
Journal of Theoretical Biology 387 (2015) 46–53
Contents lists available at ScienceDirect
Journal of Theoretical Biology
http://d
0022-51

n Corr
E-m
journal homepage: www.elsevier.com/locate/yjtbi
Modeling perspectives on echolocation strategies inspired by bats
flying in groups

Yuan Lin, Nicole Abaid n

Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, United States
H I G H L I G H T S
� We model bats avoiding obstacles by emitting and receiving echolocation pulses.

� We let bats eavesdrop on peers' sensing signals and change pulse emission rate.
� Eavesdropping is beneficial for collision avoidance when measurement noise is low.
� Decreasing emission rate limits sonic interference, but collisions increase.
� Increasing emission rate aids collision avoidance but requires more energy per bat.
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Bats navigating with echolocation – which is a type of active sensing achieved by interpreting echoes
resulting from self-generated ultrasonic pulses – exhibit unique behaviors during group flight. While bats
may benefit from eavesdropping on their peers' echolocation, they also potentially suffer from confusion
between their own and peers' pulses, caused by an effect called frequency jamming. This hardship of
group flight is supported by experimental observations of bats simplifying their sound-scape by shifting
their pulse frequencies or suppressing echolocation altogether. Here, we investigate eavesdropping and
varying pulse emission rate from a modeling perspective to understand these behaviors' potential
benefits and detriments. We define an agent-based model of echolocating bats avoiding collisions in a
three-dimensional tunnel. Through simulation, we show that bats with reasonably accurate eaves-
dropping can reduce collisions compared to those neglecting information from peers. In large popula-
tions, bats minimize frequency jamming by decreasing pulse emission rate, while collision risk increases;
conversely, increasing pulse emission rate minimizes collisions by allowing more sensing information
generated per bat. These strategies offer benefits for both biological and engineered systems, since fre-
quency jamming is a concern in systems using active sensing.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Species of bats in the suborder Microchiroptera are unique
mammals that primarily navigate in their environment using
echolocation (Au and Simmons, 2007). They emit directional
ultrasounds in pulses (Surlykke et al., 2009), receive reflected
echoes to their auditory system through their deformable pinnae
(Gao et al., 2011), and constantly interpret the echoes using a
powerful neurological signal processing system (Simmons et al.,
1979; Horowitz et al., 2004). By analyzing echo harmonic struc-
tures, bats are able to differentiate targets from multiple sound
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reflections (Bates et al., 2011). From a behaviorial perspective,
many species of bats are highly social. They live in colonies that
range from tens to millions of individuals (Zahn, 1999; Betke et al.,
2008). They may exhibit collective behavior (Couzin, 2007) on fast
time scales, such as their motion in group flight in the wild (Betke
et al., 2008), and slower time scales, such as their roost selection
dynamics (Kashima et al., 2013). Within their colonies, bats are
able to fly in high densities (Gillam et al., 2010; Betke et al., 2007)
at fast speeds (Theriault et al., 2010), while avoiding collisions with
peers and obstacles in the environment.

Bat group flight is a unique phenomenon that involves both
complex sensing and behaviorial strategies. A major source of the
complexity is a bat's use of echolocation as an active sensing
mechanism (Kreucher et al., 2005; Musiani et al., 2007) which allows
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Fig. 1. Schematic of three-dimensional sensing space and repulsion zone for bat i.
The bat has position xi and velocity vi . The spherical cone shows the bat's sensing
space with sensing range rs and angular range of sensing ϕ. The gray sphere shows
the bat's repulsion zone with radius rr.
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interference from peers' sounds. The interference from active sensing
can be both constructive and destructive, which is evidenced by bats'
so-called eavesdropping and frequency jamming avoidance behaviors,
respectively. Eavesdropping behavior is defined as bats listening and
reacting to peers' pulses and echoes (Barclay, 1982; Chiu et al., 2008)
in situations wherein they do or do not emit pulses. Frequency jam-
ming happens when bats emit pulses of frequencies that overlap the
frequency bandwidth of peers' pulses, which may be inevitable for
bats flying in large groups in natural settings (Gillam
et al., 2010; Betke et al., 2007; Theriault et al., 2010). It has been
demonstrated that bats are able to shift the frequencies of their
ultrasounds in situations tailored to produce jamming (Gillam et al.,
2007; Hiryu et al., 2010; Bates et al., 2008), thus avoiding potentially
destructive interference, and recent work has shown incidences of
offensive jamming between wild bats during hunting which may
necessitate such accommodations (Corcoran and Conner, 2014). Bats
are also observed to cease vocalization in the presence of peers in
laboratory settings (Chiu et al., 2008; Jarvis et al., 2013), which may
allow them to simultaneously eavesdrop on peers' information and
avoid jamming. There are currently few studies, however, doc-
umenting bats' behavior during flight in the wild and in dense groups.

