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Abstract

The spread of an infectious disease has been widely found to evolve with the propagation of

information. Many seminal works have demonstrated the impact of information propagation on

the epidemic spreading, assuming that individuals are static and no mobility is involved. Inspired by

the recent observation of diverse mobility patterns, we incorporate the information propagation into

a metapopulation model based on the mobility patterns and contagion process, which significantly

alters the epidemic threshold. In more details, we find that both the information efficiency and

the mobility patterns have essential impacts on the epidemic spread. We obtain different scenarios

leading to the mitigation of the outbreak by appropriately integrating the mobility patterns and

the information efficiency as well. The inclusion of the impacts of the information propagation into

the epidemiological model is expected to provide an support to public health implications for the

suppression of epidemics.
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I. INTRODUCTION

Infectious diseases are transmitted through social contacts between individuals. The mod-

elling of epidemic spreading among human beings has been extensively studied in mathe-

matical epidemiology and network science. The developments of transportation system have

enabled people to travel more globally. Consequently, epidemics starting from a local patch

can spread to the entire network in a very short time. Recently, the metapopulation mod-

eling approach has been broadly applied to study infectious disease spreading among the

spatial structure of populations with well-defined social units [1–3]. Then the metapopula-

tion network model has been greatly developed by considering a number of factors such as

the network structure [4–6], human mobility patterns [7–11], human behavior [12, 13], and

human contact patterns [14–16]. It has been shown that the substrate network structure [4–

6] plays an essential role in the spatial spread of epidemics. In real-world networks, human

mobility patterns vary in a very complicated way, e.g., recurrent visits of patches [7–10],

diverse staying period in patches [11], etc. Human behavioral responses to the epidemics

have also been found to be able to delay the epidemic spread [12, 13]. With regard to human

contact patterns, location-specific contact patterns have been investigated [14]. Recently,

since human contact patterns are temporal, the nature of burstiness and heterogeneity in

human activities has been found in empirical studies, and it has striking effects on the speed

of spreading [15–17]. For instance, heterogeneity of human activity is responsible for the

slow dynamics of information propagation [16].

Human beings often react to the presence of an infectious disease by changing their

behavior. The perception of the risk associated with the infection and countermeasures are

usually accompanied with the behaviour like cutting the connection with infectious contacts

to form adaptive rewiring [18–20], accepting vaccination [21], wearing face-masks, reducing

travel range [22], etc. Within the epidemic-related game, the change of human behavior such

as tradeoff between cost and risk often results in the decision-making process like vaccination

via a game-theoretic framework [23–25].

Many works have focused on the impact of information propagation on separating a non-

epidemic state and an epidemic state. With the progression of the outbreak, messages on
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the epidemics, such as fears of the disease and self-initiated awareness, may be passed from

one individual to another [26, 27]. Following the seminal work in Ref. [28], the source of in-

formation (e.g., local or global awareness) and the pattern of information dissemination have

been widely studied [29–34]. Depending on the path of information propagation, there are

several types of information. For instance, people obtain information from broadcasting and

the Internet, which could be taken as a kind of global information. People can also exchange

information by face-to-face contacts, which is a kind of contact-based information [28]. So

far, the study of the impacts of information propagation on the epidemic spread has been

restricted to individual-based networks, where one node corresponds to one individual [34].

Under the framework of metapopulation model, people may get infected by contacting

with infectious individuals within the same patch; they may exchange information related

to the presence of an infectious disease through face-to-face contacts [28, 29]. Information

carriers may pass the message of the epidemic situation to uninformed individuals, which

may potentially alter their future mobility patterns, thus, affecting the epidemic spread.

This has been observed in real-world situations, where people are usually reluctant to visit

infected areas [35, 36]. The diameter of human mobility during the H1N1 epidemic has been

found to reduce significantly with the progression of alert campaign, which verifies the fact

that human beings indeed alter their movements when being exposed to the presence of the

information during the outbreak of epidemics [36].

