives, dþ/dt and d�/dt,
such that

dþ
dt

xðtÞ ¼ vþ ,
d�
dt

xðtÞ ¼ v� ð12Þ

These expressions are also valid for three space variables by
considering that x and v represent vectors.

The two derivatives can now be combined to construct a
complex derivative operator that allows recovering local differ-
ential time reversibility in terms of the new complex process
(Nottale, 1993). We define it as

d̂

dt
¼

1

2

dþ
dt
þ

d�
dt

� �
�

i

2

dþ
dt
�

d�
dt

� �
ð13Þ

This choice is motivated by the need to recover, at the classical
limit (where the two velocities are equal), the classical real
velocity as real part of this complex velocity and a vanishing
imaginary part. This is the main tool of the theory.

Applying this operator to the classical part of the position
vector yields a complex velocity

V ¼
d̂

dt
xðtÞ ¼

vþ þv�
2
�i

vþ�v�
2

ð14Þ

We call V the real part of this complex velocity and U its
imaginary part, i.e., V ¼ V�iU, with V¼(vþþv�)/2 and
U¼(vþ�v�)/2.

After having defined the covariant derivative, we now need to
find its expression. This will be achieved by explicitly calculating
its effect on a given physical quantity.

For this purpose, let us first calculate the derivative of a scalar
function f. Since the fractal dimension is 2, we need to go to
second order of expansion (this is reminiscent of Einstein’s
argument about Brownian motion). For one variable it reads

df

dt
¼
@f

@t
þ
@f

@X

dX

dt
þ

1

2

@2f

@X2

dX2

dt
ð15Þ

Once again the generalization of this writing to three dimen-
sions is straightforward (Nottale, 1993).

Let us now take the stochastic mean of this expression (i.e., we
take the mean of the stochastic variable Z, which appears in the
definition of the fractal fluctuation dx). By definition, since
dX¼dxþdx andodx4¼0, we have odX4¼dx, so that the
second term is reduced (in three dimensions) to vrf. (Recall that
this expression denotes the scalar product of the velocity
v¼(vx,vy,vz) by the gradient rf¼(qf/qx, qf/qy, qf/qz) of the function
f, i.e., in decompacted form, vrf¼vx qf/qxþvyqf/qyþvzqf/qz).

Now concerning the term dX2/dt, it is infinitesimal and therefore
not taken into account in the standard differentiable case. But in the
non-differentiable case considered here, the mean squared fluctua-
tion is non-vanishing and of order dt, namely, odx24¼2Ddt, so
that the last term of Eq. (15) amounts in three dimensions to a
Laplacian (defined as D¼q2/qx2

þq2/qy2
þq2/qz2). We obtain, respec-

tively, for the (þ) and (�) processes

d7 f

dt
¼

@

@t
þv7 Ur7DD

� �
f ð16Þ

The last step consists of recombining the two derivatives into
the complex covariant derivative. Substituting Eq. (16) into (13),
we finally obtain the expression for the covariant time derivative
operator (Nottale, 1993)

d̂

dt
¼

@

@t
þV Ur�iDD ð17Þ

This is one of the main tools of the theory of scale relativity.
Indeed, the passage from standard classical (i.e., almost every-
where differentiable) mechanics to the new non-differentiable
theory can now be implemented by replacing the standard time
derivative d/dt by the new complex operator d̂=dt (Nottale, 1993).

