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Despite temporally forced transmission driving many infectious diseases, analytical insight into its role

when combined with stochastic disease processes and non-linear transmission has received little

attention. During disease outbreaks, however, the absence of saturation effects early on in well-mixed

populations mean that epidemic models may be linearised and we can calculate outbreak properties,

including the effects of temporal forcing on fade-out, disease emergence and system dynamics, via

analysis of the associated master equations. The approach is illustrated for the unforced and forced SIR

and SEIR epidemic models. We demonstrate that in unforced models, initial conditions (and any

uncertainty therein) play a stronger role in driving outbreak properties than the basic reproduction

number R0, while the same properties are highly sensitive to small amplitude temporal forcing,

particularly when R0 is small. Although illustrated for the SIR and SEIR models, the master equation

framework may be applied to more realistic models, although analytical intractability scales rapidly with

increasing system dimensionality. One application of these methods is obtaining a better understanding

of the rate at which vector-borne and waterborne infectious diseases invade new regions given variability

in environmental drivers, a particularly important question when addressing potential shifts in the global

distribution and intensity of infectious diseases under climate change.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Many infectious and non-infectious diseases demonstrate
strong seasonal patterns in prevalence, with transmission of
climatically dependent infectious diseases, such as malaria, only
possible during limited periods of the year in many locations
(typically influenced by temperature or rainfall characteristics
(Craig et al., 1999)). Childhood diseases such as measles have also
been recognised as forced by the nature of the school year, with the
significantly higher contact rates during term times, when com-
bined with other drivers of measles, shown to lead to the recurrent
cyclical nature of incidence data (Keeling and Grenfell, 2002;
Conlan and Grenfell, 2007). More generally, four key mechanisms
have been identified as potential causes of seasonality in infectious
disease systems in reviews elsewhere (Altizer et al., 2006; Grassly
and Fraser, 2006), which in the context of climate-driven vector-
borne diseases may be summarised as (a) changing contact
patterns or behaviours (e.g. biting rates, human migration/move-
ment patterns, vector dispersal), (b) changing environmental
conditions (e.g. affecting biting rates, vector survival and the
ll rights reserved.
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duration of parasite lifecycles), (c) fluctuations in demographic
rates and intermediate host population dynamics (e.g. mosquitoes,
snails and ticks) and (d) changes in underlying host immunity
continuing to replenish the pool of susceptibles. It is also clear that
such mechanisms may drive system dynamics on a range of
timescales from hourly to long-term inter-annual variability and
influences from mechanisms such as El Niño-Southern Oscillation
(ENSO).

The inclusion of such mechanisms in infectious disease models
also affects our interpretation of fundamental epidemiological
concepts such as the basic reproduction number R0, which needs
to account for when infection is introduced, as this may strongly
influence outbreak properties such as the likelihood of invasion,
real-time growth rate and fade-out. Such considerations are closely
linked with decisions regarding the timing and choice of suitable
intervention strategies given local biological and environmental
conditions (Grassly and Fraser, 2006), which clearly will also be
important for guiding the design of adaptation strategies against
vector-borne microparasitic infections, such as malaria, as a result
of climate change (Ruiz et al., 2008).

Realistic mathematical models of infectious disease transmission,
in general, reside on the edge of analytical tractability due to non-
linearity in the transmission process, with even the simplest determi-
nistic transmission model, namely the SIR model developed by
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Kermack and McKendrick (1927), only approximately solvable. Thus, it
is clear that the additional inclusion of temporal forcing in transmis-
sion models only serves to further complicate our understanding
and despite approximate results on the behaviour of such models
(Dietz, 1976), generic and rigorous analytical methods are currently
lacking (Keeling and Rohani, 2007), although some theoretical
research has recently emerged on the derivation of the basic repro-
duction number and epidemic growth rate in seasonally forced
systems (Bacaër, 2007; Bacaër and Ouifki, 2007).

Furthermore, the analysis of temporally forced non-linear
epidemic models within stochastic frameworks has received little
attention to date due to the complexity of the problem, despite
representing the most realistic framework for capturing the
behaviour of many intrinsically or extrinsically forced infectious
diseases. However, for infections in the early stages of emergence in
homogeneous populations, the lack of population immunity or the
small fraction of infected individuals means that the non-linear
effect of saturation can be neglected and the problem reduces to a
temporally forced linear stochastic system. Thus, we make the
implicit general assumption here that temporal forcing in trans-
mission takes place on shorter timescales than disease outbreak
dynamics, which allows us to illustrate more transparently the
theoretical framework incorporating the effects of stochasticity
and seasonality, as well as highlighting key analytical insights. We
note, however, that this assumption is likely to be most relevant to
understanding the dynamics of seasonal infectious diseases with
either small basic reproduction numbers, long generation times or
both, as well as infections (particularly vector-borne diseases)
strongly driven by changes in environmental or climatic variables,
though it is worth noting that the linearising assumption is, in
general, unlikely to hold over the entire duration of temporal
changes in transmission.

