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Abstract

This work considers the propagation of a tumor from the stage of a small avascular sphere
in a host tissue and the progressive onset of a tumor neovasculature stimulated by a pro-
angiogenic factor secreted by hypoxic cells.
The way new vessels are formed involves cell sprouting from pre-existing vessels and following
a trail via a chemotactic mechanism (CM).
Namely, it is first proposed a detailed general family of models of the CM, based on a statistical
mechanics approach. The key hypothesis is that the CM is composed by two components: i)
the well–known bias induced by the angiogenic factor gradient; ii) the presence of stochastic
changes of the velocity direction, thus giving rise to a diffusive component. Then, some further
assumptions and simplifications are applied in order to derive a specific model to be used in
the simulations.
The tumor progression is favored by its acidic aggression towards the healthy cells. The model
includes the evolution of many biological and chemical species.
Numerical simulations show the onset of a traveling wave eventually replacing the host tissue
with a fully vascularized tumor. The results of simulations agree with experimental measures
of the vasculature density in tumors, even in the case of particularly hypoxic tumors.

Keywords: Modeling vascularized tumor growth, Angiogenesis, Chemotaxis, Tumor invasion,
Traveling waves, Fickian diffusion.

1 Introduction

The growth of solid tumors as avascular nodules cannot exceed the size of 1-2 millimeters of
diameter since, beyond this size, the diffusion of solutes from the surrounding environment is
insufficient to appropriately supply the cells with oxygen and nutrients, as shown by experiments
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on in vitro tumor cellular spheroids (Freyer and Sutherland, 1986). Indeed, the tumor needs to
be vascularized to grow further.

Generally, tumor vascularization requires the development of new blood vessels following
the proliferation of endothelial cells (ECs) of pre-existing vessels and the formation of sprouts.
This kind of vascularization mechanism is called angiogenesis (Adair and Montani, 2010). The
angiogenesis process is under the control of a complex interplay of chemical factors, both pro-
angiogenic and anti-angiogenic, secreted by the tumor cells and the stromal cells. The process
initiates with the activation into proliferation of the endothelial cells of pre-existing vessels that
give origin to sprouts. Sprouts in turn proliferate creating a structure along the motion of the tip
cell whose orientation is biased by the gradient of the angiogenic factor, subjected at the same
time to a random change. After anastomosis and some maturation process, such structures form
a network of new vessels allowing blood flow (Carmeliet and Jain, 2011).

Interest has been devoted over the past 40 years to the mathematical modeling of blood vessel
formation with focus on the migratory response of endothelial cells to angiogenic factors since
the works of Ausprunk and Folkman (1977); Zigmond (1977). Theoretical studies on blood vessel
growth and development may however be traced back nearly a century (see e.g. Mantzaris et al.
(2004); Chaplain et al. (2006); Adair and Montani (2010)).

Much interest has been devoted to the mathematical modeling of tumor–induced angiogenesis
(Hahnfeldt et al., 1999; d’Onofrio and Gandolfi, 2004, 2009, 2010a) as well as to both anti–
angiogenesis therapies (Hahnfeldt et al., 1999; d’Onofrio and Gandolfi, 2004, 2006, 2009; d’Onofrio
et al., 2009) and the effects on tumor vessels of anticancer chemo- and radiotherapies (d’Onofrio
and Gandolfi, 2010a; Ledzewicz and Schättler, 2012). As far as the spatio–temporal dynamics,
a particular effort has been focused on continuum modeling of angiogenesis (Hillen and Painter,
2009), starting with the work of Balding and McElwain (1985) who describe the growth of a
capillary network in terms of tip and sprout densities in response to angiogenic growth factors.

Furthermore, we mention discrete models of angiogenesis treating cells as individual units
and incorporating cell movement and interaction with the tissue (Anderson and Chaplain, 1998;
Rivero et al., 1989). Discrete models incorporating rules for sprout branching and anastomoses
that include elements of stochasticity for the cell movement have also been proposed (see for
instance Othmer et al. (1988); Tranquillo et al. (1988); Anderson and Chaplain (1998)).

Among the attempts of modeling tumor angiogenesis with attention to optimal treatment
strategies we quote the very recent paper by Voutouri et al. (2019) in which the sprouting of new
vessels is described by means of two endothelial cell populations, that the authors call ”stable”
and ”unstable”, respectively, both subject to a chemotactic motion simply governed by the gra-
dient of angiogenic factors.
Our approach differs in various aspects from previous works. In particular we perform a finer
analysis of chemotaxis, which includes a random component generated by tumbling of the un-
stable cells and is based on different principles (the sheer proportionality to the gradient of the
chemotactic factor is known to be not always adequate - and actually is not in this specific case,
where the gradient influences the orientation of velocity, but not its modulus). The concept pur-
sued here is that the angiogenic factor gradient contributes to determine the tip cells orientation
but not their speed intensity.

The aim of this work is to build a mathematical model to describe the growth of an invasive
tumor within the host tissue from its initial (avascular) phase, elucidating the relative role of
the neo-angiogenesis and of the possible vessel co-option, and performing numerical simulations.
Particular attention is devoted to the stages giving rise to the new vasculature.
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The model is formulated in Sect. 2. It includes the tumor aggression to the surrounding healthy
tissue. Modeling the formation of new vessels within the tumor goes through the description of
the evolution of different classes of cells under the stimulus of a protein secreted by hypoxic tumor
cells. In particular, we derive a model for tip cell chemotactic migration under the influence of
the angiogenic factor. The numerical approach is explained in Sect. 3. The values of the various
parameter are listed and discussed in Sect. 4. Results are shown and commented in Sect. 5.
Starting from a spherical, avascular tumor, simulations show that tumor progresses as a traveling
wave, eventually replacing the health tissue. The paper contains two appendices. App. A shows
that all the quantities involved in the model stay in their natural physical range; App. B analyzes
the steady state created after the healthy tissue has been replaced by the tumor. The analytical
results of App. B proved to be very useful in checking the validity of numerical simulation. Our
numerical results agree with the available experimental data on tumor vasculature in a wide range
of cases.

2 Model formulation

General assumptions

Both the tumor and the host tissue in which the tumor is developing are viewed as a mixture
of cells of different types, vessels, interstitial liquids and extracellular matrix (ECM). We denote
by φ(x, t) the local volume fraction occupied by cells and vessels at position x and time t, with
x ∈ Ω ⊂ IR3. Ω is the domain on which the model is defined, and it has to be viewed as a small
portion of the body. Under the saturation hypothesis, 1−φ is the fraction occupied by fluids plus
ECM. The extracellular matrix, which is a network of fibrillar protein and proteoglycans necessary
to allow active cell motility, is produced by stromal cells and degraded through enzymes secreted
by the tumor cells (Chaplain and Stuart, 1993). In the present model, for simplicity, we disregard
the ECM dynamics assuming that it is incompressible with constant volume fraction φECM .
Similarly, the dynamics of liquids is also disregarded, along with any mechanical interaction of
cells with the surroundings. Likewise, the possible displacement of the vessel network caused by
tumor growth is not accounted for. The evolution of the vessel network - including normal host
vessels and neo-formed vessels - will be traced by the dynamics of the involved populations of
endothelial cells.

Furthermore, we assume that random and directed cell motility, as well as cell proliferation,
decrease as the occupied volume fraction φ increases, and that cellular movement and proliferation
cease when φ reaches some value φ∗. Obviously, φ∗ cannot exceed the maximal volume fraction
available for cells and vessels, and thus it must be φ∗ ≤ 1− κφECM , where the coefficient κ > 1
accounts for the steric hindrance that increases the space actually excluded by ECM.

Although the movement impairment in crowded environments and the inhibition of cell pro-
liferation are likely to follow different laws with respect to φ, we describe for simplicity both these
phenomena by means of a common function B(φ) that multiplicatively modifies the proliferation
rates as well as the diffusion and chemotaxis terms. The function B(φ) is such that B(0) = 1,
B(φ∗) = 0, and B′(φ) < 0; in particular we take (see (Swanson et al., 2011))

B(φ) =
(

1− φ

φ∗

)p
, p > 1 . (1)
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Tumor cells and host tissue

We suppose that tumor cells are endowed with active random motility, which can be described
by moderate Fickian diffusion. Tumor cells proliferate with a rate that decreases when the
concentration of a critical chemical in the cell environment decreases. At the same time, the
progressive depletion of the same chemical increases the tumor cell death rate. A background
level of spontaneous cell death is also introduced. Although the model does not include quiescent
tumor cells, the onset of quiescence is implicitly represented by the decrease of the proliferation
rate. We identify the critical chemical with oxygen, even though glucose and other substances
have a fundamental role in the energy metabolism of cells (Bertuzzi et al., 2010b). Denoting by
n(x, t) the tumor cell density, we can write the following equation:

∂tn = ∇ · (DnB(φ)∇n)︸ ︷︷ ︸
diffusion

+B(φ)χ(σ)n︸ ︷︷ ︸
proliferation

−µn(σ)n︸ ︷︷ ︸
death

, (2)

where σ(x, t) indicates the oxygen concentration. The functions χ(σ) and µn(σ) are the per cell
rates of proliferation and death respectively, for which we take

