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Consider and infinitely large asexual population without mutations and direct interactions. The activi- 

ties of an individual determine the fecundity and the survival probability of individuals, moreover each 

activity takes time. We view this population model as a simple combination of life history and optimal 

foraging models. The phenotypes are given by probability distributions on these activities. We concentrate 

on the following phenotypes defined by optimization of different objective functions: selfish individual 

(maximizes the average offspring number during life span), survival phenotype (maximizes the probabil- 

ity of non-extinction of descendants) and Darwinian phenotype (maximizes the phenotypic growth rate). 

We find that the objective functions above can achieve their maximum at different activity distributions, 

in general. We find that the objective functions above can achieve their maximum at different activity 

distributions, in general. The novelty of our work is that we let natural selection act on the different 

objective functions. Using the classical Darwinian reasoning, we show that in our selection model the 

Darwinian phenotype outperforms all other phenotypes. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Here we consider an asexual, sufficiently large and non-ageing

population (i.e., the survival rate and fecundity of individuals do

not depend on their age) and the generations are overlapping (i.e.,

parents and their offspring can reproduce at the same time). We

suppose that the individuals are engaged in different activities,

which determine the fecundity, and the survival rate. All activities

have certain time durations. We emphasize that there are no in-

teractions between individuals. Our basic assumption is that indi-

viduals may only differ in their activity distributions, but they are

alike in all other respects. Consequently, in the present model, the

phenotypes are fully defined by their activity distributions. Finally,

we assume that mutation is absent. 

We note that from the mathematical point of view, this selec-

tion situation is possibly the first step towards a combination of

life history theory ( Stearns 1992 ; Charnov 1993 ), and optimal for-

aging theory ( Stephens & Krebs 1986 ), for it contains the essen-

tial elements of both these theories. Namely, we work with over-

lapping generations like life history theory does, but for simplic-

ity we assume there is no aging. Furthermore, each action takes
∗ Corresponding author. 

E-mail addresses: garayj@caesar.elte.hu (J. Garay), villo@ludens.elte.hu (V. 
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ime as in optimal foraging theory. To keep things simple, in our

odel the activity distribution depends exclusively on the pheno-

ype, whereas in optimal foraging theory the energy intake de-

ends on both the foraging strategy (activity) of the forager and

he actual density of food. In optimal foraging theory it was found

hat the time constraints have essential effect on the optimal for-

ging strategy (e.g., Stephens & Krebs 1986, Garay & Móri 2010 ). 

Our basic assumption is that the individuals may only differ

n their activity distributions, but they are alike in all other re-

pects. Consequently, in the present model, the phenotypes are

ully defined by their activity distributions. We seek phenotypes

hich maximize interesting objective functions (cf. Garay et al.,

016, Garay & Varga 2005 ). 

The challenge is to find the optimal phenotype, i.e., the optimal

istribution on the activities. However, this question is ambiguous,

ince there are trade-offs (i.e., negative correlations) between ei-

her fecundity and survival rate, or fecundity and time duration, or

oth. In general no phenotype maximizes fecundity and survival

ate simultaneously. The problem can be made precise mathemat-

cally, if we define an objective function, and find the phenotype

hat maximizes it, thus we seek the optimal phenotype with re-

pect to a prescribed objective function. Now we are facing the

roblem of choosing the “right” objective function. We mention

wo examples of this trade-off phenomenon, together with an (in-

http://dx.doi.org/10.1016/j.jtbi.2017.06.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
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omplete) list of some previously proposed objective functions, to

emonstrate the ambiguity. 

Firstly, in the theory of survival cost of reproduction (e.g.,

arshman & Zera 2007 , see also life history theory), it is usually

ssumed that there is a trade-off between fecundity and survival

ate. Four widespread objective functions of this theory are as fol-

ows. Fisher (1930) proposed reproductive value , and later Schaffer

1974) suggested optimal reproductive effort . The selfish individual

aximizes her life reproductive success (e.g., Yearsley et al., 2002 ),

hich is the average number of offspring during the individual life

pan. Finally, the fourth objective function is the growth rate of a

henotype (e.g., Caswell 2001, Garay et al., 2016 ). 

