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Ecology and evolution are inherently linked, and studying a mathematical model that considers both
holds promise of insightful discoveries related to the dynamics of cooperation. In the present article,
we use the prisoner’s dilemma (PD) game as a basis for long-term apprehension of the essential social
dilemma related to cooperation among unrelated individuals. We upgrade the contemporary PD game
with an inclusion of evolution-induced act of punishment as a third competing strategy in addition to
the traditional cooperators and defectors. In a population structure, the abundance of ecologically-
viable free space often regulates the reproductive opportunities of the constituents. Hence, additionally,
we consider the availability of free space as an ecological footprint, thus arriving at a simple eco-
evolutionary model, which displays fascinating complex dynamics. As possible outcomes, we report
the individual dominance of cooperators and defectors as well as a plethora of mixed states, where dif-
ferent strategies coexist followed by maintaining the diversity in a socio-ecological framework. These
states can either be steady or oscillating, whereby oscillations are sustained by cyclic dominance among
different combinations of cooperators, defectors, and punishers. We also observe a novel route to cyclic
dominance where cooperators, punishers, and defectors enter a coexistence via an inverse Hopf bifurca-
tion that is followed by an inverse period doubling route.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction bial populations to social systems (Axelrod, 1984; Perc et al., 2017;
Competition, within and between species for their existence
and survivability (Murray, 2007; Banerjee et al., 2019a; Kundu
et al., 2017), is one of the fundamental attributes under the realm
of Darwinian theory of evolution (Darwin, 1909). The possible per-
sistence and rapid emergence of non-cooperative strategy (Smith
and Szathmary, 1997) challenge the cooperative contribution in
the presence of defectors and it leads to the ‘‘tragedy of the com-
mons” (Hardin, 1968) as only the fittest are most likely to over-
come the fierce struggles of life. This mechanism of survival of
the fittest generates an act of selfishness among the individuals
(Sigmund, 2010), which hinders the evolution and maintenance
of cooperation. Surprisingly, contradictory to the famous Dar-
winian evolutionary theory, cooperation among self-interested
individuals is found in diverse circumstances ranging from micro-
Fotouhi et al., 2019; Tanimoto, 2007; Axelrod and Hamilton, 1981;
Tanimoto, 2007; Fotouhi et al., 2018). Cooperation is often
observed in the community of birds in the form of taking care of
other’s offsprings (Skutch, 1961). Large-scale cooperative behavior
is very common even in simple organisms like bee and ant (Wilson,
1971; Wang et al., 2008), which can form captivating things, such
as shaft systems to ventilate their nests. A series of publications
(Nowak, 2006a; Perc and Szolnoki, 2010; Javarone et al., 2015;
Szabó and Fath, 2007; Wakano et al., 2009; Nag Chowdhury
et al., 2020; Perc et al., 2013; Pennisi, 2005; Wang et al., 2015;
Santos and Pacheco, 2005; Gómez-Gardenes et al., 2007; Fu et al.,
2008; Wakano and Hauert, 2011; Wu et al., 2011; Zhang et al.,
2013) have been produced by the scientific communities across
various disciplines for understanding the mechanisms behind the
initiation, emergence and promotion of cooperation.

Evolutionary game theory (Weibull, 1995; Nowak, 2006b;
Smith and Smith, 1982; Hofbauer and Sigmund, 1998), one of the
powerful competent theoretical frameworks for analyzing the
long-standing puzzle on the evolution of cooperation in public
goods games, applies the mathematical theory of games in the
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contexts of biological and social systems. Two-player games have
become the general relevant metaphor, which help to shed light
on the paradigm for studying the emergence of widespread coordi-
nation under the paradox between collective and individual
rationality. In these simultaneous pair-wise interaction games,
the outcome of an individual depends solely on the chosen strate-
gies of the opponent and the player itself. One of the general exam-
ples of such 2� 2 games is prisoner’s dilemma (PD) game (Axelrod
and Hamilton, 1981). The pairwise mutual interaction between the
players generates a strategy space containing four possible payoff
values. Two players may simultaneously decide either to cooperate
or to defect without any prior knowledge of other player’s choices.
A defector exploiting a cooperator gets a temptation amount T and
the exploited cooperator receives the sucker’s payoff S. They will
both receive the reward R and punishment P for mutual coopera-
tion and mutual defection, respectively. Generally, the payoffs in
the PD game satisfy the inequalities T > R > P > S and 2R > T þ S
(Szabó and Fath, 2007). Clearly, these inequalities suggest that
players need to defect, irrespective of opponent’s strategy, for
guaranteed highest income in terms of their own payoff. Naturally,
if both defect, they will get P, that is comparatively lower than R,
which they would have obtained when they both cooperate. This
scenario leads to the emergent dilemma, and as a result of that,
widespread defection is the natural unfortunate outcome failing
to sustain cooperation in the classical well-mixed PD game. The
PD game is capable of capturing the notions of several other social
dilemma games (Liebrand, 1983; Poundstone, 1992). Recent pro-
gress in evolutionary game theory identified various mechanisms
that support the evolution of cooperation (Nowak, 2006a).

Punishment (Policing) (Brandt et al., 2006; Cong et al., 2017;
Wang et al., 2013; Banerjee et al., 2019b; Yang et al., 2015;
Helbing et al., 2010a; Perc, 2012; Dreber et al., 2008; Yang and
Wang, 2015) is one of the effective mechanisms, which helps to
achieve global and individual optima (evolutionary stable equilib-
rium) of cooperation under suitable circumstances. Besides two
distinct strategies, cooperation and defection, an additional strat-
egy punishment is introduced, which challenges the free-riding
behavior of the defectors and entertains the maintenance of coop-
eration (Fehr and Gächter, 2002). Punishers are also cooperators,
but they differ from traditional cooperators (‘‘second-order free
riders” Ozono et al., 2016; Szolnoki and Perc, 2017) by imposing
a cost in terms of payoff towards restricting the unimpeded
exploitation of cooperative goods by the free-riders. The evidence
of punishment is ubiquitous in not only human society but also
unicellular bacterial community (Banerjee et al., 2019b). The coop-
erative producers secrete toxins (i.e., hydrogen cyanide) to miti-
gate the unrestricted usage of public goods, such as elastase, by
toxin-sensitive non-productive defective mutants. The act of polic-
ing leaves two distinct alternatives to the defectors on how to pro-
ceed. Defectors may still continue to defect with the hope that
natural selection ultimately favors defection as compared to coop-
eration, or they may decide to cooperate leading to a situation
which is the best for the group. However, a recent study (Jiang
et al., 2013) reveals that mild punishment may be more effective
in improving selfless cooperative behaviors. It should be noted that
punishment is not a mechanism for the evolution of cooperation
Nowak, 2006a. In fact, most of these earlier investigations
(Helbing et al., 2010b; Fowler, 2005; Szolnoki et al., 2011) are con-
fined to public goods game, and little is known regarding the pos-
sible evolutionary impact of punishment on the dynamics of PD
game. Various aspects of punishment are already scrutinized by
means of different experiments (Egas and Riedl, 2008; Sasaki
et al., 2007) and mathematical models (Henrich and Boyd, 2001;
Bowles and Gintis, 2004; Ohtsuki et al., 2009; Hauert et al., 2002;
Brandt and Sigmund, 2006).
2

Ecologists and evolutionary biologists typically assume that
evolutionary processes are much slower than ecological processes
(Slobodkin, 1980). However, recent studies show that ecological
changes and species evolution can occur on the same time scale,
i.e., ecological and evolutionary dynamics are intertwined
(Hendry, 2020). Ecological changes can significantly impact evolu-
tionary dynamics, and the resulting evolutionary changes can feed-
back on the ecological dynamics (Colombo et al., 2019). We are at a
stage, where the consideration of intimate interlinking between
ecology and evolution is a necessary step for the understanding
of the processes that regulate biodiversity (Pelletier et al., 2009).

In the present article, we explore the interplay between the
punishment and the virtual ‘optional discriminatory’ altruistic
behavior of the free space from a somewhat different perspective.
Altruism (De Silva et al., 2010; Bell, 2008) refers to the selflessness
of individual, who increases the fitness of another individual,
either directly or indirectly, without the expectation of reciprocity
for that action. Evolutionary social behaviors are omnipresent in
nature, and the impact of ecological free space may be a crucial fac-
tor in the context of eco-evolutionary dynamics (Pelletier et al.,
2009; Wang and Fu, 2020; Fussmann et al., 2007; Wang et al.,
2020). We consider free space as an ecological variable, which
can be occupied by an offspring of any subpopulation of coopera-
tors, defectors and punishers. So, by losing its own identity, free
space provides benefit to all other individuals and most impor-
tantly, it does not take any form of advantages from others. The
role of free space (Nag Chowdhury et al., 2020; Armano and
Javarone, 2017; Helbing and Yu, 2009; Aktipis, 2004; Smaldino
and Schank, 2012; Meloni et al., 2009; Vainstein et al., 2007)
receives a great deal of attention under the framework of evolu-
tionary game theory. But, the interdependency between altruist
free space and the social punishment has been largely unexplored
in the existing literature. We adopt a modeling approach by
describing the temporal evolution of the densities of the different
subpopulations. Our finding suggests that the selfless one-sided
contribution of altruist free space leads to various emergent attrac-
tors (Perko, 2013; Nag Chowdhury and Ghosh, 2020).