χ(σ) = Aχ
σ

Kχ + σ
, (3)

and

µn(σ) =

{
µ̄ncos

2
(
π
2
σ
σ̄n

)
+ µ0 , σ ∈ [0, σ̄n] ,

µ0 , σ ∈ (σ̄n,+∞) ,
(4)

with obvious meaning of the symbols.
As a consequence of the tumor cell metabolism, acidification is observed to occur in the

surrounding microenvironment to the extent that it becomes toxic for normal cells favoring the
host tissue invasion (Gatenby and Gawlinski, 1996, 2003; Fasano et al., 2009). We do not include
the dynamics of H+ ions in the model and and we simply represent tumor aggression by assuming
that host cells are killed with per cell rate proportional to the local concentration of tumor cells.
The normal tissue hosting the tumor is modeled by means of a density h(x, t) of identical cells,
which are properly supplied with nutrients by an isotropic network of vessels. For simplicity,
the possible renewal process, which implies some proliferative activity to compensate the effect
of spontaneous cell death, is disregarded. So, host cells are assumed to be quiescent, devoid
of motility, and subjected to cell death only for oxygen deprivation and/or tumor aggression.
According to the above assumptions, the equation for h(x, t) reads

∂th = −δhnh︸ ︷︷ ︸
tumor aggression

− µh(σ)h︸ ︷︷ ︸
death by hypoxia

, (5)

where

µh(σ) =

{
µ̄hcos

2
(
π
2
σ
σ̄h

)
, σ ∈ [0, σ̄h] ,

0 , σ ∈ (σ̄h,+∞) .
(6)

It is reasonable that σ̄h > σ̄n, in view of the enhanced role of anaerobic metabolism in tumor
cells. The value σ̄h has to be taken smaller than the oxygen concentration in the host tissue in
the absence of tumor.
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Vasculature and angiogenesis: some key phenomena and assumptions

The present model considers only the microvasculature, which as far as the host tissue is con-
cerned, includes arterioles, capillaries, and venules. In most cases, during tumor invasion, cap-
illaries and venules of the host tissue are eventually destroyed (Vaupel et al., 1989), possibly
after transient co-option (Maisonpierre et al., 1997). Arterioles appear to be totally or partially
conserved (Vaupel et al., 1989), or more slowly degraded and possibly reformed (Nagy et al.,
2009). Host capillaries and venules are replaced by tumor vessels formed upon the angiogenesis
process that is stimulated and controlled by a complex interplay among pro-angiogenic and anti-
angiogenic factors released by tumor cells and stromal cells (Carmeliet and Jain, 2011). In some
cases, however, the whole host vascular network is co-opted by the tumor and angiogenesis may
not occur (Donnem et al., 2013).

The angiogenesis process starts with the formation of sprouts from existing vessels. The tip
cell of a sprout appears to be phenotypically distinct from the other endothelial cells (EC) of
the sprout, which are termed stalk cells (Geudens and Gerhardt, 2011). The tip cells sense the
environment by extending filopodia so as to guide the sprout growth in a direction dictated by
chemical gradients. The stalk cells adjacent to the tip proliferate pushing the tip cell forward
and generating the endothelial cells that build the sprout body (Ausprunk and Folkman, 1977;
Gerhardt et al., 2003; Geudens and Gerhardt, 2011). The remaining stalk cells are quiescent and
immobile. As the sprout grows, the stalk cells arrange themselves to form a lumen. Sprouts can
form anastomoses with other sprouts, and with newly formed or preformed vessels. After sprout
anastomosis, a new vessel is formed allowing blood flow. The newborn vasculature undergoes a
maturation process in which some branches regress and others are stabilized. In tumors, however,
this vascular remodeling appears abnormal. The newly created vessels, which are the tumor
exchange vessels, are generally enlarged and tortuous. Vascular loops can be present and sprouts
that do not anastomize can generate tapered and/or leaking vessels. As a consequence, the overall
efficiency of the neo-formed tumor vasculature is expected to be poor.

To describe this complex scenario, we make the following assumptions:

� the host arteriolar tree is conserved and incorporated in the tumor;

� host exchange vessels – capillaries and venules – are degraded with a rate proportional to
the local density of tumor cells;

� only a single, representative pro-angiogenic factor secreted by the tumor cells is considered
(in the following: tumor angiogenic factor, TAF). Anti-angiogenic factors are not included
in the model, but they are indirectly taken into account by suitably tuning the TAF degra-
dation rate.

� the pro-angiogenic factor induces the sprouting process by activating the proliferation of
the endothelial cells of pre-existing vessels and promotes the cell proliferation in the sprout;

� tumor exchange vessels originate soon after sprout anastomosis. Any vessel maturation
stage is disregarded.

Although experimental evidence (Geudens and Gerhardt, 2011) indicates that a number of stalk
cells near the tip are actually proliferating in a sprout whereas the tip cells do not divide, for
simplicity we assign the mitotic capability to the sprout tip cells and we assume:
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� only the tip cell proliferates, with an apparent mitotic rate that accounts for the total
proliferative activity occurring in the sprout;

� the tip cells change randomly their orientation with a bias in the direction of the gradient
of the TAF concentration.

In the above scheme, after a tip cell mitosis, one daughter cell becomes a quiescent stalk cell,
while the other, which has moved forward, becomes the new tip cell. Therefore, in the present
model, only the sprout tip cells are mobile and we can actually identify the sprout extension
with the trajectory traced by the tip cell, as in the “snail-trail” model proposed by Balding and
McElwain (1985). Note that, as a consequence of the growth mechanism described above, the tip
cell velocity is proportional to the number of proliferating stalk cells and to their mitotic rate.
Thus, the tip cells migration mechanism is only partly conditioned by the TAF concentration
gradient (in a way that will be discussed at length later on). Since such cells do not move freely,
but adhere to the forming vessel, their speed has a natural upper bound related to the minimal
duration of the EC cell cycle and to their size.

Such a picture is also supported by the findings of many experimental and theoretical works
where the dependence of the tip cell velocity on the density of proangiogenic factors has been
stressed. Among these works, we cite the papers by the Carmeliet research group (see De Smet
et al. (2009); Carlier et al. (2012)) and the experimental paper by (Phng and Gerhardt (2009)).

Let us now denote by w(x, t), z(x, t), v(x, t), and vh(x, t) the densities of sprout tip cells, sprout
stalk cells, endothelial cells of tumor vessels, and endothelial cells of host vessels, respectively.
The constant density of the arteriolar ECs is indicated by va. The average concentration in the
interstitial fluids of the free pro-angiogenic factor is denoted by P (x, t).

Cells sense the presence of macromolecular chemicals in the surrounding liquid through the
occupancy of specific receptors on their surface. Moreover, eukaryotic cells appear to move
toward higher chemoattractant concentrations by sensing the difference in the amount of bound
receptors across the cell length (Zigmond, 1977; Rivero et al., 1989; Levine and Rappel, 2013).
This mechanism exhibits a remarkable sensitivity, as evidenced by experimental results in which
cells were able to respond to chemoattractant concentration differences along the cell as small as
1% (Tranquillo et al., 1988).

In this scenario chemotaxis is driven, in a way that will be discussed, by the TAF concentration
gradient, when detectable at the cellular scale. At the macroscopic scale, supposing the receptor-
TAF reaction very fast, and supposing the dissociation equilibrium constant Kd of binding equal
for all the EC types, we may define the locally averaged fraction ψ(x, t) of the endothelial cell
receptors bound to TAF as follows

ψ(x, t) =
P (x, t)

Kd + P (x, t)
. (7)

Moreover, we make the reasonable assumption that the “front-tail” difference in the number of
bound receptors sensed by the ECs at position x are, in average, proportional to the gradient of
ψ(x, t). In conclusion, we assume

� the EC proliferative activity depends on ψ; the chemotactic signal received by the sprout
tip cells depends on the gradient of ψ.
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We observe that ∇ψ and ∇P have the same direction, since

∇ψ =
Kd

(Kd + P )2
∇P, (8)

and, for an equal |∇P |, the force of the chemotactic signal decreases as the TAF concentration
increases. In fact, when almost all the surface receptors are occupied, their actual distribution is
hardly detected by the cells. Experimental evidence of the reduction of chemotactic sensitivity at
high TAF concentration is reported by Zigmond (1977) and discussed in Tranquillo et al. (1988).
When P is negligible with respect to Kd, ∇ψ can be considered equal to ∇P/Kd.

To describe the sprouting process, we define a per cell generation rate α(ψ, φ) representing
the per cell rate at which vessel ECs and sprout stalk ECs duplicate during the branching pro-
cess under the TAF control. Such cell divisions are thought to be asymmetric producing one
endothelial cell and one sprout tip cell. For the function α(ψ, φ) we take the form:

α(ψ, φ) = Aαψ(1− ψ)νB(φ) , (9)

where Aα denotes the maximal cell proliferation rate and ν ≥ 0. When ν > 0, an inhibition of
the EC activation at high concentration of TAF is present, as suggested by in vitro experimental
observations (Zigmond, 1977). Denoting by utip the modulus of the tip cell velocity, according to
our assumptions we have

utip(ψ, φ) = Λβ(ψ, φ) , (10)

where Λ is the average displacement of a tip cell at each cell duplication, equal to a fraction
of the average longitudinal size of proliferating stalk cells contributing to the sprout elongation.
The per cell mitotic rate of a tip cell, β, is equal to the mitotic rate of proliferating stalk cells
multiplied by their mean number in a sprout. Similarly to equation (9), we assume

β(ψ, φ) = Aβψ(1− ψ)νB(φ) . (11)

Then, we have utip < ΛAβ.