Note that in this replacement, one should remain aware of the
fact that this derivative operator is a linear combination of first
and second order derivatives, in particular when dealing with the
Leibniz rule about derivatives of a product and of composed
functions. Now it is possible to build more efficient, fully
covariant, tools (Pissondes, 1999). This can be made by introdu-
cing a velocity operator V̂ ¼ V�iDr (Nottale, 2004), in terms of
which the first order Leibniz rule still applies, since the covariant
derivative now reads

d̂

dt
¼

@

@t
þ V̂Ur ð18Þ

In other words, this means that d̂=dt plays the role of a
‘‘covariant derivative operator’’, namely, we are able, by using it,
to write the fundamental equations of physics under the same
form they had in the differentiable case.
3. Avascular stages of growth of solid tumors in the presence
of an immune system response

The immune system is a network of cells, tissues, and organs
that work together to defend the body against attacks by foreign
bodies. The immune system must recognize foreign bodies to
respond. Let us assume that the tumor cells have undergone some
changes on the way to malignancy and hence are able to be
recognized by the immune system as foreign. In most cases, the
immune system destroys foreign bodies in two ways, one is a
humoral response which is done by soluble proteins, known as
antibodies, in the bodily fluid. The second is a cytotoxic response
whereby the killer cells respond to the cancer cells.

For definiteness, let us consider the cytotoxic response. Let
T(r,t) be the concentration of the tumor cells at position r and
time t, and let E(r,t) be the concentration of the effector cells
constituting the cytotoxic response. In the absence of immune
response, the tumor grows according to the equation

@T

@t
¼ rT 1�

T

K

� �
þDr2T ð19Þ

where D, K, and r are positive parameters, D being the random
motility coefficient of the tumor cells, K the carrying capacity of
the environment, and r the logistic proliferation rate of the
tumor cells.

One of the main factors (but not the only one) contributing to
the induction and maintenance of cancer dormancy is the reac-
tion of the host immune system to the tumor cells (Schirrmacher,
2001; Uhr and Marches, 2001). Indeed, tumor-associated antigens
can be expressed on tumor cells at very early stages of tumor
progression (Coulie, 1997) and, as a consequence, during the
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avascular stage, tumor development can be effectively controlled
by effector cells: tumor-infiltrating cytotoxic lymphocytes (TICLs)
(Loeffler and Ratner, 1989). The TICLs may be cytotoxic lympho-
cytes (CD8þCTLs), natural killer-like (NK-like) cells and/or lym-
phokine activated killer (LAK) cells (Deweger et al., 1987; Forni
et al., 1994; Lord and Burkhardt, 1984; Wilson and Lord, 1987).

The effector cells work by combining with the tumor cells and
destroy them by lysis (refers to the death of a cell by the breaking
of the cellular membrane), that is

EþT��!
k1

C��!
k2

EþP ð20Þ

where C is a complex of effector and tumor cells and P is the
product of lysis. The parameters k1 and k2 are non-negative
kinetic constants: k1 describe the rate of binding of TICLs to
tumor cells without damaging cells; k2 is the rate of detachment
of TICLs from tumor cells, resulting in an irreversible program-
ming of the tumor cells for lysis (i.e., death). Using the law of
mass action, which states that the rate of a reaction is propor-
tional to the product of the concentration of the reactants,
neglecting the spatial variation of the cell of the immune system,
the equations of the effector and the complex are given by

dE

dt
¼�k1ETþk2C ð21Þ

dC

dt
¼ k1ET�k2C ð22Þ

For the sake of simplicity, and since the generality of the
problem is not lost, we make the assumption that lysis occurs
much faster than the processes in the volume element considered
(i.e., the time variations of the effector cells E and of the complex
of effector and tumor cells C are much slower than the time
variation of the product of lysis P) (Matzavinos and Chaplain,
2004). Thus we make the quasi-steady state hypothesis

k1ET�k2C ¼ 0 ð23Þ

According to this assumption, by adding Eqs. (21) and (22), we
finally get

dðEþCÞ

dt
¼ 0 which implies that EþC ¼ E0 ð24Þ

By substituting the value of C into Eq. (23), we obtain

E¼
k2E0

k1Tþk2
ð25Þ

Hence the rate at which T is destroyed by immune cells is
approximately given by

�k1ET ¼�
k1k2E0T

k1Tþk2
ð26Þ

Thus, the equation for T, including the immune response, is
given by

@T

@t
¼ rT 1�

T

K

� �
�

k1k2E0T

k2þk1T
þDr2T ð27Þ

Let

f ðTÞ ¼ rT 1�
T

K

� �
�

k1k2E0T

k2þk1T
ð28Þ

so we have

@T

@t
¼ f ðTÞþDr2T ð29Þ
Now, for small values of T, we can expand (26) in series,
keeping the terms up to the second order and get