Mathematically, animal behavior can be modeled as a multi-
agent system, where each agent in the group is subject to beha-
vioral rules (Vicsek et al., 1995). Collective behavior at the group
level, such as fish schooling (Abaid and Porfiri, 2010; Lopez et al.,
2012), bird flocking (Ballerini et al., 2008) and ant lane formation
(Couzin and Franks, 2003), may be simulated using these so-called
agent-based models when agents are equipped with specific
sensing and response schemes (Sumpter, 2006). Rules prescribed
to individuals for collective behavior may include repulsion from
peers, alignment of velocity directions, and attraction to peers’
positions (Aoki, 1982; Couzin et al., 2002). These rules are realized
in models by building either discrete decision-making (Vicsek
et al., 1995; Aoki, 1982; Couzin et al., 2002) or potential functions
(Strefler et al., 2008). Agent-based modeling is also applied to
study multi-agent systems in other disciplines, such as population
dynamics (Wang et al., 2012; Droz and Pekalski, 2001), predation-
prey interactions (Olson et al., 2013; Angelani, 2012; Lin and Abaid,
2013), cell chain migration (Wynn et al., 2012), and disease or
parasite transmission (Jiang et al., 2012; Tully et al., 2013).

In this work, we establish an agent-based model to study
echolocation strategies which include eavesdropping and chan-
ging pulse emission rate inspired by bats emerging from a cave. In
the model, bats are designed to fly through a three-dimensional
tunnel of rectangular cross-section while avoiding collisions with
peers and boundaries, referred to as obstacles. They emit pulses of
unique frequencies, and use echoes generated by their own pulses
and eavesdropped echoes and pulses from peers to locate obsta-
cles. We note that, although bats echolocate in nature using
diverse calls that may be constant frequency or frequency modu-
lated, the acoustic signature of calls are not considered in this
model since time is discretized into steps which each can contain a
single call. Bats in the model obtain exact obstacle locations with
their own pulses, while they estimate obstacle locations using
echoes and pulses from their peers perturbed by random noise
with a fixed probability distribution; we call this penalty on
eavesdropping “measurement noise”. In a simulation study, we
find that eavesdropping is beneficial in collision avoidance when
measurement noise is low. In this case, bat pulse emission rate is
balanced between emitting pulses to reliably avoid collisions and
varying pulse emission rate to avoid frequency jamming and
conserve energy for echolocation, which is quantified using
defined cost functions relevant to both biological and engineered
systems. This model may help better understand bats' group
behavior and inspire control algorithms for robotic teams that use
active sensing (Li et al., 2010; Zhuo and Xiao-ning, 2011).
2. Modeling

2.1. Model description

In the following, we describe the model for the acoustic field
generation and for bat behavior.

2.1.1. Sensing setup
We consider an agent-based model with the agents, “bats”,

flying through a three-dimensional tunnel using echolocation and
tasked with collision avoidance. The N bats are modeled as self-
propelled particles moving with a constant velocity magnitude s in
discrete time. The three-dimensional tunnel is a cuboid with side
lengths Lx, Ly and Lz, which are the width, length and height of the
tunnel, respectively. To model echolocation, we consider that each
bat emits a pulse of a unique frequency according to an inde-
pendent, identically distributed Bernoulli random variable with a
constant pulse emission probability p at each time step. The pulse
is considered to cover a three-dimensional sensing space, a
spherical cone, inspired by a simplified bat sonar beam pattern
(Surlykke et al., 2009; Bates et al., 2011; Jakobsen and Surlykke,
2010). The apex of the spherical cone is the bat's position; its side
length equals the bat's sensing range rs; and its opening angle is
the bat's angular range of sensing ϕ. The bat's velocity vector
originates at the spherical cone's apex and aligns with its central
axis. We define a repulsion zone as a sphere of radius rr centered at
the bat's position. Peers and boundaries with positions in this zone
are considered to be obstacles and are perceived by the bat as too
close, so the bat performs a collision avoidance maneuver. A
schematic of the sensing space and the repulsion zone for bat i,
i¼ 1;2;…;N, is shown in Fig. 1.