We add another layer of complexity by introducing a natural per
capitamortality rate (Finch, 2010; Burger et al., 2012;Wachter et al.,
1997). Many studies have extensively demonstrated the impact of
several factors like social, economic, and health implications on
the reductions in mortality (Brayne, 2007; Oeppen, 1820). An ele-
mentary discussion, concerning the implication of mortality change
for evolutionary theories of PD game, is yet to gain its well-deserved
attention. We formulate a general mathematical model in the pres-
ence of evolutionary social behavior, punishment, to address the
combined effect of altruistic free space and mortality change on
the evolution of population.We also hope that our research exhibits
a better understanding of eco-evolutionary dynamics in social
dilemmas. Consideration of all these aspects unveils the coexistence
of three competing strategies under favorable conditions, and
prompts the emergence of cyclic dominance (Szolnoki et al., 2014),
where the population system displays a periodic attractor. Emer-
gence of such periodic attractor through Hopf bifurcation has been
studied earlier in eco-evolutionary models (Gokhale and Hauert,
2016; Cortez, 2016). We, hereafter, proceed by investigating the
evolutionary dynamics among cooperators, defectors, and punish-
ers in an infinite population and provide a rigorous stability analysis
of the system. The presented theoretical investigations are well
agreed with our numerical studies. The system experiences two
clearly separated time scales consisting of fast jumps followed by
a slow manifold (Nag Chowdhury and Ghosh, 2020; Arnold, 1998).
The stabilityproperties of theproposedmathematicalmodel are fur-
ther numerically analyzed by bifurcation theory and Lyapunov
exponents of the system.
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2. Mathematical Model: Eco-evolutionary dynamics

We consider our model based on the repeated prisoner’s
dilemma game. The basic game consists of two possible behaviors,
cooperation, C, and defection, D; but, we include punishment to
extend the set of strategies to three distinct behaviors, C; D, and
punishment P. Instead of the traditional PD game, the weak version
of the prisoner’s dilemma game (Nowak and May, 1992) is contem-
plated, where the rank of the payoffs between C and D are charac-
terized by T > R > P P S. Without any loss of generality, we set
R ¼ 1; S ¼ 0; T ¼ b with b > 1, and P ¼ 0, which helps to preserve
the dilemma of the weakly PD game. The punishers (Ps) impose a
fine on defectors at a personal cost. At the time of interaction with
a punisher, defectors have to bear a punishment fine d, and punish-
ers also endure the same cost of policing, d. Thus, d > 0. Since pun-
ishers (Ps) are cooperative in nature, a punisher (P) and a
cooperator (C) both receive the reward R ¼ 1 due to the mutual
interaction between them.

In order to combine the game dynamics with the population
dynamics, we consider free space as an ecological variable, which
interacts with all other subpopulations C; P and D. Free space does
not take any advantage from others, but any subpopulation can use
free space for their replication, i.e., free space is providing benefit
to all C; P and D. Moreover, when free space is occupied by an off-
spring of C; P or D, then it loses its identity. Therefore, we can
assume that the free space is such a behavior, which selflessly
increases the fitness of other subpopulations and eliminates its
own identity. It needs to be mentioned that free space can be sur-
rounded by cooperators or cooperative-punishers or defectors.
Hence, our initial assumption that the free space is also interacting
with other subpopulations, such as C; P and D, allows us to depict
the selfless act of free space as virtual ‘optional discriminatory’
altruistic behavior. The altruistic act of free space F allows it to
contribute positive payoff r1; r2 and r3 to C; P and D, respec-
tively. Therefore, ri > 0 for i ¼ 1;2, and 3. The payoff matrix is
therefore represented by.

in which the entries portray the payoff accumulated by the players
in the left.

Let x; y; z and w be the fraction of C;P;D and F, respectively. It is
assumed that the community is only comprised of C;P;D and F,
therefore, xþ yþ zþw ¼ 1. As w is a virtual ‘optional discrimina-
tory’ altruist, the normalized population density becomes
xþ yþ z. The overall population density, xþ yþ z, can grow from
0 to an absolute maximum 1. If xþ yþ z ¼ 0, i.e., w ¼ 1, then only
free space will be available and population extinction will occur. If
xþ yþ z ¼ 1, i.e., w ¼ 0, then there will be no free space and the
maximum normalized population density exists. Therefore,
0 6 xþ yþ z 6 1, i.e., we consider the varying normalized popula-
tion density. Using the payoff matrix, the average fitness of each
subpopulation can be calculated.

The average fitness of C is given by

f C ¼ xþ yþ r1w ¼ ð1� r1Þxþ ð1� r1Þy� r1zþ r1; ð1Þ
where the relation w ¼ 1� x� y� z is used to eliminate the depen-
dent variable w, i.e., the fraction of available free space, which
explicity depends on the abundances of constituent subpopulations,
C, P, and D.

Similarly, the respective average fitness of P and D are

f P ¼ ð1� r2Þxþ ð1� r2Þy� ðdþ r2Þzþ r2; ð2Þ
3

and

f D ¼ ðb� r3Þxþ ðb� d� r3Þy� r3zþ r3: ð3Þ
Thus, the fractions x; y and z determine the average payoffs

f C ; f P and f D of cooperators, punishers and defectors, respectively,
at any given point of time. As we have assumed that free space is
not taking any advantage from others (notion of altruistic behav-
ior), the average fitness of F can be denoted by

f F ¼ 0: ð4Þ
The average payoff of the entire population is

�f ¼ xfC þ yfP þ zfD
xþ yþ z

¼ xfC þ yfP þ zfD
1�w

: ð5Þ

To determine the dynamics of x; y and z, we assume that all
individuals die at an equal and common rate n and, to reduce the
complexity of the system, we assume that the reproduction rate
is fully controlled by f C , f P and f D. Thus, the eco-evolutionary
dynamics of C; P; D and F can be expressed as

_x ¼ xðf C � nÞ;
_y ¼ yðf P � nÞ;
_z ¼ zðf D � nÞ;
_w ¼ � _x� _y� _z:

ð6Þ

Clearly, the changes in frequencies of all subpopulations over
time, governed by the Eq. (6), can be thought of as an extension
of replicator dynamics (Hofbauer and Sigmund, 1998), as by setting
n ¼ �f (where �f , the mean fitness, is given by the Eq. (5)), one can
easily recover the traditional replicator system. It needs to be men-
tioned that in general free space gives a positive feedback to the
growth-induced reproduction of a population; hence, in the pro-
posed approach, we consider the per-capita growth rate of each
of the subpopulations C, P, and D is dependent on the availability
of accessible free space. It is clear from the model formation that
we have already considered the fraction of free spacew and respec-
tive benefits r1; r2; r3, in the fitnesses of subpopulations, which
signify their reproduction rate. That is why, we have omitted the
redundant multiplication of w with f C ; f P and f D, which is often
observed in the previous studies (Gokhale and Hauert, 2016;
Hauert et al., 2006).

After substituting f C (Eq. (1)), f P (Eq. (2)) and f D (Eq. (3)) in
dynamics (6), we obtain the following eco-evolutionary dynamics

_x ¼ x ð1� r1Þxþ ð1� r1Þy� r1zþ ðr1 � nÞ½ �;
_y ¼ y ð1� r2Þxþ ð1� r2Þy� ðr2 þ dÞzþ ðr2 � nÞ½ �;
_z ¼ z ðb� r3Þxþ ðb� r3 � dÞy� r3zþ ðr3 � nÞ½ �;

ð7Þ

where, r1; r2; r3; d; n > 0 and b > 1.

