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a b s t r a c t 

We study the problem of computing the probability distribution of phylogenetic trees that commonly 

arise in areas ranging from epidemiology to macroevolution. We focus on homogeneous birth death trees 

with incomplete sampling and consider observations from three distinct sampling schemes. First, indi- 

viduals can be sampled and removed, through time, and included in the tree. Second, they can be oc- 

currences which are sampled and removed through time and not included in the tree. Third, extant in- 

dividuals can be sampled and included in the tree. The outcome of the process is thus composed of the 

reconstructed phylogenetic tree spanning all individuals sampled and included in the tree, and a time- 

line of occurrence events which are not placed along the tree. We derive a formula for computing the 

joint probability density of this outcome, which can readily be used to perform maximum likelihood or 

Bayesian estimation of the parameters of the model. In the context of epidemiology, our probability den- 

sity enables the estimation of transmission rates through a joint analysis of epidemiological case count 

data and phylogenetic trees reconstructed from pathogen sequences. Within macroevolution, our equa- 

tions form the basis for incorporating fossil occurrences from paleontological databases together with 

extant species phylogenies for estimating speciation and extinction rates. This work provides the theo- 

retical framework for bridging not only the gap between phylogenetics and epidemiology, but also that 

between phylogenetics and paleontology. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Birth-death processes are used extensively in both epidemiol-

gy and macroevolution, to model the underlying population dy-

amics of, respectively, infected individuals and species. For sim-

licity, we will refer to the atomic particles of the process as indi-

iduals in this paper. In its most simple form, a birth-death process

escribes the population dynamics of a set of independent indi-

iduals, each of which can give birth to another individual with a

onstant birth rate λ, or die with a constant death rate μ. 

Seminal results on this process have been derived by

endall (1948) , who already evoked potential applications to epi-

emiology. Much more recently, Nee et al., 1994; Nee and May,

997 have made important developments to the theory, showing

ow to compute the probability density of the reconstructed evolu-

ionary tree , i.e. the tree obtained by first tracing all genealogical

elationships between individuals, before erasing all branches that

o not reach present. This has paved the way to extensive use of
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irth-death processes in modern phylogenetics, with many refine-

ents: birth and death rates have been proposed to vary through

ime ( Morlon et al., 2011; Stadler, 2011 ), to vary across lineages in

he tree ( Alfaro et al., 2009 ), to vary depending on the type of in-

ividuals ( Maddison et al., 2007 ), or to depend on the number of

ndividuals ( Etienne et al., 2012; Leventhal et al., 2013 ). 

In order to fit various applications, the sampling scheme

f individuals has also been put under careful scrutiny.

ee et al. (1994) initially suggested that individuals could be sam-

led at present with a given probability ρ; this uniform sampling

s also called field of bullets sampling. Yet, trees that were recon-

tructed using this sampling scheme were always ultrametric trees

escribing the genealogical relationships between present-day

ndividuals only. This assumption was relaxed by Stadler (2010) ,

ho additionally modeled the sampling of individuals throughout

he process, with a fixed per-individual sampling rate ψ . When

ampled, an individual is displayed along the tree and the re-

onstructed (non-necessarily ultrametric) tree corresponds to the

enealogical relationships between all sampled-through-time and 

ampled-at-present individuals. This model opened the way to

umerous new applications in epidemiology and macroevolution,

llowing to take into account non-synchronous data. In phy-

ogenetics, this process is commonly used as a prior on the
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genealogical relationships between individuals sampled through

time ( Stadler et al., 2011 ). In macroevolution, it allows one to use

molecular and paleontological evidence together, by simultane-

ously considering present-day species and the subset of fossil taxa

which can be placed along a tree using morphological characters

( Zhang et al., 2015; Gavryushkina et al., 2017 ). 

One step further towards considering even more data jointly in

one analysis has been performed by Vaughan et al. (2019) , who in-

troduce two types of sampling through time. The first one, which

is named sampling and sequencing , is the same as previously de-

scribed. The term sequencing here referring to the fact that the

individual is placed unambiguously along the reconstructed tree

using its genetic sequence. Alternatively, an individual could be

sampled and not sequenced , in which case its existence is only

recorded as a time point occurrence along a timeline. This ap-

proach is very promising, for it enables one to consider jointly

data from case count epidemiological studies together with trees

reconstructed from pathogens sequenced during an outbreak. Al-

ternatively, in the context of macroevolution, it allows one to use

poorly preserved fossil occurrences, which could not be placed

along the reconstructed tree. Yet, in its current form, the inference

framework proposed by Vaughan et al. (2019) relies on computa-

tionally intensive Monte-Carlo simulations within a particle filter-

ing approach which prevents its use on large datasets. Similarly,

Heath et al., 2014 proposes placing occurrences on a fixed tree us-

ing Markov chain Monte Carlo methodology. Here the drawback is

again the computationally intensive approach as well as relying on

a fixed tree rather than sequences. 

In this study, we derive a closed form formula for the joint

probability density of a reconstructed tree with individuals sam-

pled through time and a record of occurrences, i.e. sampling times

for individuals not included in the tree. The underlying model is

a birth-death process with sampling through time and at present,

where upon sampling individuals are removed (i.e. die). The den-

sity can readily be included within phylodynamic tools as a prior

in a Bayesian inference framework based on sequences and occur-

rences, or can be used for maximum likelihood parameter estima-

tion based on a tree and occurrences. Its computational efficiency

opens the way to analyse large datasets available for either epi-

demiology or macroevolution studies. 

The aim of the paper is to provide a mathematical study of

the birth-death model giving rise to serially sampled reconstructed

trees and occurrences. We first introduce model notations and

some preliminary observations. Then, we provide an alternative

derivation of the probability density of the reconstructed evolu-

tionary tree under the birth-death process with sampling through

time ( Stadler, 2010 ), assuming that an individual is removed upon

sampling. Finally, we show how to extend this derivation to ac-

count for non-sequenced occurrences, and provide an analytical

formula to compute the probability density of the reconstructed

tree and occurrences. We finally discuss the use of this density to

perform inferences in epidemiology and macroevolution in a max-

imum likelihood or Bayesian setting. 

2. Model and notations 

We consider a constant rate birth-death process with incom-

plete sampling. We allow the possibility that for some sampled

individuals, the attachment times within the tree are known,

whereas for others only their sampling times are known but their

attachment times within the tree are unknown. The latter sam-

pling events are called occurrences . 

