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� We examine the effect of migration patterns on the initial phase of an epidemic.

� We aim to minimise the expected growth rate and basic reproduction number.
� An explicit optimal distribution of susceptible individuals is found.
� This distribution is optimal for probability of extinction and total size of the epidemic.
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We consider a model for an epidemic in a population that occupies geographically distinct locations. The
disease is spread within subpopulations by contacts between infective and susceptible individuals, and is
spread between subpopulations by the migration of infected individuals. We show how susceptible
individuals can act collectively to limit the spread of disease during the initial phase of an epidemic by
specifying the distribution that minimises the growth rate of the epidemic when the infectives are
migrating so as to maximise the growth rate. We also give an explicit strategy that minimises the basic
reproduction number, which is also shown be optimal in terms of the probability of extinction and total
size of the epidemic.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, a number of papers have been devoted to the issue of
controlling disease outbreaks. Typical mechanisms for control
involve treatments which speed recovery (Ndeffo Mbah and Gil-
ligan, 2011; Rowthorn et al., 2009), culling of infected individuals
(Ndeffo Mbah and Gilligan, 2010), reducing the density of disease
vectors (Mpolya et al., 2014), vaccination programs (Klepac et al.,
2012, 2011) and quarantine (Rowthorn et al., 2009). When the
population has some spatial structure, migration also plays an
important role in disease spread and provides a further control
mechanism.

A common approach to incorporating spatial structure in epi-
demic modelling is to impose a metapopulation structure on the
population (see Débarre et al., 2007; Grenfel and Harwood, 1997;
h).
Gurarie and Seto, 2009; Hess, 1996 for example). In a metapopu-
lation, the population is divided into a number of subpopulations
occupying geographically distinct locations. The disease is spread
within a subpopulation by contacts between infective and sus-
ceptible individuals and is spread between subpopulations by the
migration of infected individuals.

The effect of migration rates on disease spread in metapopu-
lations has been investigated in a number of papers. Due to the
complexity of these models, control strategies are often based on
minimising the basic reproduction number R0. Studying a multi-
patch frequency dependent SIS model, Allen et al. (2007) note that
the rapid movement of infective individuals can lead to disease
extinction in low risk environments. Furthermore, they conjecture
that R0 is a decreasing function of the diffusion rate for infective
individuals. Hsieh et al. (2007, Theorem 4.2) note a similar result
for their two-patch SEIRP model and a similar phenomenon has
been observed in population models with spatially heterogeneous
environments (Hastings, 1983). However, Gao and Ruan (2012,
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Section 4) have shown that for other models the dependence of R0
on migration rates can be more complex. To investigate the effect
of the migration rates on other quantities such as the number of
infected individuals, numerical methods are generally required
(for example Sanders et al., 2012).

In this paper, we examine how susceptible individuals can act
collectively to limit the spread of disease during the initial phase
of an epidemic. More specifically, we consider how susceptible
individuals can distribute themselves in the metapopulation in a
way that minimises the growth of the epidemic when the infec-
tives migrate so as to maximise the growth. By formulating the
problem as a minimax optimisation and focusing on the suscep-
tible individuals, we avoid the need to distinguish between
infected and susceptible individuals when applying controls to the
population. This is advantageous as identification of infected
individuals can be problematic due to factors such as delays in the
onset of symptoms, asymptomatic carriers and costs associated
with testing. Furthermore, acute disease can have a significant
effect on the behaviour of animals (Hart, 1988). This is particularly
true for certain parasitic diseases where the parasite attempts to
force the host to act in a manner which assists the propagation of
the parasite (Adamo, 2013).

In Section 2 we give our main results. Instead of using an
ordinary differential equation (ODE) model for the epidemic as
was done in the papers cited above, our analysis is based on a
branching process model. Branching processes are known to pro-
vide a good approximation to the standard SIR and SIS Markov
chain models when the number of infectives is initially small
(Clancy, 1996). Using this model, we are able to give an explicit
strategy that minimises the expected rate of growth under a cer-
tain condition on the recovery and infection rates. We also give an
explicit strategy that minimises the basic reproduction number
which does not require this extra condition. This later strategy is
shown to also be optimal in terms of the probability of extinction
and total size of the epidemic. In Section 3, the problem of mini-
mising the expected growth rate is investigated numerically. The
paper concludes with a discussion of how the results depend on
contact rates and how they relate to ODE models.
2. Minimising disease spread in the initial stages

Consider a closed population of size N divided into m groups
such that at time t group i contains XiðtÞ susceptibles and YiðtÞ
infectives. Each individual, conditional on its disease status, moves
independently between groups according to an irreducible Markov
process on f1;…;mgwith transition rate matrix R if it is susceptible
and transition rate matrix Q if it is infected. The epidemic evolves
as a Markov process. Contacts between individuals in the same
group are assumed to be density dependent (Begon et al., 2002).
More precisely, a pair of individuals in group imakes contact at the
points of a Poisson process of rate βi=N with contacts between
distinct pairs of individuals being mutually independent. It is
assumed that contact between an infective and a susceptible
results in the infection of the susceptible. An infected individual in
group i recovers with immunity at a rate γi. Since we are primarily
concerned with the initial phase of the epidemic, our conclusions
remain valid for epidemics where individuals recover without
immunity.

In the absence of infective individuals, the entirely susceptible
population evolves following a closed (linear) migration process
with per-capita migration rates R. If the population is in equili-
brium, then the probability that an individual is in group i is given
by πi where π is the unique solution to πR¼ 0 subject to the
constraint π1¼ 1.
We consider the spread of the disease from a small number of
initial infective individuals. Clancy (1996, Theorem 2.1) shows that,
when N is large, the epidemic can be approximated by a multi-
type branching process. Assuming that the susceptible population
is in equilibrium, the branching process for the number of infective
individuals is given by

ðY1;…;YmÞ-ð…;Yiþ1;…;Yj�1;…Þ at rate QjiYj; ð1Þ

ðY1;…;YmÞ-ð…;Yiþ1;…Þ at rate βiπiYi; ð2Þ

ðY1;…;YmÞ-ð…;Yi�1;…Þ at rate γiY i: ð3Þ
Note that the branching process depends on R only through the
equilibrium distribution π.