Secondly, in the theory of optimal foraging under predation risk

e.g., Stephens & Krebs 1986, Brown & Kotler 2004 ), it is usually

ssumed that there is a trade-off between fecundity and survival

ate. A multitude of objective functions have been proposed, as

ollows. Gilliam (1982) introduced the mortality per fecundity rule.

ouston et al., (1993) consider two objectives: (a) the animal must

ollect a fixed amount of food to reproduce; (b) the animal must

urvive for a fixed time. Finally, Brown & Kotler (2004) study (a)

nd (b) above, and two further ones: the sum and the product of

ecundity and survival rate (see also Bednekoff & Lima 2011 ). Ob-

erve that all cited objective functions refer to either an individual

r a phenotype. 

As noted earlier, the question arises: is there a method for se-

ecting the “correct” objective function, if any? As we will see,

he answer is positive. Based on our earlier results we propose

he following method ( Garay et al., 2016 ; Garay & Varga 2005 ).

onsider a selection situation with different phenotypes and (at

east) two different objective functions. For any pair of different

bjective functions, there are two possibilities: they attain their

aximum either at the same phenotype or at different pheno-

ypes. In the former case there is no difference between them in

he given selection situation, while in the latter case we have an

volutionary selection problem, namely, a selection situation with

ifferent phenotypes, and we can see which phenotype wins the

truggle of coexistence. Thus, we can say that the winner pheno-

ype’s objective function is maximized by selection. For instance,

n the recently introduced kin demographic selection model ( Garay

t al., 2016 ), the Darwinian phenotype (which maximizes the phe-

otype’s long term growth rate) is shown to outperform all other

ossible phenotypes (maximizing other objective functions). That

odel is based on the classical Leslie model, which assumes age

ependent survival rate and fecundity. In the present paper, we in-

estigate whether this recent result remains valid in the different

election situation considered here. 

In Darwinian evolution theory, natural selection maximizes the

tness of a phenotype. In asexual models, fitness is defined as the

verage growth rate of the phenotype per capita, i.e., the average

umber of descendants of an individual with the given phenotype

orn in a unit of time. 

Since phenomena in ecology are the results of evolution

 Hutchinson 1965 ), it is reasonable to the fitness (i.e., the average

rowth rate) is the object of maximization in ecology as well. 

In the present paper, we consider three objective functions: the

verage offspring number during life span, the probability of non-

xtinction of descendants , and the phenotypic growth rate . By finding

he optimal phenotypes with respect to these objective functions,

e demonstrate that in the selection situation under study, differ-

nt objective functions are maximized by different phenotypes, in

eneral. We emphasize that from the mathematical point of view

ll objective functions are possible. Subsequently, we investigate

hich phenotype wins the struggle of coexistence. Given that in

ur selection situation there are no interactions between individu-

ls, one may ask: what kind of competition mechanism can arise, if

ny? Our selection mechanism is based on the classical Darwinian
easoning ( Darwin 1859 ), namely, though individuals produce more

ffspring than the carrying capacity, natural selection keeps the

opulation size bounded. In our case, every possible phenotype

ust have an exponential growth rate in order to exist at all. Since

e assumed that phenotypes only differ in their activity distribu-

ions, they are equivalent (interchangeable) in this process of sur-

ival according to the carrying capacity. Thus in our case natural

election is realized by a random and uniform selection mecha-

ism, where, as we will see, the highest Malthusian parameter will

in the struggle of existence (cf. Garay et al., 2016 ). 

. Phenotypes, objective functions, and optimal strategies 

Suppose an individual member of a population can choose from

 activities (choice does not necessarily presume deliberation, since

n biology a lot of species have a genetically fixed behavior). Her

hoice is random: activity s is chosen with probability p s , s =
 , . . . , r. Clearly, p 1 + · · · + p r = 1 . We define a phenotype by this

ctivity distribution p = ( p 1 , . . . , p r ) . Activity s takes time τ s . At

he end of the activity the individual either perishes without de-

cendants, this happens with probability q s , or the individual gives

irth to c s offspring, and the whole process starts over: indepen-

ently of its past, the survivor makes a new choice, and so on. The

rogeny size c s can be random, but finite expectation (and some-

imes more, cf ( 5 ) in Section 2.2 ) is required. We assume 0 < q s <

 to exclude trivialities. This ensures that the lifetime of the indi-

idual is finite with probability 1. 