Here, we begin analysis of this problem by developing and using
the framework of master equations to better understand the
dynamics of infectious disease outbreaks in this regime, an issue
often of paramount public-health importance in assessing the
speed, timing and intensity at which intervention measures should
be introduced to control spread. The use of master equations,
whereby the probability of occurrence of each possible disease
state is simultaneously considered, to understand the behaviour of
stochastic infectious disease models has been described elsewhere
(Keeling and Ross, 2008), along with applications to epidemic
processes in homogeneous models (Chen and Bokka, 2005) and
structured/hierarchical models (Grabowski and Kosinski, 2004;
Rozhnova and Nunes, 2009), yet by comparison to their determi-
nistic counterparts, relatively little infection modelling work has
adopted such methods. The approach has, however, been used to
address specific questions such as the prospects for control and
elimination of onchocerciasis in Africa (Duerr and Eichner, 2010),
coevolution in ecological communities (Dieckmann and Law,
1996), the dynamics of systems with competing strains of varying
pathogenicity (Stollenwerk and Jansen, 2003), stochastic metapo-
pulation dynamics (Alonso and McKane, 2002), the role of immu-
nity in small livestock populations on transmission dynamics (Viet
and Medley, 2006) and the effect of density-dependence and time-
varying susceptibility on plant disease dynamics (Stollenwerk and
Briggs, 2000). A key outcome of the method is that irrespective of
the complexities and non-linearities involved in the transmission
dynamics, this approach is linear and thus allows ready analytical
insights into the behaviour and process dynamics of stochastic
systems.

Given that SIR and SEIR compartmental approaches continue to
form the basis of many infectious disease models of microparasites,
we analyse the effect of variability in transmission on the outbreak
properties of both, but emphasise that the approach may be
equivalently applied to higher dimensional systems typical of
more complex or realistic models. In particular, we suggest that
such modelling frameworks will represent an important advance
for facilitating a more realistic understanding of how predicted
climate change may govern the invasion properties of vector-borne
microparasitic diseases into newly at-risk populations.
2. The unforced SIR model

2.1. Deterministic analysis

Consider first the dynamics of the SIR epidemic model, repre-
senting the simplest compartmental approach to modelling infec-
tious disease transmission of microparasites (Anderson and May,
1992), where S(t), I(t) and R(t) represent the number of susceptible,
infectious and recovered individuals at time t. If b represents the
pathogen transmission rate and g the recovery rate (such that 1/g is
the average duration of infectiousness), the model dynamics in a
closed population (of size N¼S+ I+R) in the absence of demography
are captured by the simple ODEs

_S ¼�
bSI

N
,

_I ¼
bSI

N
�gI ð1Þ

and subject to the initial conditions S(0)¼S0, I(0)¼ I0 and R(0)¼0.
However, during the early stages of an outbreak when the number
of infectious individuals is small, S/NE1 and the number of
infected individuals is given by

_I � bI�gI, ð2Þ

which is readily solved as I(t)¼ I0e(b�g)t. We can equivalently
rewrite this solution in terms of the basic reproduction number
R0, representing the average number of secondary individuals
infected per primary case in an entirely susceptible population,
and average generation time TG, representing the average time
from an individual becoming infected to themselves passing on
infection to a secondary case, when transmission is independent of
time as

IðtÞ ¼ I0eððR0�1ÞtÞ=TG ð3Þ

where R0¼b/g and TG¼1/g, from which it is clear that the
deterministic epidemic grows exponentially whenever R041.
The doubling time of the outbreak TD, the duration of time for
the initial number of cases to double, can be immediately derived as
TD¼TG ln 2/(R0�1).

2.2. Stochastic analysis

The linearisation of (1) in the absence of saturation effects early
on means that the number of infectious individuals in the SIR model
corresponds to a simple birth–death process in a stochastic frame-
work during the invasion stage, with per capita birth and death
rates b and g, respectively. If we define pi(t) as the probability that
we have i infectious individuals at time t, the relevant master
equation is

dpiðtÞ

dt
¼�ðbþgÞipiðtÞþgðiþ1Þpiþ1ðtÞþbði�1Þpi�1ðtÞ: ð4Þ

Defining the probability generating function Gðz,tÞ ¼
P1

i ¼ 0 pi tð Þzi

transforms (4) to the first-order PDE

@Gðz,tÞ

@t
¼ ðz�1Þðbz�gÞ @Gðz,tÞ

@z
, ð5Þ

which may be solved using Lagrange’s method of characteristics.
Upon solution, the original probabilities may be obtained as
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pi(t)¼G(i)(0, t)/i! where G(i)(z, t) refers to the ith derivative of G(z, t)
with respect to z. We consider two possible initial conditions.

Case I: Known initial conditions: For the case where I(0)¼ I0 and
hence pið0Þ ¼ diI0

(where dij is the Kronecker delta), we solve (5)
subject to Gðz,0Þ ¼ zI0 , leading to the solution

Gðz,tÞ ¼
ðz�1Þþð1�R0zÞe�ððR0�1ÞtÞ=TG

R0ðz�1Þþð1�R0zÞe�ððR0�1ÞtÞ=TG

� �I0

: ð6Þ

The probability of extinction as the outbreak unfolds under Case I is
given by substituting z¼0 into (6) (Fig. 1(a)), giving ð1=R0Þ

I0 as the
asymptotic probability of extinction. It is clear, however, that this
result overestimates the true likelihood of fade-out during the early
stages of an outbreak, since the birth–death model only works as an
approximation when the number of infectious individuals is a
small fraction of the total population. A more reasonable estimate
of the extinction probability may be obtained by evaluating (6) at a
more appropriate outbreak time, namely the doubling time TD, so
that substituting t¼TD¼TG ln 2/(R0�1) and z¼0 into (6) gives the
fade-out probability at this point as ð1=ð2R0�1ÞÞI0 . This is a factor of
ð2�1=R0Þ

I0 less than the asymptotic result, e.g. for an outbreak with
R0¼2 seeded by one individual, P0(N)¼1/2, while P0(TD)¼1/3
(Fig. 1(b)). It is clear from Fig. 1(b) that, in this case, the likelihood of
fade-out is considerably more sensitive to the number of indivi-
duals seeding the outbreak than the basic reproduction number,
highlighting the importance of contact tracing and local surveil-
lance to rapidly identify potentially infected individuals, the role of
asymptomatic infectious individuals in determining the effective-
ness of early disease control (Fraser et al., 2004) and the difficulty in
containing outbreaks with multiple infection foci, even for patho-
gens with a low reproduction number.