Suppose that the susceptible population aims to minimise some
quantity f ðπ;Q Þ, calculated from the branching process determined by
(1)–(3). Let S denote the relative interior of the ðm�1Þ-simplex and let
Q be the set of irreducible migration rate matrices. Without imposing
any constraints on the movements of the infectives, the susceptible
population can choose π such that, for any ϵ40, a value no larger
than infπAS supQ AQ f ðπ;Q Þþϵ is attained. On the other hand, the
infectives can migrate in such a way that, for any ϵ40, a value no
smaller than supQ AQinfπAS f ðπ;Q Þ�ϵ is attained. In general,

sup
Q AQ

inf
πAS

f ðπ;Q Þr inf
πAS

sup
Q AQ

f ðπ;Q Þ

(Petrosjan and Zenkevich, 1996, Lemma in Section 1.2.2). A pair ðπn;

QnÞAS �Q such that

f ðπn;Q Þr f ðπn;QnÞr f ðπ;QnÞ;
for all πAS and all QAQ is called a saddle point for f. If a saddle point
exists, then

min
πAS

sup
Q AQ

f ðπ;Q Þ ¼max
Q AQ

inf
πAS

f ðπ;Q Þ

(Petrosjan and Zenkevich, 1996, Theorem in Section 1.3.4). The sus-
ceptibles can attain this value by distributing themselves amongst the
groups according to πn. When a saddle point for f does not exist, there
may still be an ϵ-saddle point, that is, for every ϵ40 there exists a pair
ðπϵ;QϵÞAS �Q such that

f ðπϵ;Q Þ�ϵr f ðπϵ;QϵÞr f ðπ;QϵÞþϵ;

for all πAS and all QAQ. The existence of an ϵ-saddle point implies
that

inf
πAS

sup
Q AQ

f ðπ;Q Þ ¼ sup
Q AQ

inf
πAS

f ðπ;Q Þ ¼ lim
ϵ-0

f ðπϵ;QϵÞ

(Petrosjan and Zenkevich, 1996, Theorem in Section 2.2.5). In the fol-
lowing, we determine the ðϵÞ-saddle points for four quantities derived
from the branching process (1)–(3).

As mentioned in the Introduction, this formulation avoids the
need to distinguish between susceptible and infected individuals
in the application of controls. To illustrate this point, suppose that
susceptible individuals normally move between groups following
a Markov process with migration rate matrix R. The optimal dis-
tribution of susceptibles πn can be obtained by border controls
where a migrating individual from group j going to group i is given
admittance with probability pji and otherwise returned to group j.
Detailed balance equations show that the optimal distribution for
susceptibles is obtained if the admittance probabilities satisfy

Rjipjiπ
n

j ¼ Rijpijπ
n

i ;

for all i; j. Although the border controls will have an effect on the
migration rate of infected individuals if they are applied to the
population as a whole, the optimal distribution for susceptible
individuals ensures that the growth of the epidemic can be no
greater than minπAS supQ AQ f ðπ;Q Þ.
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2.1. Minimising the expected growth rate

Let fMðtÞ; tZ0g be the mean matrix semigroup

MijðtÞ ¼ E YjðtÞ∣Yrð0Þ ¼ δri; r¼ 1;2;…;m
� �

;

for i; jAf1;2;…;mg and where the δij are Kronecker deltas. For a
vector αARm, let diagðαÞ denote the m�m diagonal matrix with
diagðαÞii ¼ αi, i¼ 1;…;m. The mean matrix semigroup has the
infinitesimal generator

Aðπ;Q Þ ¼ diagðβÞ diagðπÞ�diagðγÞþQ

and MðtÞ ¼ expðAðπ;Q ÞtÞ for tZ0 (Athreya, 1968). By Seneta (1981,
Theorem 2.7), if Q is irreducible, then

exp Aðπ;Q Þt½ � ¼ ð1þoð1ÞÞexp τðπ;Q Þt½ �wvT ;

elementwise as t-1, where w and vT are the left and right
eigenvectors of Aðπ;Q Þ corresponding to the dominant eigenvalue
τðπ;Q Þ and normed so that vTw¼ 1. Since w and v are both strictly
positive (Seneta, 1981, Theorem 2.6(b)), τðπ;Q Þ is the growth rate
of the expected number of infected individuals during the initial
stages of the epidemic.

The following result shows that, under a certain condition on
the recovery and infection rates, there is an optimal distribution of
susceptible individuals which minimises the growth rate.

Theorem 1. Let χðβ; γÞ ¼ ð1�Pm
j ¼ 1 γj=βjÞð

Pm
j ¼ 1 β

�1
j Þ�1 and define

πn

i ¼ ðγiþχðβ; γÞÞ=βi for i¼ 1;…;m. If γi4�χðβ; γÞ for all
i¼ 1;…;m, then πnAS and there exists a QnAQ such that

τðπ;QnÞZτðπn;QnÞ ¼ τðπn;Q Þ ¼ χðβ; γÞ; ð4Þ
for all πAS and all QAQ.

Proof. The final equality in (4) holds as, for any QAQ,
Aðπn;Q Þ1¼ χðβ; γÞ1. From Seneta (1981, Corollary 3, p. 52),
τðπn;Q Þ ¼ χðβ; γÞ.

To prove the inequality in (4), fix QAQ. As S is a convex set, it
follows from Friedland (1981, Theorem 4.1) that τð�;Q Þ is a strictly
convex functional on S . Therefore, π̂ ðQ Þwill minimise τð�;Q Þ if and
only if

Xm
i ¼ 1

∂τðπ;Q Þ
∂πi

�����
π ¼ π̂ ðQ Þ

πi� π̂ ðQ Þi
� �

Z0;

for all πAS. The partial derivatives of τð�;Q Þ are
∂τðπ;Q Þ

∂πi
¼ βiwivi

wTv
;

where w and v are the left and right eigenvectors of Aðπ;Q Þ cor-
responding to the dominant eigenvalue (Stewart and Sun, 1990, p.
183). As βiπn

i �γi ¼ χðβ; γÞ for i¼ 1;…;m, the eigenvectors of Aðπn

;Q Þ and Q coincide so 1 is a right eigenvector of Aðπn;Q Þ for any
QAQ. Therefore, the inequality in (4) will follow if there exists a
Qn with left eigenvector w such that

Xm
i ¼ 1

βiwi πi�πn

i

� �
Z0; ð5Þ

for all πAS. Set Qn such that Qn

ij ¼ β�1
j for ia j. The left eigen-

vector of Qn satisfies wipβ�1
i . Therefore, inequality (5) holds

which proves τðπ;QnÞZτðπn;QnÞ for all πAS.□
Under the condition of Theorem 1, πn is the distribution of

susceptible individuals which minimises the expected growth rate
of the epidemic when infected individuals move to maximise the
expected growth rate of the epidemic. A corresponding optimal
migration rate matrix for susceptibles can easily be determined,
but the optimal migration rate matrix is not unique. For example,
any transition rate matrix R satisfying the detailed balance
equations Rijπn

i ¼ Rjiπn

j , for all i; jAf1;…;mg has πn as its equili-
brium distribution. Many other constructions are possible.