2.1.2. Echo generation
When a bat emits a pulse at a given time step, echoes are

reflected from peers and boundaries that occupy the bat's sensing
space simultaneously. These echoes are considered as the bat's
“self-echoes” as they result from the bat's pulse. Echoes generated
by pulses from peers in the group are called “peers' echoes”.
Echoes exist for a single time step and they occupy hemispheres of
a constant radius re, because bats and boundaries are assumed to
have surfaces that reflect sound homogeneously. The emitted
pulses and reflected echoes are both considered to be incident at
the same time step, since we select a discrete time step large
enough for sound to propagate through the full echo hemisphere.
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We define cases for echoes reflected from peers and boundaries
separately. In the first case, a bat's sensing space is considered to
be occupied by a peer if the distance between the bat and the peer
is less than rs and the angle between the vector from the bat to the
peer and the bat's velocity is less than ϕ=2. In this case, if the bat
emits a pulse, a hemispherical echo is simultaneously reflected
from the peer with its base centering at the peer's position and its
central axis connecting the bat and the peer; the dome of the echo
is directed toward the bat emitting the pulse. In the second case, a
bat's sensing space is occupied by a boundary, so we can find the
cross-section of the sensing cone that passes through the cone's
central axis and is orthogonal to the two-dimensional boundary.
The intersection of this cross-section with the boundary is a line
segment. We consider that a hemispherical echo originates from
the point on the line segment which is nearest to the bat's posi-
tion. The base of the hemispherical echo is on the boundary and
the dome is inside the tunnel. If the bat's sensing space is occupied
by multiple boundaries, echoes are reflected from each intersect-
ing boundary independently.

2.1.3. Echo interpretation
While a bat's sonar emission is directional according to the

geometry of the sensing space described above, its sonar reception
is omnidirectional, that is, bats can receive sounds from any
angular position. A bat is designed to use all sound information
(echoes and pulses) it “hears” to locate obstacles, where hearing is
defined in the following. A bat is considered to hear an echo if it
occupies the hemispherical echo volume, which means the dis-
tance between the echo base center and the bat's position is less
than re and the angle between the vector from the echo center to
the bat and the echo's central axis is less than π=2 radians. A bat is
considered to hear a pulse from a peer if the bat occupies the
peer's sensing space. The obstacle locations in the model are taken
as the centers of the echo bases when the bat hears echoes or the
positions of peers whose sensing space is occupied by the bat
when the bat hears peers' pulses.

We enable bats to distinguish between self-information, which
are self-echoes, and peers' information, which are peers' echoes
and pulses, since bats are considered to emit pulses of unique
frequencies. Bats are able to obtain exact obstacle locations by
hearing self-echoes reflecting from them, while they obtain per-
turbed obstacle locations by hearing peers' echoes or pulses. This
perturbation is designed as penalty motivated by the fact that bats
lack timing information for peers' information in nature. The
perturbed location is on the line segment of length re that con-
nects the bat and the obstacle's exact location. The distance
between the bat and the perturbed location is a random number
that has a Gaussian distribution with the exact distance from the
bat to the obstacle as the mean and a perturbation parameter ηd as
the standard deviation. Since the distance between the bat and the
perturbed location is restricted in the interval ½0; re�, we only use
realizations of the Gaussian distribution which give random values
that belong to the stated interval; otherwise, the random variable
value is regenerated.

This model of echo generation and interpretation simplifies the
acoustic interactions that occur between bats and their environ-
ment. For example, we do not consider echo scattering as a result
of an obstacle's surface roughness, which may confound locating
the echo source. These simplifications can be eliminated by
increasing the detail of the model environment and the resulting
acoustic field, which would greatly increase the model's compu-
tational complexity. Since we seek to identify macroscopic group
behaviors, we neglect these details and instead add a random
noise to the bat behavior model as described in the following.
2.2. Position and velocity updates

The update for the position of bat i, xi, is defined at time tþΔt
as

xiðtþΔtÞ ¼ xiðtÞþviðtþΔtÞΔt; ð1Þ
where tARþ , ΔtARþ is the constant time step, and xi; viAR3 are
the bat's position and velocity vectors, respectively. The velocity in
this equation is updated with the goal of the bats avoiding colli-
sions with peers or the domain boundaries.