A velocity-jump random walk model for the chemotactic equation of tip cells

Usually, in continuum models of angiogenesis (see Scianna et al. (2013) and references therein), the
directed motility of sprout tip cells is described by a chemotactic term linearly dependent on the
TAF concentration gradient, according to the Patlak-Keller-Segel model (Patlak, 1953; Keller and
Segel, 1971). However, in view of such linearity, the chemotactic velocity is potentially unbounded,
which is physically unacceptable. This limitation of the PKS model has been recognized by
Rivero et al. (1989) who derived, in a different biological context and in 1D geometry, alternative
models with bounded chemotactic velocity (see also Hillen and Painter (2009)). In the context
of angiogenesis, the same kind of approach has been followed by Sun et al. (2005) and Travasso
et al. (2011). We remark that utip depends on ψ and not on ∇ψ. The latter quantity intervenes
in selecting the direction of the chemotactic motion.

Now, we derive the chemotactic equation of tip cells by means of a velocity-jump random
walk model. Let us start by considering a population of non-interacting cells that move following
a “velocity-jump random walk” (Stroock, 1974; Othmer et al., 1988). Unlike the framework
commonly used to describe this kind of stochastic process, in which the cell velocity is assumed
to change at discrete times taking values in a fixed set of vectors, here we assume that only the
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velocity direction e ∈ Sd−1 can vary randomly, whereas the velocity modulus is a deterministic
function s(x, t) of position and time, with x ∈ Ω ⊂ IRd, d = 2, 3. To describe the cell population,
we introduce the cell number density with respect to x and e at time t, which is denoted by
ρ(x, e, t).

Without substantial loss of generality, let us suppose that no cell sources or sinks are present.
Then, we can write the following kinetic transport equation for ρ

∂ρ

∂t
+ e · ∇x(sρ) = −γρ+ γ

∫
Sd−1

T (e, e′)ρ(x, e′, t)de′ , (12)

where the turning rate γ(x, t) is such that γ(x, t)dt + o(dt) provides the probability that a cell
changes its direction between t and t+ dt, and the turning kernel T (e, e′) defines the probability
of a jump transition from the velocity direction e′ to the new velocity direction e. Obviously∫
Sd−1 T (e, e′)de = 1 to ensure particle conservation.

Next, we derive the transport equations for the first two moments of ρ, defined as

m0(x, t) =

∫
Sd−1

ρ(x, e, t)de ,

m1(x, t) =

∫
Sd−1

e ρ(x, e, t)de . (13)

By integrating Eq. (12) over Sd−1 with respect to e, we get

∂m0

∂t
+∇ · (sm1) = −γm0 + γ

∫
Sd−1

∫
Sd−1

T (e, e′)ρ(x, e′, t)de′de , (14)

where ∇ stands for ∇x. By exchanging the integration order, we recognize that the latter term
in Eq. (14) equals γm0, so that we obtain the following equation for m0

∂m0

∂t
+∇ · (sm1) = 0 . (15)

By integrating Eq. (12) multiplied by se with respect to e ∈ Sd−1, we obtain the equation∫
Sd−1

se
∂ρ

∂t
de +

∫
Sd−1

se∇ · (seρ)de = −γ
∫
Sd−1

seρde + γ

∫
Sd−1

se

∫
Sd−1

T (e, e′)ρ(x, e′, t)de′de .

(16)
For the first term of Eq. (16), we use the equality∫

Sd−1

se
∂ρ

∂t
de =

∂

∂t

(∫
Sd−1

seρde

)
− ∂s

∂t

∫
Sd−1

eρde =
∂

∂t
(sm1)− ∂s

∂t
m1 ,

while the second term of Eq. (16) can be expressed in terms of the dyadic product e⊗e as follows∫
Sd−1

se∇ · (seρ)de =

∫
Sd−1

se (e · (s∇ρ+ ρ∇s)) de

= s2

∫
Sd−1

e (e · ∇ρ) de + s

∫
Sd−1

ρe (e · ∇s) de

= s2

∫
Sd−1

∇ · (e⊗ eρ)de + s

∫
Sd−1

ρ∇ · (e⊗ es)de

= s2∇ ·
∫
Sd−1

e⊗ eρ de + s∇s ·
∫
Sd−1

e⊗ eρ de . (17)
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Since Eq. (17) involves the second order moment of ρ, the system for m0 and m1 is not closed.
Therefore, according to the L2-moment closure of transport equations (Hillen, 2004, 2005; Bellomo
et al., 2013), we use the approximation∫

Sd−1

e⊗ eρde ' 1

d
m0I , (18)

where I is the identity tensor in IRd, and we get the equality∫
Sd−1

se∇ · (seρ)de =
s2

d
∇m0 +

s

d
m0∇s .

Moreover, we assume
T (e, e′) = T̃ (e) , (19)

i.e. the probability of turning to the velocity direction e does not depend on the previous velocity
direction of the cell. So, we get to the following equation for the moment m1:

∂

∂t
(sm1)− ∂s

∂t
m1 +

s2

d
∇m0 +

s

d
m0∇s = −γsm1 + γsm0

∫
Sd−1

eT̃ (e)de . (20)

The moment m1 allows us to express the cell flux J as

J(x, t) = s(x, t)m1(x, t) , (21)

and using the definition (21) in Eqs. (15),(20), we obtain

∂m0

∂t
+ ∇ · J = 0 , (22)

∂J

∂t
= −γJ +

∂s

∂t

J

s
− s2

d
∇m0 −

s

d
m0∇s+ γsm0

∫
Sd−1

eT̃ (e)de , (23)

that generalizes to d = 2, 3 the model proposed by Rivero et al. (1989) for d = 1. The last term
in the r.h.s. of (23) represents chemotaxis as it results from cell tumbling, whereas the term
including ∇s gives to the dynamics of the cell flux the contribution of the so called chemokinesis.

If one neglects space and time dependence of s in (23), then the system takes the form

∂m0

∂t
+ ∇ · J = 0 ,

∂J

∂t
= −γJ − s2

d
∇m0 + γsm0

∫
Sd−1

eT̃ (e)de , (24)

which coincides with the one previously derived by Hillen (2004); Perthame (2004) starting di-
rectly from the assumption of a constant velocity modulus.

Let us now specialize the previous argument in order to derive a tip cell chemotactic equation
of the kind described in Section 2. So, let ρ(x, e, t) denote the sprout tip cell density with respect
to x and e. Setting d = 3 and slightly simplifying the notation, we take m0(x, t) = w(x, t) and

s(x, t) = utip (ψ(x, t), φ(x, t)) .
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Moreover, Eqs. (22) and (23) will now include source and sink terms representing the processes
of branching and anastomosis. Assuming that source and sink are independent of e, we get the
system

∂w

∂t
+ ∇ · J = α(ψ, φ)(vh + v + z)− κan (va + vh + w + z + v)w − µww , (25)

∂J

∂t
= −γJ +

1

utip

∂utip
∂t

J −
u2
tip

3
∇w − utip

3
w∇utip + γutipw

∫
S2

eT̃ (e)de , (26)

where the generation term α(ψ, φ) is given by (9).
Following Rivero et al. (1989), we consider the quasi-stationary state approximation of equa-

tion (26), neglecting the terms dependent on the utip derivatives. Setting
∫
S2 eT̃ (e)de = C(∇ψ),

we get

J = −
u2
tip

3γ
∇w + utip C(∇ψ)w . (27)

In our approach, still following Rivero et al. (1989), we take T̃ (e) = p(e;∇ψ) and, in agreement
with the choice (31), we suppose that p is such that∫

S2
e p(e;∇ψ)de =

∇ψ
Kq + |∇ψ|

. (28)

An example of probability density function complying with (28) is

p̂(e;∇ψ) =

(
1− |∇ψ|

Kq + |∇ψ|

)
U(e) +

|∇ψ|
Kq + |∇ψ|

δ(e− ∇ψ
|∇ψ|

) ,

where U(·) is a uniform density in S2 and δ(·) is the Dirac distribution. Then, we have

Jw = −Dw(ψ, φ)∇w + utip(ψ, φ)q(|∇ψ|) ∇ψ
|∇ψ|

w . (29)

The function Dw(ψ, φ) in (29) is given by

Dw(ψ, φ) =
u2
tip(ψ, φ)

3γ
, (30)

In the expressions above, the crowding effect, which everywhere else is introduced by means of
the factor B(φ), is actually included in utip, as shown by Eqs.(10),(11). Finally, as suggested by
Rivero et al. (1989), we take

q(|∇ψ|) =
|∇ψ|

Kq + |∇ψ|
, (31)

where 1/Kq is the chemotactic sensitivity.