Theorem 1 excludes the boundary case where γiZ�χðβ; γÞ for
all i and γj ¼ �χðβ; γÞ for some j. The difficulty in this case is that
πn =2S since πn

j ¼ 0 and there is no corresponding irreducible
migration rate matrix for susceptibles. However, if we define, for
any ϵ40, πϵAS by πϵi ¼ ðγiþϵþχðβ; γÞÞ=βi for all i, then the cal-
culations from the proof of Theorem 1 shows that ðπϵ;QnÞ is an ϵ-
saddle point for τðπ;Q Þ.

The condition imposed in Theorem 1 will be satisfied provided
the recovery rates do not vary too much between patches. In
particular, if γi ¼ γ for i¼ 1;…;m , then χðβ; γÞ ¼ ðPm

j ¼ 1 β
�1
j Þ�1�γ,

and the condition holds for any βi; i¼ 1;…;m. Also, if χðβ; γÞZ0,
then the condition must hold as the recovery rates are all non-
negative. On the other hand, when the condition does not hold,
χðβ; γÞo0. The following corollary shows that in this case there is
a distribution of susceptible individuals for which the expected
growth rate is negative, regardless of the movements of the
infected individuals.

Corollary 2. Suppose χðβ; γÞo0. Then infπAS supQ AQ τðπ;Q Þo0.

Proof. Define ~π i ¼ ðγi=βiÞð
Pm

j ¼ 1 γj=βjÞ�1. Then for all QAQ,
ðAð ~π ;Q Þ1Þi ¼ γiðð

Pm
j ¼ 1 γj=βjÞ�1�1Þ; i¼ 1;…;m. Now χðβ; γÞo0

implies ðPm
j ¼ 1 γj=βjÞ�1o1. By Seneta (1981, Corollary 3, p. 52),

τð ~π ;Q Þo0 for all QAQ.□

2.2. Optimising R0, minor outbreak probability, and expected total
size

When the condition of Theorem 1 does not hold, an alternative
approach to controlling the disease spread is needed. As noted in
Clancy (1996, Section 4.1), the total size of the branching process
approximating the epidemic is the same as the total of an
embedded Galton–Watson process. The behaviour of this Galton–
Watson process is largely determined by the expected number of
infectives produced by a single infective before its recovery.
Denote by Λijðπ;Q Þ the expected number of infectives produced in
group j by an individual first infected in group i. Then from Clancy
(1996, Section 4.1), Λðπ;Q Þ ¼ LðQ Þ diagðβÞ diagðπÞ, where LijðQ Þ is
the expected amount of time that an individual who is first
infected while in group i spends in group j before recovery. By
Pollett and Stefanov (2002, Proposition 2), LðQ Þ ¼ ðdiagðγÞ�Q Þ�1.
Therefore,

Λðπ;Q Þ ¼ diagðγÞ�Q
� ��1 diagðβÞ diagðπÞ:

The basic reproduction rate is the spectral radius of Λðπ;Q Þ, which
is denoted by R0ðπ;Q Þ. It is known that if R0ðπ;Q Þr1, then the
Galton–Watson process goes extinct in finite time with probability
one. Minimising R0ðπ;Q Þ provides an alternate means of limiting
the spread of the disease.

Theorem 3. Let ωðβ; γÞ ¼ Pm
j ¼ 1 γj=βj

� ��1
and define ~π i ¼ ðγi=βiÞω

ðβ; γÞ for i¼ 1;…;m. There exists a ~Q AQ such that

R0ðπ; ~Q ÞZR0ð ~π ; ~Q Þ ¼ R0ð ~π ;Q Þ ¼ωðβ; γÞ; ð6Þ
for all πAS and all QAQ.

Proof. The proof is similar to the proof of Theorem 1. We first
prove the final equality in (6). For any QAQ, Q1¼ 0 so
diagðγÞ�Q
� ��1γ ¼ 1. As

Λð ~π ;Q Þ1¼ωðβ; γÞ diagðγÞ�Q
� ��1 diagðγÞ1¼ωðβ; γÞ1; ð7Þ

it follows that R0ð ~π ;Q Þ ¼ωðβ; γÞ (Seneta, 1981, Theorem 1.6).
To prove the inequality in (6), fix QAQ. As S is a convex set,

Friedland (1981, Theorem 4.3) shows that R0ð�;Q Þ is a strictly
convex functional on S. Therefore, π̂ ðQ Þ minimises R0ð�;Q Þ if and
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only if

Xm
i ¼ 1

∂R0ðπ;Q Þ
∂πi

�����
π ¼ π̂ ðQ Þ

πi� π̂ ðQ Þi
� �

Z0; ð8Þ

for all πAS. The partial derivatives of R0ð�;Q Þ are

∂R0ðπ;Q Þ
∂πi

¼ βiðw diagðγÞ�Q
� ��1Þivi

wTv
; ð9Þ

where w and v are the left and right eigenvectors of Λðπ;Q Þ cor-
responding to the dominant eigenvalue (Stewart and Sun, 1990, p.
183). As noted previously, 1 is a right eigenvector of Λð ~π ;Q Þ cor-
responding to the dominant eigenvalue ωðβ; γÞ. Substituting π ¼ ~π
and v¼ 1 in Eq. (9) and combining with Eq. (8), we see that the
inequality in (6) will follow if there exists a ~Q AQ such that for all
πAS
Xm
i ¼ 1

βi wðdiagðγÞ� ~Q Þ�1
� �

i
πi� ~π ið ÞZ0: ð10Þ

As in Theorem 1, set ~Q such that ~Q ij ¼ β�1
j for ia j. Then the left

eigenvector of Λð ~π ; ~Q Þ corresponding to the dominant eigenvalue
ωðβ; γÞ satisfies wipγi=βi so ðwðdiagðγÞ� ~Q Þ�1Þipβ�1

i .
Therefore, inequality (10) holds which proves R0ðπ; ~Q ÞZR0ð ~π ;

~Q Þ for all πAS.□
Theorem 3 shows that ~π is the distribution of susceptible

individuals which minimises the basic reproduction rate of the
epidemic when infected individuals move to maximise the basic
reproduction rate of the epidemic.