f ðTÞ ¼ rT 1�
T

K

� �
�k1E0T 1�

T

k2=k1

� �
¼ ðr�k1E0ÞTþ

k2
1E0

k2
�
r
K

� �
T2

ð30Þ

i.e., the immune response for small concentrations of the tumor
cells T presents also a logistic growth, this time k1E0 being the
growth rate and k2/k1 the carrying capacity of the environment.

Let us see first, what happens with Eq. (29) with (30), if one
considers the space–time where the tumor cells T move, changes
from classical to non-differentiable.

We already know, according to Nottale (1993), that a transi-
tion from classical (differentiable) mechanics to the scale relati-
vistic framework is implemented by passing to a fluid-like
description (the fractality of space), considering the velocity field
a fractal function explicitly depending on a scale variable (the
fractal geometry of each geodesic) and defining two fractal
velocity fields which are fractal functions of the scale variable dt

(the non-differentiability of space).
Consequently, replacing d/dt by d̂=dt (using (17)) and solving

for both real and imaginary parts, (29) with (30) becomes,

@T

@t
þVUrT ¼ f ðTÞþDr2T

UUrTþDr2T ¼ 0 ð31a;bÞ

where V ¼ V�iU is the complex velocity (we have identified the
real velocity V with v, the instantaneous velocity of the tumor
cells) and D defines the ‘‘amplitude’’ of the fractal fluctuations.

We may notice a clear difference from the classical
approach—the occurrence (from the imaginary parts) of the
second Eq. (31b), which is absolutely new.

Let us analyze in what follows, (31b) which, one can see, may
contain some interesting biophysical features.

If we compare it with Navier–Stokes equation (McCormack
and Crane, 1973), where there are no pressure gradients, we can
see the first term of (31b) gives the rate at which T is transported
through a ‘fluid’ by means of the motion of ‘fluid’ particles with
the velocity U; the second term gives the diffusion of T, (D which
is the ‘‘amplitude’’ of the fractal fluctuations, plays here the role of
the ’cinematic viscosity’ of the ‘fluid’). One can notice, in those
regions in which the second term of (31b) is negligible, DT/Dt¼0.
This means that in inviscid flows, for instance, T is frozen into the
‘particles of the fluid’. Physically this is because in an inviscid
‘fluid’ shear stresses are zero, so that there is no mechanism by
which T can be transferred from one ‘fluid’ particle to another.
This may be the case for the transport of T by U in Eq. (31b).

If we consider the flow of T induced by a uniform translatory
motion of a plane spaced a distance Y above a stationary parallel
plane, and if the tumor cells concentration increases from zero (at
the stationary plane) to U (at the moving plane) like in the case of
simple Couette flow, or simple shear flow, then

rate of shear deformation¼
dT

dy
¼

U

Y
ð32Þ

For many fluids it is found that the magnitude of the shearing
stress is related to the rate of shear proportionally

Tshear ¼ Z
dT

dy
¼ Z T

Y
ð33Þ

Fluids which obey (33) in the above situation are known as
Newtonian fluids, which have a very small coefficient of viscosity.
When such ’fluids’ flow at reasonable velocities it is found that
viscous effects appear only in thin layers on the surface of objects
or surfaces over which the ’fluid’ flows. That is, if one continues
the analogy, and questions how might be T transported by the
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motion of ‘fluid’ particles with the velocity U, in Eq. (31b), one can
assume that the mechanism of transfer of T from one particle of
’fluid’ to another is achieved over small distances (in thin layers,
as stated above).