The model for the dynamics of vessel cell densities

We can now write the equations for the cell densities w, z, and v, obtaining

10



∂tw = ∇ · (Dw(ψ, φ)∇w)︸ ︷︷ ︸
diffusion

−∇ ·
(
utip(ψ, φ)q(|∇ψ|) ∇ψ

|∇ψ|
w

)
︸ ︷︷ ︸

chemotaxis

+ α(ψ, φ)(vh + v)︸ ︷︷ ︸
generation

−κan (va + vh + w + z + v)w︸ ︷︷ ︸
anastomosis

−µww︸︷︷︸
death

, (32)

∂tz = β(ψ, φ)w︸ ︷︷ ︸
proliferation

−κan (va + vh + w + z + v)z︸ ︷︷ ︸
transition z → v

− µzz︸︷︷︸
death

, (33)

∂tv = κan (va + vh + w + z + v)(z + w)︸ ︷︷ ︸
transition z+w → v

− µvv︸︷︷︸
death

. (34)

Note that since κan(va + vh + w + z + v) is the per cell rate at which tip cells anastomize, such
a rate is assumed to be the per cell rate at which sprout cells becomes cells belonging to tumor
vessels.

Concerning the dynamics of host vessels, we write:

∂tvh = −δvhn vh︸ ︷︷ ︸
tumor aggression

(35)

The balance between the degradation of host vessels and the degradation of host tissue cells it
is likely to control the extent of host vessel co-option. Indeed, if the rate δvh is smaller than the
rate δh the tumor can advance in a space that still contain host vessels. If δvh > 0, the vessel
co-option is anyway transient and the co-opted host vessels are eventually destroyed. If instead
δvh > δh, host vessel co-option should occur to a minimal extent.

Dead cells

For simplicity, all the dead cells, irrespectively of their origin, are assumed to degrade in situ into
liquids following a first order kinetics with the same rate constant λm:

∂tm = µn(σ)n+ µh(σ)h+ µww + µzz + µvv + δhnh+ δvhnvh − λmm︸ ︷︷ ︸
dissolution

. (36)

Chemicals

Oxygen The dynamics of oxygen must express the balance among its diffusion, supply, and
consumption. Since oxygen appears capable of crossing the cell membrane freely, we assume
that oxygen diffuses in the whole space domain with constant diffusivity Dσ. The mean oxygen
concentration in the tissue is represented by the variable σ(x, t). Oxygen supply to tissues is
described by means of two diffuse sources that mimic the oxygen efflux from the host and the
tumor vasculature, respectively. Both the source intensities are taken proportional to the local
vascular extent (vh and v, respectively) and to the difference between the (constant) average
intravascular oxygen concentration and σ(x, t):

γhvh(x, t)(σ∗h − σ(x, t)), γvv(x, t)(σ∗v − σ(x, t)) ,
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where σ∗h and σ∗v denote the mean oxygen concentration into healthy and tumor vessels, re-
spectively, while γh and γv denote the related proportionality coefficients. We disregard the
contribution to oxygen supply of arterioles, since their exchange surface is much less than the one
of the remaining microvasculature.

Although the oxygen concentrations in afferent arterioles of host and neo-formed vasculature
may be the same, the model includes different values of σ∗h and σ∗v to reflect different blood
flow rate in the two vascular network. Given the dysfunctional nature of the neo-formed vessel
network, we take σ∗h > σ∗v .

The oxygen consumption by tumor and host cells, for simplicity, is supposed to depend on
the oxygen concentration according to the same Michaelis-Menten law. The oxygen consumption
of the ECs forming vessels and sprouts, instead, is assumed not to affect the dynamics of σ, since
these cells take oxygen directly from blood. We then may write the equation

∂tσ = Dσ∇2σ︸ ︷︷ ︸
diffusion

+ γhvh(σ∗h − σ) + γvv(σ∗v − σ)︸ ︷︷ ︸
supply from vh, v

− (Hn(σ)n+Hh(σ)h))︸ ︷︷ ︸
consumption by tumor and healthy cells

, (37)

where the per cell oxygen consumption rate is modeled as

Hi(σ) = AHi
σ

KHi + σ
, i = n, h. (38)

Pro-angiogenic factor Pro-angiogenic factors are macromolecules that find a barrier in the cell
membrane and in the ECM. Thus, their diffusion occurs through the interstitial liquid only (Krol
et al., 1999). We express the TAF available volume fraction as φ∗P −φ(x, t), where φ∗P ≤ 1−φECM
is the interstitial liquid volume fraction in the absence of cells and vessels. It is reasonable that
the space available for cells and vessels is reduced by the ECM to a greater extent than the space
available for TAF. So, we take φ∗P > φ∗, which guarantees a positive lower bound to the TAF
available volume fraction even when φ = φ∗.

Important pro-angiogenic factors, such as VEGF, are produced also by non-tumoral cells, so
that they can be present in the body even in the absence of tumors. Nevertheless, in the present
model we assume that only tumor cells produce TAF and that the secretion rate increases as the
oxygen concentration (inside and around the cell) decreases.

The derivation of the equation for the average TAF concentration P (x, t) in the available
space requires some attention since the volume fraction available for TAF can change in space
and time. Let us consider a generic compact subdomain A ⊂ Ω. We assume that the fraction
of elementary surface around x on ∂A available for the flow of TAF molecules is equal to the
available volume fraction at x, for any surface orientation. Moreover, we assume that the average
gradient of the microscopic interstitial TAF concentration on the elementary surface portion that
allows the flow, is well approximated by the gradient of P (x, t). Therefore the outflow from the
boundary of A is expressed as

−DP

∫
∂A
e(x) · ∇P (x, t)(φ∗P − φ(x, t))dS,
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where DP is the TAF diffusivity in the interstitial fluids and e(x) denotes the outward normal.
In addition, the amount of TAF contained in A is given by∫

A
P (x, t)(φ∗P − φ(x, t))dx.

Taking into account that A is a generic set, the following balance equation can be derived by
means of standard arguments:

∂t
(
(φ∗P − φ)P

)
= ∇ · (DP (φ∗P − φ)∇P )︸ ︷︷ ︸

diffusion through interstices

+ πP (σ)n︸ ︷︷ ︸
production

− CP (P )(vh + v + z + w)︸ ︷︷ ︸
consumption by ECs

−λPP (φ∗P − φ)︸ ︷︷ ︸
degradation

, (39)

Since after internalization into EC cytoplasm the angiogenic factor is rapidly degraded, no TAF
outflow from ECs is allowed. The per cell production rate πP (σ) is described by

πP (σ) = Aπ
Kπ

Kπ + σ
, (40)

whereas, taking into account that only the receptor-bound TAF is internalized and degraded by
the endothelial cells (Mac Gabhann and Popel, 2004) we assume CP proportional to ψ, so that
recalling (7), we write

CP (P ) = AC
P

Kd + P
. (41)

An explicit account of the possible washout of TAF through the vasculature is omitted because
of the lack of specific experimental information. We rather incorporate this phenomenon in the
choice of the parameter λP . We may note, however, that in case of VEGF the fast spontaneous
loss of bioactivity (Serini et al., 2003) could overcome the loss through the vascular washout.

The volume fraction φ

In order to close the system, it remains to specify φ(x, t). We assume for simplicity that all cells
have the same volume Vc and that the ratios of the volume fractions of arterioles, host exchange
vessels, tumor exchange vessels, and sprouts to the volume fractions of the cells forming them
have the same average value K. Then, the local fraction of volume φ is given by

φ = Vc(n+ h+m+K(va + vh + v + w + z)) . (42)

In the formula above we are treating arterioles as they were similar to the other vessels, which is
not the case. Thus, the quantity va represents an equivalent concentration providing the actual
experimental value for the corresponding volume fraction.

Remark It is to be noted that for the physical consistency of the model it is necessary that φ(x, t)
does not exceed φ∗. The proof of this property, along with the proof of the non-negativity of all
the quantities representing cellular densities, is given in Appendix A under the hypothesis that
the equation system, with the boundary and initial conditions specified below, has one unique
classical solution in the class C2,1(Ω × (0, T )). The proof of the wellposedness of the model is
instead beyond the scope of this paper.
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Boundary and initial conditions

Equations (2), (32), (37), (39) are completed by the following conditions on ∂Ω for t > 0:

n(x, t) = 0 ,

w(x, t) = 0 ,

σ(x, t) = σff ,

P (x, t) = 0 . (43)

The null boundary conditions for n, w, and P are justified if the domain Ω is taken sufficiently
large to guarantee, along with suitable initial conditions such as those described below, that
the tumor remains substantially “far” from the boundary in the considered time interval [0, T ].
Concerning the oxygen, σff > 0 is a far field concentration that we identify with the stationary
oxygen concentration in the host tissue in the absence of tumor.