Specifically, we update bat i's velocity based on the bat's pre-
vious velocity direction, the preferred tunnel direction and a
repulsion force from obstacles. The previous velocity direction is
the base direction from which the bat turns and ensures the
smoothness of the bat's flight trajectory; the preferred tunnel
direction describes an external motivation for the bat's flight; and
the repulsion force enables the bat to reduce collision risk with
peers or boundaries. In particular, the velocity update for bat i at
time tþΔt is

viðtþΔtÞ ¼ s
Rη½α viðtÞ=sþβ yþγ riðtÞ=JriðtÞJ �

JRη½α viðtÞ=sþβ yþγ riðtÞ=JriðtÞJ �J
ð2Þ

where y¼ ½0;1;0� is the constant unit vector representing the
preferred tunnel direction, α, β, and γ are weighting coefficients
describing the velocity update's dependence on the three sum-
mands, and Rη½�� denotes an operator which perturbs a three-
dimensional vector in a random direction uniformly distributed in
the plane normal to it with a Gaussian-distributed random angle.
The Gaussian distribution of this perturbation has mean zero and
standard deviation ηπ with its value restricted in the interval
½0;ηπ�. Here, η is a parameter that describes how well a bat
adheres to the model's desired direction α viðtÞ=sþβ yþγ riðtÞ=Jri
ðtÞJ in the next time step, and can be interpreted as a noise on
both the bat's sensing and decision making. The values of η range
from 0 to 1, where 0 means that bat i updates velocity in the
desired direction and 1 indicates that bat i's velocity update can be
in any direction in the unit sphere.

The repulsion force riðtÞ is given by

riðtÞ ¼ xiðtÞ�
1

jN iðtÞj
XjN iðtÞj

j ¼ 1

yjðtÞ ð3Þ

where N iðtÞ is the set of indices of obstacle locations in bat i's
repulsion zone at time step t, denoted as yjðtÞAR3, and j �j is set
cardinality. Obstacles locations are accurate if obtained by bat i using
self-echoes or perturbed if estimated by bat i using peers' echoes and
pulses. Thus, the repulsion force direction is determined by the
average relative position of obstacle locations in N iðtÞ. Note that a bat
may use both exact and perturbed locations of the same obstacle for
velocity update, which occurs when the bat obtains both self- and
peers' information about an obstacle. When N iðtÞ ¼∅, the term
riðtÞ=JriðtÞJ ¼ ½0;0;0�; this means that the repulsion force is zero
when there are no exact or perturbed obstacle locations in bat i's
repulsion zone. A flow chart that illustrates eavesdropping bats'
behavior is shown in Fig. 2. We comment that, in order to evaluate
the benefit of eavesdropping behavior, we define the case of no
eavesdropping when bats do not use peers' echoes or pulses and fly
independently. In this case,N iðtÞ is the set of indices of exact obstacle
locations obtained by bat i using self-pulses.

Bats' initial positions and velocity directions are generated with
uniform probability in the tunnel and in R3, respectively. We consider
periodic boundary conditions for the tunnel faces which are ortho-
gonal to the Ly direction. The boundary conditions orthogonal to the
Lx and Lz directions are considered as reflective which means, if the
position update defines a position outside a face orthogonal to Lx or Lz
direction, this position is replaced by another one symmetric about



Use self echoes to obtain 
exact obstacle locations

Emit a pulse? 
(Probability based 

on Bernoulli random 
variable)

Perform velocity update to 
avoid obstacles whose exact 
or perturbed locations are in 

the repulsion zone

Perform position update

Eavesdrop peers’ echoes and 
pulses to obtain perturbed 

obstacle locations

No

Yes

Fig. 2. Flow chart that summarizes the decision making and behavior of a bat at
each time step.
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the face at the same time step. In this manner, the bats' positions are
ensured to be inside the finite domain.
3. Observables

We define three observables to measure the behavior of the bat
group: the average collision rate c, the collision/jamming cost s1, and
the collision/energy cost s2. The average collision rate measures the
collision avoidance failure of the bat group. The two cost functions are
defined to consider natural and engineering settings, respectively. The
collision/jamming cost combines average collision rate and potential
for frequency jamming, as the frequency band-widths of bats' pulses
overlap in natural bat swarm. The collision/energy cost combines
average collision rate and energy use per bat, as engineered agents
are able to use unique frequencies in their signals but have limited
power sources for sensing. Energy is only considered to be used for
sensing in this model.