We assume that an individual gives birth at rate λ, and its

death rate is (μ + ψ + ω) . Here μ is the death rate without sam-

pling, ψ is the death rate with sampling and tree-inclusion and ω
is the death rate with sampling but without tree-inclusion (i.e. an
ccurrence). Additionally we assume that extant individuals, alive

t present time, are sampled and included in the reconstructed

ree with probability ρ . For convenience, we will refer to the five

ypes of events in this model using their parameter names. In

ther words, λ-events refer to the creation of a new individual, μ-

vents refer to death events without sampling, ψ-events refer to

eath events with sampling and tree inclusion, ω-events refer to

eath events with sampling but without tree inclusion, and finally

-events refer to the sampling of extant lineages at present time. 

Time is assumed to be 0 at present, and increases going into

he past. The process starts at time t or > 0 in the past, with one

nfected lineage and it generates a birth-death lineage tree from

hich the reconstructed tree is derived. Our data consists of both

he reconstructed tree T and the occurrence set O. The recon-

tructed tree T is generated by all the ψ- and ρ-events giving rise

o leaves, together with all λ-events subtending those leaves. The

ccurrence set O consists of the times of all the ω-events, all be-

onging to the interval (0, t or ); see Fig. 1 for an example. 

We will be interested in the probability density of the joint ob-

ervation of (O, T ) , which will ultimately depend on the times at

hich observed λ-, ψ-, and ω-events happen, but not on the tree

opology (see e.g. Aldous et al., 2001; Stadler, 2010 ). All these times

ooled together are denoted as t 0 , t 1 , . . . , t n , starting with t 0 = 0

nd ending with t n = t or , and the number of observed lineages on

he interval (t h , t h +1 ) is denoted k h . 

.1. Introducing useful quantities 

Let u ( t ) be the probability that an individual alive at time t be-

ore today has no sampled extinct or extant descendant lineages.

lso let p ( t ) be the probability that a lineage alive at time t before

oday has precisely one sampled extant lineage and no sampled

xtinct descendant lineages. We can write the Master Equations for

hese two probabilities as 

du 

dt 
= μ − (λ + μ + ω + ψ) u (t) + λu (t) 2 (2.1)

dp 

dt 
= −(λ + μ + ω + ψ) p(t) + 2 λu (t ) p(t ) , (2.2)

ith initial condition (u (0) , p(0)) = (1 − ρ, ρ) . Defining 

 1 = 

√ 

(λ − μ − ω − ψ) 2 + 4 λ(ψ + ω) and 

 2 = −λ − μ − ω − ψ − 2 λρ

c 1 
, (2.3)

he solution of these Master Equations (see Theorem 3.1 in

tadler, 2010 ) is given by 

 (t) = 

1 

2 λ

[
λ + μ + ω + ψ + c 1 

e −c 1 t (1 − c 2 ) − (1 + c 2 ) 

e −c 1 t (1 − c 2 ) + (1 + c 2 ) 

]
, (2.4)

p(t) = 

4 ρ

2(1 − c 2 
2 
) + e −c 1 t (1 − c 2 ) 2 + e c 1 t (1 + c 2 ) 2 

. (2.5)

.2. Key first observations 

In order to understand better future calculations, we must ex-

mine the birth-death dynamics of the number of hidden lineages

n greater detail. Suppose ( X s ) s ≥ 0 be the forward in time stochastic

rocess describing the number of hidden lineages in some time-

nterval [ s 1 , s 2 ] ⊂ [0, t or ], where s 1 < s 2 and we use this new letter

 because time is oriented (only in this section of the manuscript)

rom the origin 0 towards the present t or . The number of observed

ineages in T is fixed and equal to k in this interval and also

here is no occurrence event in this interval. This stochastic pro-

ess ( X s ) s ≥ 0 is a birth-death process over nonnegative integers N 0 

nd it has the following characteristics: 
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Fig. 1. General setting of the method. On the left in green, the full process with sampling is shown. Red dots correspond to ω-sampling (sampling through time without 

sequencing), blue dots correspond to ψ-sampling (sampling through time with sequencing) and yellow dots correspond to ρ-sampling at present. On the right, the obser- 

vations are shown: a sampled-through-time reconstructed tree T together with sequential observations O of sampled individuals along a timeline. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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• When the state is i , the rate of birth is λ(k + i ) and if this event

happens, the state moves to (i + 1) with probability 

φik := 1 −
k ! 

(k −2)! 

(k + i +1)! 
(k + i −1)! 

= 1 − k (k − 1) 

(k + i )(k + i + 1) 

and with probability 1 − φik the state moves to some absorbing

state � outside the state space N 0 = { 0 , 1 , . . . } . Note that as the

number of infected lineages increases from k + i to (k + i + 1)

upon a birth event φik is simply the probability that when

we “look backwards”, the two coalescing lineages are not both

among the sampled lineages. In case the two coalescing lin-

eages are among the sampled lineages then the number of ob-

served lineages will not be fixed in the time-interval [ s 1 , s 2 ] and

hence this birth-death trajectory for total number of infected

lineages becomes infeasible, which is equivalent to saying that

it gets absorbed at state �. 
• When the number of hidden lineages is i , the rate of death

is (μ + ψ + ω)(k + i ) and if this event happens for some state

i > 0 then the state moves to (i − 1) with probability 

κ = 

μ

μ + ψ + ω 

and it moves to the absorbing state � with probability (1 − κ) .

Note that (1 − κ) is simply the probability of a death event ei-

ther being a ω-event or a ψ-event. Both such events will vi-

olate our assumption that there is no occurrence event and

the number of observed lineages is fixed in the time-interval

[ s 1 , s 2 ]. Moreover if i = 0 and a death event happens then the

birth-death trajectory again becomes infeasible and so it gets

absorbed at state �. 

It is clear that due to the presence of an absorbing state outside

he state space, the process ( X s ) s ≥ 0 is non-conservative . The rate

f change of the distribution of this process can be specified by its

enerator (see Chapter 3 in Ethier and Kurtz, 1986 ). We can define
his operator on test functions f : R + × N 0 → R by 

 k f ( s, i ) = 

∂ f ( s, i ) 

∂s 
+ λ( k + i ) [ φik f ( s, i + 1 ) − f ( s, i ) ] 

+ ( μ + ψ + ω ) ( k + i ) 
[
1 { i> 0 } κ f ( s, i − 1 ) − f ( s, i ) 

]
. 

