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Highlights 

 A spatially explicit, stage-structured Lotka-Volterra competition model is proposed 

 Using heuristic arguments, we obtain approximate asymptotic spread speed solutions 

 Adding stage structure alone is insufficient to alter predicted spread speeds 

 Accompanied by specific heterogeneities, stage structure does alter spread speeds 

  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2 
 

Invasion dynamics of competing species with stage-structure 

Sharon Bewick
1*

, Guoqing Wang
2
, Hannah Younes

1
, Bingtuan Li

3
, and William F. Fagan

1 

 

1
 Department of Biology, University of Maryland, College Park, MD 20742;  

2
 Department of Mathematics, University of Maryland, College Park, MD 20742;  

3
 Department of Mathematics, University of Louisville, Louisville, KY 40292;  

*email:  sharon_bewick@hotmail.com 

  fax:  (301)-314-9358 

  phone:  (301)-405-4672 

 

 

 

 

 

 

 

 

 

 

 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3 
 

ABSTRACT:  The spread of an invasive species often results in a decline and subsequent disappearance 

of native competitors.  Several models, primarily based on spatially explicit Lotka-Volterra competition 

dynamics, have been developed to understand this phenomenon.  In general, the goal of these models is to 

relate fundamental life history traits, for example dispersal ability and competition strength, to the rate of 

spread of the invasive species, which is also the rate at which the invasive species displaces its native 

competitor.  Stage-structure is often an important determinant of population dynamics, but it has received 

little attention in the context of Lotka-Volterra invasion models.  For many species, behaviors like 

dispersal and competition depend on life-stage.  To describe the processes of invasion in these species, it 

is important to understand how behaviors that vary as a function of life-stage can impact spread rate.  In 

this paper, we develop a spatially explicit, stage-structured Lotka-Volterra competition model.    By 

comparing spread speed predictions from this model to spread speed predictions from an analogous 

single-stage model, we are able to determine when stage-structure is important and how stage-dependent 

behavior can alter the characteristics of an invasion. 

 

KEY WORDS:  invasion; spread speed; Lotka-Volterra competition; stage-structure 
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Introduction 

Rising levels of globalization are facilitating the introduction and spread of an increasing number of alien 

invasive species (Meyerson and Mooney 2007).  While this has health, economic and environmental 

consequences, some of the most devastating effects are reductions to native species populations and 

losses in biodiversity (Vitousek et al. 1997).  In the United States, about 42% of all species listed as 

threatened or endangered under the Endangered Species Act are at risk because of competition with or 

predation by a non-native species (Pimentel et al. 2005; Stohlgren and Schnase 2006; Wilcove et al. 

1998); in other parts of the world, this fraction can be even higher (Armstrong 1995; Pimentel et al. 

2005).   

Although there are many possible biotic interactions that could result in an invasive species displacing a 

native population, one common mechanism is competitive exclusion (Mooney and Cleland 2001).  

Argentine ants (Linepithema humile), for example, displace native ants by locating food patches more 

rapidly and recruiting to them more heavily, thereby usurping a disproportionate fraction of food 

resources (Holway 1999).  Superior competition for food is also cited as a contributing factor behind the 

displacement of the native gecko, Lepidodactylus lugubris, by the invasive gecko Hemidactylus frenatus 

across the Pacific basin (Petren and Case 1996) and the displacement of the native red squirrel (Scuirus 

vulgaris) by the North American grey squirrel (Scuirus carolinensis) in Britain (Kenward and Holm 

1993).  Beyond competition for food, other limiting resources may be important as well.  In both 

California and South Africa, competition for space is likely responsible for displacement of a variety of 

native mussels by the Southern European mussel Mytilus galloprovincialis (Carlton et al. 1999).  

Likewise, in Europe, competition for shelter appears to be an important factor governing displacement of 

native crayfish by the invasive North American species, Pacifasticus leniusculus (Vorburger and Ribi 

1999). 
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In general, the faster an invasive species spreads, the more rapidly it will displace its native competitors.  

Thus, the rate of spread of an invasive species is an important metric for evaluating the risks that the 

invader poses to native biodiversity (Neubert and Parker 2004).  For this reason, a number of models have 

been developed to predict the spread speed of an invasive species as a function of basic life-history 

parameters, for example dispersal ability and reproductive rate.  Although the majority of these models 

consider only the invasive species, several incorporate biotic interactions, including competition with 

other species populations.  Okubo et al. (1989), for example, developed a reaction-diffusion model based 

on Lotka-Volterra competition to describe the encroachment of grey squirrels into red squirrel habitat in 

Britain.  Using a linear approximation, Okubo et al. (1989) estimated the spread speed of the grey squirrel 

population as a function of grey squirrel dispersal, grey squirrel reproduction, and red and grey squirrel 

competition coefficients.  More recently, Weinberger et al. (2002) have generalized the results in Okubo 

et al. (1989).  These studies, as well as similar discrete-time models (Hart and Gardner 1997), have shown 

that resident competitors can slow or even stop the invasion of an introduced species. 