Case II: Uncertain initial conditions: For the case of uncertain
initial conditions where the initial number of infectious individuals
Fig. 1. For the unforced SIR model, (a) p0(t) for Case I with I0¼1 and TG¼5 days for

different R0 and (b) the instantaneous fade-out probability p0 for Case I at the

doubling time TD as a function of R0 and I0.
is Poisson distributed with mean I0 and hence pið0Þ ¼ e�I0 Ii
0=i!, we

solve (5) subject to Gðz,0Þ ¼ e�I0ðz�1Þ, leading to the solution

Gðz,tÞ ¼ exp
I0ð1�R0Þð1�zÞ

R0ð1�zÞ�ð1�R0zÞe�ððR0�1ÞtÞ=TG

� �
: ð7Þ

It is readily shown by substituting z¼0 that the asymptotic
probability of fade-out under Case II is exp(I0(1�R0)/R0), while
estimation at the outbreak doubling time gives the extinction
probability exp(2I0(1�R0)/(2R0�1)). For an R0¼2 outbreak seeded
by drawing a random number of infectious individuals from a
Poisson distribution with unit mean, p0(N)¼e�1/2E0.61 and
p0(TD)¼e�2/3E0.51, demonstrating the higher probability of
fade-out in outbreaks with uncertainty in the initial conditions
for a given R0 (Fig. 2), and the difference becomes increasingly
evident as R0 increases. For outbreaks seeded with a mean of only
one or two individuals, there is a significantly greater probability of
fade-out in Case II compared to Case I and this does not become
vanishingly small at large R0 due to the non-zero proportion of
Fig. 2. For the unforced SIR model, (a) p0(t) for Case II with I0¼1 and TG¼5 days for

different R0, (b) the instantaneous fade-out probability p0 for Case II at the doubling

time TD as a function of R0 and I0 and (c) Var(I(TD)) as a function of R0 for Cases I and II

initial conditions (illustrated for I0¼1).
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outbreaks that do not take-off due to initial seeding with zero
infectious individuals. It is also clear that independent of any
uncertainty in the initial conditions, outbreak dynamics are more
sensitive to the initial number of cases than the reproduction
number of the pathogen, a result that has important implications
for mitigation and control policies.

We can calculate the mean and variance of the number of
infectious individuals from EðIðtÞÞ ¼ Guð1,tÞ and VarðIðtÞÞ ¼ Guð1,tÞþ
Guð1,tÞ�ðGuð1,tÞÞ2, respectively. For Cases I and II, we obtain
EðIðtÞÞ ¼ I0eððR0�1ÞtÞ=TG , which, as expected, agrees with the determi-
nistic solution, while the variance is given by

VarðIðtÞÞ ¼
I0ðR0þ1Þ

ðR0�1Þ
eððR0�1ÞtÞ=TG eððR0�1ÞtÞ=TG�1

� �
ð8Þ

in Case I and

VarðIðtÞÞ ¼ I0eððR0�1ÞtÞ=TG 1�2R0þ2R0eððR0�1ÞtÞ=TG

� �
ð9Þ

in Case II. Evaluating (8) and (9) at the doubling time TD to illustrate
the variability in these scenarios early on gives VarðIðTDÞÞ ¼

2I0ðR0þ1Þ=ðR0�1Þ and VarðIðTDÞÞ ¼ 2I0ð3R0�1Þ=ðR0�1Þ for Cases I
and II, respectively, with variability in early case numbers directly
proportional to the number of seeding individuals in both scenar-
ios. Thus, there is considerably more variability in the case of
uncertainty in the initial conditions by a factor of (3R0�1)/(R0+1),
tending to a factor of three as R0 increases. This greater variability
for a given R0 (Fig. 2(c)) is consistent with the higher extinction
probability under these conditions; for a given average number of
cases, we must also have large outbreaks to compensate for those
outbreaks that fade-out and thus the variance in the initial number
of cases increases (see also Miller et al., 2010). It should be noted
that this difference in variability is independent of I0 and depends
only on the reproduction number.
3. The forced SIR model

We now consider how the previous analysis and insights are
modified for the SIR model in the presence of temporally forced
transmission. Models which additionally have g¼g(t) will not be
explicitly considered, since the linearity of the problem results in
the analysis being readily extendable to this case. It should be
noted, however, that such systems arise in climatically driven
vector-borne disease models where vector survival is dependent on
temperature and rainfall (Martens, 1998).

The functional form of the forcing term used to drive infectious
disease models has been shown to profoundly affect the resultant
disease dynamics (Keeling and Rohani, 2007). Here, we consider
two functional forms, namely a simple sinusoid of the form

bðtÞ ¼ b0 1þb1 cosot
� �

ð10Þ

and the two-state forcing term

bðtÞ ¼ b0ð17b1Þ, ð11Þ

where the plus and minus sign, respectively, correspond to high
and low transmission seasons. In many applications, (11) is
modified for systems that spend unequal durations of time with
high and low transmission, with the most common example that of
fewer days of low transmission between school children due to the
structure of the school year in the case of measles, but the
generalisation of the subsequent analysis to this case is straightfor-
ward and we only consider (11) to reduce the number of para-
meters and complexity of the analysis.