The average collision rate is calculated as the sum of number of
bats colliding with peers or boundaries over time divided by the
number of bats N and by the total number of time steps T. A bat is
defined to collide with a peer if the distance between them is less
than the peer collision range rc and with boundaries when the
reflective boundary conditions for the Lx and Lz directions are used.
Thus,

c¼
PT

t ¼ 1 ncðtÞ
NT

; ð4Þ

where nc(t) is the number of bats colliding with peers or bound-
aries at time t.

The collision/jamming cost s1 is defined as the weighted sum of
the average collision rate c and the average number of pulses over
the group Np. The average number of pulses represents the extent
of frequency jamming, because a more cluttered acoustic field
makes it more difficult for a bat to emit a pulse of a unique fre-
quency in nature. In particular,

s1 ¼ cþζ1Np; ð5Þ
where ζ1 is the weighting coefficient for frequency jamming.

The collision/energy cost s2 is computed as the weighted sum
of the average collision rate c and the pulse emission rate p, as the
pulse emission rate conveys the average energy use per bat. In
other words,

s2 ¼ cþζ2p; ð6Þ
where ζ2 is the weighting coefficient for energy use per bat. Note
that small and large values of s1 or s2 indicate relatively low and
high costs, respectively. We comment that any energy bats use for
echolocation may be negligible compared to the high energetic
cost of flight (Speakman and Racey, 1991; Salehipour and Willis,
2013). However, the energy used by active sensors in engineered
systems is certainly non-trivial, which motivates this observable.
4. Simulation results

We determine the parameter values for the model by taking
inspiration from bats emerging from caves in natural settings. We set
the nominal width, length, and height of the tunnel to be Lx ¼ 5 m,
Ly ¼ 15 m and Lz ¼ 5 m, respectively. We consider the physical para-
meters of big brown bats, Eptesicus fuscus, in the model as they are
common in North America and have been widely studied in the bio-
logical literature (Agosta, 2002). Big brown bats emit echolocation calls
on the order of 10 times per second (Au and Simmons, 2007), which
defines the time step Δt ¼ 0:1 s. In the model, bats are considered to
emit pulses and use all received information to perform navigational
decisions at one time step. Big brown bats detect small targets that are
within 5 m range (Bates et al., 2011; Kick, 1982); thus, we set both the
sensing range rs and echo radius re to be 5 m. Bats' angular range of
sensing is taken to be 2π=3 radians according to the sonar beam
pattern of big brown bats (Surlykke et al., 2009; Bates et al., 2011).
Bats' velocity magnitude is set to be 5 m=s, which is considered as the
nominal flying speed of big brown bats (Au and Simmons, 2007). The
collision range among bats is chosen as the approximate average
wingspan of big brown bats, which is rc ¼ 0:3 m (Hamilton and Bar-
clay, 1998). We set the repulsion zone radius to be twice the collision
range as rr ¼ 2rc ¼ 0:6 m, which is considered to be a safe distance for
bats to avoid collisions with both peers and boundaries.

The perturbation parameter for bat swarming is defined as
η¼ 0:1, which adds a small error to a bat's desired swarming direc-
tion. The weighting coefficients in the velocity update for previous
velocity direction, preferred tunnel direction, and repulsion force
direction are taken to be α¼ 1, β¼ 0:1; and γ ¼ 1, respectively, based
on inspection of preliminary simulations. The selected dependence of
velocity update on the previous velocity direction results in relatively
smooth flight trajectories, which matches well with natural bat flight
patterns (Tian et al., 2006; Rayner and Aldridge, 1985); the relatively
small weighting coefficient for the preferred tunnel direction reduces
the straightness of bats' flights in the tunnel direction, while enforcing
flight through the tunnel on average; and the selected dependance on
the repulsion force direction results in good collision avoidance per-
formance as bats avoid obstacles without blocking peers' flight paths.