The initial conditions are given by continuous, bounded, and non-negative functions n0(x),
h0(x), m0, v0

h(x), w0(x), z0(x), v0(x), and σ0(x), P 0(x). The cell densities must be such that φ,
defined by (42), satisfies the property 0 < φ(x, 0) < φ∗ for any x in Ω. Moreover, on ∂Ω, the
compatibility conditions

n0(x) = 0 ,

w0(x) = 0 ,

σ0(x) = σff ,

P 0(x) = 0 , (44)

are required.
In addition, since the boundary of Ω is supposed to be “far” from the tumor, we choose to

have n0(x), w0(x), z0(x), v0(x) identically equal to zero in a rather large portion of Ω, which is
adjacent and includes ∂Ω.

3 Numerical simulation

The model is studied numerically in spherical symmetry. Moreover, we take a quasi-steady state
assumption for the dynamics of oxygen, since the diffusion coefficient of this chemical is much
larger than the diffusivities of either cells and TAF. On the contrary, typical values of the TAF
diffusion coefficient are not such to guarantee the validity of the quasi-steady state assumption
for the TAF dynamics.

Let the spatial domain be a sphere of radius R. In spherical symmetry, all the cell densities and
the chemical concentration are functions of the radial distance r and t, and the model equations,
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for r ∈ (0, R) and t ∈ (0, T ), become:

∂n

∂t
=

1

r2

∂

∂r

(
r2DnB(φ)

∂n

∂r

)
+B(φ)χ(σ)n− µn(σ)n ,

∂h

∂t
= −δhnh− µh(σ)h ,

∂w

∂t
=

1

r2

∂

∂r

(
r2Dw(ψ, φ)∇w

)
− 1

r2

∂

∂r

(
r2utip(ψ, φ)q

(∣∣∣∂ψ
∂r

∣∣∣)sign
(∂ψ
∂r

)
w

)
+ α(ψ, φ)(vh + v)

− κan (va + vh + w + z + v)w − µww ,
∂z

∂t
= β(ψ, φ)w − κan (va + vh + w + z + v)z − µzz , (45)

∂v

∂t
= κan (va + vh + w + z + v)(z + w)− µvv ,

∂m

∂t
= µn(σ)n+ µh(σ)h+ µww + µzz + µvv + δhnh+ δvhnvh − λmm,

0 = Dσ
1

r2

∂

∂r

(
r2∂σ

∂r

)
+ γhvh(σ∗h − σ) + γvv(σ∗v − σ)−Hn(σ)n−Hh(σ)h ,

∂P

∂t
=

1

r2

∂

∂r

(
DP (φ∗P − φ)

∂P

∂r

)
+ πP (σ)n+ P

∂φ

∂t
− CP (P )(vh + v + z + w)− λPP .

Denoting by n0(r), h0(r), m0(r), v0
h(r), w0(r), z0(r), v0(r) the initial distributions of cells in

[0, R], we assume

n0(r) =


n̄ r ∈ [0, R0]

n̄ cos2(π2
r−R0
R1−R0

) r ∈ (R0, R1]

0 r ∈ (R1, R],

(46)

h0(r) =


0 r ∈ [0, R0]

h̄ sin2(π2
r−R0
R1−R0

) r ∈ (R0, R1]

h̄ r ∈ (R1, R],

(47)

v0
h(r) =


0 r ∈ [0, R0]

v̄h sin2(π2
r−R0
R1−R0

) r ∈ (R0, R1]

v̄h r ∈ (R1, R],

(48)

and
m0(r) = w0(r) = z0(r) = v0(r) ≡ 0, r ∈ [0, R], (49)

with n̄, h̄, and v̄h such that φ(r, 0) < φ∗, and n̄ > n∗, n∗ denoting a minimal threshold concen-
tration of tumor cells allowing to identify the tumor. We thus have a central subdomain [0, R0]
representing an initial avascular tumor nodule, whose radius R0 can be taken sufficiently small
to justify m0 ≡ 0. This tumoral core is surrounded by a small transition zone [R0, R1] in which
n0 decreases to zero, while h0 and v0

h increase from 0 to the values respectively taken in the outer
domain (R1, R].

Concerning the boundary conditions, all the mobile species are subject to zero flux boundary
conditions at r = 0 because of symmetry

∂n

∂r

∣∣
r=0

=
∂w

∂r

∣∣
r=0

=
∂σ

∂r

∣∣
r=0

=
∂P

∂r

∣∣
r=0

= 0,
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whereas at r = R we impose (43).
For the numerical solution of equations (2) and (32) an explicit finite-difference, forward in

time, scheme was implemented. To discretize the chemotactic term in Eq. (32), we adopted the
upwind explicit scheme of the paper by Tsyganov et al. (2004). The solution of the equations for
oxygen and TAF was obtained by using the Gauss-Seidel iterative method.

4 Parameter values

The baseline values of parameters are reported in Table 1. Here, some comments on their choice
follow.
Volume fraction of ECM, cells and vasculature The mean cellular volume Vc is assumed
equivalent to the volume of a sphere with diameter 16µm, irrespective of the cell tissue type
or shape. With this choice, we get Vc = 2.145 · 10−9 cm3 (see Table 1) in agreement with the
experimental data in Freyer and Sutherland (1985). Assuming such a relatively small mean
cellular volume is a suitable choice in our model, which is written in terms of local volume
fractions. The same value of Vc is also compatible with the size range experimentally measured
for the endothelial cells (see for instance the review by Krüger-Genge et al. (2019)). Coming
to the parameter K, we recall that it represents the mean ratio between the volume fraction of
vessels of any kind and the volume fraction of the cells constituting the vessels. To estimate
K, we supposed all the vasculature (including the sprouts developed during angiogenesis) ideally
decomposed in identical cylindrical units of inner radius r0, wall thickness δ, and length L. Thus,
π(r0 + δ)2L is the volume of the vessel unit, whereas π[(r0 + δ)2− r2

0]L is the volume of the vessel
wall, and then of the ECs lining the lumen. Therefore, from the ratio between these volumes, we
get

K =
(r0 + δ)2

δ(2r0 + δ)
,

which, assuming r0 = 10 µm and δ = 2 µm, provides the value K = 3.27 reported in Table 1.
The volume fractions of ECM, cells and vasculature vary with the tissue type, and the mea-

sured values often change also with the measurement technique. In humans, the ECM volume
fraction have been found to range from 3% in healthy liver to 15-20% in brain (Ariza de Schel-
lenberger et al., 2018). Values of the cell volume fraction of 76% in rat liver (Donahue et al.,
1995) and 56% in rat brain (Buckley et al., 1999) were measured by MRI, whereas a value of 69%
was found in rat tumors (Donahue et al., 1995). In human brain tumors, PET measurements of
extracellular space reported by Bruehlmeier et al. (2003) suggest a cell volume fraction in the
range 39%–56%. According to these data, we assume φECM = 0.1, φ∗ = 0.85, and for the initial
non-zero values of φh and φn the values 0.65 and 0.6, respectively.

Concerning the blood volume fraction, values ranging from 2.7% to 7.0% are reported for
human tissues (see e.g. Ito et al. (2001), Lai et al. (2009)), while in vivo MRI measurements
in rat healthy and tumor brain tissues yielded fraction values in the range of 2% to 4% (Perles-
Barbacaru et al., 2012). Some of these studies provide measures of the arterial percentage of
the total blood volume fraction, noting in addition that the arterial fraction remains relatively
constant in time (Lai et al., 2009). An arterial percentage of about 10% in skeletal muscle
blood volume is measured by Lai et al. (2009) using near-infrared spectroscopy, whereas a 20%
arterial percentage is found in other organs (for instance human liver (Hashimoto et al., 2006)).
Overall, these experimental findings suggest values of 4 − 5% for the total (capillaries, venules,
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Table 1: Baseline parameter values.

General parameters

φ∗ 0.85 See text

p 1.1 See text

Vc 2.145 ·10−9 cm3 Freyer and Sutherland (1985)

Λ 8.0 · 10−4 cm Krüger-Genge et al. (2019)

r0 1.0 ·10−3 cm Welter et al. (2008)

δ 2 ·10−4 cm Krüger-Genge et al. (2019)

K 3.27 See text

Kφva 4.0 ·10−3 See text

λm 2.08 · 10−2 h−1 Darzynkiewicz et al. (1997)

Oxygen

Dσ 7.2 · 10−2 cm2· h−1 Stamper et al. (2010)

σ∗
h 7.62 · 10−5 M (=60 mmHg) Vaupel et al. (1991)

σ∗
v 4.45 · 10−5 M (=35 mmHg) Vaupel et al. (1991)

γh, γv 1.86 · 10−3 h−1 cm3 Casciari et al. (1992)

AHn, AHh 2.99 ·10−13 mol · h−1 Freyer and Sutherland (1985)

KHn,KHh 4.64 · 10−6 M Casciari et al. (1992)

Tumor and host tissue

Dn 3.6 · 10−7 cm2· h−1 Stamper et al. (2010)

Aχ 2.88 · 10−2 h−1 Bertuzzi et al. (2003)

Kχ 5.08 · 10−6 M (=4 mmHg) Bertuzzi et al. (2003)

σ̄n 2.54 · 10−6 M (=2 mmHg) Freyer and Sutherland (1986)

µ̄n 5 (ln 2/24)=0.144 h−1 Franko and Sutherland (1978)

µ0 ln 2/(10·24)=2.88 · 10−3 h−1 See text

δh, δvh 4 ·10−9 h−1 · cm3 Gatenby and Gawlinski (1996)