3. Results

3.1. Model calibration and analysis

To explore the dynamics of the system (7), rigorous numerical
experiments have been performed for a wide range of six parame-
ters r1; r2; r3; n; b and d. The fifth-order Runge–Kutta-Fehlberg
method is used to integrate the system (7) with a fixed time step
0:01. To avoid computational error due to sensitive initial data,
we observe the evolution of trajectories after sufficient initial tran-
sient of 1:3� 107 iteration steps. Detailed theoretical analysis is
shown in Appendix A, ensuring the positive invariance and unique-
ness of the solutions of the model (7). The analytical conditions for
existence and stability of various equilibria of the system (7) are
also analyzed in Appendix B using standard methods of linear sta-
bility analysis.
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3.2. Temporal behavior of the densities of three subpopulations

The initial fraction of free space F is kept fixed at w0 ¼ 0:1.2

Thus, the initial individual densities of different subpopulations
can be varied within the interval ½0;0:9� maintaining the relation
x0 þ y0 þ z0 ¼ 0:9. To investigate the evolutionary dynamics, without
loss of any generality, we fix the values of all the parameters at
r1 ¼ 0:52; r2 ¼ 0:72; r3 ¼ 0:41; n ¼ 0:5; d ¼ 1:39, and b ¼ 2:6.
Interestingly, we observe different emergent dynamical behavior of
the attractor solely based on the choices of initial conditions. A
glimpse of this scenario is portrayed in Fig. 1. For example, the initial
choice of ðx0; y0; z0Þ ¼ ð0:7;0;0:2Þ leads to the extinction of punishers
P even in the presence of moderate punishment (d ¼ 1:39). The tem-
poral evolution of the trajectories (See Fig. 1(a)) depicts that the sys-
tem (7) converges to the punisher-free stationary point (E5). In the
absence of punishers, the dominance of defectors over the coopera-
tors (z > x) is well expressed at the steady-state of coexistence even
though the initial fraction of cooperators, x0, is higher than the initial
fraction of defectors, z0. For the same set of parameter values, the ini-
tial fraction ð0:7;0:2;0Þ of all subpopulation gives rise to unbounded
solution of the system (7) (Figure not shown here). Due to non-
uniformity in the altruistic reproductive benefit of free space to
the cooperators and punishers (r1 – r2), the defector-free stationary
steady state (E4) can not be obtained in this case (for a detailed dis-
cussion, please see Appendix B). For interior initial conditions, i.e.,
initial conditions with non-zero components, the system exhibits a
periodic attractor. For instance, equal probabilities of initial fraction
ðx0; y0; z0Þ ¼ ð0:3;0:3;0:3Þ generate such periodic trajectories, shown
in Fig. 1(b). Similar state-space diagram, projected onto the two-
dimensional space, is contemplated for the initial condition
ðx0; y0; z0Þ ¼ ð0:4;0:2;0:3Þ in the Fig. 1(f)–(h). Although the punishers
are given less favorable platform as x0 > z0 > y0, the post-transient
eco-evolutionary dynamics depict these subpopulations indeed
cyclically dominate one another in the irregular mixing pattern of
trajectories. Note that, even though the temptation to defect is high
(b ¼ 2:6), cooperation is still effectively sustained under adverse
conditions while strategy abundances keep oscillating. This prompts
the emergence of cyclic dominance, whereby defectors dominate
punishers who dominate cooperators who in turn, dominate defec-
tors. Besides cyclic dominance, two clearly disjoint time scales con-
sisting of fast jumps followed by a slow manifold are evidenced in
these Fig. 1(b) and (f)–(h). The trajectories slowly approach the ori-
gin when in its neighborhood, but, when in close vicinity of the ori-
gin, the trajectories are leaving comparatively fast generating a
distinct slow-fast time scale.

Focusing on a different scenario, we choose another initial con-
dition ðx0; y0; z0Þ ¼ ð0:0;0:2;0:7Þ. Clearly, here the initial fraction of
defectors are sufficiently high, giving the defectors initial advan-
tage. As x0 ¼ 0, the density of cooperators will remain zero
(x ¼ 0) as shown in Fig. 1(c). The relation between punishers and
defectors in the absence of cooperators provides an emergent oscil-
latory coexistence between punishers and defectors, where inter-
estingly punishers dominate the defectors, as y > z, in spite of
the given initial preferences towards defectors. The trade-off
between temptation (b ¼ 2:6) and punishment (d ¼ 1:39) might
be a cause towards the domination of punishers over defectors in
the absence of unrestricted defective exploitation of cooperation.
A small amplitude oscillations of y and z are visible through
Fig. 1(d) and (e).
2 The initial fraction of free space, w0, does not qualitatively affect the numerical
findings obtained. w0 can be varied within the closed interval ½0;1� obeying the
relation x0 þ y0 þ z0 þw0 ¼ 1. If w0 ¼ 1, then the initial fraction of subpopulations is
reduced to a singleton choice ðx0; y0; z0Þ ¼ ð0; 0;0Þ and hence all the species will die
out giving rise to the stationary point E0. As w0 ! 0+, then the region of initial basin
consisting x0; y0 and z0 is expanded, and x0 þ y0 þ z0 ! 1�.

4

3.3. Interplay of different parameters

We observe different dynamical characteristics in our model
depending on initial fraction of species and different parameters.
In order to further understand the role of parameters behind the
results as presented in Fig. 1, we analyze the frequency of sum of
all three subpopulations as a function of free space induced repro-
ductive benefit to the cooperators, r1, with fixed initial condition
ð0:3;0:3; 0:3Þ. It is highly anticipated that higher values of r1 help
to sustain cooperation; however, it additionally depends on the
values of other parameters. As soon as r1 exceeds r2 and r3, i.e.,
r1 > r2 and r1 > r3; the free space is providing greater benefits
to the cooperators compared to the punishers and defectors. This
feature is well manifested in Fig. 2(a) keeping the parameter values
fixed at r2 ¼ 1:0; r3 ¼ 0:7; b ¼ 1:2; d ¼ 0:3, and n ¼ 0:7. The
black bifurcation curve reflects an inverse Hopf route correspond-
ing to the destruction of the periodic orbit. Depending on the val-
ues of the normalized population density xþ yþ z, we are able to
partition the entire bifurcation diagram into three distinct sub-
regions. Region I of Fig. 2(a) contemplates the oscillatory coexis-
tence of all three subpopulations. The temporal dynamics (not
shown here) at a particular time snapshot suggests that frequen-
cies of three strategies oscillate with y > z > x and thus, punish-
ment strategy can be dominant. In spite of achieving such
delightful persistence of all subpopulations, we have to ignore this
regime, as xþ yþ z > 1 signifying overcrowded population within
this regime. Note that, individual population density still remains
within ½0;1� in region I.

Region II of Fig. 2(a) reveals periodic oscillatory coexistence of
C; P and D simultaneously up to the dotted vertical line. This peri-
odic attractor demolishes through the inverse Hopf bifurcation and
gives rise to stable coexisting stationary point. Here, also y > z > x
which establishes the dominance of punishers over other subpop-
ulations. There are two precise differences between the region I
and region II. In region I, the normalized population density
xþ yþ z is over crowded being greater than 1. Whereas, in region
II, the normalized population density lies within ð0;1Þ. Secondly,
region I only contains oscillatory coexistence of x; y; z, but region
II portrays collection of periodic attractor and stable stationary
points up to r1 ¼ 0:775. At the particular value of r1 ¼ 0:775, we
find all fraction of subpopulations are equal after the post-
transient dynamics. That is, at r1 ¼ 0:775, we have x ¼ y ¼ z. To
distinguish this behavior with other observed phenomenon, a red
dashed line is drawn in the Fig. 2(a).

Region III only consists stationary states. In this regime, the
cooperators are dominant over other subpopulations. Till the
branch point (bifurcation point) r1 ¼ 0:844, the fraction of C is
always dominating the fraction of D, which again dominates the
fraction of P. This behavior x > z > y is also maintained for
r1 > 0:844, however, the fraction of punishers vanishes as y ¼ 0.
In comparison to region II where y > z > x, the densities of C and
P are switched in region III, where x > z > y is sustained.

To further validate our numerical findings, largest Lyapunov
exponent of the system (7) (blue curve) is plotted by varying r1

in Fig. 2(a) using the Wolf algorithm (Wolf et al., 1985). The sign
of maximal Lyapunov exponent kmax changes from 0 to �ve value,
which assures the transformation of the attractor from periodic
nature to stationary state of the system (7). Clearly, the plotted
maximum Lyapunov exponent agrees well with the observed
bifurcation diagram in the Fig. 2(a).