In both cases,b0 represents the average transmission rate over one
period and b0b1 the maximum amplitude of the variation in
transmission about the mean, so that b0¼0.1 corresponds to a
transmission rate 10% greater than the mean. While we consider
only deterministically forced transmission models, it should be noted
that the temporal forcing mechanisms of many systems are often
subject to variability themselves. Thus, such systems are, in general,
doubly stochastic with the form of the forcing function taking the
form of (10) or (11) plus a noise term, but we do not pursue this here.

3.1. Deterministic analysis

For time-dependent disease transmission, integrating the
equivalent form of (1) with b¼b(t), subject to I0 initially infectious
individuals, gives

IðtÞ ¼ I0e�gtþ
R t

0
bðtÞdt , ð12Þ

whereupon

IðtÞ ¼ I0eðb0�gÞteððb0b1Þ=oÞsinot|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl} ð13Þ

for forcing function (10). The underbrace denotes the modification
factor to the constant transmission case due to temporal forcing
and where the basic reproduction number continues to be given by
R0¼b0/g. With sinusoidal forcing, the impact of periodicity inb(t) is
determined by o, since for periodic changes in transmission that
occur on short timescales compared to outbreak dynamics
(characterised by the generation time TG), the baseline outbreak
behaviour is strongly modulated by the shape of the sinusoidal
forcing. However, for annual forcing (where ot is relatively small),
the impact of oscillatory behaviour on outbreak timescales is likely
to be minimal.

For the forcing function (11), if the timescale of seasonal
changes in transmission is long compared to the timescale of the
outbreak dynamics, the resultant difference in prevalence DI(t)
between the higher and lower transmission regimes is given by

DIðtÞ ¼ I0eðb0�gÞt2sinhb0b1t|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}, ð14Þ

where the underbrace again denotes the effect on the invasion
dynamics of differences in transmission from the baseline case of
constant transmissionb0. In this case, R0¼b0/g only if the durations
of the high and low transmission regimes are equal in length.
In addition, if we have rapid initial growth of the epidemic and
the timescale of changes in transmission is short compared to the
timescale of the outbreak dynamics, it is worth noting that the
assumption of linearity in the transmission model may break down
before the transition from high to low transmission in (11) can
occur. Either way, it is clear from (13) and (14) that small changes in
transmission have a strong effect on increasing prevalence com-
pared to the case of constant transmission and this increases
exponentially with the amplitude of forcing b1, e.g. a 49% and 82%
increase in prevalence at t¼2TG and t¼3TG, respectively, for a 10%
increase in transmission (Fig. 3). This exponential effect becomes
stronger still with increasing R0, while the initial conditions have
only a linear effect on prevalence.

3.2. Stochastic analysis

The equivalent stochastic system for the forced SIR model is the
non-homogeneous birth–death process, with the relevant PDE for
G(z, t) given by substituting b¼b(t) into (5). If we define

JðtÞ ¼

Z t

0
bðtÞegt�

R t

0
bðtuÞdtu dt, ð15Þ

solution via the method of characteristics gives

Gðz,tÞ ¼
ðz�1Þþegt�

R t

0
bðtÞdt
�ðz�1ÞJðtÞ

egt�
R t

0
bðtÞdt
�ðz�1ÞJðtÞ

0
@

1
AI0

ð16Þ



Fig. 3. I(t) for the SIR model with constant transmission (b1¼0) and the forcing

function (11) with 10% (b1¼70.1) and 20% (b1¼70.2) changes in transmission

(where TG¼5 days, I0¼5 and R0¼2).

Table 1
Extinction probability and variance of the forced SIR model under Cases I and II

initial conditions (where rðtÞ ¼ gt�
R t

0 bðtÞdt).

Case I Case II

p0ðtÞ erðtÞ þ JðtÞ�1

erðtÞ þ JðtÞ

� �I0

exp
�I0

erðtÞ þ JðtÞ

� �
VarðIðtÞÞ I0e�2rðtÞ 2JðtÞþerðtÞ�1

� �
I0e�rðtÞ 1þ2JðtÞe�rðtÞ

� �

Fig. 4. p0(t) at different b1 for (a) Case I with R0¼2 and (b) Case II with R0¼4. (c)

Var(I(TD0)) as a function of R0 for different values of b1 for Case II (where TD0 is the

doubling time of the associated unforced system). In all cases, TG¼5 days and I0¼1.

P.E. Parham, E. Michael / Journal of Theoretical Biology 271 (2011) 1–9 5
for Case I and

Gðz,tÞ ¼ exp
I0ðz�1Þ

egt�
R t

0
bðtÞdt
�ðz�1ÞJðtÞ

0
@

1
A ð17Þ

for Case II. In both cases, the mean is given by

EðIðtÞÞ ¼ I0e�gtþ
R t

0
bðtÞdt, ð18Þ

which agrees with the deterministic solution. The extinction
probability and variance in each case is shown in Table 1. It is
clear, however, that the analytical tractability of the forced SIR
model is strongly dependent on the functional form of the
transmission function. Indeed, computation of J(t) for (10) and
most realistic functions with an explicit time-dependence is not
possible and although integral approximations may be developed,
we solely consider (11) as our function. It is also worth noting that
J(t), and hence p0(t), may be analytically calculated only in the case
of constant transmission or where b(t) depends linearly on time;
any non-linear transmission function, periodic or otherwise, pre-
vents exact calculation (although may, of course, be calculated
numerically). However, it is readily seen, given the form of the
integrand in (15), that the extinction probability depends con-
siderably more strongly on early transmission rates than those
later on, with this dependence decaying approximately exponen-
tially with time. We note also that further theoretical and numer-
ical analysis contrasting the effects of the functional form of b(t)
(and doubly stochastic functions) on outbreak dynamics is post-
poned to future work.