σ̄h 3.81 ·10−6 M (=3 mmHg) See text

µ̄h 5 (ln 2/24)=0.144 h−1 See text

Angiogenesis and TAF

φ∗P 0.90 See text

Kd 5.75 · 10−10 M Swanson et al. (2011)

Aα 2.88 · 10−2 h−1 Bertuzzi et al. (2003)

Aβ 1.15 · 10−1 h−1 Chaplain and Stuart (1993); Stamper et al. (2010)

ν 1 See text

DP 1.8 · 10−3 cm2· h−1 Anderson et al. (2000)

Aπ 5.96 · 10−19 mol · h−1 (per cell) Swanson et al. (2011)

Kπ 4.45 · 10−5 M (=35 mmHg) Assumed

AC 3.86 · 10−19 mol · h−1 (per cell) Mac Gabhann and Popel (2004)

λP 0.65 h−1 Serini et al. (2003)

Vasculature

γ 0.1 h−1 See text

Kq 5 · 104 cm−1 Rivero et al. (1989)

κan 4 ·10−9 cm3 · cell−1 · h−1 Assumed

µv 1.0 · 10−3 h−1 Chaplain and Stuart (1993)

µw, µz 5 · 10−4 h−1 See text
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and arterioles) blood volume fraction in the host tissue. Hence, we set an initial non-zero value
of φvh equal to 0.04. Moreover, we will assume a constant arteriolar fraction equal to 10% of
the total. Assuming the lower measured value is justified by the reduction of the arterial part
of the vasculature which likely occurs eventually during the tumor evolution, but which is not
represented in our dynamical model.
Tip cell motion Concerning the choice of γ, we start from the remark (Rivero et al., 1989) that
the time 1/γ (persistence time) has to be substantially smaller than the ”observation time” of
the tumor progression, since this guarantees that the approximations leading to (27) are feasible.
If the observation time is chosen to be 10 days (a time over which changes in the system can be
observed), an acceptable choice is γ = 0.1h−1. The 10 h persistence time appears a reasonable
choice if compared with the 24 h time scale for cells replication. A larger time (e.g. 50 h) would
basically suppress the chemotactic random component, a shorter time (e.g. 1 h) would mitigate
the constraint around the main orientation in an excessive way.
Cell death rates According to Eqs. (4), (6), the oxygen-dependent death rates µn(σ), µh(σ)
are assumed to be decreasing functions of σ. We further assume that cells die (with maximal
rates µ̄n, µ̄h) when the oxygen concentration falls below critical values (here denoted by σ̄n, σ̄h,
respectively) that we deduced from experimental literature data (Franko and Sutherland (1978);
Freyer and Sutherland (1986), see Table 1). The remaining parameters of µn(σ), µh(σ) were
inferred either from the mentioned experimental data or from estimates obtained in our previous
works on tumor growth (Bertuzzi et al., 2010a). So, we fixed µ̄h = µ̄n and µ0 equal to a fraction
of µ̄n, also choosing σ̄h as indicated in Sect. 2. Finally, in the absence of direct information on
the death rates of sprout cells, we fixed µw = µz = 0.5µv (µv as in Chaplain and Stuart (1993)).

5 Computational results

The numerical solution of our model has been computed according to the scheme depicted in
Section 3 within a spherical spatial domain of radius R = 1 cm and over a time interval T =
360 days. Eqs. (45) have been solved using the boundary and initial conditions (43), (44),
and assuming the baseline parameter values of Table 1. For the remaining parameters of the
initial distributions we set: initial tumor radius R0 = 0.02 cm, external radius of the tumor-
host interstitial gap R1 = 0.03 cm, local volume fractions Vcn̄ = Vch̄ = 0.6, KVcv̄h = 0.04, and
Kφva = 0.1×KVcv̄h = 4·10−3. The initial oxygen distribution is computed as the quasi-stationary
solution of the oxygen diffusion equation in system (45), imposing zero flux condition ∂σ/∂r = 0
at r = 0 and prescribing a constant ”far field” value σff > 0 at r = R. The concentration σff > 0
satisfies the equation

γhv̄h(σ∗h − σff )−Hh(σff )h̄ = 0 ,

with Hh(σ) given by Eq. (38). In the present simulation, σff = 7.03 · 10−5 M (51.37 mmHg).
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Figure 1: Evolution of the chemical concentrations in a spherical domain of radius R=1 cm up to
360 days. Upper panels: oxygen concentration (mmHg), lower panels: TAF concentration (nM).

The time course of the chemical quantities σ and P are plotted in Figure 1 from the initial
time t = 0 up to 360 days, with time step 120 days.

With the same criterion, Figs. 2 and 3 illustrate the evolution of the spatial distributions of
cell populations towards the steady state and the host invasion by the tumor. More precisely,
denoting by p the generic cell population density, in the following figures we plot the corresponding
local volume fraction φp, defined as

φp = Vc p , p = n, h,m, va, vh, w, z, v . (50)

Using this notation for all cell and vessel quantities, in Fig. 2 we plot the behaviors of the local
volume fractions of host cells φh, tumor cells φn, dead cells φm, and of the total volume fraction
φ (see (42)).

Fig. 3 illustrates the formation of the tumor neovasculature, which proceeds simultaneously
to the tumor growth, reporting the local volume fractions of vessels in the tumor and host tissue.
In particular, the left panels of Fig. 3 report the local volume fractions of host and tumor vessels,
Kφvh and Kφv respectively, while the right panels report the patterns of Kφw and Kφz.

The simulation shows that the tumor progression takes the form of a traveling wave. The
wave front profile propagates with velocity approximately equal to 20µm per day, as it could be
expected in view of the chosen values of the proliferation rate and cellular diameter.

As studied analytically in Appendix B, numerical simulations eventually develop into a steady
state in which healthy cells and vessels (φh, φvh) have been eliminated and supplanted by a
neovascularized tumor. The numerical solution after 360 days (see bottom panels of Figs. 2, 3)
indicates that all quantities tend to become constant in time and space attaining the following
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Figure 2: Simulated evolution of the local volume fractions of cells: φn (tumor, dashed line); φh
(host, solid line); φm (dead, dot-dashed line); φ (total volume fraction, dotted line).
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Figure 3: Simulated evolution of the local volume fractions of vessels. Left panels: Kφvh (host,
solid line); Kφv (tumor, dashed line). Right panels: Kφw (sprout tip, solid line); Kφz (sprout
stalk, solid line).
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values: σ = 21.1 mmHg, P = 0.27 nM, ψ = 0.32, φn = 0.64, Kφv = 1.9 · 10−2, Kφw = 9.1 · 10−4,
Kφz = 3.6 · 10−4, φm = 8.8 · 10−2, φ = 0.75.

From the previous set of values, and using (50), we evaluated the corresponding model vari-
ables and we verified that the obtained set is a solution to the system of equations given in
Appendix B. One more remark which is in order is the fact that in Fig. 2 the wave front exhibits
coexistence of healthy and tumor cells. The model by Gatenby and Gawlinski (1996) was con-
ceived to account for a necrotic gap appearing in some kind of tumor. The possible onset of such
a gap is related to the strength of the tumor aggression, i.e. to the value of the parameter δh in
our model. As proven in Fasano et al. (2009), the gap is replaced by an overlapping zone if δh is
not large enough. We could have made a gap appear by choosing a larger δh.

There are papers reporting experimental and clinical data on the vasculature density in tu-
mors. Indeed, some studies have demonstrated the validity of using the tumor microvasculature
density (MVD) as a prognostic indicator for a wide range of cancers. In addition, quantification
of MVD can contribute in assessing the efficacy of antiangiogenic therapies. The quantity MVD
is generally expressed as the number of vessels in a 1 mm2 section, so that denoting by Kφvasc
the vessel volume fraction and by rvasc the mean vessel radius (in mm), we can write

MVD =
Kφvasc
πr2

vasc

. (51)

As expected, the MVD values measured in tumors spread in a rather large interval ranging from
about 10 mm−2 up to 100 mm−2 and more (Kather et al., 2015; Forster et al., 2017).

It is interesting to compute MVD at the final time of our simulation so as to compare its
value with experimental data in tumors. According to the simulation, after the tumor invasion
the effective vasculature consists of tumor vessels and host arterioles, i.e. φvasc = φv + φz + φva ,
and at 360 days our results give Kφvasc = 2.3 · 10−2. Hence, recalling that in our assumption
rvasc = r0+δ = 1.2·10−2 mm, we get tumor MVD=50.1 mm−2. Here we are identifying volumetric
and surface densities, referring to the ideal case in which vessels are identical and parallel to each
other. This is clearly an approximation which however does not alter the order of magnitude.

In the clinical study by Sundfør et al. (1998), both the maximum and the mean vascular
density are measured in patients with malignant carcinomas. The mean MVD values are found
to range between 10 and 35 mm−2 (average 20), whereas the maximum MVD fall in the range
20-70 mm−2. Thus, our simulation result agrees with the higher experimental values. The
work by Kather et al. (2015) proposes an automatic approach for vessel counting to make the
quantification more objective, accurate and efficient. Mean MVDs measured in prostate tumors
range from 48 to 145. So, our result is now close to the lower measured values of MVD. In view
of the wide variability of the experimental MVD in tumors, in the paper by Kather et al. (2015),
as well as in the review by Forster et al. (2017), the role of MVD as an independent prognostic
factor is questioned and the importance of the simultaneous MVD evaluation in normal tissue
areas is pointed out.