(2.6) 

ere we implicitly assume that function f is continuously differen-

iable in the first coordinate. We now come to a very important

roposition on which our whole analysis depends. 

roposition 2.1. Let u ( t ) be given by (2.4) and define the function

f k : R + × N 0 → R by 

f k (s, i ) = 

(k + i )! 

i ! 
u ( t or − s ) i . 

hen the action of generator A k on function f k simplifies to 

 k f k (s, i ) = k ( 2 λu (t or − s ) − (λ + μ + ψ + ω) ) f k (s, i ) . 

oreover the following is a positive martingale in the interval [ s 1 , s 2 ]

.r.t. the filtration generated by process X , 

 s = p(t or − s ) k f k (s, X s ) , (2.7) 

emark 2.2. The function f k is a time-varying eigenfunc-

ion for the operator A k and the corresponding eigenvalue is

 ( 2 λu (t or − s ) − (λ + μ + ψ + ω) ) . 

roof. See Appendix. �

Note that the fact that M s is a martingale implies that 

 (M s 2 ) = E (M s 1 ) 

hich yields 

 ( f k (s 2 , X s 2 )) = 

(
p(t or − s 1 ) 

p(t or − s 2 ) 

)k 

E ( f k (s 1 , X s 1 )) . (2.8) 

eversing the direction of time and letting t 1 = (t or − s 2 ) and

 2 = (t or − s 1 ) , conditioning on X s 1 = i, and exploiting the time-

omogeneity of the Markov process ( X s ) s ≥ 0 we can express

2.8) as 
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∑ 

j≥0 

(k + j)! 

j! 
u 

j 
t 1 

P i (X (t 2 − t 1 ) = j) = 

(
p t 2 
p t 1 

)k 
(k + i )! 

i ! 
u 

i 
t 2 
, (2.9)

where the subscript i denotes that the initial state is X 0 = i . This

formula will help us provide an alternative derivation of the proba-

bility density of a reconstructed tree without occurrence data orig-

inally introduced by Stadler (2010) . 

3. Revisiting the probability density of the reconstructed tree 

with samples through time 

We assume in this section that ω = 0 , and there is no occur-

rence data. We wish to offer an alternative derivation of the prob-

ability density of the reconstructed tree spanning both ρ-sampled

and ψ-sampled individuals as in Stadler (2010) . 

Let t 0 < t 1 < t 2 < · · · < t n be the ordered set of times at which

the tree events occur backward in time starting from the present

time t 0 = 0 and culminating at t n = t or . For any t ∈ [0, t or ], call

k t the number of observed lineages at time t in T and let L (i ) 
t =

P 

(
T ↓ t | I t = k t + i 

)
be the probability for the observed tree below

time t (i.e. in the time-interval [0, t ]) when the total number of

lineages is k t + i at time t . Clearly the probability density of the

observed tree is L (0) 
t or 

= P 

(
T ↓ t or 

| I t or = 1 

)
, and to obtain this quantity

we would like to study how L t evolves with time t and how it de-

pends on the state i . 

We now introduce an ansatz for the form of L (i ) 
t , given by 

L (i ) 
t = 

(k + i )! 

i ! 
u 

i 
t W (t) , (3.10)

where W ( t ) is some real-valued weight function that only depends

on time t but not on i or k . 

Let us consider the interval (t h −1 , t h ) for some h ≥ 1. In this in-

terval the number of observed lineages is constant and equal to k .

Using ansatz (3.10) and applying the Markov property we obtain 

(k + i )! 

i ! 
u 

i 
t h 

W (t −
h 
) = L (i ) 

t −
h 

= 

∑ 

j≥0 

P i (X (t h − t h −1 ) = j) L ( j) 

t + 
h −1 

= 

∑ 

j≥0 

P i (X (t h − t h −1 ) = j ) 
(k + j )! 

j ! 
u 

j 
t h −1 

W (t + 
h −1 

) 

= 

(
p(t h ) 

p(t h −1 ) 

)k 
(k + i )! 

i ! 
u 

i 
t h 

W (t + 
h −1 

) , 

where the last equality follows from (2.9) . This proves that under

ansatz (3.10) 

 (t −
h 
) = 

(
p(t h ) 

p(t h −1 ) 

)k 

W (t + 
h −1 

) . (3.11)

We now examine how W (t + ) and W (t −) are related, for any

time t at which we observe an event. Suppose first that the event

at time t is a ψ-event. Then k + = k − + 1 and if the total number of

lineages is k + + i at time t + 
h 

then the rate at which this event hap-

pens is ψ(k + + i ) and subsequently the total number of lineages

falls to (k − + i ) . This shows that 

(k + + i )! 

i ! 
u 

i 
t W (t + ) = L (i ) 

t + 

= ψ(k + + i ) L (i ) 
t −

= ψ(k − + 1 + i ) 
(k − + i )! 

i ! 
u 

i 
t W (t −) 

= ψ 

(k + + i )! 
u 

i 
t W (t −) , 
i ! 
nd hence 

 (t + ) = ψW (t −) . (3.12)

Now suppose the event at time t is a λ-event. Then k + = k − − 1

nd if the total number of lineages is (k + + i ) at time t + then the

ate at which this event happens is λ(k + + i ) and with probability

 / ((k + + i )(k + + 1 + i )) this event is a coalescent event between

wo observed ordered lineages. Once this event happens the total

umber of lineages increments to (k − + i ) . Therefore 

(k + + i )! 

i ! 
u 

i 
t W (t + ) = L (i ) 

t + 

= λ(k + + i ) 
(

1 

(k + + i )(k + + 1 + i ) 

)
L (i ) 

t −

= 

λ

k + + 1 + i 

(k − + i )! 

i ! 
u 

i 
t W (t −) 

= λ
(k + + i )! 

i ! 
u 

i 
t W (t −) , 

hich proves that 

 (t + ) = λW (t −) . (3.13)

Let k 0 be the number of extant lineages at time t 0 = 0 . Using re-

ations (3.11), (3.12) and (3.13) we can propagate the weight func-

ion W ( t ) backward in time starting from W (t + 
0 
) = ρk 0 and ending

t W (t −n ) which is equal to the tree density L (T ) . This backward

ropagation scheme is described in Algorithm 1 and it yields a

lgorithm 1 Computes the probability density L (T ) . 
nput: Observed tree T ,and parameters t or , λ, μ, ψ, ρ . 

utput: The density value L (T ) . 
1: Set W (t + 

0 
) = ρk 0 

2: for h = 1,…,n do 

3: Set 

W (t −
h 
) = 

(
p(t h ) 

p(t h −1 ) 

)k h −1 

W (t + 
h −1 

) 

4: if h = n then 

5: return W (t −n ) 
6: else if t h is a ψ-event then 

7: Set W (t + 
h 
) = ψW (t −

h 
) 

8: else t h is a λ-event 

9: Set W (t + 
h 
) = λW (t −

h 
) 

10: end if 

11: end for 

losed-form formula very similar to Theorem 3.5 in Stadler (2010) .

ince individuals are here removed upon sampling, our result can

e derived from Theorem 3.5 by setting k = 0 and dropping p 0 ( y i )

actors corresponding to the death of ψ-sampled leaves. 