The complex dynamics exhibited due to the interplay between
different parameters are summarized using bifurcation diagrams
in Fig. 2(b)–(d). In the context of PD game dynamics, higher values
of temptation parameter b always helps to provide additional ben-
efits to the defectors and destroys the act of cooperation. This
understanding is well portrayed through the Fig. 2(b). With



Fig. 1. Example of Eco-evolutionary dynamics of the system (7) for different initial conditions: The system (7) possesses at most three types of multistability for our chosen
parameter values of r1 ¼ 0:52; r2 ¼ 0:72; r3 ¼ 0:41; n ¼ 0:5; d ¼ 1:39, and b ¼ 2:6. The initial condition ðx0; y0; z0Þ is set at (a) ð0:7;0;0:2Þ, (b) ð0:3;0:3;0:3Þ, (c)–(e)
ð0;0:2;0:7Þ, and (f)–(h) ð0:4;0:2;0:3Þ, respectively. (a) The punisher-free ðy ¼ 0Þ stationary state E5 even in the presence of moderate punishment (d ¼ 1:39). The dominance of
defectors over the cooperators is observed, as z > x, even though the initial fraction of cooperators, x0, is higher than the initial fraction of defectors, z0. (b), (f)–(h) Periodic
oscillation of the frequencies of C; P and D for initial conditions with non-zero components. Even when the punishers are given less favorable platform as x0 > z0 > y0 ((f)–
(h)) and the temptation to defect is high (b ¼ 2:6), cooperation is still effectively sustained under adverse conditions while strategy abundances keep oscillating which
prompts the emergence of cyclic dominance. (c)–(e) Extinction of cooperation (x ¼ 0) with small amplitude oscillation of y and z. The relation between punishers and
defectors in the absence of cooperators provides an emergent oscillatory dynamics, where interestingly punishers dominate the defectors, as y > z, in spite of the given initial
preferences towards defectors. For further simulation details, please see the text.
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increasing values of b, the fraction of C is always decreasing up to a
critical value of this parameter, and beyond that critical value, x
completely diminishes to 0 leading to extinction of cooperators.
At the same critical value of b, the initial increment of punisher’s
population is challenged, and becomes monotonically decreasing
as shown in the Fig. 2 (b). This phenomenon can be well inter-
preted as punishers are also cooperators, and the impact of punish-
ment is neutralized due to high temptation to the defectors. So it is
natural that population density of punishers reduces with increas-
ing b. However, punishers do not go extinct in the observed regime
for b 2 ð1;3�, as punishment has social security in the form of
reduction in the expected payoff of defectors, who need to pay
an extra fine. We expect the defector population z to increase with
the temptation parameter b and, therefore, find it interesting that z
remains constant throughout the interval ð1;3� of b. This may be
due to the chosen values of the other parameters, which play a sig-
nificant role in survivability of each subpopulation. The obtained
results can also be verified using linear stability analysis (See
Appendix B) at the chosen values of parameters for Fig. 2(b).

Similarly, the role of death rate n is inspected in Fig. 2(c). For the
particular choice of the other parameters’ values, Fig. 2(c) depicts
that up to a certain value of n, say, ncritical � 0:3605, both the frac-
tion of cooperators, x, and punishers, y, stay at zero, and beyond
ncritical, both x and y are increasing. On the other hand, even though
z decreases as n increases, z > 0 throughout the interval ½0;0:7� of n.
Hence, up to ncritical, the cooperator-free and punisher-free station-

ary point E3 ¼ 0;0;1� n
r3

� �
is found, which is marginally stable for

our particular choice of parameter values (for a detailed analysis,
please see Appendix B). Clearly, the z-component of E3 suggests
the growth of n ultimately decreases z, the fraction of D. This inves-
tigation perfectly fits with our numerical findings in Fig. 2(c).
Whenever n is greater than ncritical, the stationary point E3 loses its
5

stability, and the interior stationary point E7 gains its stability as
shown in Fig. 2(c). Thus, increment of mortality rate surprisingly
encourages the coexistence of all subpopulations. The moderate
decrement in the population fraction of defectors with increasing
n substantially suppresses the defective exploitation of cooperative
benefit, which may introduce a positive catalytic effect towards the
concurrence of C, P, and D. Even when n is approximately close to
0:65, the punishers dominate both C and D. Note that, the initial
condition for the numerical simulation is ð0:3;0:3;0:3Þ, thus we
do not give any additional preference, in terms of initial abun-
dance, to the individual subpopulations. The decisive contribution
of initial condition will be scrutinized in the next section.

Fig. 2(d) unveils the fundamental role of policing parameter, d.
It is clearly visible that policing of appropriate strength can fight
the free-rider’s defection and promote cooperation in the long
run. Falling off of z is evident in Fig. 2(d) throughout the interval
ð0;0:32� of d. Up to d � 0:2, cooperator-free stationary point E6 is
found and at d � 0:2, the system (7) bifurcates and switches from
E6 to the interior equilibrium E7 generating stable coexistence of
all subpopulations. The enhancement of punishment to the defec-
tors marginally decreases its abundance, which in turn promotes
cooperative contribution to the population via stable coexistence
of all three subpopulations. The punishers are initially enjoying
the initial enhancement with the increment of d, but for d > 0:2,
the growth of P diminishes gradually. This points out the fact that
when Ps are playing against defectors D, to penalize them with a
fine d; P also tolerates the cost of policing d. Thus, higher values
of d restricts the monotonically increasing nature of P for our cho-
sen parameter values and initial condition. Even though the pun-
ishers are reducing in numbers with large values of d as per this
specific numerical simulation, punishment is the dominant strat-
egy in the entire interval ð0;0:32� of d. It should be noted that pun-
ishment is also the dominant strategy in the Region II of Fig. 2(a),



Fig. 2. (a) The largest Lyapunov exponent kmax and bifurcation diagram: The frequency of sum of all three subpopulations is depicted as a function of r1 through the black
bifurcation curve that reflects an inverse Hopf route corresponding to the destruction of the periodic orbit. Depending on the values of the normalized population density
xþ yþ z, the entire bifurcation diagram is partitioned into three distinct sub-regions. Region I: oscillatory coexistence of x; y; z < 1 but xþ yþ z > 1 and y > z > x. Region II:
Oscillatory + stable coexistence of x; y; z and y > z > x until r1 ¼ 0:775. Red dashed curve: x ¼ y ¼ z at r1 ¼ 0:775 (stable coexistence). Region III: x > z > y, stable coexistence
of x; y; z till r1 ¼ 0:844 (bifurcation point), after that coexistence of x; z (y ¼ 0; x > z > y). Higher values of r1 help to sustain cooperation depending on values of the other
parameters. As soon as r1 crosses beyond r2 and r3, i.e., r1 > r2 and r1 > r3; the free space is providing greater benefits to the cooperators compared to the punishers and
defectors. To further validate the appearance of oscillatory or stable coexistence of the populations, the largest Lyapunov exponent kmax is plotted in blue curve by varying r1.
The sign of kmax changes from 0 to -ve value, assuring the transformation of the attractor from periodic nature to stationary state. (b)–(d) Individual effect of the parameters b; n
and d on x; y; z: Fraction of cooperators, punishers, and defectors as a function of temptation parameter b, per capita mortality rate n and policing parameter d for fixed
r1 ¼ 0:7. (b) Higher values of temptation parameter b always helps to provide additional benefits to the defectors and destroys the act of cooperation, (c) increment of
mortality rate n surprisingly encourages the coexistence of all subpopulations, (d) policing d of appropriate strength can fight the free-rider’s defection and promote
cooperation in the long run. All the results are carried out with fixed initial fraction of population ð0:3;0:3;0:3Þ and the parameter values are fixed at:
r2 ¼ 1:0; r3 ¼ 0:7; b ¼ 1:2; d ¼ 0:3, and n ¼ 0:7.
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from where we choose the value of r1ð¼ 0:7Þ. For b ¼ 1:2 in Fig. 2
(b) and n ¼ 0:7 in Fig. 2(c), punishment is the dominant strategy in
our model (7).

We now emphasize on the investigation of the joint impact of
two parameters on the eco-evolutionary dynamics at the same
time. Transitions between different stationary states are recog-
nized due to the interplay between several physical parameters,
which are used to model the system (7). In Fig. 3(a), the system
dynamics under the influence of varying r1 and r3 is explored,
while the other parameters are fixed at r2 ¼ 0:8; b ¼ 1:2; d ¼ 0:3
and n ¼ 1:1. It should be noted that the benefits given by the free
space to the punishers in the terms of positive payoff r2 ¼ 0:8 is
less than the mortality rate n ¼ 1:1 as per our chosen parameter
values for this figure. Till the free space induced reproductive ben-
efit to the cooperators and defectors is less than their common
mortality rate (r1;r3 < n), Fig. 3(a) reveals extinction of all popu-
lation. When free space gives better opportunity to any subpopula-
tion to overcome the death rate, then that subpopulation is
emerging as a dominant strategy. For instance, when r1 < n and
r3 > n, we notice a wide region of defector dominant regime in
two-dimensional r1 � r3 parameter space. In fact, in this regime,
defectors are the only surviving population. A reverse storyline is
perceived, when r1 > n and r3 < n. These extra incentives towards
cooperators from F help to sustain cooperation and entertains a
6

defector-punisher free, cooperator dominant region in the Fig. 3
(a). As r2 < n, our choice favors a punisher-free environment
throughout the Fig. 3(a). Thus, suitable choice of all parameter val-
ues reflects a mechanism for coexistence of C and D as well.