Let us extend this model by allowing a more general set of ac-

ivities. Suppose activities are parametrized from a general mea-

urable space ( S , F ), where the parameter set S is called the activ-

ty space, its elements represent different activities, and F is the

-field of measurable subsets of S . Every individual chooses an ac-

ivity at random, according to an activity distribution (probabil-

ty measure) p : F → [0, 1], called strategy (phenotype). We sup-

ose that the joint distribution of the triplet ( τ s , q s , c s ) is a measur-

ble function of s (this condition holds automatically if the activity

pace is countable, since in that case every subset of S is tradition-

lly supposed measurable). By the law of total probability, the joint

istribution of ( τ , q , c ) is a mixture of the distributions of ( τ s , q s , c s ),

 ∈ S , with mixing measure p . 

Each child follows her parent’s strategy, and the characteristic

riplets of activity times, terminal probabilities, and offspring num-

ers of different individuals are independent and identically dis-

ributed. 

Successfulness of a strategy can be measured in several ways.

oncentrating on the individual, the measure of success is the av-

rage number of offspring produced during the whole lifetime. On

he other hand, if, following Darwin, we concentrate on the phe-

otype, then we have to deal with the growth rate of the number

f living descendants. However, the average size of progeny can

lso be large in such a way that with a considerable probability

here are no living descendants at all, but otherwise a reproduc-

ion boom takes place. Thus it is meaningful to use the probability

f non-extinction of the phenotype as an alternative index. 

Let us compute these quantities. We will also investigate which

trategies optimize them. 

.1. Selfish individual p I 

Maximizes the average offspring number of an individual. 

Let X denote the number of descendants produced by an in-

ividual during her whole lifetime (several activity cycles). If the

ndividual does not perish without reproduction at the end of the

rst activity period, the remainder of her life has the same distri-

ution as if it were born at the very moment. Thus, if she chooses

ctivity s , the average number of her offspring equals zero with
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1986 ). 
probability q s , and E c s + E X with probability 1 − q s . Hence, by the

theorem of total expectation we can write 

E X = 

∫ 
S 
( 1 − q s ) ( E c s + E X ) p ( d s ) , (1)

from which 

E X = 

∫ 
S ( 1 − q s ) E c s p ( d s ) 

1 − ∫ 
S ( 1 − q s ) p ( d s ) 

= 

∫ 
S ( 1 − q s ) E c s p ( d s ) ∫ 

S q s p ( d s ) 
(2)

follows, provided the average number of offspring in one cycle is

finite, that is, 
∫ 

S (1 − q s ) E c s p (d s ) < ∞ . In fact, Eq. (1) is also sat-

isfied by E X = ∞ , but it cannot occur, since the number of activ-

ity cycles before death can be majorized by geometric distribution,

which is of finite expectation. 

Note that in the calculation above the activity lengths τ s did

not appear directly. They are only present in the effect they have

on the number of offspring. 

Let us find the strategy p I that maximizes E X . 

Since E X = 

∫ 
S q s a s p (d s ) ∫ 

S q s p (d s ) 
, where a s = 

(1 −q s ) E c s 
q s 

, it can easily be seen

that 

E X ≤ sup 

S 

a s = sup 

S 

( 1 − q s ) E c s 

q s 
, 

and equality holds if and only if p I is concentrated on activities s

for which a s is equal to its supremum (if it is attained at all). 

Remark 1. We note that the same objective function is used in the

problem of optimal foraging under predation danger (e.g. Clark &

Dukas1994, Higginson & Houston 2015 ). 