In this paper, we present a metapopulation framework to explore the interplay between

epidemic dynamics and information dynamics based on diverse mobility patterns. With a

mean-field approximation of the metapopulation model, we find that both the information

efficiency and the mobility patterns jointly affect the epidemic spread in terms of both

the outbreak size and the epidemic threshold. When the information efficiency is low,

mobility to the patch with more healthy individuals facilitates the epidemic spread with an

increased outbreak size and an decreased epidemic threshold, even though more individuals

get informed; on the contrary, when the information efficiency is high enough to cause

people’s attention, mobility to the patch with more healthy individuals, suppresses the

epidemic outbreak by informing more individuals. In order to highlight the role of mobility,

we apply a simplistic model of information dynamics to that of the disease dynamics; the

incorporation of passing messages among mobile individuals in the metapopulation model

gives us a new perspective on the countermeasure of epidemics, which is different from the
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previous studies on the contact-based networks. It suggests a possible way to suppress the

epidemic spread by guiding individual mobility patterns in accordance with the evaluation

of the risk perception and the information efficiency as well.

II. MODEL DEFINITIONS

Before introducing the model, we briefly demonstrate the mobility patterns and infor-

mation propagation, respectively. Usually, a random mobility pattern is often used for the

convenience of theoretical analysis. To be more realistic, we consider that the mobility pat-

tern is driven by the safety level at destination. In facing the outbreak, people usually prefer

to visit safer patches in order to avoid infection, i.e., the safer the destination is, the higher

the probability that individuals move to it is [13].

In the context of information, we regard it to be only accessible by contacting with

information carriers as opposed to the general knowledge obtained through multi-media

(global awareness) and self-initiated awareness as well. Thus, we focus on the interplay

between mobility patterns and information propagation. The role of information in reducing

the infection risk is described by the information efficiency, which is classified into two major

types: (i) the information that is highly efficient to warn people to take measures in the

face of a fatal flu, such as severe acute respiratory syndrome (SARS); (ii) the information

that cannot cause people’s sufficient attention to take measures in the face of an infectious

disease, such as seasonal influenza. As a result, the exchange of information on the risk

perception may potentially alter human behavior, e.g., contact structures or travel patterns,

which in turn influences the spreading process.

The metapopulation approach describes the spatially structured interacting patches,

which are connected by the movement of individuals. Inside each patch, individuals are

divided into classes that represent their states according to the infection dynamics. To

demonstrate the role of information propagation in the epidemic dynamics, we couple a

mathematical model similar to the susceptible-infectious-susceptible (SIS) model for the

epidemic dynamics with a model for the information propagation. Due to the information

propagation, susceptible individuals are further classified into two types: Uninformed sus-

ceptible (S) and informed susceptible (A) individuals. Uninformed susceptible individuals

are those who have not yet received the information on the epidemic and may get infected
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by contacting with infectious individuals at transmission rate β, while informed susceptible

individuals (A) may get infected with a reduced transmission rate βA with βA < β. This

is supported by the fact that people may reduce the number of contacts as a defensive re-

sponse [37] and they also may get infected with a reduced infection transmission rate by

self-awareness, such as wearing face-masks or washing hands frequently [38–40]. For con-

venience, we represent the reduced transmission rate as βA = (1 − α)β, where α denotes

the information efficiency for reduction of infection risk. Infectious individuals may get

recovered at rate µ. Here, we assume the nonlimited transmission, where the infection rate

is not divided by the total population in the patch. The propagation of information is anal-

ogous to that of an infectious disease, often called “information contagion”: information is

passed from information carriers to uninformed individuals through contact at rate σ, and

information carriers may lose the information at rate r as time goes by. We assume that

information is passed by contact instead of self-awareness, and for simplicity, we also assume

that infectious individuals are ignorant to the information. In fact, it is more realistic to

assume that infectious individuals know the infectious status and they may reduce their

contact number by being detected or quarantined, however, it is out of the range of this

paper and may be investigated in the future. Figure 1 illustrates the interplay between the

information propagation and the disease spread on metapopulation networks.