. The density of the reconstructed tree and case count record 

We now consider the scenario where ω � = 0 and we have oc-

urrence data O along with the observed lineage tree T . As in

he previous section, let t 0 < t 1 < t 2 < · · · < t n be the ordered set

f times at which the events occur backward in time starting from

he present time t 0 = 0 and culminating at t n = t or . For any t ∈ [0,

 or ], let L (i ) 
t = P 

(
T ↓ t , O 

↓ 
t | I t = k t + i 

)
be the probability for the ob-

erved lineage tree and occurrence data below time t (i.e. in the

ime-interval [0, t ]) when the number of observed lineages in T 
s k t at time t and the number of hidden lineages is i . Clearly



A. Gupta, M. Manceau and T. Vaughan et al. / Journal of Theoretical Biology 488 (2020) 110115 5 

t  

i  

w  

p  

n

L

w  

l  

v  

o  

(

4

 

a  

T  

t  

a  

s

∑

a

W

 

k

t  

p  

b  

t

∑

w

W

 

t  

f  

e  

a  

a  

T

∑

 

a

W

w

S

S  

(  

f  

a

4

 

c  

v  

f  

(  

n

c

u

a

w  

c  

fi  

r

R

a  

θ  

r

θ  

h

L  

(

 

he probability density of the observed tree and occurrence data

s again L (0) 
t or 

= P 

(
T ↓ t or 

, O 

↓ 
t or 

| I t or = 1 

)
, and to obtain this quantity we

ould like to study how L t evolves with time t and how it de-

ends on the state i . It will become evident that ansatz (3.10) will

ot work for this probability, and so we generalize this ansatz as 

 

(i ) 
t = 

q ∑ 

l=0 

(k + i )! 

(i − l)! 
u 

i −l 
t W l (t) , (4.14) 

here q is a nonnegative integer, k is the number of observed

ineages at time t , and W (t) = (W 0 (t ) , . . . , W q (t )) is some vector-

alued weight function that only depends on time t but not on i

r k . Note that for q = 0 , this ansatz becomes the previous ansatz

3.10) . 

.1. Backward evolution at punctual events 

We first examine how W (t + ) and W (t −) are related when t is

n event time. Suppose first that the event at time t is a ψ-event.

hen k + = k − + 1 and if the total number of lineages is k + + i at

ime t + then the rate at which this event happens is ψ(k + + i )

nd subsequently the total number of lineages falls to (k − + i ) . This

hows that 

q 
 

l=0 

(k + + i )! 

(i − l)! 
u 

i −l 
t + W l (t + ) = L (i ) 

t + 

= ψ(k + + i ) L (i ) 
t −

= ψ(k + + i ) 

q ∑ 

l=0 

(k − + i )! 

(i − l)! 
u 

i −l 
t W l ( t 

−) 

= ψ 

q ∑ 

l=0 

(k + + i )! 

(i − l)! 
u 

i −l 
t W l (t −) , 

nd hence 

 (t + ) = ψW (t −) . (4.15) 

Now suppose that the event at time t is a λ-event. Then k + =
 

− − 1 and if the total number of lineages is (k + + i ) at time t + 

hen the rate at which this event happens is λ(k + + i ) and with

robability 1 / ((k + + i )(k + + i + 1)) this event is a coalescent event

etween two observed ordered lineages. Once this event happens

he total number of lineages increments to (k − + i ) . Therefore 

q 
 

l=0 

(k + + i )! 

(i − l)! 
u 

i −l 
t W l (t + ) = L (i ) 

t + 

= λ(k + + i ) 
(

1 

(k + + i )(k + + 1 + i ) 

)
L (i ) 

t −

= 

λ

k + + 1 + i 

q ∑ 

l=0 

(k − + i )! 

(i − l)! 
u 

i −l 
t W l (t −) 

= λ
q ∑ 

l=0 

(k + + i )! 

(i − l)! 
u 

i −l 
t W l (t −) , 

hich proves that 

 (t + ) = λW (t −) . (4.16) 

So far the transition conditions (4.15) and (4.16) are identical

o what we encountered in the previous section. However the dif-

erence comes for ω-events as we now discuss. Suppose t is a ω-

vent. Then k + = k − and if the total number of lineages is (k + + i )

t time t + then the rate at which this event happens is ω(k + + i )

nd subsequently the total number of lineages falls to (k + + i − 1) .

his shows that 
q 
 

l=0 

(k + + i )! 

(i − l)! 
u 

i −l 
t W l (t + ) = L (i ) 

t + 

= ω(k + + i ) L (i −1) 
t −

= ω(k + + i ) 

q ∑ 

l=0 

(k + + i − 1)! 

( i − 1 − l)! 
u 

i −1 −l 
t W l ( t 

−)

= ω 

q ∑ 

l=0 

(k + + i )! 

(i − (l + 1))! 
u 

i −(l+1) 
t W l (t −) , 

nd hence 

 (t + ) = ωS W (t −) , (4.17) 

here S is the shift-operator defined by 

 (v 1 , . . . , v n ) = (0 , v 1 , . . . , v n ) for any (v 1 , . . . , v n ) ∈ R 

n . (4.18) 

etting q = 0 in this calculation shows that the simpler ansatz

3.10) , in which W ( t ) is a scalar function instead of a vector-valued

unction, is not compatible with the requirement that W ( t ) is not

 function of i or k . 

.2. Backward evolution on a time interval without punctual events 

Now that we have the transition conditions, (4.15) –(4.17) , we

an propagate the weight function W ( t ) backward in time, pro-

ided we can evaluate how it evolves in a time-interval (t h −1 , t h )

or any h ≥ 1, and this backward evolution preserves our ansatz

4.14) . In order to study this backward evolution we need some

ew notation and a simple lemma, which we now provide. 