Although Theorems 1 and 3 give two different strategies for
minimising the disease spread, the quantities χðβ; γÞ and ωðβ; γÞ
are closely related. First, χðβ; γÞ ¼ 0 if and only if ωðβ; γÞ ¼ 1 in
which case πn ¼ ~π . Note we also have πn ¼ ~π when the recovery
rates do not depend on the group. Second, χðβ; γÞo0 if and only if
ωðβ; γÞo1. Therefore, Theorems 1 and 3 and Corollary 2 imply
that the R0-optimal strategy yields R041 if and only if the τ-
optimal strategy yields τ40.

Taking R0 as the objective function has the advantage that it is
always possible to give an explicit optimal strategy. Although R0 is
more tractable than τ, it is only useful if the resulting optimal
strategy reduces the extent of the original epidemic in some sense.
In the context of ODE models, Diekmann et al. (2010) note that
epidemics with high R0 do not necessarily have a fast increase of
incidence. Therefore, one might question the relevance of reducing
R0 if the threshold cannot be achieved and, if the threshold can be
achieved, the advantage of reducing R0 further. To see why it is
always useful to reduce R0, it is necessary to consider the two cases
ωðβ; γÞo1 and ωðβ; γÞ41 separately. The case where ωðβ; γÞ ¼ 1 is
not considered since in that case ~π ¼ πn.

We first examine how the optimal strategy from Theorem 3
relates to the probability that the branching process goes extinct in
finite time. This probability is determined by the smallest fixed
point of the probability generating function for the offspring dis-
tribution. For the branching process determined by (1)–(3), this
probability generating function is

giðu;π;Q Þ ¼
P

ja iQ ijujþβiπiu2
i þγiP

ja iQ ijþβiπiþγi
:

The function gðu;π;Q Þ ¼ ðg1ðu;π;Q Þ;…; gmðu;π;Q ÞÞ always has a
fixed point at 1, that is gð1;π;Q Þ ¼ 1. If τðπ;Q Þ40, then gð�;π;Q Þ
has a second fixed point, which is unique in ð0;1Þm (Allen and van
den Driessche, 2013, Section 2.3). Denote the smallest fixed point
of gð�;π;Q Þ in ½0;1�m by qðπ;Q Þ. The probability of extinction in
finite time is given by

lim
t-1

P YjðtÞ ¼ 0 for j¼ 1;…;m∣Yið0Þ ¼ yi for i¼ 1;…;m
� �¼ ∏

m

i ¼ 1
qyii ðπ;Q Þ:
The following result shows that taking the distribution of sus-
ceptibles to be ~π maximises the probability of extinction in finite
time minimised over the starting location of the initial infected
individual.

Theorem 4. If ωðβ; γÞ41, then for any ϵ40 there exists a QϵAQ
such that

min
i

qiðπ;QϵÞ� ��ϵrmin
i

qið ~π ;QϵÞ� �¼min
i

qið ~π ;Q Þ� �¼ωðβ; γÞ�1

ð11Þ
for all πAS and QAQ.

Proof. When π ¼ ~π , the probability generating function of the
offspring distribution is

giðu; ~π ;Q Þ ¼
P

ja iQ ijujþγiωðβ; γÞu2
i þγiP

ja iQ ijþγiωðβ; γÞþγi
:

It can be verified by substitution that qið ~π ;Q Þ ¼
ωðβ; γÞ�1; i¼ 1;…;m, for all QAQ. It remains to prove the
inequality in (11), which we achieve by determining an upper
bound on qðπ;Q Þ for certain Q.

As gið�;π;Q Þ is a monotone function and qðπ;Q Þ is a fixed point
of gð�;π;Q Þ, it follows that if, for some pA ð0;1Þm, giðp;π;Q Þrpi,
i¼ 1;…;m, then qiðπ;Q Þrpi, i¼ 1;…;m. Let δi ¼

P
ja iQ

ϵ
ij and

choose Qϵ such that
Pm

i ¼ 1 δi=βioϵ. For any pAð0;1Þm,

giðp;π;QϵÞrδiþβiπip2i þγi
δiþβiπiþγi

¼ piþ
δiþβiπip2i þγi�ðβiπiþγiþδiÞpi

δiþβiπiþγi
:

ð12Þ
It can be verified by substitution into (12) that

pi ¼
γiþδi
βiπi

41
	 


is an upper bound on qðπ;QϵÞ. Therefore,

min
i

qiðπ;QϵÞ�ϵrmin
i

γiþδi
βiπi

� �
�ϵ:

Suppose that, for some π and all i¼ 1;…;m,

γiþδi
βiπi

�ϵ4ωðβ; γÞ�1;

then

πio ~πi þ
δiωðβ; γÞ

βi
�ϵπiωðβ; γÞ: ð13Þ

By summing over i in inequality (13), we arrive at the contra-
diction

Pm
i ¼ 1 δi=βi4ϵ. Therefore, for all πAS, there is at least one

i such that

γiþδi
βiπi

�ϵrωðβ; γÞ�1;

which proves the inequality in (11).□

The previous theorem provides support for minimising R0
when ωðβ; γÞ41; it remains to justify minimising R0 when
ωðβ; γÞo1. Let Tijðπ;Q Þ denote the number of individuals infected
in node j starting from a single infected individual at node i. We
now consider the effect of migration on the expected total size of
the epidemic,

max
i

E
Xm
j ¼ 1

Tijðπ;Q Þ
0
@

1
A:

The next result shows that taking the distribution of susceptibles
to be ~π minimises the expected total size of the epidemic max-
imised over the starting location of the initial infected individual.