Connected patches as a force of infection result from the movement of individuals. Next,

let us consider the diffusion process [41–43]. Parallel to the contagion process, simulta-

neously all the individuals move from one patch to another at rate D. In more details,

uninformed, informed, and infectious individuals leave the patch at rates DS, DA, and DI ,

respectively. Considering the heterogeneity in the real-world networks, individuals in state

θ (θ = S,A, I) at patch k′ (patch with degree k′ is briefly denoted by patch k′) move to

the neighboring patch k with probability dθ,k′k. Human mobility shows diverse patterns

depending on individual’s gender, age, and native or non-native [44–46]. An explicit expres-

sion of dθ,k′k relies on the knowledge of the empirical data on traveling patterns of human

beings [47–51]. In the following, we use dθ,k′k as a general expression for mobility probability

in the determined reaction-diffusion equations to describe the dynamics of the epidemic and

that of the information in the metapopulation system.

By incorporating the contagion process and the information propagation into the diffusion

processes, the dynamics of the subpopulation of uninformed, informed, and infectious indi-
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viduals at patch k, ρS,k, ρA,k, and ρI,k, respectively, are approximated with the mean-field

approximation as follows:

dρS,k
dt

= −βρS,kρI,k − σρS,kρA,k + µρI,k + rρA,k −DSρS,k + kDS

∑
k′

ρS,k′P (k′|k)dS,k′k,

dρA,k
dt

= σρS,kρA,k − βAρA,kρI,k − rρA,k −DAρA,k + kDA

∑
k′

ρA,k′P (k′|k)dA,k′k,

dρI,k
dt

= βρS,kρI,k + βAρA,kρI,k − µρI,k −DIρI,k + kDI

∑
k′

ρI,k′P (k′|k)dI,k′k, (1)

for kmin ≤ k ≤ kmax, where kmin and kmax are the minimum and maximum degrees of

the patches, respectively; P (k′|k) is the conditional probability that a patch k connects

with a patch k′. For simplicity of calculation, we assume that the patches connect in an

uncorrelated way in the sense that they connect at random, i.e., P (k′|k) = k′P (k′)
〈k〉 , where

〈k〉 =
∑

k kP (k) is the average degree of the network [52] and P (k) is the degree distribution

of the network.

Since the information propagation affects the epidemic spread by informing more indi-

viduals of the disease and thereby reducing their risk of infection, mobility patterns of the

informed susceptible individuals play a fundamental role in the effectiveness of the informa-

tion propagation, and thus, affect the epidemic spread. To understand the role of mobility

patterns in both the dynamics of epidemic spread and that of the information propagation,

we investigate the mobility probability from patch k′ to patch k by assuming the detailed

functional form of dθ,k′k for θ = S,A, I. Intuitively, the more healthy individuals a patch

contains, the safer the patch is, and individuals usually prefer to move to safer patches, or in

other words, in order to prevent infection they attempt to avoid visiting infected patches. To

reflect this effect, following Ref. [13], we assume that all the individuals move in accordance

with the safety level at the destination, which is mathematically expressed by

dθ,kk′ =
(ρS,k′)

γθ

k
∑

k′′ P (k′′|k)(ρS,k′′)γθ
for θ=S,A,I , (2)

for kmin ≤ k, k′ ≤ kmax, where the parameter γθ controls the dependency on the safety level

at the patch. By tuning γθ, diverse mobility patterns can be observed. For instance, if

γθ > 0, the safer the patch is, the more likely it is that individuals move to the patch; this

is consistent with the phenomenon that people attempt to bypass infected areas; in order

to deploy a systematic study, we also consider the opposite case with γθ < 0, which means

that the safer the patch is, the less likely it is that people travel to the patch. This may
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correspond to the situation that people receive incorrect information. If γθ = 0, the model

is reduced to the case of random mobility and Eq. (2) is simplified as follows:

dρS,k
dt

= −βρS,kρI,k − σρS,kρA,k + µρI,k + rρA,k −DSρS,k +DS
k

〈k〉
ρS,

dρA,k
dt

= σρS,kρA,k − βAρA,kρI,k − rρA,k −DAρA,k +DA
k

〈k〉
ρA,

dρI,k
dt

= βρS,kρI,k + βAρA,kρI,k − µρI,k −DIρI,k +DI
k

〈k〉
ρI , (3)

for kmin ≤ k ≤ kmax. In the following, we will explore how mobility patterns influence the

information propagation and the epidemic process as well.