To resume, the model considered here is the transport of T,
along a small elementary distance L, by the ‘particles’ of a
Newtonian fluid moving with velocity U, where the stress tensor
obeys (33), i.e.,

dTðxÞ

dx
¼

TðxÞ

L
ð34Þ

like in the case of simple Couette flow, or simple shear flow.
Consequently, (31b) reduces to the scalar equation

T 00ðxÞþK2ðxÞTðxÞ ¼ 0 ð35Þ

which is the time independent Schrödinger equation, and

K2ðxÞ ¼
1

LDUðxÞ ð36Þ

with L and D having the significance of a small elementary
distance and of the ’cinematic viscosity’ (or ‘‘amplitude’’ of the
fractal fluctuations), respectively, and U(x) is the velocity of the
‘Newtonian fluid’, which is nothing but the imaginary part of the
complex velocity (Pissondes, 1999).

For D¼_/2m and small distances of the order of Compton
length, L¼_/mc (Nottale, 2004), an equation similar to (35) was
solved using the WKBJ approximation method in Buzea et al.
(2009, 2010). We derived there, for different shapes of the
potential, both asymptotic solutions and quantization conditions
(Buzea et al., 2009, 2010)Z x2

x1

kdx0 ¼ n�
1

2

� �
p, n¼ 1,2,3,. . . ð37Þ

where k is the wave number.
Consequently, in the case presented here we may find two

ways of diffusion of the tumor cells: one normal diffusion
described by Eq. (31a) characterized by the diffusion parameter
D (random motility coefficient of the tumor cells), over distances
of the order LTE200 mm (Cristini et al., 2003; Macklin 2003;
Macklin and Lowengrub, 2005) and a second diffusion over the
Newtonian fluid, described by Eq. (35) and characterized by D the
‘cinematic viscosity’ (or ‘‘amplitude’’ of the fractal fluctuations),
over much smaller distances of the order of Compton length, L
(Nottale, 2004). If Scale Relativity theory works, this might lead to
a very important and new conclusion, that even in the avascular
stages, a tumor might propagate and invade healthy tissues.

Furthermore, let us find if Eq. (31a) has a traveling wave
solution. Consider a traveling wave solution of the form

Tðx,tÞ ¼FðxÞ, x¼ x�ct ð38Þ

Such a wave moves at a constant speed c from left to right. So
we have

@T

@t
¼
@F
@x
@x
@t
¼�F0c

@T

@x
¼
@F
@x
@x
@x
¼F0

@2T

@x2
¼F00 ð39Þ

where prime means derivative with respect to x.
By substituting (39) into Eq. (31a), we have

�F0cþvF0 ¼ f ðFÞþDF00 ð40Þ

or with the substitutions

a¼ 1

D

r
K
�

k2
1E0

k2

� �
b¼
1

D
ðk1E0�rÞ ð41Þ

we get

d2F
dx2
þ

1

D
ðc�vÞ

dF
dx
¼ aF2

þbF ð42aÞ

If the convective processes are linear, i.e., v¼constant,
Eq. (42a) with M¼v/c, where M is the Mach’s number, becomes

d2F
dx2
þ

c

D
ð1�MÞ

dF
dx
¼ aF2

þbF ð42bÞ

Moreover, if ME1, Eq. (42b) takes the usual form

d2F
dx2
¼ aF2

þbF ð42cÞ

Eq. (42c), although straightforward in appearance, is in fact
rather difficult to solve because of the non-linearity of the term
F2. In order to obtain the exact solution of (42c), this equation is
multiplied by dF/dx, so it becomes

dF
dx

d2F
dx2
¼ aF2 dF

dx
þbF

dF
dx

ð43Þ

which can further be written as

d

dx
1

2

dF
dx

� �2

�
a
3
F3
�
b
2
F2
�C0

" #
¼ 0 ð44Þ

Eq. (44) is immediately integrable and we get

7

Z
dFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F3
þð3b=2aÞF2

þð3C0=aÞ
q ¼

ffiffiffiffiffiffi
2a
3

r
ðx�x0Þ ð45Þ

Now, the third degree polynomial under the radical sign in
(45) may be written as