2.2. Darwinian phenotype p D 

Maximizes the average growth rate of the phenotype, i.e., the

growth rate of the expected number of living descendants, as

time tends to infinity. For the computation we need to change

our viewpoint. Instead of letting an individual repeat her activ-

ity/reproduction cycles until death, we consider the end of the

first activity period as the end of life, and, in the case where the

individual would survive the period, we consider her as one of

her siblings. Thus, we now think of τ s as life span, and the off-

spring number ξ s is defined to be 0 with probability q s , and 1 + c s 
with probability 1 − q s . One can express q s and c s in terms of ξ s ,

for q s = P( ξs = 0) , and the distribution of c s is equal to the con-

ditional distribution of ξs − 1 , provided ξ s > 0. Let τ and ξ de-

note the life span and offspring size of the individual, resp., when

it chooses strategy p (that is, their distribution is a mixture of

( τ s , ξ s ) with mixing measure p ). Let Z t denote the population size

at time t . This way we obtain an age dependent branching process,

or in other words, a so called Crump–Mode–Jagers (CMJ) process

( Haccou et al., 2005 ), with reproduction process η(t) = 1 { τ≤t} ξ =∫ 
S 1 { τs ≤t} ξs p (d s ) , where 1 { · } stands for the indicator of the event

in brackets. ( η( t ) is the number of offspring up to time t : it is ei-

ther 0 or 1 + c s if the activity period, now lifetime, is already over

by t , and 0 otherwise.) Since reproduction is only allowed at the

end of the lifetime, we have a well known and widely studied par-

ticular case of CMJ processes: a Sevast’yanov process. An informal

introduction to CMJ processes is provided in Appendix A . We may

and will suppose that our process is supercritical, that is, 

1 < E ξ = 

∫ 
S 
( 1 − q s ) ( 1 + E c s ) p ( d s ) < ∞ . (3)

From the general theory it follows that Z t grows exponentially

with exponent α > 0 called the Malthusian parameter . It can be ob-

tained as follows. Let μ( t ) denote the expected number of children

born up to time t , that is, μ(t) = E (1 { τ≤t} ξ ) . Then μ( t ) is bounded,
or μ(∞ ) = E ξ < ∞ . The Malthusian parameter α is the only posi-

ive solution of the equation 

 ∞ 

0 

e −αt μ( d t ) = E 

(
e −ατ ξ

)
= 

∫ 
S 

E 

(
e −ατs ξs 

)
p ( d s ) = 1 , (4)

ee Appendix A . The left hand side, as function of α, is continuous,

nd strictly decreases from μ(∞ ) = E ξ > 1 to 0 by the monotone

onvergence theorem. 

In order to apply the Theorem and Remark of Appendix A we

ave to check the moment condition. Clearly, M = 

∫ ∞ 

0 e −αt η( d t) =
 

−ατ ξ ≤ ξ , thus it suffices to require that 

 ( ξ log ξ ) = 

∫ 
S 
( 1 − q s ) E [ ( 1 + c s ) log ( 1 + c s ) ] p ( d s ) < ∞ . (5)

Now, using formulae ( 8 ) and ( 9 ), we can characterize the

rowth of Z t . 

If the distribution of τ is non-lattice, that is, not concentrated

n any lattice {0, h , 2 h , 3 h , ... }, h > 0, then 

lim 

→∞ 

e −αt E Z t = K := 

∫ ∞ 

0 e −αt E ϕ ( t ) d t ∫ ∞ 

0 t e −αt μ( d t ) 
= 

E ( 1 − e −ατ ) 

α E ( τ e −ατ ξ ) 

= 

∫ 
S E ( 1 − e −ατs ) p ( d s ) 

α
∫ 

S E ( τs e −ατs ξs ) p ( d s ) 
. (6)

Moreover, e −αt Z t converges to a random variable W almost

urely, E W = K, and W is positive almost everywhere outside the

et of extinction. 

If the distribution of τ is lattice, say τ is integer valued (the

ase of discrete time), then for integer t we have Z t ∼ W e αt as t →
 , where now 

 W = K = lim 

t→∞ 

t i nteger 

e −αt E Z t = 

∫ 
S E (1 − e −ατs ) p (d s ) 

(1 − e −α) 
∫ 

S E( τs e −ατs ξs ) p (d s ) 
. (7)

Consequently, the Malthusian parameter α appears to be an ad-

quate measure of successfulness in the Darwinian sense, both in

he lattice and non-lattice cases. 