III. THE INVASION THRESHOLDS FOR DISEASE DYNAMICS AND INFOR-

MATION DYNAMICS

A. The equilibrium point (ρ̄S,k, ρ̄A,k, ρ̄I,k) = (ρ̄S,k, 0, 0).

We investigate the ability that a disease or information can survive in the network by

analyzing the stability of the disease-free and information-free state at the equilibrium point

(ρ̄S,k, ρ̄A,k, ρ̄I,k) = (ρ̄S,k, 0, 0). By inserting Eq. (2) into Eq. (1), the uninformed susceptible

individuals at patch k, ρ̄S,k, at the equilibrium state is given by

ρ̄S,k =
k

〈k〉
∑
k′

P (k′)ρ̄S,k′
(ρ̄S,k)

γS∑
k′′ P (k′′|k′)(ρ̄S,k′′)γS

, (4)

for kmin ≤ k ≤ kmax, which is rewritten using P (k′′|k′) = k′′P (k′′)
〈k′〉 as follows:

ρ̄S,k =
kρ0(ρ̄S,k)

γS∑
k′′ k

′′P (k′′)(ρ̄S,k′′)γS
=
kρ0(ρ̄S,k)

γS

〈(ρ̄S)1,γS〉
, (5)

where 〈(ρ̄S).,γS〉 denotes an arbitrary order moment of (ρ̄S)γS and ρ0 is the total population

density in the network and the parameter γS controls the susceptible population at the

equilibrium. The exact solution of ρ̄S,k can be numerically solved with the fixed-point

iteration with Eq. (5).

The linearized matrix of Eq. (1) around the disease-free and information-free equilibrium

is given by
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JDF =


DS(C− I) −diag(σρ̄S,k − r) −diag(βρ̄S,k − µ)

0 diag(σρ̄S,k − (r +DA)) +DAC 0

0 0 diag(βρ̄S,k − µ) +DI(C− I),

 ,(6)

where each block is a (kmax − kmin) matrix; 0 is the null matrix; I is the identity matrix;

diag(xk) is a diagonal matrix with kth component as xk; the matrix C is given by

Ckk′ =
kP (k′)

〈k〉
. (7)

Since C is a rank-one matrix, it has an eigenvalue λ = 0 with multiplicity kmax − 1 and an

eigenvalue λ = 1. The characteristic equation of JDF is given by f(λ) = f1(λ)f2(λ)f3(λ),

where f1(λ) is the characteristic equation of DS(C− I), f2(λ) is the characteristic equation

of diag(σρ̄S,k − (r + DA)) + DAC, and f3(λ) is the characteristic equation of diag(βρ̄S,k −

µ) + DI(C − I). The set of eigenvalues of JDF is the union of the solutions f1(λ) = 0

and those of f2(λ) = 0 and f3(λ) = 0. Because f1(λ) = −λ(−(λ + DS))kmax−kmin−1, the

largest eigenvalue of DS(C − I) is 0. From a general interlacing theorem of eigenvalues for

perturbations of a diagonal matrix by rank-one matrices, the largest eigenvalue λmax,A of

diag(σρ̄S,k − (r + DA)) + DAC satisfies λmax,A > ρ0σ kmax〈k〉 − (r + DA), while the largest

eigenvalue λmax,I of diag(βρ̄S,k − (µ + DI)) + DIC satisfies λmax,I > ρ0β kmax〈k〉 − (µ + DI).

The largest eigenvalue of JDF is given by max{0, λmax,A, λmax,I}. Therefore, the sufficient

condition for the disease-free equilibrium to be unstable is given by

ρ0c,I ≥
〈k〉
kmax

µ+DI

β
, (8)

or the sufficient condition for the information-free equilibrium to be unstable is given by:

ρ0c,A ≥
〈k〉
kmax

r +DA

σ
. (9)

B. The equilibrium point (ρ̄S,k, ρ̄A,k, ρ̄I,k, ) = (ρ̄S,k, ρ̄A,k, 0)

Except for the equilibrium point of the disease- and information-free state (ρ̄S,k, ρ̄A,k, ρ̄I,k) =

(ρ̄S,k, 0, 0), we have to note that there exists the second equilibrium point (ρ̄S,k, ρ̄A,k, ρ̄I,k) =