With the baseline parameters assumed in the simulation, we get a normal tissue MVD=97.2
mm−2 (initial K(φvh + φva)=0.044), which is approximately double the tumor MVD. This result
agrees rather well with the findings reported by Kather et al. (2015) for prostate cancer. We note,
however, that other authors have observed tumors which are more vascularized than the healthy
tissue. Nevertheless, our result is consistent with the hypothesis of acidic tumor aggression to
healthy cells, deriving from a metabolism with less consumption of oxygen and thus requiring a
lesser vascularization.
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The review by Forster et al. (2017) collects data of studies on head and neck cancers (typically
hypoxic) demonstrating that MVD is significantly higher in carcinoma than in the corresponding
normal tissue. High concentrations of vascularization are observed in these tumors, which are
more commonly associated to high vascular heterogeneity and acute hypoxia. In fact, blood
oxygenation levels lower than normal are observed in irregular vascular networks such as the ones
of tumors. The data presented by Forster et al. (2017) have mean MVD in healthy tissues in the
range 30–88 mm−2, and mean intratumoral MVD correspondingly varying between 58 and 165
mm−2.

To simulate the MVD increase observed in some tumors, we computed the model evolution
modifying the proportionality coefficients of oxygen supply in Eq. (37), setting γv = 0.1γh, keeping
γh and any other parameter to the baseline value of Table 1. The results for t = 360 days are
shown in Fig. 4 where we also report the baseline plots for comparison. The tumor volume
fractions Kφv, Kφw, Kφz are now increased of about three times. In particular, for r = 0.3 cm,
it is Kφv = 6.1 · 10−2, Kφw = 1.3 · 10−3, Kφz = 2.1 · 10−4 and, according to (51), we obtain
tumor MVD=143.6 mm−2 (normal MVD=97.2 mm−2). The upper panels of Fig. 4 depicts the
oxygen and TAF distributions for the same two simulations. It can be noticed the decrement of
the mean oxygen level, which is more than halved in the tumor with σ = 7.64 mmHg (baseline
21.1 mmHg) and the increment of the TAF gradient near the tumor edge. The obtained curves
along with the profiles of Kφw and Kφz reveal increased tumor vascularity and angiogenesis
activity occurring at the margins of the invasive region, as it has experimentally been observed
(Forster et al., 2017). The fraction Kφvh of normal vessels is displayed for this latter simulation
in the bottom left panel of Fig. 4, while the tumor and cell volume fractions are not displayed
as they change only negligibly. It can also be noted a slight reduction of the stationary TAF
concentration in the hypoxic case, which can be explained by the occurrence of a limited increase
in TAF production as compared to the increase in TAF consumption owing to augmented tumor
vascularization.
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6 Conclusions

Tumors that grow over a size such that the flow of oxygen or nutrients become insufficient to keep
cells alive need to develop their own vasculature. They do so by emitting so-called angiogenic
factors, which induce sprouting of new vessels from the existing ones and lead them by chemotaxis
to the tumor. We have formulated and implemented a model for tumor growth encompassing the
phenomenon of angiogenesis. Among the distinctive features of the model we list:

� tumor aggression to healthy cells (in the spirit of Gatenby and Gawlinski (1996));

� generation and dynamics of the cells giving rise to the new vessels organized in three families
(tip cells, sprout cells, tumor vasculature cells);

� detailed derivation of a general family of models of the tumoral angiogenesis-related chemo-
taxis;

� influence of oxygen concentration on the birth/death rate of tumor cells and of cells involved
in the angiogenesis process;

� dynamics of the tumor angiogenic factor;

� crowding effect inhibiting proliferation and cells mobility.

Particular care has been devoted to modeling the motion of tip cells, tracing the way to sprout
cells for the construction of the new vasculature. This, indeed, is a fundamental step to under-
stand the growth dynamics of a vascularized tumor. The underlying idea of the proposed family
of models of the chemotaxis of the neoplastic vasculature is that tip cell speed is determined
by the proliferation rate, while the gradient of the angiogenic factor contributes to select their
orientation. The latter is also influenced by a random process which surfaces the chemotactic
model as a diffusion component. We think that an appropriate modeling of the chemotaxis driven
by the proangiogenic factors is an innovation aimed at arriving to a better understanding of the
dynamics of growth of vascularized tumors. Note that the model was derived on a number of
biologically driven assumptions reported in the literature (De Smet et al., 2009; Carlier et al.,
2012; Phng and Gerhardt, 2009) and not axiomatically proposed.
Numerical simulations carried out in spherical symmetry, starting from a tumor core surrounded
by healthy tissue, show that the tumor invasion develops as a traveling wave, progressively replac-
ing the healthy tissue with a vascularized tumor. The theoretical a-priori analysis in Appendix
A leads to the conclusion that all quantities intervening in the model stay within their expected
physical range. The study of nontrivial steady state solution is performed in Appendix B, were
we find that in the asymptotic state void of healthy cells all other species must be present. In
the final state, deprived of healthy cells, the tumor newly formed vasculature is approximately
half of the one formerly present in the healthy tissue, also supported by the survived arteriole,
overall providing enough oxygen for the tumor metabolism. Such results are in good agreement
with the experimental data, thus indicating that the model is sufficiently flexible to represent also
particularly hypoxic tumors characterized by a higher degree of vascularization.

An evident critical aspect of the present model can be recognized in its many biological
parameters. Though we strove to retrieve their values from the literature, we eventually had
to guess a small number of them based on similarity criteria or by trial and error. However,
such parameters do not look particularly critical, in the sense that varying them in a reasonable
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range does not alter the model outcome by orders of magnitude. This is a clear limitation of the
model, but in our opinion it is acceptable for the following reasons. Mathematical models for
cancer growth can be roughly divided in two classes: the ones with few, reasonably well known
parameters, and the ones, including our model, facing the tough task of dealing with many
equations and many parameters. It is well known that cancer is such a complicated disease that
normally, when coming to mathematical modeling, authors choose to select just some particular
aspects. Simpler models may have the advantage of providing some general answer (like for
instance the ones based on ordinary differential equations describing just the growth of the cell
population), but as soon as one enters an intrinsically complex process like angiogenesis, there
is no way to bypass the difficulty of describing the interplay of several concurrent phenomena.
In this case, it is necessary to adopt some compromise and if eventually a good fit is found
with experimental results, it means that the model has at least provided a better insight of
the problem studied. Of course, this paper is a theoretical biology work. The agreement with
experimentally known data may be considered mainly qualitative. We hope that our work could
stimulate specific experimental work to assess the relevance of our hypotheses and the realism of
our findings. Moreover, the proposed model will be the basis to go a step forward, introducing
the action of anti–tumor chemotherapy and of anti–angiogenic drugs. This follow-up work will
be the occasion to provide further support by means of a validation based on experimental data.

Moreover, among other future lines of research, it would be of extreme interest (although
computationally very challenging) to investigate the impact of the unavoidable extrinsic spatio–
temporal stochasticity (ES) (Garćıa-Ojalvo and Sancho, 2012) on the dynamics of the proposed
system. Indeed: i) it is well known in statistical physics that ES can deeply impact on the dy-
namics of general traveling waves (Panja, 2004); ii) in non–spatial context some models suggested
that ES are of particular interest to better investigate tumor–induced angiogenesis (d’Onofrio and
Gandolfi, 2010b).
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Appendix A. Proving that all the model variables are in the phys-
ical range

Here, we prove some a-priori estimates.
Preliminarily, we point out that in the model formulation, all the coefficients depending on

the unknown quantities should actually be defined also out of their physical range, since it is
not guaranteed a-priori that all the unknowns stay in their expected range. We do this tacitly,
assuming that the coefficients are extended as constants and in such a way to be continuous. For
instance, the function B defined in (1) is extended for φ < 0 and φ > φ∗ by prolonging B keeping
its extreme values constant, so to guarantee its continuity, i.e. B = 1 for φ < 0 and B = 0 for
φ > φ∗.

Proposition A.1 Let the system (2), (5), (32)–(36), (37), (39) with boundary conditions (43)
have one unique classical solution in the class C2,1(Ω×(0, T )). Then all the quantities representing
cellular densities are non-negative.

Proof We can regard equation (2) as a linear equation of the form

∂tn = An+ (Bχ− µn)n , (A.1)
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where A is a strictly elliptic operator in the divergence form, as long as B > 0 (i.e. φ < φ∗),
degenerating when B = 0. Though µn is strictly positive, the coefficient of n in the last term takes
also positive values (if the tumor grows), in principle creating instabilities. However, we may apply
the maximum principle in the general form provided by Theorem 2.1, p. 13 of Ladyzenskaja et al.
(1968), saying that, even for non-uniformly parabolic equations like (A.1), the estimate n ≥ 0
holds true, since the initial and boundary data taken for n are non-negative.