PðFÞ ¼F3
þ

3b
2aF

2
þ

3C0

a ¼ ðF�W1ÞðF�W2ÞðF�W3Þ ð46Þ

where W1rW2rW3AR are the roots of the cubics. Furthermore, if
we make the substitution

F¼ W1þðW2�W1Þsin2 f ð47Þ

we get

PðFÞ ¼F3
þ

3b
2aF

2
þ

3C0

a ¼ ðW3�W1ÞðW2�W1Þ
2
ð1�k2sin2 fÞsin2 fcos2 f

ð48Þ

with

k2 ¼
W2�W1

W3�W1
ð49Þ

Using (48), taking into account (49) and the differential of (47),
one may now re-write (45) in the form

7

Z
dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�k2sin2 f
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
6
ðW3�W1Þ

r
ðx�x0Þ ð50Þ

One can see that it can be written as an elliptic integral, if we
follow the standard procedure (Bowman 1953) sin f¼u,
f¼arcsin u and we find

7
Z

duffiffiffiffiffiffiffiffiffiffiffiffi
1�u2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�k2u2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
6
ðW3�W1Þ

r
ðx�x0Þ ð51Þ

or

u¼ sn½7gðx�x0Þ; k� ð52Þ
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where

g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðW3�W1Þ

6

r
ð53Þ

Finally, after going back to the original variable we get the
exact solution of (42c)

F¼ W1þðW2�W1Þsin2
farcsin sn½7gðx�x0Þ; k�g ð54Þ

or after further straightforward simplifications

FðxÞ ¼ W2�ðW2�W1Þcn2½gðx�x0Þ; k� ð55Þ

with the modulus k given by (49) and where we have dropped the
minus sign from the argument of the cn function since it is
symmetric (see Fig. 5a for a plot of the solution (55)).

Now, let us find and analyze the solutions of the cubic (46) W1,
W2, and W3 first by reducing it to a monic trinomial. Substituting F
by U�ðb=2aÞ (Tschirnhaus transformation) we get the equation

U3
þpUþq¼ 0 ð56Þ

where

p¼�
3b2

4a2
; q¼

b3

4a3
þ

3C0

a
ð57Þ

For finding the roots, we use in what follows the trigonometric
method. When a cubic equation has three real roots, the formulas
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Fig. 5. (a) cnoidal modes of propagation of a perturbation in the tumor cells concentratio

for k�1.
expressing these roots in term of radicals involve complex
numbers. A representation of these roots in term of cosine and
arccosine allows to avoid complex numbers. The formulas which
follow are true in general (except when p¼0), but involve
complex cosine and arccosine when there is only one real root.

Starting from Eq. (56), let us set U¼ ucosy. The idea is to
choose u for identifying Eq. (56) with the identity

4cos3y�3cosy�cosð3yÞ ¼ 0 ð58Þ

In fact, choosing u¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
�p=3

p
and dividing Eq. (56) by u3=4 we

get

4cos3 y�3cosy�
3q

2p

ffiffiffiffiffiffiffi
�3

p

s
¼ 0 ð59Þ

Combining with above identity, we get

cosð3yÞ ¼
3q

2p

ffiffiffiffiffiffiffi
�3

p

s
ð60Þ

and thus the roots are

Ul ¼ 2

ffiffiffiffiffiffiffiffi
�

p

3

r
cos

1

3
arccos

3q

2p
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 !
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or getting back to the original variable and replacing p and q from
(57) we get

Wk ¼
b
a cos

p
3
ð3�2kÞ�

1

3
arccos 1þ

12a2C0

b3

 !" #
�

b
2a for k¼ 1,2,3

ð62Þ

This formula is totally real if po0 (which is always true, see
(57)) and the argument of the arccosine is between �1 and 1,
which is equivalent to

C0

a2

b3

2a2
þ3C0

 !
r0 ð63Þ

which implies also po0. Thus the above formula for the roots is
totally real if and only if the three roots are real (as we assumed
from the beginning). If ðC0=a2Þððb3=2a2Þþ3C0Þ40 there is only
one real root, the other two being complex conjugate.