(ρ̄S,k, ρ̄A,k, 0) with ρ̄A,k > 0. Let us start with a simplistic assumption that individuals in all

the states move at random, i.e., γS = γA = γI = 0 and DS = DA. By solving Eq. (1), the
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population density at patch k, ρ̄k, at the equilibrium is given by

ρ̄k = ρ̄S,k + ρ̄A,k =
k

〈k〉
ρ0. (10)

With Eq. (1), the informed populations at the equilibrium state, ρ̄A,k, is obtained by solving

the following equation:

0 = σρ̄2A,k + (r +DA − σρ̄k)ρ̄A,k −
k

〈k〉
ρ̄A, (11)

where ρ̄A =
∑

k P (k)ρ̄A,k is the total informed population at the equilibrium state in the

network.

By setting ωk = k
〈k〉ρ

0 − r+DA
σ

, the informed and uninformed susceptible populations at

patch k, ρ̄A,k and ρ̄S,k, respectively, at the equilibrium are given by

ρ̄A,k =
ωk +

√
ω2
k + 4 k

〈k〉 ρ̄A
1
σ

2
, (12)

ρ̄S,k =
k

〈k〉
ρ0 −

ωk +
√
ω2
k + 4 k

〈k〉 ρ̄A
1
σ

2
, (13)

where the equilibrium solution ρ̄A,k can be solved with the fixed point iteration.

The equilibrium becomes unstable if the uninformed susceptible and informed susceptible

individuals become infected before the infected individuals get recovered, that is,

βρ̄S,k + βAρ̄A,k
µ+DI

≥ 1, (14)

which is rewritten as

2k
〈k〉ρ

0 − α
√
ω2
k + 4 k

〈k〉 ρ̄A
DA
σ

2µ+DI
β

≥ 1, (15)

where 0 ≤ α ≤ 1, ρ̄A can be solved with Eq. (11). In order to trigger an epidemic outbreak,

there exists a third invasion threshold, ρ0c,AI , such that the unformed and informed suscep-

tible individuals get infected by contacting with the infectious individuals. Regarding ρ̄A as

a parameter, ρ0c,AI is such ρ0 that satisfies the condition (15). The exact value of ρ0c,AI can

be obtained numerically.

If ρ0 ≤ ρ0c,I and ρ0 ≥ max{ρ0c,A, ρ0c,AI}, then the epidemic occurs by infecting more

informed individuals instead of infecting uninformed individuals. If ρ0 ≥ ρ0c,I and ρ0c,A ≤

ρ0 ≤ ρ0c,AI , then the epidemic occurs by infecting more uninformed individuals instead of

infecting informed individuals.
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Let us see some specific cases. When α = 0, all the informed individuals get infected at

the same infection rate as the uninformed individuals do, and ρ0c,AI = ρ0c,I ; when α = 1, all

the informed individuals get full immunity to the disease with the infection rate βA = 0;

hence, the threshold condition is given by ρ̄S,k
β

µ+DI
= 1, where ρ̄S,k satisfies the condition

ρ̄S =
∑

k P (k)ρ̄S,k and ρ̄S = ρ0 − ρ̄A, which is consistent with Eq. (8); when 0 < α < 1,

if ρ0c,AI > ρ0 > ρ0c,A, it indicates that the population density ρ0 is large enough to inform a

quantitative size of susceptible individuals but it is not large enough to infect them, whereas

it is possible that the outbreak occurs by infecting the informed individuals if ρ0 > ρ0c,AI .

IV. NUMERICAL RESULTS

A. Impacts of mobility patterns on the final prevalence of the epidemic

In order to take the safety movement patterns into account, in the following, we in-

vestigate three representative types of mobility patterns: (i) γθ > 0: individuals in state

θ (θ = S,A, I) prefer to move to safer patches; (ii) γθ < 0: individuals in state θ prefer to

move to less safe patches; (iii) γθ = 0: individuals in state θ move at random. We take case

(iii) as a standard criterion for comparison with cases (i) and (ii). In a more detailed way,

we investigate the situation that both the uninformed and informed individuals follow the

same mobility patterns with γS = γA and the situation that they follow opposite mobility

patterns with γS > 0 and γA < 0 or vice versa. Networks of patches are generated with

the configuration network model [53] with size N = 2000 following the degree distribution

P (k) ∼ k−2.5 with kmin = 2. Simulation results are based on averaging over more than

100 results for different initial conditions and network structures. Without specification,

all the infectious individuals are assumed to move at random with γI = 0. We randomly

seed 0.1% of the total population for each of the dynamics of infectious disease and infor-

mation propagation. This condition ensures that the outbreak for each dynamics is started

separately.