The important role of death rate n in the complex dynamics of
the system (7) is now reviewed under the influence of r1. The equi-
libria E0; E1; E3 and E5 are all occurring in Fig. 3(b), similar to Fig. 3
(a). A fresh captivating feature is observed over a modest region
(yellow zone) in Fig. 3(b), where n and r1 are both comparatively
low. In this region, the variables x; y and z are leaving the phase
space and tend to infinity after the initial transient dynamics.
These types of unbounded solution are also noticed in Fig. 3(c)
and (d) too. All simulations of Fig. 3 are performed with fixed initial
condition ð0:3;0:3;0:3Þ. To understand the complicated reciprocity
between the death rate and advantages given by the free spaces
towards different population densities, Fig. 3(b)–(d) are delineated.
If the altruist F is biased towards the defectors by paying them
more advantages in terms of payoff r3 > r1 and that biased favor
r3 exceeds the mortality rate n, then only defector-sustaining pop-
ulation persists (E3 in Fig. 3(b)). But, the role of other parameters
like r2 and d is also important. Depending on other parameters,
cooperators are only surviving species, when r1 > n > 1 and
r1 > r2 in Fig. 3(b). Even, a moderate zone is noticed in Fig. 3(b),
where cooperators are able to survive along with defectors. All



Fig. 3. Comparative plots of two-dimensional parameter phase diagrams: Transition between different population dependent stationary states Eis for i ¼ 0;1;2; � � � ;5;7
(thoroughly addressed in Sec. Appendix B) due to the interplay between the physical parameters. (a) The system dynamics under the influence of varying r1 and r3 is
explored. r1;r3 < n reveals extinction (E0) of all population, r1 < n and r3 > n results in a defector dominant regime (E3), whereas a cooperator dominant region (E1) is found
when r3 < n and r1 > n. Also the choice of r2 < n favors a punisher-free environment E5. (b)–(d) Complicated reciprocity between the death rate n and advantages given by
the free spaces (r1;r2;r3) towards different population densities are delineated. Various combinations of population dependent steady states emerge depending on the
choice of other parameter values. (e) The simultaneous contribution of b and n is presented. For very small (close to zero) values of n, only defectors (E3) survive irrespective to
the choices of b. As the death rate n is increased gradually, the following steady states emerge in the parameter space, respectively: coexistence of cooperators and defectors
E5, only cooperators E1, and extinction E0. (f) The role of policing term d is found to be completely independent of b for the set of chosen parametric values. For lower values of
b only cooperators are present, but a wide range of parameter space is observed where Ds are coexisting with Cs with moderately high values of b. Yellow region reflects
unbounded solution of the system (7). For easier comparison, whenever a pair of parameters are varied, others are fixed at these values of parameters:
r1 ¼ 1:5; r2 ¼ 0:8; r3 ¼ 0:8; b ¼ 1:2; d ¼ 0:3 and n ¼ 1:1. The initial fraction of subpopulation is ðx0; y0; z0Þ ¼ ð0:3;0:3;0:3Þ for all the figures. Lavender, cool grey, pink,
coral, black, sky blue and mustard color indicate the stationary points Eis for i ¼ 0;1;2; � � � ;5;7 respectively.
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subpopulations go extinct, when per capita death rate n exceeds
r1; r2 and r3.

A fascinating result is shown in Fig. 3(c), where we are able to
capture distinct equilibria along with the unbounded trajectories
in the 2D-parameter space of free space induced reproductive
opportunity to the punishers, r2 and common mortality rate, n.
For sufficiently high values of mortality rate n, all population die
out. For comparatively lower values of n, the cooperators can only
survive until r1 > r2. For r1 < r2, punishers can only survive. This
transition takes place through the emergence of a small region of
coexistence of C and P, whenever r1 ¼ r2, or n ¼ 1 is satisfied. Fur-
ther, lowering the values of n, defectors are found along with C.
Even, a tiny regime for large r2 is found, where coexistence of all
subpopulations (the stationary state E7) occur. For too small values
of n and beyond a certain threshold of r2, a defector dominant
solution space is obtained.

The important role of death rate is also demonstrated in Fig. 3
(d) over the parameter free space mediated reproductive benefit
to the defectors, r3. For large values of r3, either population
extincts or only defectors can survive or the unbounded trajecto-
ries are found. Whereas for n > r1;r2;r3, extinction scenario of
all species is again detected. For lower values of r3 depending on
n and other parameter values, either cooperation is the only surviv-
ing strategy, or coexistence of cooperation and defection is discov-
ered. The simultaneous contribution of temptation parameter, b
7

and common death rate, n is presented in the Fig. 3(e). Here, the
parameter values are set at r1 ¼ 1:5; r2 ¼ 0:8; r3 ¼ 0:8, and
d ¼ 0:3. For very small (close to zero) values of n, cooperator-free
and punisher-free population can only be noticed irrespective to
the choices of b. With increment of death rate, cooperators are
coexisting with defectors, and further increment of n demolishes
the defector population. We observe an interval in the b� n param-
eter space, where cooperators are only surviving. If n is too high
and beyond a critical threshold (n > ri for i ¼ 1;2;3), then extinc-
tion of all species is detected.

Interestingly, it is expected that moderate value of the policing
parameter d always helps in persistence of punishers. But, for our
chosen parameter values, Fig. 3(f) depicts a punisher-free society.
With enhancing values of temptation parameter b, the defectors
are getting extra aid. Thus, although initially only cooperators are
present in the 2D parameter space (See Fig. 3(f)), but a wide range
of parameter space is observed with moderately high values of b,
where Ds are coexisting with C. Fig. 3(f) suggests the role of polic-
ing term d is completely independent of b at least for these set of
chosen parametric values.

3.4. Basin of attraction

Initially with the help of Fig. 1, we have discussed that multista-
bility is observed in our model. Depending on the initial condition,
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the state converges either to different Nash equilibria consisting of
cooperators, defectors and punishers, or to periodic orbits, where
the frequencies of punishers, defectors, and cooperators oscillate
endlessly. To illustrate this feature, basin of attraction for three dis-
crete sets of parameters is shown in Fig. 4. We set w0 ¼ 0:1 for all
of these subfigures, so that each of the variables x0; y0; z0 varies
within the interval ½0;0:9� maintaining the relation
x0 þ y0 þ z0 ¼ 0:9. Each subfigure in Fig. 4 depicts that the system
(7) converges to various attractors, or grows without any bound
solely depending upon the initial abundance of each subpopulation
with fixed parameter values. In Fig. 4(a), two distinct cooperator-
free stationary states are obtained. In this particular figure, we
set the values of the parameters at r1 ¼ 1:2; r2 ¼ 1:5; r3 ¼ 1:4;
b ¼ 1:5; d ¼ 0:5 and n ¼ 1:1. These values satisfy local stability cri-
terion for both stationary points E2 (cyan) and E3 (magenta) respec-
tively (See Appendix B). The chosen parameter set establishes that
the free space induced benefit to the cooperators is the least as
compared to the free space mediated benefits to the punishers
and defectors (r1 < r2;r3). The Fig. 4(a) reveals that with suitable
choice of initial fraction of each subpopulation, one can reach any
one of these cooperator-free stable nodes E2 and E3.

Similarly, three different stationary points are obtained in Fig. 4
(b). Surprisingly, the boundaries of the basin of attraction lead to
different stationary points, compared to the interior of the basin.
The interior region of the basin of attraction helps the system (7)
to reach the punisher-free stable steady state E5. We even find a
single initial condition ðx0; y0; z0Þ ¼ ð0; 0;0:9Þ located at the top
vertex of the triangle, for which the system (7) converges to the
extinction stationary point E0 (black). The general solution (flow)
with real-valued expansion coefficients for the system (7) is given
by

d1ek1tu1 þ d2ek2tu2 þ d3ek3tu3; ð8Þ
where ui’s are the eigen vectors corresponding to the eigen values ki
of Jacobian J of the linearized system for the chosen fixed set of
parameter values for i ¼ 1;2;3. The kis are explicitly calculated at
the JðE0Þ in Appendix B. The initial conditions with x0 ¼ 0 and
y0 ¼ 0 yield the constants d1 ¼ 0 ¼ d2 and hence, the solutions tend
to the stationary point at the origin as k3 < 0. An elaborate discus-
sion regarding the role of these boundary initial conditions with at
least one zero-component is rigorously addressed in Appendix B.3.
There is a line of initial conditions (blue) on the lower boundary of
basin of attraction, which yields diverging orbits. Along these initial
conditions, the constant d3 is zero. As for our chosen parameter val-
ues r1 ¼ 1:2; r2 ¼ 1:0; r3 ¼ 0:41; b ¼ 2:6 and d ¼ 1:39; k1; k2 > 0
Fig. 4. Basin of attraction of system (7) in 3D xyz-plane: Three distinct sets of parameter va
are varying within ½0;0:9�, while the relation x0 þ y0 þ z0 ¼ 0:9 is always kept intact. The s
upon the initial abundance of each population with fixed parameter values. (a) Two dist
kinds of stationary points are found where the boundaries of the basin of attraction lead t
Magenta !E3, Blue !Unbounded trajectory, Red !E6, Yellow !E5, Black !E0, Gray
Appendix B. Parameter values: (a) r1 ¼ 1:2; r2 ¼ 1:5; r3 ¼ 1:4; b ¼ 1:5; d ¼ 0:5 and
r1 ¼ 0:51; r2 ¼ 1:0; r3 ¼ 0:41; b ¼ 1:1; d ¼ 0:1 an.d n ¼ 0:7.
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of the Jacobian J at E0 and thus, Eq. (8) tends to infinity in the long
run (as t ! 1). Another line of initial conditions on the left bound-
ary (red) converges to cooperator extinction equilibrium E6.