Let us express the solution for two particular cases by taking
the equal sign in the inequality (63), i.e., C0¼0 or b3=a2 ¼�6C0.
The roots of the polynomial (46) according to (62) are

W1 ¼ W2 ¼ 0, W3 ¼�
3b
2a

ð64Þ

W1 ¼ W2 ¼�
b
a

, W3 ¼
b

2a
ð65Þ

and the solution (55) with (53) and (49) writes

FðxÞ ¼ constant ð66Þ

FðxÞ ¼ �
b
a
þ

3b
2a

sech2

ffiffiffiffiffiffiffi
�b

p
2
ðx�x0Þ

 !
ð67Þ

, respectively.
‘Cancer dormancy’ is an operational term used to describe the

phenomenon of a prolonged quiescent state in which tumor cells
are present, but tumor progression is not clinically apparent
(Schirrmacher, 2001; Uhr and Marches, 2001; Yefenof, 2001).
As a condition, cancer dormancy is often observed in breast
cancers, neuroblastomas, melanomas, osteogenic sarcomas, and
in several types of lymphomas, and is often found ‘accidentally’ in
tissue samples of healthy individuals who have died suddenly
(Alsabti, 1978; Breslow et al., 1977). In some cases, cancer
dormancy has been found in cancer patients after several years
of front-line therapy and clinical remission. The presence of these
cancer cells in the body determines, finally, the outcome of the
disease. In particular, age, stress factors, infections, act of treat-
ment itself or other alterations in the host can provoke the
initiation of uncontrolled growth of initially dormant cancer cells
and subsequent waves of metastases (Uhr and Marches, 2001;
Holmberg and Baum, 1996). Recently, some molecular targets for
the induction of cancer dormancy and the re-growth of a dormant
tumor have been identified (Aguirre Ghiso, 2002; Udagawa et al.,
2002). However, the precise nature of the phenomenon remains
poorly understood.

We see that, for a particular choice of parameters, we were
able to explain the phenomenon of cancer dormancy (see the
solution (66)). The behavior of the cancer dormancy simulations
can be described as highly irregular, depicting unstable and
heterogeneous tumor cell distributions that are nonetheless
characterized by a relatively low total number of tumor cells.
This behavior is consistent with several immunomorphological
investigations with tumor spheroids infiltrated by TICLs.

Moreover, the alteration of certain parameters of the model
resulted in the existence of a traveling-wave-like solution (see the
solution (67)). These traveling waves are of great importance
because when they exist, the tumor invades the healthy tissue at
its full potential escaping the host’s immune surveillance.
As a result the propagation of a perturbation in the tumor cell
concentration T is achieved by cnoidal modes (55) for the ME1
regimes. These modes degenerate either in harmonic modes for
k�0 and harmonic packet modes for k-0, or in solitons like (67)
for k�1 and soliton packets for k-1. Practically one may
distinguish between two distinct propagation regimes: (i) non-
quasi-autonomous structures like harmonic waves or harmonic
packets of waves (see Fig. 5b for k-0); (ii) quasi-autonomous
structures like solitons or soliton packets (see Fig. 5c for k-1).
One notice that in the later situation, the quasi-structures con-
serve their ‘‘qualities’’.
4. Conclusions

In this paper we analyzed a continuum model of cancer cell
invasion of tissue which explicitly accounts for cytotoxic response
of the immune system whereby the killer cells respond to the
cancer cells, in the framework of the Scale Relativity theory.