Fig. 1. A contour plot of the optimal value of τðπ;Q Þ for the two group model with
β1 ¼ 1 and β2 ¼ 2. The region between the dotted lines corresponds to the region
where γiZ�χðβ; γÞ for i¼1, 2. Note that where the contour lines are horizontal,
τðπ;Q Þ ¼ �γ2 and where the contour lines are vertical τðπ;Q Þ ¼ �γ1.
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Theorem 5. If ωðβ; γÞo1, then for any ϵ40 there exists a QϵAQ
such that

max
i

E
Xm
j ¼ 1

Tijðπ;QϵÞ
0
@

1
AþϵZmax

i
E
Xm
j ¼ 1

Tijð ~π ;QϵÞ
0
@

1
A

¼max
i

E
Xm
j ¼ 1

Tijð ~π ;Q Þ
0
@

1
A¼ ð1�ωðβ; γÞÞ�1 ð14Þ

for all πAS and QAQ.

Proof. As the total size of the branching process approximating
the epidemic is the same as that of an embedded Galton–Watson
process whose offspring distribution has mean matrix Λðπ;Q Þ
(Clancy, 1996, Section 4.1),

E
Xm
j ¼ 1

Tijðπ;Q Þ
0
@

1
A¼

X1
r ¼ 0

Λðπ;Q Þr
 !

i

;

which is finite if and only if the spectral radius of Λðπ;Q Þ is strictly
less than one. From Eq. (7),

E
Xm
j ¼ 1

Tijð ~π ;Q Þ
0
@

1
A¼ ð1�ωðβ; γÞÞ�1;

for all i¼ 1;…;m and all QAQ. This proves the equality in (14). To
complete the proof, it remains to show that for any ϵ40 there
exists a QϵAQ, such that

max
i

E
Xm
j ¼ 1

Tijðπ;QϵÞ
0
@

1
AþϵZ ð1�ωðβ; γÞÞ�1; ð15Þ

for all πAS. Take Qϵ ¼ δð11T �mIÞ where δ satisfies

0oδm
Xm
i ¼ 1

γ�1
i oϵð1�ωðβ; γÞÞðωðβ; γÞ�1�1Þ: ð16Þ

Applying the Woodbury matrix identity to Λðπ;QϵÞ, we obtain

Λðπ;QϵÞ ¼ Iþ δ

ð1�δ1TΓ�1
δ 1Þ

11TΓ�1
δ

 !
Γ�1
δ diagðβÞ diagðπÞ;

where Γδ ¼ diagðγþδm1Þ. Hence, in the partial order of positive
matrices,

diagðβÞ diagðπÞΓ�1
δ rΛðπ;QϵÞ:

Therefore, the expected total size is finite for all ϵ40 only if
βiπi=γio1; i¼ 1;…;m, in which case

1� βiπi

γiþδm

	 
�1

rE
Xm
j ¼ 1

Tijðπ;Q Þ
0
@

1
A; ð17Þ

for all i¼ 1;…;m. Suppose that inequality (15) did not hold for
some πAS. Then, for all i,

E
Xm
j ¼ 1

Tijðπ;QϵÞ
0
@

1
Aþϵo ð1�ωðβ; γÞÞ�1:

Inequality (17) would then imply

1� βiπi

γiþδm

	 
�1

þϵo ð1�ωðβ; γÞÞ�1:

This inequality can be rearranged to

~π i�ϵð1�ωðβ; γÞÞγi
βi

1� βiπi

γiþδm

	 

4 1� δm

γiþδm

	 

πi:

Summing this inequality over i, we find

ϵð1�ωðβ; γÞÞ
Xm
i ¼ 1

γi
βi

1� βiπi

γiþδm

	 

oδm

Xm
i ¼ 1

πi

γiþδm
:

As δ is chosen to satisfy the inequality (16), we obtain a contra-
diction. Hence, inequality (15) holds for all πAS.□
3. Numerical comparisons

In this section we investigate numerically two issues. The first
issue concerns the optimal distribution of susceptibles with
respect to minimising the expected growth rate. Theorem 1 gives
the optimal distribution only if γi4�χðβ; γÞ for all i. We have also
seen that if γiZ�χðβ; γÞ for all i and γj ¼ �χðβ; γÞ for some j, then
there is a sequence of distributions πϵ which achieve within ϵ the
optimal value of τ and for which limϵ-0 πϵj ¼ 0. We might expect
that if the recovery rate for this group were to decrease, then the
optimal distribution would place no susceptibles in group j. This
was investigated in a two group epidemic with β1 ¼ 1, β2 ¼ 2, and
γ1 and γ2 in ð0;4Þ. For these epidemics both supQ AQ infπAS τðπ;Q Þ
and infπAS supQ AQ τðπ;Q Þ were computed by nested optimisation
using the optim and optimize functions in R (R Development Core
Team, 2011). The two quantities differed by less than 10�4 in all
instances computed. The optimal value of τðπ;Q Þ is plotted in
Fig. 1. Note that in most of the region plotted growth rate is
negative. This is to be expected as when the condition of Theorem
1 does not hold, the optimal growth rate must be negative from
Corollary 2. The numerical results confirms our intuition that
πn

i ¼ 0 if γir�χðβ; γÞ for the two group model. From the plot it is
seen that if γ1o�χðβ; γÞrγ2, then increasing γ2 has no effect on
the optimal value of τðπ;Q Þ. This is explained as when
γ1o�χðβ; γÞrγ2, the optimal distribution of susceptibles has
πn

2 ¼ 1. On the other hand, the inequality γ1o�χðβ; γÞ implies
γ1oγ2�β2, so the infectives slow the decrease of the epidemic by
moving to group one. Therefore, increasing the recovery rate in
group two has no effect on the growth rate of the epidemic and
infπAS supQ AQ τðπ;Q Þ ¼ �γ1.