In the simulation, bats move subject to the rules defined in the
Modeling section with the numbers of bats N taken as 2, 10, 20, 50,
and 100; the pulse emission probability p as 0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, and 1; and the perturbation parameter for esti-
mating obstacle locations ηd as 0, 0.1, 1, 2, 10, and þ1. We com-
ment that, when ηd ¼ 0, bats obtain the exact obstacle locations
using peers' information; when ηd ¼ þ1, the estimated obstacle
locations are uniformly distributed along the line segment of
length re that connects the bat and the obstacle's exact location.
Fig. 3 shows an example frame of 100 bats swarming in the
simulation with p¼0.5 and ηd ¼ 0. In calculating the two flight
costs, we set the weighting coefficient for frequency jamming as
ζ1 ¼ 8� 10�4 and the weighting coefficient for energy use per bat
as ζ2 ¼ 4� 10�2, such that the two summands are approximately
equal in magnitude within each cost function. Table 1 gives a
summary of all the parameter values used in the simulation study.

For the numerical study, we determine the simulation length
for each combination of N, p and ηd values by considering a con-
stant initial transient phase of 999 time steps and 10 simulation
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Fig. 3. Example frame of N¼100 bats flying through the tunnel with p¼0.5 and
ηd ¼ 0. Red circles and black triangles show positions of bats emitting pulses and
ceasing emission, respectively. The units for the axes are meters. (For interpretation
of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

Table 1
Parameter values used in the simulation study.

Parameter Symbol Value Unit

Width of the tunnel Lx 5 m
Length of the tunnel Ly 15 m
Height of the tunnel Lz 5 m
Time step Δt 0.1 s
Number of bats N 2–100 –

Bats' velocity magnitude – 5 m/s
s 0.5 m=Δt

Bats' sensing range rs 5 m
Bats' angular range of sensing ϕ 2π=3 rad
Echo radius re 5 m
Perturbation parameter for estimating obstacle

locations
ηd 0 to þ1 –

Perturbation parameter for bat swarming η 0.1 –

Pulse emission probability p 0–1 –

Weighting coefficient for previous velocity
direction

α 1 –

Weighting coefficient for preferred tunnel
direction

β 0.1 –

Weighting coefficient for repulsion force direction γ 1 –

Bats' repulsion zone radius rr 0.6 m
Bats' collision range rc 0.3 m
Weighting coefficient for frequency jamming ζ1 8� 10�4 –

Weighting coefficient for energy use per bat ζ2 4�10�2 –

Table 2
Simulation replicate length.

N Replicate length (time steps)

2 2,250,000
5 1,000,000
10 500,000
20 100,000
50 20,000
100 5,000

Fig. 4. Average collision rate c versus the number of bats N with varying ηd values
for p¼0.5 and with the case of no eavesdropping. Error bars showing one standard
deviation over the 10 replicates are plotted at every point, but are occluded by
point markers due to their very small magnitude in almost all cases.
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replicates whose length is determined by N. The initial transient
phase is confirmed to be sufficiently long to exclude the influence
of initial conditions by inspecting the time series of the average
collision rate for all cases. For each case of N, p and ηd, we compute
the average collision rate for each replicate and obtain the mean
and standard deviation for the average collision rate over the 10
replicates. We ensure the stationarity of the results by checking
that the standard deviation divided by the mean is less than 12%.
Table 2 shows the length of one simulation replicate for each N.
For larger N, the replicate length reduces because collisions occur
with higher probability and the average collision rate approaches
steady state faster.

As we vary the three free parameters in the model, we only
present a subset of the results that enable understanding the
behavior of bats flying in groups. Fig. 4 shows the average collision
rate c versus the number of bats N with varying ηd values for a
fixed p¼0.5; simulations with different p values show similar
trends and are thus not shown. In Fig. 4, we see that the average
collision rate increases as the number of bats increases for all ηd
values. For ηd ¼ 0 and ηd ¼ 0:1, the average collision rates are
practically equal and both smaller than that for no eavesdropping
and, for ηdZ1, the average collision rates have larger values than
that for no eavesdropping.