.2.1. Maximal average growth of phenotype 

Let us find the strategy p D that maximizes α. Suppose E ξs =
(1 − q s )(1 + E c s ) > 1 for some s ∈ S . Let αs denote the Malthusian

arameter associated with the pair ( τ s , ξ s ), that is, the only posi-

ive solution of the equation E (e −ατs ξs ) = 1 . We will show that the

ptimal rate is 

D = sup { αs : E ξs > 1 } , 
nd it can be attained if and only if p D is concentrated on activ-

ties s for which αs is maximal. Indeed, for every s ∈ S we have

 (e −αD τs ξs ) ≤ 1 , hence 
∫ 

S E (e −αD τs ξs ) p (d s ) ≤ 1 , implying α ≤ αD .

he condition of equality is obvious. 

In the particular case of constant activity times, the Malthusian

quation reads 

r 
 

s =1 

p s ( 1 − q s ) ( 1 + E c s ) e 
−ατs = 1 , 

nd the maximum of the Malthusian parameter is equal to 

D = max 
1 ≤s ≤r 

log [ ( 1 − q s ) ( 1 + E c s ) ] 

τs 
. 

emark 2. When all survival rates are the same (i.e., q s = q ), the

aximal possible growth rate of the phenotype is similar to the

bjective function of optimal foraging theory, namely, to the max-

mum of the intake energy rate in the case when one type of

rey is more profitable than the other ones (e.g., Stephens & Krebs



J. Garay et al. / Journal of Theoretical Biology 430 (2017) 86–91 89 

2

 

w  

t  

a  

p  

o  

t  

t

 

i  

c  

a  

o  

o  

c  

s  

E  

o  

g

2

 

t  

s  

p  

s

o

 

s  

x

g

i  

i  

a

 

t

 

i  

t

 

e  

h  

t

 

a

 

t  

s  

c  

s

E  

s  

r

 

f  

2  

Table 1 

A simple model with three activities. 

Activity 1 Activity 2 Activity 3 

Probability of death, q q 1 = 0 . 4 q 2 = 0 . 4 q 3 = 0 . 2 

Offspring size, c c 1 = 11 c 2 = 8 c 3 = 3 

Time duration τ τ1 = 5 τ2 = 1 τ3 = 5 

Table 2 

Values of objective functions for the activities in Table 1 . 

Activity 1 Activity 2 Activity 3 

Mean offspring size E X = 16 . 5 E X = 12 E X = 12 

Growth rate (Malthusian parameter) α1 = 0 . 394 α2 = 1 . 686 α3 = 0 . 232 

Probability of extinction π1 = 0 . 400 π2 = 0 . 400 π3 = 0 . 201 
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.3. Survival phenotype p e 

Minimizes the extinction probability of phenotype, or, in other

ords, maximizes the probability of phenotype survival. Though in

he supercritical case the mean population size tends to infinity at

n exponential rate, the phenotype can still become extinct with

ositive – occasionally high – probability. An alternative criterion

f optimality can be the probability of the survival of the pheno-

ype, that is, one can aim at minimizing the probability π of ex-

inction. 

In the age-dependent branching model this probability can eas-

ly be found by considering the discrete time Galton–Watson pro-

ess embedded in the general Sevast’ yanov process. Starting from

 single ancestor, let us call her offspring the first generation, the

ffspring of the first generation the second generation, and so

n. Then the successive generations form a Galton–Watson pro-

ess with offspring size ξ . The extinction probability π is the

mallest positive solution of the equation π = g(π ) , where g(x ) =
 (x ξ ) , the probability generating function of ξ (see Theorem 2.3.1.

f Jagers 1975 ). Particularly, let g s (x ) = q s + (1 − q s ) x E( x c s ) , then

(x ) = 

∫ 
S g s (x ) p (ds ) . 

.3.1. Minimal extinction probability 

Let us find the strategy p e that minimizes π . First we show that

he infimum of the extinction probability as p runs over all pos-

ible strategies is equal to πe = inf 
S 

πs , where π s is the extinction

robability under the pure strategy s , that is, the smallest positive

olution of the equation g s (x ) = x . Thus, π e is the infimum of π
ver all pure strategies. 