Seasonal increases in transmission lead to smaller likelihoods of
extinction following an outbreak (Fig. 4a), with the probability
increasing with additional uncertainty in initial conditions, partially
due to the fact that p0(0)¼0 for Case I, while p0ð0Þ ¼ e�I0 for Case II. The
linear nature of the system and form of the forcing function means that
linear changes inb1 lead to approximately linear changes in p0(t). As in
the unforced system, the biggest contribution to early fade-out is from
the initial conditions (and any uncertainty therein), with the role of R0

and seasonality (for most realistic values of b1) assuming a far less
important role, although it should be noted that this may vary with
other functional forms with larger amplitude changes inb(t) over short
timescales. As R0 increases, p0(t) reduces and tends to its equilibrium
value more rapidly and increasing seasonality has less effect on fade-
out as R0 increases. At low R0, small perturbations in transmission can
take the system below R0¼1, while considerably larger perturbations
are required to have a comparable effect at larger R0 (Fig. 4b).

Increasing b1 also increases the variance in the number of cases
for a given R0, particularly at lower R0. By comparing to the b1¼0
case, we can better understand the contrasting roles of stochasti-
city and seasonality. At small b1, the linearity of the system means
that stochasticity in the underlying disease processes plays a more
significant role when R0 is large, while at small R0, the majority of
the variance may be attributed to seasonal changes in transmission
(e.g. a 10% increase in transmission in Case I accounts for 72% of the
variance when R0¼1.1, but only 17% of the variability when R0¼6).
However, the role of seasonality clearly increases with b1 and only
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moderate levels of seasonality are required to dominate the
variability arising from disease processes, even at large R0. Finally,
note that the role of seasonality versus stochasticity is relatively
independent of any uncertainty in the initial conditions when b1 is
small, with the role in Cases I and II very similar despite the
additional source of variability from the initial conditions in the
latter, while there is considerably greater sensitivity tob1 in the full
non-linear system.
4. The unforced SEIR model

4.1. Deterministic analysis

We now consider the SEIR epidemic model, where the addi-
tional compartment tracks the number of individuals who are
infected, but not yet infectious, with the pathogen at time t and we
denote this by E(t). If s represents the rate at which individuals
become infectious (so that 1/s represents the average duration of
latency), the model dynamics in a closed population (of size
N¼S+E+ I+R) in the absence of demography are given by

_S ¼�
bSI

N
,

_E ¼
bSI

N
�sE,

_I ¼ sE�gI, ð19Þ

with the additional initial condition E(0)¼E0. Under the invasion
approximation S/NE1, the system reduces to

_E
_I

 !
¼
�s b
s �g

 !
E

I

� �
, ð20Þ

whereupon calculating the eigenvalues r of the matrix

M¼
�s b
s �g

 !
requires solution of the characteristic equation

r2þðsþgÞrþsðg�bÞ ¼ 0, ð21Þ

so that since R0¼b/g, we obtain

r¼
1

2
�ðsþgÞ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþgÞ2þ4sgðR0�1Þ

q� �
, ð22Þ

from which it is again clear that the epidemic requires R041 to
take-off. Denoting the two solutions as r1 and r2 for the positive and
negative roots, respectively, we obtain

IðtÞ ¼ Aer1tþBer2t , ð23Þ

whereupon imposing the initial conditions E(0)¼E0 and I(0)¼ I0

gives A¼(sE0� I0(g+r2))/(r1�r2) and B¼(sE0� I0(g+r1))/(r2�r1).
When R041, r141 and r240 always and the first term in (23)
dominates, with the ratio I(t)/E(t) tending towards the equilibrium

distribution (I/E)n¼(r2+s)/b, found by calculating the eigenvector
corresponding to the eigenvalue r1. Note that if the system does not
initially possess the equilibrium distribution, the difference
between the system with E(0)¼E0 and I(0)¼ I0 and (I/E)n in the
direction of the (smaller) eigenvector of M (corresponding to r2)
decays over time at rate r2.

Thus, while we cannot uniquely define the real-time growth
rate in this model, it is clear that as the outbreak progresses (but
before the depletion of susceptibles takes effect), the first term on
the RHS of (23) increasingly dominates such that the doubling time
TD is approximately given by ln 2/r1. The average generation time in
this model is TG¼1/s+1/g, but unlike the SIR model, we are unable
to reparameterise the growth rate only in terms of R0 and TG.
4.2. Stochastic analysis

In the stochastic representation of the SEIR model, exposed
individuals give rise to infectious individuals when they die at per
capita rate s, while infectious individuals give birth to exposed
individuals at per capita rate b and die at rate g. If we let pijðtÞ

represent the probability that we have i exposed and j infectious
individuals at time t, the master equation becomes

dpijðtÞ

dt
¼�ððbþgÞjþsiÞpijðtÞþbjpi�1jðtÞ

þsðiþ1Þpiþ1j�1ðtÞþgðjþ1Þpijþ1ðtÞ: ð24Þ

By extension to the method of solution in Section 2.2, we define the
joint probability generating function Gðz1,z2,tÞ ¼