For any time t ≥ 0 and θ ∈ (0, 1), define 

 2 (θ ) = 

λ + μ + ω + ψ − 2 λθ

c 1 
, (4.19) 

 (t, θ ) 

= 

1 

2 λ

[
λ + μ + ω + ψ + c 1 

e −c 1 t (1 − c 2 (θ )) − (1 + c 2 (θ )) 

e −c 1 t (1 − c 2 (θ )) + (1 + c 2 (θ )) 

]
, 

(4.20) 

nd p(t, θ ) 

= 

4(1 − θ ) 

2(1 − c 2 (θ ) 2 ) + e −c 1 t (1 − c 2 (θ )) 2 + e c 1 t (1 + c 2 (θ )) 2 
(4.21) 

here c 1 is as given in (2.3) . Notice that if we set θ = 1 − ρ then

 2 ( θ ), u ( t, θ ) and p ( t, θ ) become identical to c 2 , u ( t ) and p ( t ) de-

ned in Section 2 . Henceforth for any k ∈ N 0 we also define the

atio 

 k (t, θ ) = 

(
p(t, θ ) 

p(0 , θ ) 

)k 

, (4.22) 

nd when k = 1 , we drop the subscript and refer to R k ( t, θ ) as R ( t,

). To ease further algebra, we also name here the function cor-

esponding to the denominator of p ( t, θ ), namely q (t, θ ) = 4(1 −
) /p(t, θ ) . The next lemma gives us analytical expressions for the

igher order partial derivatives of R k ( t, θ ) and u ( t, θ ) w.r.t. θ . 

emma 4.1. Let u ( t, θ ) and R k ( t, θ ) be as defined by (4.20) and

4.22) respectively. Then for any n = 1 , 2 , . . . we have the following: 

(A) Let J n = { ( j 1 , j 2 ) ∈ N 

2 
0 

: j 1 + 2 j 2 = n } . Then ∂ n 
θ

R k (t, θ ) is

given by 

∂ n θ R k (t, θ ) = n ! R k (t, θ ) 
∑ 

( j 1 , j 2 ) ∈J n 

(−1) j 1 + j 2 

2 j 2 

( j 1 + j 2 + k − 1)! 

j 1 ! j 2 !( k − 1)! 

(
∂ θ q (t, θ ) 

) j 1 
(

∂ 2 
θ

q (t, θ ) 
) j 2 

. 

q (t, θ ) q (t, θ ) 
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(B) The quantity ∂ n 
θ

u (t, θ ) is given by 

∂ n θ u (t, θ ) 

= 

[ 
− c 1 

8 λ

(
e c 1 t (1 + c 2 (θ )) 2 − e −c 1 t (1 − c 2 (θ )) 2 

)
∂ n θ R (t, θ ) 

+ 

n 

2 

(
e c 1 t + e −c 1 t + c 2 (θ )(e c 1 t − e −c 1 t ) 

)
∂ n −1 
θ

R (t, θ ) 

−λn (n − 1) 

2 c 1 

(
e c 1 t − e −c 1 t 

)
∂ n −2 
θ

R (t, θ ) 

]
. 

Proof. See Appendix. �

Recall the formula (2.9) , for the probability evolution on a time-

interval [ t 1 , t 2 ] on which the number of observed lineages remains

fixed at k , and call now θ = u (t 1 , 1 − ρ) . Appealing to the semi-

group property of solutions to ODEs (2.1) - (2.2) we get 

u (t 2 , 1 − ρ) = u (t 2 − t 1 , u (t 1 , 1 − ρ)) = u (t 2 − t 1 , θ ) and 

p(t 2 , 1 − ρ) 

p(t 1 , 1 − ρ) 
= 

p(t 2 − t 1 , θ ) 

p(0 , θ ) 
. 

Hence we can rewrite (2.9) as 

∑ 

j≥0 

(k + j)! 

j! 
θ j 

P i (X (t) = j) = 

(k + i )! 

i ! 
u (t, θ ) i R k (t, θ ) , (4.23)

where t = (t 2 − t 1 ) . Note that the probability P i (X(t) = j) does not

depend on θ . Differentiating (4.23) l times w.r.t. θ we obtain 

∑ 

j≥0 

(k + j)! 

j! 

j! 

( j − l)! 
θ j−l 

P i (X (t) = j) 

= 

(k + i )! 

i ! 

l ∑ 

m =0 

(
l 

m 

)
∂ m 

θ

[
u (t, θ ) i 

]
∂ l−m 

θ
R k (t, θ ) . (4.24)

Applying the Faà di Bruno’s formula (see Fraenkel, 1978 ), for any

m = 1 , 2 , . . . yields 

∂ m 

θ

[
u (t, θ ) i 

]
= 

m ∑ 

n =0 

i ! 

(i − n )! 
u (t, θ ) i −n B m,n 

(∂ θ u (t, θ ) , ∂ 2 θ u (t, θ ) , . . . , ∂ m −n +1 
θ

u (t, θ )) , (4.25)

where B m,n (x 1 , x 2 , . . . , x m −n +1 ) is the incomplete Bell polynomial.

Such polynomials can be computed efficiently via a recurrence re-

lation 

B m,n (x 1 , x 2 , . . . , x m −n +1 ) = 

m −n +1 ∑ 

i =0 

(
m − 1 

n − 1 

)
x i B m −i,n −1 (x 1 , . . . , x m −n −

where B 0 , 0 = 1 and B m, 0 = B 0 ,m 

= 0 for each m ≥ 1. Henceforth we

denote 

B mn (t, θ ) = B m,n (∂ θ u (t, θ ) , ∂ 2 θ u (t, θ ) , . . . , ∂ m −n +1 
θ

u (t, θ )) . 

Substituting (4.25) in (4.24) we obtain 

∑ 

j≥0 

(k + j)! 

j! 

j! 

( j − l)! 
θ j−l 

P i (X (t) = j) 

= 

(k + i )! 

i ! 

l ∑ 

m =0 

m ∑ 

n =0 

(
l 

m 

)
i ! 

(i − n )! 
u (t, θ ) i −n B mn (t, θ ) ∂ l−m 

θ
R k (t, θ ) 

= 

(k + i )! 

i ! 

l ∑ 

n =0 

i ! 

(i − n )! 
u (t, θ ) i −n 

l ∑ 

m = n 

(
l 

m 

)
B mn (t, θ ) ∂ l−m 

θ
R k (t, θ ) . 

(4.26)

Letting 

C ln (t, θ, k ) = 

l ∑ 

m = n 

(
l 

m 

)
B mn (t , θ ) ∂ l−m 

θ
R k (t , θ ) , (4.27)
e can express (4.26) as 

 

j≥0 

(k + j)! 

( j − l)! 
θ j−l 

P i (X (t) = j) = 

l ∑ 

n =0 

(k + i )! 

(i − n )! 
u (t, θ ) i −n C ln (t, θ, k ) . 

(4.28)

his formula will play a critical role in determining the back-

ard propagation of the vector-valued weight function W (t) =
(W 0 (t) , . . . , W q (t)) between the transition points. 

Indeed, let us consider the interval (t h −1 , t h ) for some h ≥ 1. In

his interval the number of observed lineages is constant and we

ssume that it is equal to k h . Also let θh = u (t h , 1 − ρ) for each h .

sing ansatz (4.14) and applying the Markov property we obtain 

q ∑ 

l=0 

(k h + i )! 