Indeed, since g s ( x ), being a probability generating function it-

elf, downcrosses the identity function at π s , we have g s ( x ) ≥ x for

 ≤ π s . Therefore, 

 ( πe ) = 

∫ 
S 

g s ( πe ) p ( ds ) ≥
∫ 

S 

πe p ( ds ) = πe , 

mplying that π e is less than or equal to the extinction probabil-

ty under an arbitrary strategy p . On the other hand, we can get

rbitrarily close to π e by using pure strategies only. 

An equivalent characterization of π e is the following. Introduce

he function 

f (x ) = inf 
S 

g s (x ) , 0 ≤ x ≤ 1 . 

Then π e is the largest solution of the equation x = f (x ) in the

nterval [0, 1). Indeed, for every positive ɛ there exists an s ∈ S such

hat πs ≤ πe + ε, hence 

f ( πe ) ≤ f ( πs ) ≤ g s ( πs ) = πs ≤ πe + ε. 

Thus f ( π e ) ≤ π e . On the other hand, for every positive ɛ there

xists an s ∈ S such that g s ( πe ) ≤ f ( πe ) + ε. Since π e ≤ π s , we

ave π e ≤ g s ( π e ), and by that, π e ≤ f ( π e ). Finally, if π e < x < 1,

hen there exists an s ∈ S such that π s < x , thus f ( x ) ≤ g s ( x ) < x . 

Clearly, strategy p attains π e if and only if it is concentrated on

ctivities s for which πs = πe . 

Observe that the above objective functions can generally take

heir maximums at different strategies p . On the other hand, if the

ame activity has the largest survival probability, the highest fe-

undity, and the shortest time duration, then it maximizes all con-

idered objective functions simultaneously. 

xample 1. Consider the following parameters. For the sake of

implicity, both the offspring size and the time duration are non-

andom. 

For the pair of activities 1 and 2, there is a trade-off between

ecundity and time duration. Moreover, for the pair of activities

 and 3, there is a trade-off between fecundity and survival rate.
imple calculations show that the selfish individual must choose

ctivity 1, the Darwinian phenotype activity 2, while the survival

henotype uses activity 3. Table 2 . 

Intuitively, the selfish individual concentrates on the number of

er own offspring. The Darwinian phenotype also takes account of

he number of its children, grandchildren, great-grandchildren, and

o on, and how fast its reproduction can be. The survival pheno-

ype concentrates on the long time survival of its posterity. 

For deeper biological insight, we describe a theoretical selection

ituation during reproductive season, where the above example is

easonable. Firstly, assume that if a parent dies before her offspring

row up, then so do all her offspring. Consider three types of

on-exhausted patches, i.e. r = 3 . Parents have to stay in the same

atch during one reproduction cycle. In patch s the parent’s sur-

ival rate is 1 − q s , her fecundity is c s , and the development time of

er offspring (from birth to the first reproduction, while parental

are is needed for the survival of the juveniles) is τ s . Observe that

ere the patch type determines the survival rate and fecundity of

arents and the development time of her offspring. Furthermore,

he different objective functions determine different patch prefer-

nce. 

. A simple selection model 

We consider a monomorphic model where in a resident popu-

ation a mutant phenotype appears, and natural selection has suf-

cient time to select out the less fit phenotype. 

In Section 2 we determined the optimal phenotypes corre-

ponding to different objective functions. Clearly, if two pheno-

ypes have different activity distributions, they generally have dif-

erent growth rates (Malthusian parameters) α. Let us consider the

arwinian phenotype with Malthusian parameter αD and a mutant

henotype with a smaller αM 

< αD . Let f D resp. f M 

denote the fre-

uencies of Darwinian resp. mutant phenotypes. 

When the rare mutants appear, there are two possibilities: they

ither die out within a short time due to random fluctuation (we

ill not investigate this case), or the mutant phenotype survives

or such a long time that it reaches its asymptotic growth rate.

ince evolution is a long process, we are interested in the sec-

nd possibility. Let T R denote the time duration of the long repro-

uctive season, when different phenotypes reproduce according to

heir activity distributions. When the reproductive season is over,

he size of the population decreases in accordance with the car-

ying capacity. One may think of the reproductive season as tak-

ng place during spring and summer time, when the activity deter-

ines the survival rate and the fecundity of individuals; moreover,

he average number of generations during the reproductive season

s determined by the time durations. Assume that the reproductive

eason is long enough to allow a high number of generations, i.e.