We investigate the benefit of eavesdropping through compar-
ison with the situation when bats do not use peers' information
and fly independently. We use the case of ηd ¼ 0 to represent the
cases with ηdr0:1, wherein the average collision rates are smaller
than that for no eavesdropping as shown in Fig. 4. Fig. 5(a) is a
contour plot of the average collision rate for ηd ¼ 0 with varying N
and p. From this figure, we see that the average collision rate
increases as p decreases and N increases. Fig. 5(b) is a contour plot
of the ratio between the average collision rate with ηd ¼ 0 and that
for no eavesdropping; it shows that this ratio is smaller for larger
bat populations and higher p values.

The collision/jamming and collision/energy costs for ηd ¼ 0
with varying N and p are shown in the contour plots in Fig. 6
(a) and (b), respectively. From Fig. 6(a), for a bat population of
fixed size, the collision/jamming cost shows a non-monotonic
trend as p decreases. The “optimal” pulse emission rate associated
with the minimum cost for each N is connected through a red
curve on the contour plot, showing a decreasing trend as N
increases in general. We also consider the scenario that bats may
seek to keep the same cost as group size increases, so we find p
values that correspond to a constant s1. For example, such p values
for a constant cost of log 10 s1ð Þ ¼ �2 are connected through the
red dotted curve for smaller N in Fig. 6(a) and show an increasing
trend. For larger populations, bats are not able to continue to
achieve this constant cost. A similar trend occurs for other differ-
ent constant s1 values. From Fig. 6(b), we see that the collision/



Fig. 5. (a) The average collision rate c with varying N and p for ηd ¼ 0; (b) the ratio
between the average collision rate with ηd ¼ 0 and the average collision rate with
no eavesdropping. Here, c0 denotes the average collision rate for simulations with
no eavesdropping, which has similar trends as in (a) but with larger values.

Fig. 6. (a) The collision/jamming cost s1 and (b) the collision/energy cost s2 with
varying N and p for ηd ¼ 0. In (a), the red curve denotes the minimum collision/
jamming cost for different N; the red dotted curve shows the pulse emission rates
corresponding to a constant collision/jamming cost log 10 s1ð Þ ¼ �2. In (b), the blue
curve denotes the minimum collision/energy cost for different N. (For interpreta-
tion of the references to color in this figure caption, the reader is referred to the
web version of this paper.)
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energy cost has an analogous nonmonotonic trend for fixed N and
varying p. However, the optimal pulse emission rate increases with
increasing N, as shown by the blue curve.
5. Discussion

Based on the simulation study, we obtain the following obser-
vations regarding bats swarming in groups: (i) if bats are able to
estimate obstacle locations using peers' information with low
measurement noise, eavesdropping is a better option than flying
independently in terms of collision avoidance; (ii) bats are able to
suppress pulse emission to accommodate frequency jamming
although the collision risk increases; and (iii) bats may increase
pulse emission rate to achieve better collision avoidance perfor-
mance while using more energy individually.

The eavesdropping rule enables bats to use peers' echoes and
pulses to obtain information about surrounding obstacles, which is
beneficial when the measurement noise is low. In the model, bats
emit directional pulses with which they only sense their envir-
onment in the flying direction. With eavesdropping, bats are able
to estimate locations of obstacles which are not covered by their
sensing space. Moreover, if bats cease pulse emission which may
occur when po1, they receive information about the surrounding
environment without generating a signal. Successful collision
avoidance may be helped or hindered by this extra information,
depending on its accuracy, namely low or high measurement
noise. For low noise up to ηd ¼ 0:1, bats' collision avoidance per-
formance is comparable to ηd ¼ 0, that is, when bats obtain the
exact locations of obstacles from peers. For higher noise with
ηdZ1, the estimated obstacle locations are more likely to be
perturbed along the limited sound propagation distance that
connects the bat and obstacle, which may result in incorrect
velocity update decisions that cause more collisions. This is
expected to model the biological system since eavesdropping bats
garner directional information, but lack time-of-flight, from peers'
echoes and pulses. However, the literature is lacking quantitative



Y. Lin, N. Abaid / Journal of Theoretical Biology 387 (2015) 46–5352
studies of this potential effect. We comment that bats are known
to exhibit aligned flight formations (Betke et al., 2007) which may
enable them to eavesdrop with low measurement noise due to
regular patterns of following flight (Chiu et al., 2008). The benefit
of eavesdropping is evidenced in Fig. 5(b), where we observe bats
having fewer collisions when they eavesdrop with low noise than
flying independently. This benefit increases with bat population as
bats obtain more information about obstacles from the increasing
number of surrounding peers. When the pulse emission rate p
reduces, the benefit of eavesdropping vanishes as there are fewer
echoes and pulses in the domain. We note that this feature relies
on the model's simplification that bats are able to process many
signals simultaneously; however, bats perception of numerous
signals may be limited in real environments.