(i − l)! 
θ i −l 

h 
W l (t −

h 
) 

= L (i ) 
t −

h 

= 

∑ 

j≥0 

P i (X (t h − t h −1 ) = j) L (i ) 
t + 

h −1 

= 

q ∑ 

l=0 

W l (t + 
h −1 

) 
∑ 

j≥0 

P i (X (t h − t h −1 ) = j ) 
(k h + j )! 

( j − l)! 
θ j−l 

h −1 

= 

q ∑ 

l=0 

l ∑ 

n =0 

W l (t + 
h −1 

) 
(k h + i )! 

(i − n )! 
θ i −n 

h 
C ln ( t h − t h −1 , θh −1 , k h ) 

= 

q ∑ 

n =0 

(k h + i )! 

(i − n )! 
θ i −n 

h 

q ∑ 

l= n 
W l (t + 

h −1 
) C ln (t h − t h −1 , θh −1 , k h ) , 

here the second-last equality is due to formula (4.28) . This calcu-

ation proves that ansatz (4.14) is preserved by the backward evo-

ution of the weight vector W ( t ) and 

 (t −
h 
) = W (t + 

h −1 
) C (t h − t h −1 , θh −1 , k h ) , (4.29)

here W (t −
h 
) = (W 0 (t −

h 
) , . . . , W q (t −

h 
)) and W (t + 

h −1 
) =

(W 0 (t + 
h −1 

) , . . . , W q (t + 
h −1 

)) are (q + 1) -dimensional row vectors

nd C (t h − t h −1 , θh −1 , y h ) is the (q + 1) × (q + 1) lower-triangular

atrix whose entries are given by C ln (t h − t h −1 , θh −1 , k h ) for l ≥ n

nd 0 for l < n . Note that by using Lemma 4.1 , this matrix can be

nalytically computed. 

.3. Summary of the likelihood computation 

Let k 0 be the number of extant and sampled lineages at time

 0 = 0 . Using relations (4.29) and (4.15) –(4.17) we can propagate

he vector-valued weight function W ( t ) backward in time start-

ng from W (t + 
0 
) whose entries are all equal to ρk 0 and ending at

 (t −or ) , whose first component W 0 (t −or ) is equal to the target prob-

bility density L (T , O) . Note that due to the presence of the shift

perator S in (4.17) the dimension of W ( t ) is (q + 1) where q is

he number of occurrence events in the time-interval [0, t ]. This

ackward propagation scheme is described in Algorithm 2 and it

implifies to Algorithm 1 in the absence of occurrence data. 

.4. Numerical implementation and sanity check 

The main algorithm to compute the probability density of

(O, T ) has been implemented numerically and is available on

itHub: https://github.com/ankitgupta83/tree- and- occurrences As

 check that the method leads to correct values, we compared the

esults obtained with our analytical calculation ( Algorithm 2 ) with

he ones obtained using Monte Carlo simulations as described in

aughan et al. (2019) and implemented here in C ++ . 

We consider two toy examples depicted in Fig. 2 (A) for which

e calculate the probability density. The comparisons are shown

n Fig. 2 (B) and 2 (C), and one can see that there is a close match

https://github.com/ankitgupta83/tree-and-occurrences
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Fig. 2. (A) Two toy examples of reconstructed trees along with occurrence data (open circles). (B) Comparison between probability densities obtained analytically with 

Algorithm 2 and the corresponding probability densities obtained with simulations as described in Vaughan et al. (2019) . The parameter λ varies between 0 and 2, while 

the other parameters are set to ψ = 0 . 1 , μ = 0 , ω = 0 . 1 and ρ = 0 . 7 . (C) Same as (B) except now the parameter ω varies between 0 and 1, while the other parameters are 

set to ψ = 0 . 1 , μ = 0 , λ = 1 . 25 and ρ = 0 . 7 . 

b  

m

5

 

p

5

 

s  

t  

t  
etween numerical values computed analytically and those esti-

ated with simulations. 

. Applications 

Our results pave the way to different applications that we

resent in this section. 
.1. Different flavors of the likelihood 

Following ( Stadler, 2010 ), we first point out that our main re-

ult, Algorithm 2 , allows us to compute the density of the observa-

ions, given a model with fixed time of origin t or . This quantity,

hat we call L below, can be seen as an extension of Theorem
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Algorithm 2 Computes the probability density L (O, T ) . 
Input: Observed (O, T ) ,and parameters t or , λ, μ, ψ, ω, ρ . 

Output: The probability density L (T , O) . 

1: Set q = 0 , θ = (1 − ρ) and W (t + 
0 
) = ρk 0 . 

2: for h = 1, …, n do 

3: Compute the (q + 1) × (q + 1) lower-triangular matrix C(t h −
t h −1 , θ, k h ) whose entry C ln (t h − t h −1 , θ, k h ) for l ≥ n is given by 

(4.27). 

4: Viewing W (t + 
h −1 

) = (W 0 (t + 
h −1 

) , . . . , W q (t + 
h −1 

)) as a 1 × (q + 1) 

vector, set 

W (t −
h 
) = W (t + 

h −1 
) C(t h − t h −1 , θ, k h ) . 

5: if i = n then 

6: return W 0 (t −n ) which is the first component of the 

weight vector W (t −n ) . 
7: else if t h is a ψ-event then 

8: Set W (t + 
h 
) = ψW (t −

h 
) 

9: else if t h is a λ-event then 

10: Set W (t + 
h 
) = λW (t −

h 
) 

11: else t h is a ω-event 

12: Set W (t + 
h 
) = ωS W (t −

h 
) , where S is the shift operator 

(4.18). 

13: Set q = q + 1 . 

14: end if 

15: Set θ = u (t h − t h −1 , θ ) . 

16: end for 
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m  
3.5 in Stadler (2010) (while assuming that samples correspond to

death events), when occurrences can be observed. 

Depending on the analysis that one wants to perform, it might

be desirable to condition this density on various events, including, 

1. the number of ρ-sampled leaves at present, 

L (O, T |{ ρ-sampling n individuals } ) 
= 

L 

P ({ ρ-sampling n individuals } ) 
where the denominator is a well-known quantity which can,

e.g., be found in Theorem 3.3 in Stadler (2010) , replacing μ by

μ + ψ + ω in our case. 

2. the survival of the process up to the present, 

L (O, T |{ survival of at least one individual at present } ) 
= 

L 

1 − u t or 

3. the survival of two lineages starting at time t mrca , 

L (O, T |{ survival of two lineages originating at t mrca } ) 
= 

L 

(1 − u t or 
) 2 

p(t mrca ) 

λp(t or ) 

In each case, since the event we condition on is in the observed

data, one only needs to divide by the probability of the event.

These are only three possibilities that one could use. In the con-

text of phylodynamics, conditioning on the survival of the process,

or on the survival of two lineages starting at t mrca is common prac-

tice, since we study an evolutionary process precisely because it

survived. 