Stable coexistence of all subpopulations is observed in Fig. 4(c)
for the chosen fixed values of parameters r1 ¼ 0:51; r2 ¼ 1:0;
r3 ¼ 0:41; b ¼ 1:1; d ¼ 0:1 and n ¼ 0:7. The boundary of the set
of initial conditions converges to either of two different stable sta-
tionary points; the extinction of population, E0 (black) and the
stable concurrence between punishers and defectors, E6 (red).
The interior of the basin helps to obtain the stable coexistence of
all three subpopulations, E7 (gray). There exists a few initial condi-
tions for which unbounded trajectories (blue) are the only possible
solutions. Initial conditions with y0 ¼ 0 lead to d2 ¼ 0 in Eq. (8) and
k1; k3 of JðE0Þ will be negative for our chosen parameter values.
Thus the general solution converges to the stationary point E0 for
the initial conditions on the right boundary y0 ¼ 0 of the basin of
attraction.

4. Conclusion: Summary and final comments

The influence of ecology on the evolution of population (eco-to-
evo) and inversely, the impact of population’s evolution on ecology
(evo-to-eco) encourage a lot of young researchers to focus on how
change in one process affects the change on the other. On the other
hand, the evolution of rational behavior among population is ide-
ally described using evolutionary game dynamics. This primarily
inspects how cooperation emerges inside a population community
by overcoming the social dilemma of what is the best for own and
what is the best for the society. We look over this Darwinian puzzle
by integrating ecologically-accessible free space with the evolution
of population in the framework of evolutionary game theory. For
this purpose, we consider PD game, in particular, as a paradigm
for tackling the problem of cooperation. The game promises that
defection always results in a better payoff than cooperation, and
thus, two independent rational individuals might defect each
other, even if cooperation is the best choice for the group.

A defecting individual always receives the highest fitness if fac-
ing a cooperator. To solve this riddle from the evolutionary view-
point, a new strategy punishment is adopted. Punishers pay a
cost to punish the defectors. Punishment has been found as one
of the emergent spontaneous behaviors of the human society as
a way of treating the defectors for their free-riding mentality.
Many previous theoretical works (Brandt et al., 2006; Wang
et al., 2013; Banerjee et al., 2019b; Helbing et al., 2010a; Perc,
2012; Dreber et al., 2008; Egas and Riedl, 2008; Sasaki et al.,
lues are chosen to demonstrate the effect of initial conditions ðx0; y0; z0Þ. x0; y0 and z0
ystem converges to various attractors, or grows without any bound solely depending
inct cooperator-free stationary states E2 and E3 are obtained. (b)-(c) Three different
o different stationary points, compared to the interior of the basin. Colors: Cyan!E2,
!E7. The meaning of these stationary points Ei; i ¼ 0;1;2; � � � ;6 are addressed in
n ¼ 1:1; (b) r1 ¼ 1:2;r2 ¼ 1:0;r3 ¼ 0:41; b ¼ 2:6; d ¼ 1:39 and n ¼ 0:5; and (c)
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2007; Henrich and Boyd, 2001; Bowles and Gintis, 2004; Ohtsuki
et al., 2009; Hauert et al., 2002; Brandt and Sigmund, 2006; Liu
et al., 2018) have revealed the role of punishment for the better
understanding of cooperation. However, studies related to the
combined effect of altruistic act of free space towards providing
the reproductive benefit to the constituents and the punishment
are relatively missing in the existing literature to the best of our
knowledge. In this paper, we have introduced four distinct compet-
ing strategies, viz. cooperation, punishment, defection and free
spaces. The interplay of these strategies are particularly common
and relevant in our real society. The strategy free space does not
take any advantages for providing the benefits to other subpopula-
tions. In fact, any individual from the subpopulation C; P and D can
use free space for their replication. In order to shed some light on
this one-sided contribution of free space, we have constructed a
general mathematical model by combining game and ecological
dynamics, where the interaction pattern between cooperators
and defectors follows the contemporary PD game. This type of self-
less, altruistic act (Axelrod, 1984) can commonly be observed in
ants, bacteria, birds, bees, and many other higher mammals. Our
eco-evolutionary model captures this remarkable aspect of biolog-
ical and behavioral sciences (Nowak, 2006a) using the selfless act
of free space, which makes an effort to improve the welfare of
others by sacrificing personal benefits.

The model developed in this study consists three variables and
six parameters. These parameters have important implications in
many settings of ecological network, infectious disease dynamics,
animal behavior and social interactions of humans. The different
choices of these parameter values lead to several emergent dynam-
ics, and our numerical investigations are restricted to only finite
possible alternatives of this uncountable parameter space. How-
ever, we are able to capture the essence of the multistable replica-
tor dynamics for various possible values of different physical
parameters. The model studied here corresponds to scenarios in
which cyclic dominance can be maintained through the occurrence
of periodic attractor. Such kind of cyclical interaction (Szolnoki
et al., 2014) is capable of capturing the beauty of the governing
eco-evolutionary dynamics, and similar behavior is found to occur
in many real-life instances including the mating strategy of side-
blotched lizards, the genetic regulation in the repressilator, the
overgrowth of marine sessile organisms, competition in microbial
populations, and many more. Few snapshots of such periodic
attractor and their temporal evolution are shown for several
parameter values. Even, for a particular set of parameter values,
we are able to demonstrate the inverse Hopf route for destruction
of these periodic attractors. The result is also validated using the
largest Lyapunov exponent of the system (7). This Hopf bifurcation,
yielding periodic oscillations through destabilization of the steady
state behavior, is ubiquitous in many biological and physical sys-
tems including Lotka-Volterra model of predator–prey interaction,
the Lorenz attractor, the Selkov model of glycolysis, the Hodgkin–
Huxley model for nerve membranes, to name but a few examples.
Interestingly, slow-fast time scales are noticed for our model (7)
during the manifestation of such periodic attractor. This periodic
orbit gives all species a fair chance to dominate one another in a
cyclic fashion.

We have also been able to map the different potential dynami-
cal states in the two-dimensional parameter plane by keeping fixed
the other four parameter values. Various stationary states are
obtained during numerical investigation reflecting five different
possibilities: (i) extinction of all subpopulations, (ii) existence of
only one outcompeting subpopulation, (iii) survival of any two
subpopulations, (iv) coexistence of all subpopulations, and (v)
unbounded diverging orbits. The reasoning behind these results
are thoroughly addressed using physical interpretations of all
9

parameters. The understanding is further explicated using linear
stability analysis of the eco-evolutionary dynamics.

From our analytical findings and associated numerical simula-
tion results, it is clear that if the mortality rate is higher than the
benefits provided by the free space, then it is almost impossible
for the species to survive. Our results unveil the influence of the
death rate, which proves to be quite significant in maintaining bio-
diversity. With suitable contribution of other parameters, incre-
ment of mortality rate as well as the policing parameter is found
to encourage the coexistence of all subpopulations (Fig. 2(c) and
(d)). The contribution of the temptation parameter in PD game,
that disrupts the evolution of cooperative nature of individuals
by providing greater benefit to defectors, is well established in
the literature. Consistently, if the temptation to defect is suffi-
ciently large, our approach may fail to sustain cooperation, as illus-
trated in Fig. 2(b). Even, this figure contemplates the decreasing
fraction of punishers with increment of temptation parameter b.
In addition, potential evolutionary advantage of punishment is pre-
sented in Fig. 2(d). Suitable choice of policing parameter d helps to
maintain the survivability of both the traditional cooperators as
well as the punishers (that are also cooperative in nature), thereby
restricting the total extinction of cooperators. Fig. 2(c) reveals the
fascinating twist that the increment of mortality rate n ultimately
leads to the collapse of defector’s population, and consequently,
coexistence of all subpopulations under favourable conditions is
observed. In fact, if free space is biased towards a particular sub-
population and that free space induced advantage is higher than
the common mortality rate, then our eco-evolutionary model
may help to promote that particular subpopulation. This behavior
is demonstrated in Fig. 3. For instance, if cooperation is favoured by
the free space compared to other strategies (i.e., r1 > r2;r3) and
this favouritism r1 is higher than the death rate n, then only coop-
erators survive and other subpopulations become extinct (See the
cool grey region of Fig. 3(a)). Moreover, the observed phenomenon
of multistability that reveals coexistence of more than one attrac-
tors is also emphasized in detail throughout the article. Figs. 1 and
4 ensuring the multistable dynamics exhibited by our model points
out the vulnerability of the system to small perturbations. The
presence of multistability and multiple operating regimes are
essential for biology such as in prey-predator communities, bio-
chemical responses and generation of cell cycle oscillation
(Angeli et al., 2004; Banerjee et al., 2020). To clarify the under-
standing behind the multistability, particularly at the boundaries
of the basin of attraction, mathematical analysis is found to be
effective.