Passing to equation (5), setting M(x, t) = δhn+ µh(σ) we may write

h(x, t) = h0(x) exp

(
−
∫ t

0
M(x, τ)dτ

)
, (A.2)

and therefore h(x, t) = 0 only at those points where h0(x) = 0, while 0 < h(x, t) ≤ h0(x)
otherwise, for all t > 0. In addition, h tends to zero at infinity at all point where n remains
strictly positive.

Next, the property
0 ≤ vh(x, t) ≤ v0

h(x) , (A.3)

follows immediately from equation (35), remembering that n ≥ 0.
Now let us deal with system (32) – (34) with the aim of proving that v, w, and z do not take

negative values. We modify equation (33) by replacing w by w+ = max(0, w), thus defining a
new unknown z̃ satisfying

∂tz̃ = βw+ − kan(va + vh + v + w+ + z̃)z̃ − µz z̃ . (A.4)

Likewise, we modify (34) replacing w by w+ and z by z̃, thus defining ṽ satisfying

∂tṽ = kan(va + vh + w+ + z̃)(w+ + z̃) + kan(w+ + z̃)ṽ − µvṽ . (A.5)

Returning to (32), we complete the reformulation of the model replacing v, z by ṽ, z̃, respec-
tively, and calling w̃ the new unknown, which is actually the one to be used in (A.4), (A.5). The
same changes of variables are to be made when calculating φ and in all the remaining equations
of the model. At this point we assume that the new model with the same initial and boundary
conditions has one unique classical solution, as we made for the original model. Now, looking at
(A.4) as a linear differential equation in z̃ (i.e. considering the term z̃ in the brackets as a known
function) we deduce that z̃ ≥ 0, and similarly, from (A.5), that ṽ ≥ 0. Finally, the inequality
w̃ ≥ 0 follows using the same arguments applied to equation (A.1) to prove that n ≥ 0. Therefore
w̃+ = w̃ and the three equations for the unknowns w̃, z̃, ṽ become identical to their original
analog. Then the desired result for the triple (w, z, v) is achieved. More precisely, we can say
that v and z remain positive in time at all points where they have attained a positive value.

It remains to analyze m. It is now ascertained that all the terms at the right hand side of
(36), except the last one, are not negative. This is enough to say that m too has the property to
stay positive once it has become positive. �

Proposition A.2 Under the same assumption of Prop. A.1, we have 0 < σ < σ∗h.

Proof The proof is obtained by suitably applying the maximum principle to the parabolic equa-
tion (37). �

Finally, we want to show
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Proposition A.3 Under the same assumptions as above, φ never attains the saturation value
φ∗.

Proof Let us recall the notation (50) for the local volume fractions of cells and vessels and the
consequent expression of the total volume fraction φ

φ = φn + φh + φm +K(φva + φvh + φw + φz + φv) .

Multiplying by Vc the model equations for n, h,m,w, z, v, vh, it is easy to rewrite the model in
terms of fractions φp. Summing up the equations so obtained and recalling that φa is assumed
constant, we formally get the following expression of ∂tφ:

∂tφ = ∇ · (DnB(φ)∇φn) +B(φ)χ(σ)φn +Kα(ψ, φ)(φvh + φv)

+ K∇ · (Dw(ψ, φ)∇φw)−K∇ ·
(
utip(ψ, φ)q(|∇ψ|) ∇ψ

|∇ψ|
φw

)
+Kβ(ψ, φ)φw

+ (1−K)
(
µwφw + µzφz + µvφv +

δvh
Vc
φnφvh

)
− λmφm . (A.6)

We have seen that, if the system (2), (5), (32)–(36), (37), (39) with boundary conditions (43)
has a unique solution with C2,1 components then all cells concentrations are non-negative. Along
such a solution, it is obviously φ(x, t) ≥ 0 and we prove by contradiction that φ(x, t) < φ∗ holds.

To this end, let us suppose that there exists a time t̄ > 0 such that φ attains the value φ∗

for the first time in t̄, and let ω∗ ⊂ Ω be the set of points x̄ such that φ(x̄, t̄) = φ∗. It is easily
seen that φ is constant on the boundary of Ω, where there is no evolution of cells concentration,
thus ω∗ does not include points of ∂Ω. Since φ(x, 0) < φ∗ for any x, the value φ∗ is necessarily
reached from below.

Therefore the points x̄ ∈ ω∗ are maximum points for φ(·, t̄), so that ∇φ = 0 in (x̄, t̄). In
addition, it is B(φ(x̄, t̄)) = 0, which implies that the functions α, β, utip, and Dw are also null in
(x̄, t̄). So, taking into account that the solution is assumed to have bounded spatial derivatives
up to the second order, equation (A.6) in (x̄, t̄) reduces to

∂tφ(x̄, t̄) = (1−K)
(
µwφw(x̄, t̄) + µzφz(x̄, t̄) + µvφv(x̄, t̄) +

δvh
Vc
φn(x̄, t̄)φvh(x̄, t̄)

)
− λmφm(x̄, t̄) .

(A.7)
The first term of the r.h.s. of equation (A.7) is non positive since K > 1. On the other hand, we
can prove that m(x, t) is strictly positive for any (x, t), t > 0 and x ∈ Ω. Indeed, from (36) and
(4) we deduce

∂tm ≥ µ0n− λmm. (A.8)

Furthermore, as proved Prop. A.1, it is n(x, t) > 0 for 0 < t < t̄ and x ∈ Ω. Thus, from (A.8)
and in view of the comparison theorem, we have m(x̄, t̄) > 0. As a consequence, ∂tφ(x̄, t̄) is
negative, which leads to a contradiction. Therefore, for any solution such that φ(x, 0) < φ∗, we
have φ(x, t) < φ∗ for any t ∈ (0, T ] and x ∈ Ω.

We remark that the inequality just obtained implies an obvious upper bound for all cells
concentrations. �
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Appendix B. Steady state solutions with tumor cells only

Here we investigate the asymptotic state in which no healthy cells are left, namely h = 0, vh = 0,
which are consequences of (5) and (35), respectively.

Equation (2) provides
B(φ)χ(σ)− µn(σ) = 0 , (B.1)

expressing φ as a function of σ, provided that the parameters are correctly prescribed. We recall
that if σ is in a suitable range then the loss term µn(σ) equals µ0.

From equation (B.1), being B(φ) a monotonically decreasing function of φ, we derive a unique
solution for φ. We deduce that asymptotically φ < φ∗.

From equation (37), we get the following asymptotic value of the ratio n/v as a function of σ:

n = γvv(σ∗v − σ)/Hn(σ) , (B.2)

which requires σ < σ∗v .
Next we consider the asymptotic form of Eqs. (32)-(34). Remembering that β = cα, we have

α v = (X + µw)w , or
v

w
=
X + µw

α
, (B.3)

c αw = (X + µz)z , or
z

w
=

c α

X + µz
, (B.4)

µvv = X(w + z) , (B.5)

where we have set X = κan(va + η) and

η = v + z + w . (B.6)

Dividing (B.5) by w and using (B.3),(B.4) we get the following quadratic equation:(
1− µv

α

)
X2 +

(
µz + c α− µvµw + µvµz

α

)
X − µvµwµz

α
= 0 , (B.7)

from which we can find X, and consequently η, in terms of α. For the moment, we consider α
as a parameter. We know that it is a function of ψ and of σ (through Eq. (9)). The analysis of
(B.7) is not trivial. For instance, if we take µw = µz = µ and we set α = µv/θ, (B.7) reduces to

(1− θ)X2 +
[
µ(1− 2θ) +

c

θ

]
X − θµ2 = 0 ,

whose discriminant can be written in the form (µ + c/θ)2 − 4µ(2µθ + c), which requires θ small
enough to be positive. This can be checked only a posteriori, once we determine α. Now, we
solve the linear system (B.3), (B.4), (B.6) finding

v =
1

∆
η(X + µw)(X + µz) , (B.8)

w =
1

∆
αη(X + µz) , (B.9)

z =
1

∆
c α2η , (B.10)
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where ∆ = α[c α+ (X + µz)] + (X + µw)(X + µz). Thus, we have expressed implicitly v, w, z in
terms of α. The dependence of n on α and σ is emphasized by (B.2).

Now we shift our attention to ψ, i.e. to P , considering the steady state of equation (39)

πP (σ)n = CP (P ) η + λPP (φ∗P − φ) , (B.11)

which provides P , and hence ψ, as a function of σ and α, keeping into account what we have
found so far. Note that the r.h.s. of (B.11) grows monotonically from 0 to ∞ as P runs from 0
to ∞ guaranteeing the existence of a solution. Now we have reached the conclusion α = α(σ),
defined implicitly through (9).

Concerning dead cells, from (36) we have

λmm = µn(σ)n+ µvv + µww + µzz . (B.12)

Thus, m is a function of σ too.
Finally, we pass to (42), which we write in the form

φ = Vc(n+m+K(va + η)) , (B.13)

and which has the role of determining σ, since the two sides of the equation have been found
independently as functions of σ.

Of course, all the steps above are feasible if the parameters are given in a suitable way.
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