We also stress that the probability density provided in this

manuscript applies to an oriented and unlabelled tree. If one

wishes to compare the probability densities of trees under differ-

ent generating models, then it might be useful to add a combina-

torial factor for dealing, e.g. with unoriented and labelled trees, as

described in Stadler (2010) . 
.2. Maximum likelihood estimators 

The previous probability densities can readily be used to es-

imate parameters of the model from reconstructed trees and

ccurrences. Taken as a function of parameters, the density is

ndeed called likelihood, and maximum likelihood estimators can

e obtained by maximizing the likelihood function over the pa-

ameters. Since it does not appear straight-forward to identify

ptimal parameter configurations analytically, we suggest rely-

ng on numerical optimizers instead. In this context, computing

uickly the likelihood value using Algorithm 2 in place of the

ore computationally intensive Monte-Carlo algorithm proposed

y Vaughan et al. (2019) , can prove essential, since the optimiza-

ion requires many calls to the function. 

.3. Bayesian analysis 

This density is also a key component when using this model in

 Bayesian framework, where one can estimate the parameters of

he model directly from the occurrences and the sequencing data

ather than fixing a tree. Suppose we observe the sampling times

f occurrences O (individuals without any measurement data), the

ampling times and genotypic or phenotypic measurements of m

-sampled individuals, and the genotypic or phenotypic measure-

ents of n ρ-sampled individuals. We call A the sequencing data,

ummarizing all the genotypic or phenotypic measurements (e.g. a

ucleotide alignment of pathogens, or a collection of morpholog-

cal traits for fossil species, or any combination of those), and θ
ll parameters relating to the model of character evolution along a

ree. 

Loosely defining f to represent all probability densities involved,

nd relying on the name of the random variable to know which

ne we refer to, one is generally interested in sampling from, 

f (T , θ, λ, μ, ρ, ψ, ω, t or |O, A ) 

∝ f (A|T , θ ) f (O, T | λ, μ, ρ, ψ, ω, t or ) f (λ, μ, ρ, ψ, ω, θ, t or ) , 

ith f ( λ, μ, ρ , ψ , ω, θ , t or ) being the prior distribution on the

odel parameters. Standard MCMC (Markov-Chain Monte-Carlo)

lgorithms can be used to sample from this posterior distribution.

s a result, from sequencing and occurrence data, we can directly

btain the marginal distribution of birth-death parameters inte-

rated over the posterior distribution of trees. 

.4. Simulations of the process 

While the raw process is quite easy to simulate forward-in-

ime, it can be more difficult to simulate it under a different con-

itioning event C, relating for example to the number of ρ-, ψ-,

r ω-samples. Naive rejection sampling is not an efficient option

f one wishes to condition on an event happening with very low

robability. Adapting the particle filtering algorithm developed by

aughan et al. (2019) would be a much better option. 

Another option is to use the results of this paper and di-

ectly sample from the density f (O, T | λ, μ, ρ, ψ, ω, t or , C) , using

ur ability to evaluate f (O, T | λ, μ, ρ, ψ, ω, t or ) quickly, within an

CMC algorithm with any reasonable movement proposal chang-

ng the reconstructed tree and possibly occurrence times or num-

ers while satisfying the constraint C. 

. Discussion 

In this study, we derived a closed-form probability density for-

ula of a reconstructed tree and an occurrence record (i.e. a record
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f when cases occurred) under a linear homogeneous birth-death

odel with sampling. This can be readily used for statistical pur-

oses, such as parameter inference of the model in a maximum

ikelihood or a Bayesian framework. In the context of epidemi-

logy, this study offers a way to improve the accuracy of sta-

istical estimates of key epidemiological parameters, such as the

ransmission and recovery rate ( λ and (μ + ψ + ω) ), and thus

he basic reproductive number R = λ/ (μ + ψ + ω) , using the oc-

urrence record together with the phylogenetic tree reconstructed

rom pathogen sequences. This should be of use to health policy

akers as well as epidemiologists, enabling them to jointly use

he epidemiological data (occurrence record) as well as molecular

ata (genetic sequences), to recover the dynamic of an outbreak.

n the context of macroevolution, the present work contributes

o the ongoing effort towards bridging the gap between inference

ade from the fossil record and inference made from contempo-

ary data. It can be seen as an extension of the birth-death process

ith sampling through time ( Stadler, 2010 ), allowing one to take

nto account fossil occurrences in which evolutionary relationships

o other taxa are not well resolved. However, it should be pointed

ut here that in this work it is assumed that a sampled individual

s removed from the population, while a species continues to exist

f a specimen is preserved in and observed from the fossil record.

n this case, numerical methods can deal with non-removal upon

ampling ( Vaughan et al., 2019 ). 

Many extensions of this model are possible. One of the sim-

lest would be to consider time-varying rate parameters λt , μt , ψ t ,

 t . The most widely used approach to do so in the recent litera-

ure has been to consider so-called skyline versions of birth-death

rocesses ( Stadler et al., 2013 ), meaning that the rate parameters

re piecewise constant functions. Because we expressed all our re-

ults based on two key functions u ( t ) and p ( t ), whose analytical

xpressions can easily be obtained considering piecewise constant

ates, our central result would still hold. The challenge, however,

ould be to use such a model with an appropriate number of rate

hifts so as not to overfit the data, although in a Bayesian context

he number of rate shifts could also be estimated as part of a re-

ersible jump MCMC scheme ( Green, 1995 ). 

Another important extension of the model would be to allow

or the possibility of not removing individuals upon sampling. In

act, the model considered in Stadler (2010) does assume that ψ-

ampled individuals keep living in the process. However, it is cen-

ral for the derivation of our result that ψ- and ω-sampled indi-

iduals are removed upon sampling. Our choice to remove all indi-

iduals upon sampling also seems reasonable for a number of ap-

lications in epidemiology, since sampled individuals are generally

hose that have sought medical attention, and - even if not quar-

ntined - might be much less likely to spread the disease (but see

lso Gavryushkina et al., 2014 ). 

Recently, ( Stadler et al., 2018 ) introduced an other extension

f the birth-death model with sampling through time to account

or data on the lifetime of some individuals. It assumes that in-

ividuals can be sampled multiple times, and that the first and

ast sampling event are recorded along the tree. This extension of

he model could be transposed in our setting, where the record

f occurrences would become a record of sampled lifetime inter-

als. Such an approach would allow to use infection interval data

r stratigraphic range data. 