In conclusion, our constructed model provides certain features
with several significant feasible inferences. Our study supports a
deeper understanding of the impact of free space induced repro-
ductive benefit on the evolution of population, where the act of
punishment improves the emergence and promotion of
population-wide cooperation. It comes up with an effective yet
simple way for the promotion of the stable coexistence of different
strategies including cooperation, which may lead to an interesting
direction for future research and for better understanding of the
ecological balance in nature.
CRediT authorship contribution statement

Sayantan Nag Chowdhury: Conceptualization, Methodology,
Software, Validation, Formal analysis, Investigation, Writing - orig-
inal draft, Visualization. Srilena Kundu: Conceptualization,
Methodology, Software, Validation, Formal analysis, Investigation,
Writing - original draft, Visualization. Jeet Banerjee: Conceptual-
ization, Validation, Methodology, Visualization, Writing - review



S. Nag Chowdhury, S. Kundu, J. Banerjee et al. Journal of Theoretical Biology 518 (2021) 110606
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Appendix A. Existence, uniqueness and positive invariance of
solutions

Positivity of a model guarantees that the model is biologically
well behaved. It is easy to notice that the functions on the right
side of each of the equations of system (7) are continuously differ-
entiable in R� R� R. Thus, the solution of Eqs. (7) with a positive
initial condition always exists. Also, the uniqueness of solutions for
the system (7) in R3

þ is assured, as the right-hand side of each of the
equations in system (7) is locally Lipschitz in the first quadrant.
The solution of system (7) in terms of time t P 0 can be written
in the form

xðtÞ ¼ xð0Þ exp R t
0 /1ðx; y; z;r1; nÞds

h i
;

yðtÞ ¼ yð0Þ exp R t
0 /2ðx; y; z;r2; d; nÞds

h i
;

zðtÞ ¼ zð0Þ exp R t
0 /3ðx; y; z;r3; d; n;bÞds

h i
;

ðA:1Þ

where,

/1ðx; y; z;r1; nÞ ¼ ð1� r1Þxþ ð1� r1Þy� r1z

þðr1 � nÞ;
/2ðx; y; z;r2; d; nÞ ¼ ð1� r2Þxþ ð1� r2Þy� ðr2 þ dÞz

þðr2 � nÞ;
/3ðx; y; z;r3; d; n; bÞ ¼ ðb� r3Þxþ ðb� r3 � dÞy� r3z

þðr3 � nÞ:

ðA:2Þ

The system of integral equations (A.1) asserts all the solutions
of the system (7) that start in R3

þ remain positive for all the time.

Appendix B. Existence and stability analysis of the stationary
state

B.1. Stationary states and their existence

Setting dx
dt ¼ 0; dy

dt ¼ 0, and dz
dt ¼ 0, the system (7) has at most

eight non-negative equilibria, viz.

1. The trivial extinction stationary point E0 ¼ ð0;0;0Þ.
10
2. The punisher-free and defector-free stationary point

E1 ¼ r1�n
r1�1 ;0;0

� �
. This stationary point exists, i.e., only coopera-

tors are present if r1 > n P 1, or 0 < r1 < n 6 1.
3. The cooperator-free and defector-free stationary point

E2 ¼ 0; r2�n
r2�1 ;0

� �
, which exists if r2 > n P 1, or 0 < r2 < n 6 1.

4. The cooperator-free and punisher-free stationary point

E3 ¼ 0; 0;1� n
r3

� �
. In this case, only defector exists, if r3 > n.

5. The defector-free stationary point E4 ¼ a1;a2;0ð Þ, where
a1 þ a2 ¼ r1�n

r1�1. This stationary point exists, if r1 > n > 1 or

0 < r1 < n < 1 and r1 ¼ r2. If n ¼ 1, then r1ð – 1Þ need not
be equal to r2ð – 1Þ for existence of E4, where a1 þ a2 ¼ 1.

6. The punisher-free stationary point E5 ¼ g1;0;1� g1 þ g2ð Þ,
where g1 ¼ nðr1�r3Þ

br1�r3
and g2 ¼ nð1�bÞ

br1�r3
. Clearly, g1 lies within ð0;1Þ,

if ðn� bÞr1 < ðn� 1Þr3 for br1 � r3 > 0 or,
ðn� bÞr1 > ðn� 1Þr3 when br1 � r3 < 0. Similarly,
1� g1 þ g2 < 1, if ð1� bÞ < ðr1 � r3Þ for br1 � r3 > 0 and
n > 0 or, ð1� bÞ > ðr1 � r3Þ for br1 � r3 < 0 and n > 0. The z-
component will be positive, if br1 � r3 < nðr1 � r3 � 1þ bÞ
for br1 � r3 < 0, or, br1 � r3 > nðr1 � r3 � 1þ bÞ for
br1 � r3 > 0. Also, �1 < g2 6 0, as the sum of x and z compo-
nents should be bounded above by 1 and bounded below by 0.

7. The cooperator-free stationary point E6 ¼ 0; c1;1� c1 þ c2ð Þ,
where c1 ¼ nðr2�r3Þþdðn�r3Þ

D ; c2 ¼ nð1�bþ2dÞ�dðb�dÞ
D and

D ¼ ðbr2 � r3Þ þ dðb� d� r2 � r3Þ– 0. This stationary point
exists, if
dr3 < nðr2 � r3 þ dÞ < ðb� dÞðdþ r2Þ � r3

and
dðdþ r3 � bÞ < nðr2 � r3 � d� 1þ bÞ
< br2 � r2d� r3

for D > 0

8>>>>>><
>>>>>>:

or,

dr3 > nðr2 � r3 þ dÞ > ðb� dÞðdþ r2Þ � r3

and
dðdþ r3 � bÞ > nðr2 � r3 � d� 1þ bÞ
> br2 � r2d� r3

for D < 0:

8>>>>>>>><
>>>>>>>>:

Also, �1 < c2 6 0 should be hold.
8. The interior stationary point E7 ¼ ðf1; f2; f3Þ, where
f1 ¼ �c� a� f3 þ D1;

f2 ¼ aþ c;
f3 ¼ ðn�1Þðr2�r1Þ

r1�r2�dþr1d
;

a ¼ ð1�nÞðr1�r3Þ
r1�r2�dþr1d

;

c ¼ ðb�1Þ½nðr1�r2�dÞþr1d�
r1�r2�dþr1d

;

D1 ¼ 1þ dð1�nÞ
r1�r2�dþr1d

;

and r1 � r2 � dþ r1d– 0:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

This stationary point exists, if
0 < f1; f2; f3 < 1; 0 < f1 þ f2 þ f3 6 1 and

nðr2 � r1Þ < dðr1 � 1Þ
ðn� 1Þðr2 � r1Þ > 0
for r1 � r2 � dþ r1d > 0;

8><
>:

or,
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nðr2 � r1Þ > dðr1 � 1Þ
ðn� 1Þðr2 � r1Þ < 0
for r1 � r2 � dþ r1d < 0:

8><
>:

B.2. Stationary states and their local stability

The Jacobian matrix of the system (7) at any stationary point
ðx�; y�; z�Þ can be expressed as.

Jðx�; y�; z�Þ ¼
J11 J12 J13
J21 J22 J23
J31 J32 J33

0
B@

1
CA;

where

J11 ¼ 2ð1� r1Þx� þ ð1� r1Þy� � r1z� þ ðr1 � nÞ;
J12 ¼ ð1� r1Þx�
J13 ¼ �r1x�;

J21 ¼ ð1� r2Þy�;
J22 ¼ ð1� r2Þx� þ 2ð1� r2Þy� � ðr2 þ dÞz� þ ðr2 � nÞ;
J23 ¼ �ðr2 þ dÞy�;
J31 ¼ ðb� r3Þz�;
J32 ¼ ðb� r3 � dÞz�;
J33 ¼ ðb� r3Þx� þ ðb� r3 � dÞy� � 2r3z� þ ðr3 � nÞ:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

The different equilibria of the system and their stability proper-
ties are described below:

1. The trivial equilibrium E0 is asymptotically stable node, if
r1;r2;r3 < n with n > 0. The eigenvalues ki of the Jacobian
matrix J, evaluated at E0 are given by ki ¼ ri � n; i ¼ 1;2;3.