Time courses of the uninformed, informed, and infectious populations for different combi-

nations of α and mobility patterns γS (γA) are shown in Fig. 2. When α is at a medium level,

that is, the informed individuals get infected with a half risk of infection (α = 0.5, Fig. 2 (a)),

the informed population (the blue curves) firstly grows and then reduces to zero due to the
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infection by infectious individuals, leaving the uninformed and infectious populations at the

stable state. The final prevalence of infection also depends on mobility patterns. For in-

stance, moving to safer patches (γS = γA = 0.5 > 0, the dotted curve) causes a relatively

higher prevalence, while, on the contrary, moving to less safe patches (γS = γA = −0.5 < 0,

the solid curve) causes a lower prevalence.

B. Impacts of information efficiency on the final prevalence of epidemics

In the case of an extremely perfect information efficiency with α = 1.0 (Fig. 2 (b)), where

the informed individuals become totally immune to the infectious disease, the informed

population sustains a non-zero value only if people move to safer patches (γS = 0.5, the

blue dotted curve). In this case, mobility patterns play a role different from that at a

lower α (Fig. 2 (a)). Since informed individuals get full immunity to the infection, the

more individuals get informed, the less individuals get infected. Hence, moving to the patch

that contains more susceptible individuals will inform more and make them immune to the

infectious disease. As a result, mobility patterns with γS = γA = 0.5 > 0 inform individuals

most (the blue dotted curve) and yield the lowest prevalence of infection (the red dotted

curve).

The final prevalence of infection and that of the informed individuals for different choices

of α can be further observed in Fig. 3. The final prevalence depends on the combined

role of the information efficiency and mobility patterns. For instance, when α = 0, the

informed individuals get the same infection rate as the uninformed individuals do. We

firstly observe that moving to the less safe patch can cause a higher epidemic threshold

and a lower prevalence irrespective of the information efficiency α (Fig. 3 (a1), the black

squares). Conversely, moving to the safer patches causes a smaller epidemic threshold and

a higher prevalence (Fig. 3 (a1), the red triangles). The informed population firstly grows

by informing susceptible individuals, and then it ceases to grow and reduces to zero due to

the infection by contacting with infectious individuals (Fig. 3 (b1)).

With the increase of the information efficiency such as α = 0.5, the informed individuals

get a reduced risk of infection. We find that even if the infection rate is reduced to half, the

final prevalence of infection does not obviously decrease for all the mobility patterns that we

tested (Fig. 3 (a2)). With further increase of α, such as α = 1, the informed individuals get
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full immunity to the infectious disease. When individuals prefer to move to safer patches with

γS = 0.5, we find that the more susceptible individuals get informed (Fig. 3 (b3)), the smaller

the outbreak size will be (Fig. 3 (a3)). For instance, with γS = 0.5, infection disappears

from the network while keeping a non-zeros quantity of individuals being informed.

From the above analysis, we find that a medium value of α cannot change the contagion

process in terms of both the final prevalence and the epidemic threshold. Although moving

to the safer patches can inform more individuals, it increases the probability of infection as

well.

C. The interaction of mobility patterns and information efficiency on the final

prevalence of epidemics

The interaction of individuals’ mobility patterns and the information efficiency can be

further verified by observing the final prevalences of the infectious and informed individuals

at patches k, ρI,k and ρA,k, as shown in Fig. 4. It shows that the larger the patch degree k is,

the more infectious individuals are contained in it, roughly following a linear increase form.

Moreover, for a medium level of α, moving to the patches with more healthy population will

infect more; while moving to the patches with less healthy population, infect less due to the

dissemination of individuals at high degree patches (Figs.4 (a1) and (a2)). With the increase

in α, moving to the patch with high degrees can inform more individuals (Fig. 4 (b2), the

red triangles), thus, less individuals at the patch get infected (Fig.4 (b1)).