P1
i,j ¼ 0 pijðtÞz

i
1zj

2,
multiply (24) by zi

1zj
2 and sum each term over i and j to obtain

@Gðz1,z2,tÞ

@t
¼ sðz2�z1Þ

@Gðz1,z2,tÞ

@z1
þðgð1�z2Þ

þbz2ðz1�1ÞÞ
@Gðz1,z2,tÞ

@z2
: ð25Þ

Solution of (25) via Lagrange’s method, however, can only be
written in terms of a characteristic ODE that, to the best of our
knowledge, cannot be solved exactly. Although this means that an
exact expression for the fade-out probability of the SEIR model
cannot be derived, we can calculate moments of the underlying
probability distribution.

Let us first define the joint moment generating function
Mðy1,y2,tÞ ¼

P1
i,j ¼ 0 pijðtÞe

y1 iey2 j, so that comparing to the definition
of Gðz1,z2,tÞ and making the substitutions zk ¼ eyk and @zk ¼ eyk@yk

for k¼1, 2 maps (25) onto a PDE in Mðy1,y2,tÞ, which, upon
expansion, allows calculation of the marginal and joint
moments about zero. Since we are particularly interested in the
variance early on, we switch to cumulants, rather than moments.
Defining the cumulant generating function Kðy1,y2,tÞ ¼P1

i,j ¼ 0 KijðtÞðy
i
1=i!Þðyj

2=j!Þ (where kij are the joint cumulants) and
making the substitutions Kðy1,y2,tÞ ¼ lnMðy1,y2,tÞ and @Mðy1,y2,tÞ ¼
ek@Kðy1,y2,tÞ gives

@Kðy1,y2,tÞ

@t
¼ sðey2�y1�1Þ

@Kðy1,y2,tÞ

@y1
þ ge�y2þbey1�g�b
� � @Ky1,y2,tÞ

@y2
:

ð26Þ

Substituting the definition of Kðy1,y2,tÞ into (26), expanding the
exponentials as a power series and equating coefficients of y1 and y2

gives the first cumulant equations

k10u ¼ bk01�sk10,

k01u ¼ sk10�gk01, ð27Þ

while expanding for the covariances by equating coefficients of y1
2, y2

2,
and y1y2 gives

k20u ¼ 2bk11þbk01�2sk20þsk10,
k02u ¼�2gk02þgk01þ2sk11þsk10,

k11u ¼ bk02�gk11�sk11þsk20�sk10: ð28Þ

We consider again two initial conditions.
Case I: Known initial conditions: For the case where E(0)¼E0,

I(0)¼ I0 and hence pijð0Þ ¼ diE0
djI0

, we have Gðz1,z2,0Þ ¼ zE0

1 zI0

2 ,
Mðy1,y2,0Þ ¼ ey1E0 ey2I0 and thus Kðy1,y2,0Þ ¼ y1E0þy2I0. This imme-
diately implies that k10(0)¼E0, k01(0)¼ I0 and kij(0)¼0 for all other
ij combinations.

Case II: Uncertain initial conditions: For the case of uncertain
initial conditions where E(0)�P0(E0), I(0)�P0(I0) and hence
pijð0Þ ¼ ðe

�E0 Ei
0=i!Þðe�I0 Ij

0=j!Þ, we have Gðz1,z2,0Þ ¼ eE0ðz1�1ÞeI0ðz2�1Þ,
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Mðy1,y2,0Þ ¼ expðE0ðe
y1�1Þþ I0ðe

y2�1ÞÞ and thus Kðy1,y2,0Þ ¼
lnMðy1,y2,0Þ ¼ ðE0ðe

y1�1Þþ I0ðe
y2�1ÞÞ. Expanding the RHS in terms

of cumulants and evaluating at t¼0 implies that ki0(0)¼E0 for all i,
k0j(0)¼ I0 for all j and kij(0)¼0 for all other ij combinations.

It is readily shown, through similar analysis to Section 4.1, that

k0001þðsþgÞk01u þsðg�bÞk01 ¼ 0, ð29Þ

with solution

k01ðtÞ ¼ Aer1tþBer2t , ð30Þ

where A, B, r1 and r2 are identical to the definitions in Section 4.1,
while

k10ðtÞ ¼ Cer1tþDer2t ð31Þ

where C¼(bI0�sE0�E0r2)/(r1�r2) and D¼(bI0�sE0�E0r1)/(r2�r1).
Both results agree, as expected, with the deterministic solution. Similar
manipulation of the second-order cumulant equations leads to non-
homogeneous equations with constant coefficients of the form

A3k00002þA2k0002þA1k02u þA0k02 ¼ f ðtÞ, ð32Þ

where Ak (for k¼0, 1, 2, 3) are constants dependent on b, s and g and
f(t) arises from the dependence of the covariances on the means k01(t)
and k10(t). While exactly solvable, (32) gives solutions for Cases I and II
that are too unwieldy to reproduce or provide significant insight and
we thus proceed numerically. Note that both k20 and k11 follow
identical equations structurally to (32), but with different definitions
of Ak.