Suppressing pulse emission reduces the amount of information
in acoustic field, which results in less frequency jamming and
lower collision/jamming cost when bats eavesdrop with low
measurement noise. With low measurement noise (i.e. situations
where eavesdropping is beneficial), the average collision rate
increases as p reduces because there is less sound information
available for bats to avoid obstacles, see Fig. 5(a). We note that this
trend is reversed when bats use peers' information with high
measurement noise, due to the destructive influence from high
measurement noise causing more collisions for larger p values.
Generally speaking, the chance of experiencing frequency jam-
ming in a real system increases for larger N and p values, because
the frequency of a bat's emitted pulse is more likely to overlap
peers' pulse frequency since there are more pulses overall. The
minimum collision/jamming cost occurs at an optimal value of
po1, which captures the benefit of ceasing vocalization for fre-
quency jamming avoidance documented by behavioral studies on
big brown and Mexican free-tailed bats (Chiu et al., 2008; Jarvis
et al., 2013). This optimal pulse emission rate decreases with N
because frequency jamming dominates the collision/jamming cost
for larger bat populations. The benefit of ceasing vocalization is
also observed in the case of no eavesdropping, where the optimal
p is higher due to its larger average collision rate values as com-
pared to the case with eavesdropping. We comment that the bat
group uses less energy on average when individuals reduce their
pulse emission rate, which may have benefits beyond frequency
jamming avoidance. However, we do not include energy con-
sumption per bat in determining bat group behavior in natural
settings because it may be a less immediate danger than the risk of
collision from frequency jamming; this priority is motivated by
engineering applications of this work, since the balance between
energy use and collision risk is a dynamic and multifaceted pro-
blem for animals and cannot be decisively categorized. We also
note that bats may not experience any frequency jamming in very
sparse groups in natural settings, which allows for increasing
pulse emission rate while keeping a constant safety margin in
small populations as shown by the red curve in Fig. 6(a).

The optimal pulse emission rate for minimizing collision/
energy cost increases with bat population, as bats obtain greater
benefit in collision avoidance by eavesdropping peers' information
with low measurement noise, see Fig. 6(b). The very low average
collision rate for larger bat groups with high pulse emission rate,
shown in Fig. 5(a), results in low collision/energy cost while the
energy use per bat given by p increases. In general, the optimal
pulse emission rate resulting from increased energy use per bat
and decreased collision risk suggests that there is an attainable
balance of avoiding collisions and saving energy in engineered
systems with analogous acoustic capabilities. In such a system, this
tradeoff may be tuned using the weighting coefficient in the col-
lision/energy cost. We comment that, if we consider the total
energy use of the bat group given by Np instead of the energy use
per bat in calculating the collision/energy cost, we see a decreasing
optimal pulse emission rate, which is the same as the collision/
jamming cost.

In conclusion, information sharing among agents in groups and
changing pulse emission rate are possible active sensing strategies
in nature and in engineering. Using peers' information by eaves-
dropping may provide substantial benefits for groups in terms of
collision avoidance, frequency jamming avoidance and energy
saving. Reducing or increasing pulse emission rate, on the other
hand, balances collision and jamming avoidance or collision and
individual energy use, respectively. We comment that the actual
behavior of bats flying in groups in nature may be different from
the modeling results. For example, bats may increase pulse emis-
sion rate to find unique pulse frequencies as a response to fre-
quency jamming in large groups. In addition, individuals may
combine information from peer's pulses and their echoes to lessen
timing uncertainty when performing passive sonar. Future work
includes obtaining the relationship between the pulse emission
rate and the bat population in field studies on wild bat swarms to
elucidate behaviors dictating pulse emission strategies, as well as
tying these behaviors to the physical acoustic accommodations
that bats must make to use variable frequencies for echolocation.
We also seek applications of the model in engineered multi-agent
systems, such as developing control algorithms for robotic teams
that use active sensors for navigation.
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