The detailed interplay between α and mobility patterns for the epidemic spread is shown

in Fig. 5. We find that for all possible values of α, moving to the patches that contain more

susceptible individuals, increases the risk of outbreak, except for an extremely information

efficiency α (α > 0.9), where the prevalence of infection can be significantly reduced by

increasing the contact probability between information carriers and uninformed susceptible

individuals (γS > 0). When α is a medium value, reducing the contact probability between

information carries and uninformed susceptible individuals (γS < 0) can efficiently prevent

the epidemic spread.

In the above analysis, we have assumed that both the informed and uninformed individ-

uals follow the same types of mobility patterns with “γS > 0 and γA > 0” or “γS < 0 and

γA < 0”. In order to make the analysis consistent, in the following, we investigate the case
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that the informed and uninformed susceptible individuals take different types of mobility

patterns by tuning the parameters γS > 0 and γA < 0 or vice versa, and we explore their

impacts on the final prevalence of infection (Fig. 6). For a medium value of α, the more

uninformed individuals move to the safer patches (γS > 0), the higher the prevalence is.

This is irrelevant to the mobility patterns of the informed individuals and is independent

of whether they approach the safer patches or not (γA > 0 or γA < 0). With an extremely

high efficiency (α = 1, Fig. 6 (b)), we find two opposite results. The highest contact proba-

bility between information carriers and uninformed susceptible individuals yields the lowest

prevalence (“γA > 0 and γS > 0” or “γA < 0 and γS < 0”), while the separation of them

promotes the epidemic spread (γS > 0 and γA < 0).

From the above results, we conclude that information propagation is vital to the epidemic

spread. The role of information propagation has to be evaluated by taking the information

efficiency α into account. On the one hand, information may help mitigate the epidemic

spread as long as it is highly efficient enough to reduce the risk of infection (a high value of α).

Under this circumstance, mobility to safer patches may strengthen the role of information

by informing more individuals. On the other hand, when the information on the disease

cannot cause people’s attention to reduce the risk of infection (a medium or lower value

of α), informing more individuals by moving to the safer patches can only promote the

epidemic spread by gathering more susceptible individuals in one patch.

D. Impacts of the information efficiency α and mobility patterns on the epidemic

threshold

Next, we explore how mobility patterns affect the epidemic threshold ρ0c,I with Eq. (8) as

shown in Fig. 7, where we assume that the informed individuals follow the same mobility

patterns as the uninformed susceptible individuals do. It shows that ρ0c,I decreases with

γS, indicating that the more susceptible individuals move to the safer patches, the smaller

the epidemic threshold will be. In other words, moving to the safer patches promotes the

epidemic spread.

To further reveal the impacts of the information efficiency and mobility patterns on the

epidemic process, we show the dependence of the epidemic threshold ρ0c,I on α and γS in

Fig. 8. It shows that for a lower α, moving to safer patches promotes the disease spread
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with a reduced epidemic threshold (bottom-right); while for a higher α, moving to the safer

patches informs more individuals and thus protects them from infection yielding a higher

invasion threshold (top-right). This result is consistent with the analysis of the epidemic

prevalence as shown in Fig. 5.

The dependence of the third epidemic threshold ρ0c,AI on the information efficiency α can

be found in Fig. 9. We find that with the increase of information efficiency, α, the informed

individuals get immunity to infection and it mitigates the disease spread in the network,

yielding a higher critical invasion threshold ρ0c,AI .

V. DISCUSSION

Whenever the outbreak of an infectious disease occurs, it is inevitably accompanied with

the propagation of the information that is related to the progression of the infectious dis-

ease. In this work, we have investigated the interplay between the disease spread and the

information propagation by focusing on the role of the information efficiency in reducing

the risk of infection, and that of mobility patterns. The mobility pattern is mainly driven

by the risk perception expressed by the safety level at the destination patch. The more

healthy individuals a patch contains, the safer it is. Although the model we have proposed

is simplistic and more realistic scenarios with detailed mobility patterns are determined by

the availability of data, our model captures basic characteristics of the dynamics of informa-

tion propagation and that of epidemic spread. We find that appropriately incorporating the

knowledge of the information efficiency with the guidance of human mobility may effectively

mitigate the epidemic outbreak by decreasing the outbreak size and increasing the epidemic

threshold. Changing mobility patterns in accordance with the evaluation of the information

efficiency could strengthen the role of information propagation in preventing the outbreak.