2. The eigenvalues of JðE1Þ are

k1 ¼ n� r1;

k2 ¼ ðr1�r2Þð1�nÞ
r1�1 ;

k3 ¼ br1�r3þnð1�bþr3�r1Þ
r1�1 :

8>><
>>:

Thus, the stability criteria of the node E1 reduces to
r1 > r2; r1 > n > 1 and br1 � r3 þ nð1� bþ r3 � r1Þ < 0.

3. The eigenvalues of the Jacobian J at the stationary point E2 are
k1 ¼ ð1�nÞðr2�r1Þ
r2�1 ;

k2 ¼ n� r2;

k3 ¼ nð1�r2þr3�bþdÞþr2ðb�dÞ�r3
r2�1 :

8><
>:

The negative values of these set of eigenvalues suggest E2 is a
stable node. Thus, the solution of system (7) containing only
punishers (y) is stable, if r2 > r1; r2 > n > 1 and
nð1� r2 þ r3 � bþ dÞ þ r2ðb� dÞ � r3 < 0.

4. The eigenvalues of JðE3Þ are

k1 ¼ nðr1

r3
� 1Þ;

k2 ¼ nðr2þd�r3Þ�dr3
r3

;

k3 ¼ n� r3:

8><
>:

Hence, E3 will be a stable node, if 0 < n < r3; r3 > r1 and
dr3 > nðr2 þ d� r3Þ.

5. The eigenvalues of the Jacobian J at the stationary point
E4 ¼ ða1;a2;0Þ are
k1 ¼ ðb� r3Þ n�r1
1�r1

� da2 þ ðr3 � nÞ;
k2 ¼ 0;
k3 ¼ n� r1:

8><
>:
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Note that, a1 and a2 are related by the relation a1 þ a2 ¼ n�r1
1�r1

with r1 – 1. Therefore, the stationary point E4 is marginally
stable, if n < r1 and k1 < 0.
Till now, using the existential criterion and the negativity of the
eigenvalues, the stability of the autonomous system (7) is inves-
tigated. But, the eigenvalues of the Jacobian matrix J at the
remaining stationary points E5; E6 and E7 are very complicated
to work out. Depending on the stationary points E5; E6 and E7

and the various parameters, the roots of the complex polynomi-
als possess at least one real eigenvalue and the remaining two
characteristic roots may be complex conjugate or real, solely
depending on the different values of parameters and stationary
points E5; E6 and E7.

6. Using Routh-Hurwitz stability criterion, E5 ¼ ðg1;0;1� g1 þ g2Þ
is stable, if
g1 � r2g2 � n� dð1þ g2 � g1Þ < 0;
g1ðbþ r3 þ 2� r1Þ � r3ð1þ 2g2Þ � r1g2 � 2n < 0; and
2g1 � r1ðg1 þ g2Þ � n½ � bg1 � nþ r3ðg1 � 1� 2g2Þ½ �
þr1g1ðb� r3Þð1þ g2 � g1Þ > 0;

8>>><
>>>:

7. The cooperator-free stationary point E6 ¼ 0; c1;1� c1 þ c2ð Þ is
stable, if
c1 � r1c2 � n < 0;
c1ðbþ r3 þ 2� r2Þ � r3ð1þ 2c2Þ
�c2ðr2 þ dÞ � 2n� d < 0;
and 2ð1� r2Þc1 þ ðr2 � nÞ½ � ðb� r3 � dÞc1½
�2r3ð1� c1 þ c2Þ þ ðr3 � nÞ�
þðr2 þ dÞð1� c1 þ c2Þ 2r3ð1� c1 þ c2Þ½
�ðr3 � nÞ� > 0;

8>>>>>>>>>>><
>>>>>>>>>>>:

8. Routh-Hurwitz stability criterion yields that E7 is stable, if
a11 þ a22 þ a33 < 0;
a11a23a32 � a11a22a33 þ a12a21a33
�a12a23a31 � a13a32a21 þ a13a31a22 > 0;
�ða11 þ a22 þ a33Þða11a22 þ a11a33 þ a22a33
�a23a32 � a12a21 � a13a31Þ > ð�a11a22a33

þa11a23a32 þ a12a21a33 � a12a23a31
�a13a32a21 þ a13a31a22Þ;

8>>>>>>>>>>><
>>>>>>>>>>>:

where,

a11 ¼ 2ð1� r1ÞðD1 � a� c� f3Þ þ ð1� r1Þðaþ cÞ � r1f3 þ ðr1 � nÞ;
a12 ¼ ð1� r1ÞðD1 � a� c� f3Þ;
a13 ¼ �r1ðD1 � a� c� f3Þ;
a21 ¼ ð1� r2Þðaþ cÞ;
a22 ¼ ð1� r2ÞðD1 � a� c� f3Þ þ 2ð1� r2Þðaþ cÞ � ðr2 þ dÞf3
þðr2 � nÞ;
a23 ¼ �ðr2 þ dÞðaþ cÞ;
a31 ¼ ðb� r3Þf3;
a32 ¼ ðb� r3 � dÞf3; and
a33 ¼ ðb� r3ÞðD1 � a� c� f3Þ þ ðb� r3 � dÞðaþ cÞ � 2r3f3 þ ðr3 � nÞ:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

B.3. Analysis of the system (7), when at least one initial component of
ðx0; y0; z0Þ is zero

1. If ðx0; y0; z0Þ ¼ ð0;0;0Þ, then the system (7) will always converge
to E0 irrespective choice of any parameters, since ð0;0;0Þ is a
fixed point of the functions on the right-hand side of each of
the Eqs. (7). Physically this result will be meaningful in the
sense that there will be no entertainment of replication, if there
are no species available in the society initially.
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2. If x0 ¼ 0 and y0 ¼ 0, then the system (7) is exactly solvable and
the component of x; y will be 0 for all remaining time t, and

z ¼ ðr3�nÞ 1þtanhðc1þtÞ r3
2 �n

2ð Þ½ �
2r3

with r3 – 0, where c1 is a constant

depending on initial condition z0. This kind of initial condition
may prefer defector dominated alliance within the system
depending on the values of n and r3.

3. If x0 ¼ 0 and z0 ¼ 0, then the system will be free from coopera-
tors and defectors (x ¼ 0 and z ¼ 0) for all the remaining time t.
The fraction of punisher y will be
ðr2�nÞ 1þtanhðc2þtÞ r2

2 �n
2ð Þ½ �

2r2�2 with r2 – 1, where c2 is an initial condi-

tion dependent constant. Note that, proceeding to the limit as
t ! 1; y will be tending to r2�n

r2�1 with r2 – 1 if r2 > n.

4. If y0 ¼ 0 and z0 ¼ 0, then the punishers and defectors (y ¼ 0 and
z ¼ 0) will die out. The empty initial state with respect to the
punishers and defectors actually do not give them opportunity
to replicate in future. However, the fraction of cooperator x will

be
ðr1�nÞ 1þtanhðc3þtÞ r1

2 �n
2ð Þ½ �

2r1�2 with r1 – 1, where c3 is x0 dependent

constant.
5. If only z0 ¼ 0, then extinction of defectors will happen. Now, if

r1 ¼ r2 and ð1� r1Þðxþ yÞ þ ðr1 � nÞ – 0, then y ¼ c4x, where
c4 is a constant. Also, if r1 ¼ r2 and
ð1� r1Þðxþ yÞ þ ðr1 � nÞ ¼ 0, then x ¼ y ¼ 0, and thus all spe-
cies will die out.

6. If only y0 ¼ 0, then y ¼ 0 and generates a punisher-free society.
Under this circumstance, E5 will be stable, if
g1ðbþ r3 þ 2� r1Þ � r3ð1þ 2g2Þ
�r1g2 � 2n < 0; and
2g1 � r1ðg1 þ g2Þ � n½ � bg1 � nþ r3ðg1 � 1� 2g2Þ½ �
þr1g1ðb� r3Þð1þ g2 � g1Þ > 0:

8>>><
>>>:

7. If only x0 ¼ 0, then all cooperators will be vanished (x ¼ 0).
Other non-zero components of initial condition y0; z0 – 0 leads
to stable stationary point E6, if
c1ðbþ r3 þ 2� r2Þ � r3ð1þ 2c2Þ
�c2ðr2 þ dÞ � 2n� d < 0;
and 2ð1� r2Þc1 þ ðr2 � nÞ½ � ðb� r3 � dÞc1½
�2r3ð1� c1 þ c2Þ þ ðr3 � nÞ� þ ðr2 þ dÞð1� c1 þ c2Þ
2r3ð1� c1 þ c2Þ � ðr3 � nÞ½ � > 0:

8>>>>>><
>>>>>>:
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