As with the stochastic SIR model, we consider the variability in
prevalence as a function of R0 at the doubling time TD, calculated as
the solution of

2I0 ¼ Aer1TDþBer2TD , ð33Þ

from which it is clear that, unlike the SIR model, a closed form
expression for TD in terms of R0 and TG is not possible. However,
numerical solution of (33) is straightforward and Fig. 5 contrasts
the variability of the SIR and SEIR models for Cases I and II initial
conditions. As expected, there is greater variability in prevalence
under Case II compared to Case I and this difference increases with
R0. For a given set of initial conditions and R0, the variability in
prevalence is always greater in the SEIR model, particularly when
R0 is small, due to the additional process of latency. As R0 increases,
however, the two models converge in variability and this holds
independent of whether we impose Case I or Case II conditions. It is
also worth noting that when R0o1.5, inclusion of the latency
process may generate greater variability in prevalence than the
equivalent SIR model with uncertain initial conditions when I0 is
small (Fig. 5).
Fig. 5. k02(TD)¼Var(I(TD)) as a function of R0 for Cases I and II initial conditions for

the unforced SEIR model (where E0¼0, I0¼1 and the average latent and infectious

periods are 2 and 3 days, respectively).
5. The forced SEIR model

5.1. Deterministic analysis

As with the forced SIR model, analytical tractability of the
system reduces considerably in the presence of explicit temporally
forced transmission, but progress can be made in the deterministic
case. For the general case b¼b(t), the number of infectious
individuals is given by the solution to

€IþðsþgÞ_Iþsðg�bðtÞÞI¼ 0 ð34Þ

and the nature of the solution is strongly dependent on the form of
b(t). For the simple two-state forcing function (11), substituting
I(t)¼ert gives

r¼
1

2
�ðsþgÞ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþgÞ2þ4sðb0ð17b1Þ�gÞ

q� �
, ð35Þ

so that

IðtÞ ¼ Aer3tþBer4t ð36Þ

where r3 and r4 are the positive and negative roots of (35), respectively,
and A and B are identical to the definitions in Section 4.1. For the
sinusoidal forcing function (10), substituting into (34) gives the
solution

IðtÞ ¼ e�ð1=2ÞðgþsÞt a1C a,q,
1

2
ot

� �
þa2S a,q,

1

2
ot

� �� �
ð37Þ

where Cða,q,1
2otÞ and Sða,q,12otÞ are the even and odd Mathieu

functions, respectively, with characteristic value a¼(2gs�g2
�4b0s�

s2)/o2 and parameter q¼2b0b1s/o2. Substituting the initial condi-
tions and using the fact that C(a, q, 0)¼S0(a, q, 0)¼1 and C0(a, q, 0)¼
S(a, q, 0)¼0 gives a1¼ I0 and a2¼1/2(s(2E0+I0)�gI0).

Unlike the SIR model, the prevalence cannot be written as a
product of a constant transmission term and modulation factor
arising from seasonal forcing, so we resort to numerical analysis of
(36) (Fig. 6(a)). As with the forced SIR model, small changes in b1

can have strong non-linear influences on increasing prevalence
compared to the case of constant transmission, e.g. a 31% and 51%
increase in prevalence at t¼2TG and t¼3TG, respectively, for a 10%
increase in transmission (cf. Section 3.1), particularly true with
increasing R0, although small changes in transmission take longer
to propagate through the system and affect prevalence due to the
delay of latency. The addition of latency into the model slows the
rate at which prevalence increases, so that at any given time and R0,
the mean prevalence will be lower in the SEIR model than the SIR
model. Thus, the effect of temporal forcing is reduced since there is
more underlying stochasticity in the system and this dominates the
dynamics when b1 is relatively small. Although intractable to
demonstrate analytically for the SEIR model, the effect of increasing
b1 on prevalence is also exponential, while the initial conditions
additionally play a stronger role.

5.2. Stochastic analysis

As with the equivalent model incorporating temporally forced
transmission in the stochastic SIR framework, analytical progress with
an explicit time-dependence in b(t) is limited to reduction of the
problem to a characteristic ODE that cannot be solved exactly.
However, as with the SIR model, progress can be made for the 2-state
forcing function. Substituting (11) into (27) and (28) gives solutions for
the means that agree with the deterministic analysis, while solving for
the second-order cumulants gives equations of the form

A3ðtÞk00002þA2ðtÞk0002þA1ðtÞk02u þA0ðtÞk02 ¼ f ðtÞ ð38Þ

for the variance of both Es and Is (where Ak for k¼0, 1, 2, 3 are defined as
per (32)). Once again, although (38) may, in principle, be solved exactly,



Fig. 6. (a) k01(t)¼E(I(t)) for the SEIR model with constant transmission and the

forcing function (11) with 10% and 20% changes in transmission (where E0¼0, I0¼5,

R0¼2 and we assume latent and infectious periods of 2 and 3 days, respectively).

(b) k02(TD0)¼Var(I(TD0)) as a function of R0 for different values of b1 for Case II initial

conditions for the forced SEIR model with forcing function (11) (where E0¼0, I0¼1

and we assume latent infectious periods of 2 and 3 days, respectively).
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the solution is too complex to reproduce, so we instead equivalently
substitute (11) into (28) and solve numerically to contrast the effect of
temporal forcing in a stochastic setting with the case of constant
transmission.