 >> max τ . The carrying capacity is determined by the winter
R i 
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time, when the whole population size is reduced to the carrying

capacity by a uniform survival process, which equally affects all

phenotypes, i.e., the survival rates are all equal (by our basic as-

sumption, phenotypes differ only in their activity distribution). 

Let us denote the carrying capacity by C , supposed sufficiently

large. Clearly, C = f D + f M 

. Since C is large, we can describe selec-

tion as a “mass process”, i.e., random fluctuations have no effect

on the number of individuals (at least in the order of magnitude).

If there are many individuals of a given phenotype, the probabil-

ity of eventual extinction, being a negative exponential function

of the phenotype size, is negligible. Hence, at the end of the re-

productive season (before the selection according to carrying ca-

pacity) the approximate sizes of the Darwinian, resp. mutant phe-

notypes are f D K D e 
αD T R and f M 

K M 

e αM T R , where K D and K M 

denote

the current values of the constant K appearing in formulae ( 6 ) and

( 7 ). Since the considered phenotypes are equivalent with respect to

the carrying capacity, each individual will survive with probability

ρ ≈ C 

f D K D e 
αD T R + f M K M e αM T R 

, so after selection, at the beginning of the

next reproductive season, the phenotype sizes are f ′ 
D 

≈ ρ f D K D e 
αD T R 

and f ′ M 

≈ ρ f M 

K M 

e αM T R , resp. Therefore, the ratio of mutant and

Darwinian phenotype frequencies will decrease very fast, namely,

at a rate exponential in the number of reproductive seasons: 

f ′ M 

f ′ D 
≈ f M 

f D 
· Q, where Q = 

K M 

K D 

e −( αD −αM ) T R << 1 , 

We emphasize that Darwinian phenotype does not only win

against selfish and survival phenotypes, but it outperforms all

other phenotypes based on different objective functions mentioned

in Introduction (unless an objective function happens to take its

maximum just at the Darwinian phenotype). 

4. Conclusion 

We considered an asexual, sufficiently large and non-ageing

population, where the generations are overlapping, and there is

no mutation and no interaction between individuals. The individ-

uals engage in activities, which determine their fecundity and sur-

vival probability, moreover these activities take time. A phenotype

is identified with a probability distribution on the activities. Our

aim was to find the phenotype with optimal evolutionary behav-

ior. The natural candidates are phenotypes which maximize one or

another objective function, a multitude of which have already been

proposed in the literature. Generally, different objective functions

are maximized by different phenotypes. However, without intro-

ducing a selection mechanism we cannot find out which pheno-

type outperforms all other ones. To this end, we proposed a selec-

tion method: since in our case the individuals do not interact, and

all phenotypes contend under the same conditions, therefore the

competition of phenotypes must be uniform. We pointed out that

actually the different objective functions (e.g., different definitions

of fitness) are the objects of natural selection. We showed that the

Darwinian phenotype, which maximizes the average growth rate

of the phenotype, outperforms all other phenotypes under consid-

eration (those maximizing the individual’s average offspring num-

ber during life span or minimizing the extinction probability of de-

scendants, and so on). From the aspect of theoretical biology, this

means that the fitness of a phenotype is best defined by the aver-

age growth rate of the phenotype in the selection situation where

each activity may have different survival rate, fecundity, and time

duration. 

We have already mentioned that, from the mathematical point

of view, our selection situation is possibly the simplest mathemat-

ical combination of life history theory and optimal foraging theory.