The main results of this work may be summarized as follows:
(a)
 considering the space(–time) where tumor cells move,
changes from classical to non-differentiable, a second diffu-
sion phenomena, over the Newtonian fluid, described by Eq.
(35) and characterized by D the ‘cinematic viscosity’ (or
‘‘amplitude’’ of the fractal fluctuations), over much smaller
distances of the order of Compton length, L occurs—leading
to a very important feature of malignant tumors, that even in
avascular stages they might propagate and invade healthy
tissues;
(b)
 an analytical traveling wave solution (see Eq. (55)) was
established in this paper for a reduced system, which none-
theless captures the essential elements of the full model
presented in Matzavinos and Chaplain (2004);
(c)
 for a particular choice of parameters, we were able to explain
the phenomenon of cancer dormancy (see the solution
(66))—in order to see how much dependent are these results
on the choice of parameters, in Appendix we perform a
sensitivity analysis;
(d)
 the propagation of a perturbation in the tumor cell concen-
tration T is achieved by cnoidal modes (55) for the ME1
regimes—these modes degenerate either in harmonic modes
for k�0 and harmonic packet modes for k-0, or in solitons
like modes (67) for k�1 and soliton packets for k-1.
The ability of cancer cells to invade tissue is one of the defining
characteristics of the disease. A more detailed knowledge of the
processes involved in cancer invasion is therefore of the utmost
importance for gaining a deeper understanding of tumor growth
and development, and for the design of future anti-cancer
strategies.

Systems biology has emerged during the last decade as a
powerful new paradigm for research in the life sciences. It is
based on the premise that the properties of complex systems
consisting of many components that interact with each other in
non-linear, non-additive ways cannot be understood solely by
focusing on the components. The system as a whole has emergent
properties that are not visible at the parts level. It is clear that our
modeling and analysis of a traveling-wave solution to a contin-
uous mathematical model describing the growth of a solid tumor
in the presence of an immune system response in the framework
of Scale Relativity theory opens the gate for many other potential
analysis and modeling of mechanisms of tumor-cell–host-cell
interactions, complex kinetic reactions, intricate systems biology
models based on space–time non-differentiability, which proves
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to be the space–time where biological phenomena take place and
in particular, where malignant tumors grow in.
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Appendix

Let us reconsider the equation

d2F
dx2
¼ aF2

þbF ðA1Þ

By making the substitutions

dF
dx
¼F0 ¼ u

d2F
dx2
¼F00 ¼ u0 ðA2Þ

Eq. (A1) becomes the system of equations

F0 ¼ u

u0 ¼ bFþaF2
ðA3Þ

In the linear approximation the stationary state of (A3) reads
u1¼F1¼0. Then, the characteristic equation reads

1�l 0

0 b�l

�����
�����¼ ð1�lÞðb�lÞ ¼ 0 ðA4Þ

with the solutions

l1 ¼ 1, l2 ¼ b ðA5Þ

Thus we have: (i) if b40 both eigenvalues are positive. The
stationary state (0,0) is an unstable node, so the phase trajectories
diverge monotonically from the fixed point and often tend
towards a new attractor; (ii) if bo0, an eigenvalue is negative
and the other one is positive. The stationary state (0,0) is a saddle
point. Along one direction of the phase space the trajectories
converge and along another direction they diverge. As a result of
this divergence, the stationary state (0,0) is unstable and, in most
cases, the trajectories tend to a new attractor.

By means of the transition from the unstable node to the
saddle point, the behavior of the system in the phase space
changes dramatically and one can expect to a bifurcation (for
more details see Jackson (1991)).

Now, as reads from (55)—see Fig. 5a–c, it results that the
‘‘traveling waves’’ are ‘‘built of’’ cnoidal oscillating modes of the
tumor cells concentration field. The modulus k of the Jacobi
elliptic function cn implements various flowing regimes as fol-
lows: (i) for k-0 the cnoidal modes degenerate in wave packets
and for k�0 in harmonic waves; (ii) for k-1 the cnoidal modes
degenerate in soliton packets, and for k�1 in solitons—these
sequences are specific to a flowing regime by means of cuase-
autonomous structures; (iii) the transition between the two
regimes occurs for kE0.7, as can be found in Jackson (1991).
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