By construction, πn and ~π are the optimal distribution of sus-
ceptibles for minimising τ and R0 respectively. We now consider
their performance on the alternate criteria, that is we calculate
supQ AQ R0ðπn;Q Þ and supQ AQ τð ~π ;Q Þ. Figs. 2 and 3 show how
much these quantities are increased by taking alternate optimal



*

Fig. 2. A contour plot of the optimal value of log ðsupQ AQ R0ðπn;Q Þ=ωðβ; γÞÞ for the
two group model with β1 ¼ 1 and β2 ¼ 2. The dashed lines correspond to where
ωðβ; γÞ ¼ 1 so πn ¼ ~π . The region between the dotted lines corresponds to the region
where γiZ�χðβ; γÞ for i¼1, 2.

Fig. 3. A contour plot of the optimal value of supQ AQ τð ~π ;Q Þ�supQ AQ τðπn ;Q Þ for
the two group model with β1 ¼ 1 and β2 ¼ 2. The dashed lines correspond to where
χðβ; γÞ ¼ 0 so πn ¼ ~π . The region between the dotted lines corresponds to the region
where γiZ�χðβ; γÞ for i¼1, 2.
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distributions of susceptibles. Qualitatively, both figures are very
similar. Both quantities plotted achieve their minimum for the
same set of γ, indicated by the dashed line, as πn ¼ ~π for these
values of γ. Also, an abrupt change in the contours occur along the
dashed line in both figures. This is due to πn placing zero prob-
ability in one of the groups for those values of γ outside the
dashed lines.

For most values of γ the optimal choice for one criterion
appears to result in reasonable performance in the other. In
particular, in the region where γ1 � γ2 � β1β2=ðβ1þβ2Þ, τ and R0
take approximately the same value under πn and ~π . However, for
small values of γ, the performance of the alternate distributions
rapidly deteriorates for both τ and R0. This is expected as when γ is
small, χðβ; γÞ tends to be large which causes the difference
between πn and ~π to also be large.
4. Discussion

The conclusions of Theorems 1 and 3 are in part not surprising;
in order to minimise the spread of the disease most susceptible
individuals should belong to groups with relatively low infection
rates and high recovery rates. However, for the form of contact
rate assumed here, this needs to be balanced with the fact that
contact rates are higher in groups with larger populations.
Although Theorems 4 and 5 showed that this balance is achieved
in the same way for R0-optimal, extinction probability optimal, and
expected total size optimal distributions of susceptibles, it was
achieved differently for τ-optimal distribution of susceptibles. It is
conceivable that this balance might be achieved differently for
other measures of disease spread.

In our analysis, we have focussed on the branching process
approximation to the epidemic. Another widely used approxima-
tion is provided by the solution to an ODE. Assume that infected
individuals recover without immunity. For the epidemic described
at the beginning of Section 2, the ODE approximation is given by
the solution to

dxi
dt

¼
X
ja i

RjixjðtÞþRiixiðtÞþγiyiðtÞ�βixiðtÞyiðtÞ ð18Þ

dyi
dt

¼
X
ja i

Q jiyjðtÞþQiiyiðtÞ�γiyiðtÞþβixiðtÞyiðtÞ: ð19Þ

It is known that if N�1Xið0Þ-
p
xið0Þ and N�1Yið0Þ-

p
yið0Þ for i¼ 1;

…;m as N-1, then for any finite T40 and any ϵ40

lim
N-1

Pr sup
tA ½0;T�

Xm
i ¼ 1

jN�1XiðtÞ�xiðtÞj þ
Xm
i ¼ 1

jN�1YiðtÞ�yiðtÞj
 !

4ϵ

 !
¼ 0;

(see Kurtz, 1970; Darling and Norris, 2008).
Theorems 1 and 3 can still be used to determine the optimal

distribution of susceptibles for the ODE model (18)–(19). First,
consider the application of Theorem 1. The spectrum of the Jaco-
bian of the ODE model at the disease free equilibrium is given by
the union of the spectrum of Aðπ;Q Þ, where π is the unique
solution to πR¼ 0 subject to π1¼ 1, and the spectrum of R with
the zero eigenvalue removed. Therefore, if γiZ�χðβ; γÞ for
i¼ 1;…;m, then Theorem 1 determines the τ optimal choice of π.
However, for this to be attained, R must be chosen so that the non-
zero eigenvalues of R have real part less than χðβ; γÞ. Theorem 3
can similarly be applied to the ODE model. The next generation
matrix (van den Driessche and Watmough, 2002, Section 3) for the
ODE model is given by Λðπ;Q ÞT . As the basic reproduction number
for the ODE model is given by the spectral radius of the next
generation matrix, Theorem 3 determines the R0 optimal dis-
tribution of susceptibles in the metapopulation. We are unaware
of an interpretation of Theorems 4 and 5 for the ODE model.

We have previously noted that the desire for susceptible indi-
viduals to belong to a group with a low infection rate and high
recovery rate needs to be balanced with the fact that contact rates
are higher in groups with larger populations. This was due to the
assumption of density dependent contact rates. An alternative is to
assume frequency dependent contact rates, that is to assume the
per capita contact rate in a group does not depend on the size of
the group. Allen et al. (2007) studied a frequency-dependent SIS
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metapopulation model, which in our notation is given by

dxi
dt

¼
X
ja i

RjixjðtÞþRiixiðtÞþγiyiðtÞ�
βixiðtÞyiðtÞ
xiðtÞþyiðtÞ

dyi
dt

¼
X
ja i

Q jiyjðtÞþQiiyiðtÞ�γiyiðtÞþ
βixiðtÞyiðtÞ
xiðtÞþyiðtÞ

:

For this model, the next generation matrix is given by diagðβÞ
ðdiagðγÞ�QT Þ�1 (Allen et al., 2007, Lemma 2.2) so R0 does not
depend on the migration rates of susceptible individuals. There-
fore, we are unable to control the disease spread through the
altering the migration rates of susceptible individuals. Although
frequency dependent and density dependent contact rates are the
most commonly assumed form for contact rates, it is possible to
consider contact rates that are some general function of the size of
the group. For these more general contact rates, we expect results
similar to Theorems 1 and 3 to hold.
Acknowledgements

This research is supported in part by the Australian Research
Council (Centre of Excellence for Mathematical and Statistical
Frontiers, CE140100049).

The authors would like to thank the two referees for their
helpful comments.
References

Adamo, S.A., 2013. Parasites: evolution's neurobiologists. J. Exp. Biol. 216, 3–10.
http://dx.doi.org/10.1242/jeb.073601.

Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L., 2007. Asymptotic profiles of the steady
states for an SIS epidemic patch model. SIAM J. Appl. Math. 67, 1283–1309.
http://dx.doi.org/10.1137/060672522.

Allen, L.J.S., van den Driessche, P., 2013. Relations between deterministic and sto-
chastic thresholds for disease extinction in continuous- and discrete-time
infectious disease models. Math. Biosci. 243, 99–108. http://dx.doi.org/
10.1016/j.mbs.2013.02.006.

Athreya, K.B., 1968. Some results on multitype continuous time Markov branching
processes. Ann. Math. Stat. 39, 347–357. http://dx.doi.org/10.1214/aoms/
1177698395.

Begon, M., Bennett, M., Bowers, R.G., French, N.P., Hazel, S.M., Turner, J., 2002. A
clarification of transmission terms in host-microparasite models: numbers,
densities and areas. Epidemiol. Infect. 129, 147–153. http://dx.doi.org/10.1017/
S0950268802007148.

Clancy, D., 1996. Strong approximations for mobile populations epidemic models.
Ann. Appl. Probab. 6, 883–895.

Darling, R.W.R., Norris, J.R., 2008. Differential equation approximations for Markov
chains. Probab. Surv. 5, 37–79. http://dx.doi.org/10.1214/07-PS121.

Débarre, F., Bonhoeffer, S., Regoes, R.R., 2007. The effect of population structure on
the emergence of drug resistance during influenza pandemics. J. R. Soc. Inter-
face 4, 893–906. http://dx.doi.org/10.1098/rsif.2007.1126.
Diekmann, O., Heesterbek, J.A.P., Roberts, M.G., 2010. The construction of next-
generation matrices for compartmental epidemic models. J. R. Soc. Interface 7,
873–885. http://dx.doi.org/10.1098/rsif.2009.0386.

Friedland, S., 1981. Convex spectral functions. Linear Multilinear Algebra 9,
299–316. http://dx.doi.org/10.1080/03081088108817381.

Gao, D., Ruan, S., 2012. A multipatch malaria model with logistic growth popula-
tions. SIAM J. Appl. Math. 72, 819–841. http://dx.doi.org/10.1137/110850761.

Grenfel, Bl., Harwood, J., 1997. (Meta) population dynamics of infectious diseases.
Trends Ecol. Evol. 12, 395–399. http://dx.doi.org/10.1016/S0169-5347(97)
01174-9.

Gurarie, D., Seto, E.Y.W., 2009. Connectivity sustains disease transmission in
environments with low potential for endemicity: modelling schistosomiasis
with hydrologic and social connectivities. J. R. Soc. Interface 6, 495–508. http:
//dx.doi.org/10.1098/rsif.2008.0265.

Hart, B., 1988. Biological basis of the behavior of sick animals. Neurosci. Biobehav.
Rev. 12, 123–137. http://dx.doi.org/10.1016/S0149-7634(88)80004-6.

Hastings, A., 1983. Can spatial variation alone lead to selection for dispersal? Theor.
Popul. Biol. 24, 244–251. http://dx.doi.org/10.1016/0040-5809(83)90027-8.

Hess, G., 1996. Disease in metapopulation models: implications for conservation.
Ecology 77, 1617–1632. http://dx.doi.org/10.2307/2265556.

Hsieh, Y.-H., van den Driessch, P., Wang, L., 2007. Impact of travel between patches
for spatial spread of disease. Bull. Math. Biol. 69, 1355–1375. http://dx.doi.org/
10.1007/s11538-006-9169-6.

Klepac, P., Bjørnstad, O.N., Metcalf, C.J.E., Grenfell, B.T., 2012. Optimizing reactive
responses to outbreaks of immunizing infections: balancing case management
and vaccination. PLOS One 7, e41428. http://dx.doi.org/10.1371/journal.
pone.0041428.

Klepac P., Laxminarayan R., Grenfell B.T., 2011. Synthesizing epidemiological and
economic optima for control of immunizing infections. Proc. Natl. Acad. Sci.,
108, 14366–14370. http://dx.doi.org/10.1073/pnas.1101694108.

Kurtz, T.G., 1970. Solutions of ordinary differential equations as limits of pure jump
Markov processes. J. Appl. Probab. 7, 49–58.

Mpolya, E.A., Yashima, K., Ohtsuki, H., Sasaki, A., 2014. Epidemic dynamics of a
vector-borne disease on a villages-and-city star network with commuters. J.
Theor. Biol. 343, 120–126. http://dx.doi.org/10.1016/j.jtbi.2013.11.024.

Ndeffo Mbah, M.L., Gilligan, C.A., 2010. Optimization of control strategies for epidemics
in heterogeneous populations with symmetric and asymmetric transmission.
J. Theor. Biol. 262, 757–763. http://dx.doi.org/10.1016/j.jtbi.2009.11.001.

Ndeffo Mbah, M.L., Gilligan, C.A., 2011. Resource allocation for epidemic control
in metapopulations. PLOS One 6, e24577. http://dx.doi.org/10.1371/journal.
pone.0024577.

Pollett, P.K., Stefanov, V.T., 2002. Path integral for continuous-time Markov chains. J.
Appl. Probab. 39, 901–904.

Petrosjan, L.A., Zenkevich, N.A., 1996. Game Theory. World Scientific, Singapore.
R Development Core Team 2011. R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria.
Rowthorn, R.E., Laxminarayan, R., Gilligan, C.A., 2009. Optimal control of epidemics

in metapopulations. J. R. Soc. Interface 6, 1135–1144. http://dx.doi.org/10.1098/
rsif.2008.0402.

Sanders, J., Noble, B., van Gorder, R.A., Riggs, C., 2012. Mobility matrix evolution for
an SIS epidemic patch model. Physica A 391, 6256–6267. http://dx.doi.org/
10.1016/j.physa.2012.07.023.

Seneta, E., 1981. Non-Negative Matrices and Markov Chains, 2nd Edition Springer,
New York.