Our objective functions correspond to some objective functions al-

ready introduced in optimal foraging theory ( Remarks 1 and 2 ). We
onjecture that the Darwinian phenotype wins the struggle of ex-

stence more generally, namely, if one lets the time durations of

ctivities be influenced by prey densities in an unbounded and ag-

ng population, As an outlook, we mention a few selection situ-

tions, where the Darwinian phenotype outperforms other ones.

irstly, in kin selection theory ( Hamilton 1964 ), the altruistic phe-

otype (at a cost to the own survival and reproduction) helps the

eproductive success of one of its own relatives. Secondly, in the

in demography model, it can be pointed out that sib cannibalism

etween closest relatives can be considered as an extreme mutu-

lism ( Garay et al., 2016 ). 

Finally, we note that our result could be applied in both optimal

oraging theory and life history theory, where there is a trade-off

etween any pair of the offspring number, survival rate, and time

uration. Our model can deal with these trade-offs, since we do

ot impose assumptions on the correlation between parameters.

n important consequence of our model is that, independently

f the “objective functions”, the optimal behavior can always be

chieved by pure strategies, i.e., with a single activity. Thus, our

esults offer the possibility to test, either by experiment or by field

bservation, which objective function is optimized by natural se-

ection. 
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ppendix A 

In this section, we give an informal introduction to general time

ependent branching processes, or Crump–Mode–Jagers (CMJ) pro-

esses. The interested reader may find more formal descriptions in

he monographs ( Jagers 1975 ) or ( Haccou et al., 2005 ). 

In a CMJ branching process there are individuals who reproduce

nd die. This is characterized by a random point process η( t ), t ≥
, called the reproduction process, and a nonnegative random vari-

ble τ , which is the life span. They are not supposed independent.

he random variable η( t ) is the number of offspring up to time t .

ost often there is no reproduction after death, i.e., η(t) = η(τ )

or t > τ (but this is not necessarily required). 

The life history of every individual e is described by the

air( ηe (.), τ e ); they are independent and identically distributed

opies of ( η(.), τ ) introduced above. If individual e was born at time

e , then at time t the number of her children (dead or alive) is

e (t − σe ) ( ηe ( t ) is defined as zero for negative t ), and it deceases

t time σe + τe . We are interested in the number of individuals

live at time t , which we will denote by Z t . 

A CMJ process is called subcritical, critical , or supercritical , ac-

ording that the expected number of offspring of an individual,

[ η( ∞ )], is less than, equal to, or greater than 1, respectively. In the

equel we are interested in supercritical processes. For the sake of

implicity we only formulate the basic limit theorem in the form

e need it, not in its most general form, because we want to ap-

ly it to a model with nice properties. Therefore we suppose that

 < E[ η( ∞ )] < ∞ . Such processes grow exponentially fast on the

vent of non-extinction. The rate of growth is described by the

o called Malthusian parameter α. It is the only positive solution

f the equation 

∫ ∞ 

0 e −αt μ(d t) = 1 , where μ(t) = E [ η(t)] , the ex-

ected number of offspring of an individual up to time t after her

irth. 

http://dx.doi.org/10.13039/100010661
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Combining Proposition 2.2, Theorems 3.1 and 5.4 of ( Nerman

981 ), we get the following limit theorem. 

heorem. With the definition M = 

∫ ∞ 

0 e −αt η(d t) , suppose that

 [ M log 
+ 

M] < ∞ holds. Furthermore, suppose the Lebesgue–Stieltjes

easure generated by μ is not lattice, i.e. , μ( t ) is not a piecewise

onstant function with points of increase all belonging to a lattice

0, h , 2 h , 3 h , ... } , h > 0 . Then 

lim 

→∞ 

e −αt E Z t = K := 

∫ ∞ 

0 e −αt P ( τ > t ) d t ∫ ∞ 

0 t e −αt μ( d t ) 
(8) 

Moreover, e −αt Z t converges to a random variable W almost surely,

 W = K, and W is positive almost everywhere outside the set of ex-

inction. 

emark. If μ is lattice, that is, when an individual can reproduce

nly at times that are multiples of h (the case of discrete time), then

ormula ( 8 ) slightly changes. Without loss of generality we can sup-

ose that h = 1 . Then for integer t we have Z t ∼ W e αt as t → ∞ ,

here 

 W = 

α

1 − e −α
·
∫ ∞ 

0 e −αt P ( τ > t ) d t ∫ ∞ 

0 t e −αt μ( d t ) 
. (9) 
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