Information carriers play a role of double sides of swords. Our results suggest that mobil-

ity to the patches that contain more healthy individuals can mitigate the epidemic outbreak

only if the information can efficiently appeal people’s attention to reduce the risk of infec-

tion; otherwise, informing more individuals can promote the epidemic spread with a larger

outbreak size. Thus, in addition to the usual intervention measurements (e.g., vaccinations),

guiding mobility patterns or controlling the traffic flow between patches based on the proper

14



evaluation of the information efficiency may be useful in preventing an epidemic.
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FIG. 1. Schematic illustration of the model of the epidemical spread and the information propa-

gation (SAIS). In this model, each individual falls into one of the three states: uninformed (S),

informed (A), and infectious (I). All types of individuals move from patch i to patch j with proba-

bility dθ,ij for θ = S,A, I. For example, informed individuals in patch i may move to patch j with

probability dA,ij ; susceptible individuals in patch i may move to patch k with probability dS,ik.

The mobility probability of infectious individuals dI,jk can be defined in a similar way.
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FIG. 2. Time courses of the prevalences for different combinations of α and mobility patterns

controlled by γS . (a) α = 0.5; (b) α = 1.0. Informed and uninformed individuals are assumed to

move in the same way ( γA = γS). Uninformed susceptible population (the black curve); informed

susceptible population (the blue curve); infectious population (the red curve). The mobility pa-

rameters are set at γS = −0.5 (the solid curve), γS = 0 (the dashed curve), and γS = 0.5 (the

dotted curve). The population density is set at ρ0 = 2 and the epidemiological parameters are set

at β = σ = 0.1 and µ = r = 0.2.
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FIG. 3. Final prevalences of the infectious population ρI ((a)) and that of the informed population

ρA ((b)) for different combinations of α and the mobility patterns γS (γA). (a1) and (b1), α = 0.0;

(a2) and (b2), α = 0.5; (a3) and (b3), α = 1.0. The mobility parameters are set at γS = γA =

−0.5 (the black squares); γS = γA = 0 (the blue circles), and γS = γA = 0.5 (the red triangles).

The other parameters are the same as in Fig. 2.
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FIG. 4. Final prevalences of the infectious population ρI,k and the informed population ρA,k at

patch k. (a1) and (a2) α = 0.5; (b1) and (b2) α = 1. γS = γA = −0.5 (the black squares);

γS = γA = 0 (the blue circles), and γS = γA = 0.5 (the red triangles). The epidemiological

parameters are set at the same values as in Fig. 2.
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FIG. 5. Final prevalence of the infectious individuals versus γS (= γA) and α. The informed

individuals move with the same pattern as the uninformed individuals do with γA = γS . The total

population density is set at ρ0 = 2. The other parameters are the same as in Fig. 2.
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FIG. 6. Final prevalence of the infected population versus γA and γS for different α. (a) α = 0.5;

(b) α = 1.0. The total population density is set at ρ0 = 2. The other parameters are the same as

in Fig. 2.
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FIG. 7. The epidemic threshold ρ0c,I versus γS . The epidemiological parameters are set at β = 0.1

and µ = 0.2. The mobility rates are set the same at DS = DA = DI = 1. The other parameters

are the same as in Fig. 2.
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FIG. 8. The epidemic threshold ρ0c,I versus α and γS . The informed individuals move in the same

pattern as the uninformed individuals do with γA = γS . The epidemiological parameters are set

at β = 0.2 and µ = 0.2. The mobility rates are set at DI = DS = DA = 1. The other parameters

are the same as in Fig. 2.
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FIG. 9. The epidemic threshold ρ0c,AI versus α. The uninformed susceptible, informed susceptible,

and infectious individuals are assumed to move with the same pattern i.e. γA = γS = γI = 0.

The epidemiological parameters are set at β = 0.1 and µ = 0.2. The mobility rates are set at

DI = DS = DA = 1. The other parameters are the same as in Fig. 2.
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