Stewart, G.W., Sun, J.-G., 1990. Matrix Perturbation Theory. Academic Press, Boston.
van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold

endemic equilibria for compartmental models of disease transmission. Math.
Biosci. 180, 29–48. http://dx.doi.org/10.1016/S0025-5564(02)00108-6.

http://dx.doi.org/10.1242/jeb.073601
http://dx.doi.org/10.1242/jeb.073601
http://dx.doi.org/10.1242/jeb.073601
http://dx.doi.org/10.1137/060672522
http://dx.doi.org/10.1137/060672522
http://dx.doi.org/10.1137/060672522
http://dx.doi.org/10.1016/j.mbs.2013.02.006
http://dx.doi.org/10.1016/j.mbs.2013.02.006
http://dx.doi.org/10.1016/j.mbs.2013.02.006
http://dx.doi.org/10.1016/j.mbs.2013.02.006
http://dx.doi.org/10.1214/aoms/1177698395
http://dx.doi.org/10.1214/aoms/1177698395
http://dx.doi.org/10.1214/aoms/1177698395
http://dx.doi.org/10.1214/aoms/1177698395
http://dx.doi.org/10.1017/S0950268802007148
http://dx.doi.org/10.1017/S0950268802007148
http://dx.doi.org/10.1017/S0950268802007148
http://dx.doi.org/10.1017/S0950268802007148
http://refhub.elsevier.com/S0022-5193(16)00024-2/sbref7
http://refhub.elsevier.com/S0022-5193(16)00024-2/sbref7
http://refhub.elsevier.com/S0022-5193(16)00024-2/sbref7
http://dx.doi.org/10.1214/07-PS121
http://dx.doi.org/10.1214/07-PS121
http://dx.doi.org/10.1214/07-PS121
http://dx.doi.org/10.1098/rsif.2007.1126
http://dx.doi.org/10.1098/rsif.2007.1126
http://dx.doi.org/10.1098/rsif.2007.1126
http://dx.doi.org/10.1098/rsif.2009.0386
http://dx.doi.org/10.1098/rsif.2009.0386
http://dx.doi.org/10.1098/rsif.2009.0386
http://dx.doi.org/10.1080/03081088108817381
http://dx.doi.org/10.1080/03081088108817381
http://dx.doi.org/10.1080/03081088108817381
http://dx.doi.org/10.1137/110850761
http://dx.doi.org/10.1137/110850761
http://dx.doi.org/10.1137/110850761
http://dx.doi.org/10.1016/S0169-5347(97)01174-9
http://dx.doi.org/10.1016/S0169-5347(97)01174-9
http://dx.doi.org/10.1016/S0169-5347(97)01174-9
http://dx.doi.org/10.1016/S0169-5347(97)01174-9
http://dx.doi.org/10.1098/rsif.2008.0265
http://dx.doi.org/10.1098/rsif.2008.0265
http://dx.doi.org/10.1098/rsif.2008.0265
http://dx.doi.org/10.1098/rsif.2008.0265
http://dx.doi.org/10.1016/S0149-7634(88)80004-6
http://dx.doi.org/10.1016/S0149-7634(88)80004-6
http://dx.doi.org/10.1016/S0149-7634(88)80004-6
http://dx.doi.org/10.1016/0040-5809(83)90027-8
http://dx.doi.org/10.1016/0040-5809(83)90027-8
http://dx.doi.org/10.1016/0040-5809(83)90027-8
http://dx.doi.org/10.2307/2265556
http://dx.doi.org/10.2307/2265556
http://dx.doi.org/10.2307/2265556
http://dx.doi.org/10.1007/s11538-006-9169-6
http://dx.doi.org/10.1007/s11538-006-9169-6
http://dx.doi.org/10.1007/s11538-006-9169-6
http://dx.doi.org/10.1007/s11538-006-9169-6
http://dx.doi.org/10.1371/journal.pone.0041428
http://dx.doi.org/10.1371/journal.pone.0041428
http://dx.doi.org/10.1371/journal.pone.0041428
http://dx.doi.org/10.1371/journal.pone.0041428
dx.doi.org/10.1073/pnas.1101694108
http://refhub.elsevier.com/S0022-5193(16)00024-2/sbref21
http://refhub.elsevier.com/S0022-5193(16)00024-2/sbref21
http://refhub.elsevier.com/S0022-5193(16)00024-2/sbref21
http://dx.doi.org/10.1016/j.jtbi.2013.11.024
http://dx.doi.org/10.1016/j.jtbi.2013.11.024
http://dx.doi.org/10.1016/j.jtbi.2013.11.024
http://dx.doi.org/10.1016/j.jtbi.2009.11.001
http://dx.doi.org/10.1016/j.jtbi.2009.11.001
http://dx.doi.org/10.1016/j.jtbi.2009.11.001
http://dx.doi.org/10.1371/journal.pone.0024577
http://dx.doi.org/10.1371/journal.pone.0024577
http://dx.doi.org/10.1371/journal.pone.0024577
http://dx.doi.org/10.1371/journal.pone.0024577
http://refhub.elsevier.com/S0022-5193(16)00024-2/sbref26
http://refhub.elsevier.com/S0022-5193(16)00024-2/sbref26
http://refhub.elsevier.com/S0022-5193(16)00024-2/sbref26
http://refhub.elsevier.com/S0022-5193(16)00024-2/sbref27
http://dx.doi.org/10.1098/rsif.2008.0402
http://dx.doi.org/10.1098/rsif.2008.0402
http://dx.doi.org/10.1098/rsif.2008.0402
http://dx.doi.org/10.1098/rsif.2008.0402
http://dx.doi.org/10.1016/j.physa.2012.07.023
http://dx.doi.org/10.1016/j.physa.2012.07.023
http://dx.doi.org/10.1016/j.physa.2012.07.023
http://dx.doi.org/10.1016/j.physa.2012.07.023
http://refhub.elsevier.com/S0022-5193(16)00024-2/sbref31
http://refhub.elsevier.com/S0022-5193(16)00024-2/sbref31
http://refhub.elsevier.com/S0022-5193(16)00024-2/sbref32
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1016/S0025-5564(02)00108-6

	Limiting the spread of disease through altered migration patterns
	Introduction
	Minimising disease spread in the initial stages
	Minimising the expected growth rate
	Optimising R0, minor outbreak probability, and expected total size

	Numerical comparisons
	Discussion
	Acknowledgements
	References