In summary, we present a way to analytically calculate the like-

ihood of phylogenetic trees together with occurrence data. So far,

his likelihood could only be calculated analytically for the phylo-

enetic tree or for the occurrence data. Thus, we view this work

s a major step towards coherent statistical analysis of different

ata sources under the birth-death model with sampling through

ime. 
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ppendix 

roof. of Proposition 2.1 

Note that reversing the direction of time in (2.1) we can write

he ODE for u (t or − s ) as 

du (t or − s ) 

dt 
= −μ + (λ + μ + ω + ψ) u (t or − s ) − λu (t or − s ) 2 

(A.1) 

pplying the generator A k on function f k ( s, i ) we obtain 

A k f k (s, i ) = 

(k + i )! 

i ! 
iu ( t or − s ) i −1 du ( t or − s ) 

dt 

+ λ(k + i ) 

(
φik 

(k + i + 1)! 

(i + 1)! 
u (t or − s ) i +1 − (k + i )! 

i ! 
u (t or − s ) i 

)

+(μ + ω + ψ)(k + i ) 

(
� { i> 0 } κ

(k + i − 1)! 

(i − 1)! 
u (t or − s ) i −1 

− (k + i )! 

i ! 
u (t or − s ) i 

)
. 

ince i ≥ 0, noting that 

(k + i ) 
(k + i − 1)! 

(i − 1)! 
= 

(k + i )! 

i ! 
i and 

(k + i ) φik 

(k + i + 1)! 

(i + 1)! 
= (2 k + i ) 

(k + i )! 

i ! 
, 

nd using (A.1) we get 

 k f k (s, i ) = −μ
(k + i )! 

i ! 
iu (t or − s ) i −1 

+ (λ + μ + ω + ψ) 
(k + i )! 

i ! 
iu (t or − s ) i 

− λ
(k + i )! 

i ! 
iu (t or −s ) i +1 + λ(2 k + i ) 

(k + i )! 

i ! 
u (t or − s ) i +1 

− λ(k + i ) 
(k + i )! 

i ! 
u (t or − s ) i + μi 

(k + i )! 

i ! 
u (t or −s ) i −1 

− (μ + ω + ψ)(k + i ) 
(k + i )! 

i ! 
u (t or − s ) i 

= −k (λ + μ + ω + ψ) 
(k + i )! 

i ! 
u (t or − s ) i 

+ 2 kλ
(k + i )! 

i ! 
u (t or − s ) i +1 

= k ( 2 λu (t or − s ) − (λ + μ + ψ + ω) ) f k (s, k + i ) . 

https://doi.org/10.13039/501100007601
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We now prove that M s defined by (2.7) is a martingale w.r.t. the

filtration F s generated by process X . Note that since this process

has generator A k the following is a F s -martingale (see Chapter 4

in Ethier and Kurtz, 1986 ) 

m s = f k (s, X (s )) − f k (s 1 , X (s 1 )) 

−
∫ s 

s 1 

k (2 λu (t or − z) − (λ + μ + ψ + ω)) f k (z, X (z)) dz. 

Writing this equation in differential form we obtain 

dm s = df k (s, X (s )) − k ( 2 λu (t or − s ) − (λ + μ + ψ + ω) ) 

f k (s, X (s )) ds. 

Multiplying both sides by the integrating factor 

J s = exp 

(
−

∫ s 

s 1 

k ( 2 λu (t or − z) − (λ + μ + ψ + ω) ) dz 

)

we get 

J s dm s = J s df k (s, X (s )) + f k (s, X (s )) d J s = d J s f k (s, X (s )) . 

Upon integration we see that 
∫ s 

s 1 
J z dm z is a martingale which im-

plies that J s f k ( s, X ( s )) is a positive F s -martingale in the time-

interval [ s 1 , s 2 ]. Note that J s satisfies the ODE 

dJ s = −k ( 2 λu (t or − s ) − (λ + μ + ψ + ω) ) J s 

which is similar to (2.2) . Exploiting this similarity allows us to

write 

J s = 

(
p(t or − s ) 

p(t or − s 1 ) 

)k 

Now the fact that J s f k ( s, X ( s )) is a positive F s -martingale proves

that M s is also such a martingale. This completes the proof of this

proposition. �

Proof. of Lemma 4.1 

Observe that 

∂ θ c 2 (θ ) = −2 λ

c 1 

and all higher order derivatives of c 2 ( θ ) are zero, i.e. ∂ m 

θ
c 2 (θ ) = 0

for all m ≥ 2. As q ( t, θ ) is a simple quadratic function of c 2 ( θ ) we

get from chain-rule for derivatives that 

∂ θ q (t, θ ) = −4 λ

c 1 

(
e c 1 t − e −c 1 t + c 2 (θ )(e c 1 t + e −c 1 t − 2) 

)

∂ 2 θ q (t, θ ) = 

8 λ2 

c 2 
1 

(
e c 1 t + e −c 1 t − 2 

)
, 

and ∂ m 

θ q (t, θ ) = 0 for m = 3 , 4 , . . . . 

As q (0 , θ ) = 4 is independent of θ we can express the derivatives

of R k ( t, θ ) as 

∂ n θ R k (t, θ ) = 4 

k ∂ n θ

[
1 

(q (t, θ )) k 

]
. 

Using the derivatives of q ( t, θ ) computed above and the Faà di

Bruno’s formula (see Fraenkel, 1978 ) we obtain the expression for

∂ n 
θ

R k (t, θ ) reported in part (A). 

For part (B) observe that we can write u ( t, θ ) as 

u (t, θ ) = 

λ + μ + ω + ψ 

2 λ
− c 1 

8 λ
r(θ ) R (t, θ ) (A.2)

where 

r(θ ) = e c 1 t (1 + c 2 (θ )) 2 − e −c 1 t (1 − c 2 (θ )) 2 . 
he derivatives of r ( θ ) can be obtained as 

∂ θ r(θ ) = −4 λ

c 1 

[
e c 1 t + e −c 1 t + c 2 (θ )(e c 1 t − e −c 1 t ) 

]
, 

∂ 2 θ r(θ ) = 

8 λ2 

c 2 
1 

[
e c 1 t − e −c 1 t 

]
and ∂ m 

θ r(θ ) = 0 for m = 3 , 4 , . . . . 

pplying the generalized product-rule for derivatives to formula

A.2) we can express ∂ n 
θ

u (t, θ ) as 

 

n 
θ u (t, θ ) = − c 1 

8 λ

2 ∑ 

m =0 

(
n 

m 

)
∂ m 

θ r(θ ) ∂ n −m 

θ
R (t, θ ) . 

ubstituting the values of ∂ m 

θ
r(θ ) and simplifying, we obtain the

xpression for ∂ n 
θ

u (t, θ ) reported in part (B). This completes the

roof of this lemma. �
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