As in the SIR model, we find increasing variability in prevalence
at the doubling time for fixed R0 as the amplitude of short-term
seasonality increases. There exists greater variability in the SEIR
model (compared to the SIR model) due to the additional stochastic
process of latency, although the two models converge as R0

increases since transmission increasingly dominates this delay.
Contrasting the roles of stochasticity and seasonality, we find that
seasonality predominantly dominates when R0 is small (and close
to unity), e.g. a 10% increase in transmission in Case II accounts for
88% of the variance when R0¼1.1, but only 17% of the variability
when R0¼6, while stochasticity dominates as R0 increases. The
threshold value of R0 where seasonality and stochasticity equally
contribute to the variance is approximately 1.2 for the SIR model
and 1.4 for the SEIR model for the parameters in Fig. 6 whenb1¼0.1,
so that for infectious diseases with a delay between infection and
infectiousness and R041.4, this highlights the importance of
stochasticity in driving outbreak dynamics when the seasonal
component is not too large.

Fig. 6 illustrates the strong non-linear dependence of the
variability on b1 and this holds for the SIR and SEIR models,
although larger amplitude changes on outbreak timescales will
affect this. The functional form of b(t), plus any additional temporal
variability in other disease processes, may also play a key role.
Finally, we find that these results hold almost entirely indepen-
dently of any additional uncertainty in the initial conditions when
b1 is small and this appears to be a standard result independent of
the dimensionality of the system, although further analysis is
required to verify this.
6. Conclusions

Although the power of master equations for simulating and
deriving analytical insight into the behaviour of stochastic epi-
demic models has been recognised previously (Chen and Bokka,
2005; Grabowski and Kosinski, 2004; Keeling and Ross, 2008;
Rozhnova and Nunes, 2009), we illustrate here how insight into the
effects of temporal variability in transmission on stochastic infec-
tious disease dynamics may also be incorporated within this
framework. This is a key advance in the study of infectious disease
dynamics, as much of the insight to date on the effects of
seasonality on disease dynamics has resulted largely from analy-
tical or numerical analysis of deterministic epidemic (or endemic)
models (Bailey, 1975; Bolker and Grenfell, 1993; Dietz, 1976;
Moneim, 2007; Stone et al., 2007). While the approach is applied to
linearised epidemic models, we demonstrate here that this
approach remains robust (and indeed linear in terms of probabil-
ities) even for full non-linear disease systems, particularly when
the aim is to gain a better understanding of the invasion dynamics
of epidemic infections into vulnerable populations.

The first important outcome highlighted in this work is that
while exact results regarding the role of stochasticity and season-
ality early on in the presence of a temporally explicit forcing
function are possible only for the SI epidemic model, the con-
sideration of a 2-state forcing function (11) can lead to useful
insights into more realistic disease models. In particular, we
demonstrate in this regard that the master equation approach will
allow useful insights into key epidemiological properties such as
fade-out, emergence and initial spread rate, and variability in these
variables, that would otherwise be less transparent, accessible and
quantifiable simply through direct numerical simulation.

The application of this general framework to unforced SIR and
SEIR models has illustrated the greater sensitivity of the early
dynamics of these systems to the initial conditions rather than the
basic reproduction number, particularly if there is additional
uncertainty in the initial conditions. In particular, we show how
stochasticity during the early stages of an outbreak when R0 is close
to unity will have a major effect on the probabilities of fade-out and
establishment, as well as variability in prevalence in these systems,
with the variability in prevalence greater for SIR models. By
contrast, in forced models, the results show that while outbreak
dynamics (fade outs, emergence and spread) are extremely sensi-
tive to the amplitude of temporal forcing when R0 is close to unity,
stochastic effects quickly play a far stronger role than temporal
variability as R0 increases (almost independent of any additional
uncertainty in the initial conditions). Small changes in transmis-
sion may, however, have exponential effects on prevalence early
on, although the precise sensitivity is correlated with the dimen-
sionality of the system and hence the amount of stochasticity
arising from underlying disease processes. A key finding is that, in
general, the effect of temporal forcing will be lower in the SEIR than
the corresponding SIR model due to the additional process of
latency.

These findings regarding the epidemiological properties of SIR
and SEIR models during the invasion stage have thus not only
produced new insights regarding forces that may govern the
invasion probability of microparasitic diseases, but also
raise interesting theoretical and applied questions that may be
considered in future research. These include considering when
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non-linear effects become important, since our analysis only
considers the case where the depletion of susceptibles is not
significant and we expect small amplitude changes in transmission
to be amplified further by the non-linearities of full infectious
disease models. As well as obtaining a better understanding of the
effect of different forcing functions on outbreak dynamics, we also
need to better understand the effects of forcing functions which
themselves change over time, resulting in doubly stochastic
models. Temporal variability in multiple disease processes also
represent important challenges. The generic techniques and
insights gained here may also be applied to many problems, and
one example is improving our understanding of how changes in
environmental conditions will affect the emergence of climatically
driven infectious diseases, particularly vector-borne diseases, in
geographic regions currently disease-free.

Overall, we have thus illustrated a valuable modelling frame-
work for better understanding stochastic disease transmission
under fluctuating, variable or uncertain drivers, which arguably
represents the most realistic and general framework for assessing
the impact of environmental changes on infectious disease trans-
mission. We believe that such an approach may in particular
represent the most realistic mechanistic modelling framework for
investigating the potential and probable invasion of vector-borne
microparasitic diseases, such as malaria and dengue, into suscep-
tible populations as future climatic conditions become favourable
for the transmission of these diseases in new areas (Parham and
Michael, 2010). Present climate-driven transmission models for
these diseases do not explicitly take account of the impact of the
factors investigated here. Our results indicate that improving
understanding of the impact of climate change on disease invasion
dynamics will require a more realistic analysis of these factors,
especially as increasing variability in climatic components has been
linked to changes in malaria infection dynamics (McKenzie et al.,
2001; Zhou et al., 2004).
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