In addition to competition, another factor that might influence the spread rate of an invasive species is the 

age-structure of its population.  This is because many species-level traits governing spread rate are stage-

dependent.  In birds, for example, juveniles tend to disperse farther than adults; in mammals, this trend is 

reversed (Neubert and Caswell 2000).  Likewise, in almost all species, reproduction only occurs after a 

period of development, meaning that juveniles either do not breed or else breed at a much lower rate than 

older individuals.  Stage-dependence can also be important in governing some of the interspecific 

interactions that influence the spread of an invasive species.  In the case of the invasive North American 

crayfish (Pacifasticus leniusculus), for example, the outcome of competition for shelter is largely 

determined by crayfish size which, in turn, depends on crayfish age.  Because the North American 

crayfish grows faster than native European species, the North American invader is often at an advantage 

(Vorburger and Ribi 1999).   
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Although stage-structure has been considered in single-population models of invasion (Neubert and 

Parker 2004; Thieme 1979), the importance of stage-structure to invasion in competitive models remains 

unknown (but see (Al-Omari and Gourley 2003) for a partial answer to this question).  Previous studies of 

non-spatial competition models suggest that single-stage and multi-stage models often differ with respect 

to predicted dynamics and coexistence outcomes (Hassell and Comins 1976; Liu et al. 2002; Mougi and 

Nishimura 2005).  Thus, it is likely that the inclusion of stage-dependence in competition models could 

also affect spread speed predictions.  In order to explore the importance of stage-structure to the 

characteristics of an invasion, we develop an extended version of the spatially explicit Lotka-Volterra 

model from Okubo et al. (1989).  Specifically, we consider a 2-species competition model where both 

species have a juvenile and an adult phase and where dispersal, reproduction, and competition depend not 

only on the species involved, but also on their respective life-stages.  Using our model, we predict spread 

speed as a function of the life-history parameters of both the invasive species and its native competitor.  

In particular, we focus on the effects of parameter variation across life-stages.  Ultimately, this allows us 

to examine the role of stage-structure in the invasion-competition process, and to identify those stage-

dependent variables that are most important in determining invasion characteristics in competitive 

contexts. 

Method 

Similar to Okubo et al. (1989), our basic model consists of a set of coupled reaction-diffusion equations.  

We model competition by assuming Lotka-Volterra type interactions, and we model dispersal using 

isotropic diffusion.  Specifically, the system is defined as 

   

  
   

    

   
                

                             (1.a) 

   

  
   

    

   
                

                             (1.b) 
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                             (1.c) 

   

  
   

    

   
                

                             (1.d) 

where   is time,    is the abundance of species ‘ ’,    is its birth rate ,    is its rate of maturation,    is its 

rate of dispersal/diffusion,    is its rate of loss (which may be due to death or, in the case of juveniles, 

both death and maturation) and     is the competition coefficient for the effect of species   on species  .  

Species are defined as follows:     and     denote juveniles and adults of the invading species, 

respectively, while     and      denote juveniles and adults of the resident species.  For the sake of 

simplicity, we have assumed that only juveniles mature, and that only adults are capable of breeding.  

Notice, however, that the latter assumption is not necessary, since    for juveniles can be reinterpreted to 

include death, maturation, and birth.  In Appendix A, we present a non-dimensionalized version of the 

model in (1).  Although we will focus on dimensional parameters in the main text, our explorations of 

specific parameter combinations are motivated by our non-dimensionalization scheme.   

To estimate the spread speed of an invasion as a function of species life-history parameters, we use both 

an approximate solution, based on the work in Weinberger et al. (2002), and a numerical solution of the 

full model (Eq. 1), as described below.  In general, our goal is to compare results from the two-stage 

model in equation (1) to results from an analogous single-stage model.  The single-stage model that we 

use for comparison is given by 

   

  
   

    

   
                           (2.a) 

   

  
   

    

   
                           (2.b) 

where we have used capitalized parameters and state variables to distinguish the single-stage model from 

the two-stage model. 
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Approximate Solution 

Weinberger et al.  (2002) developed the mathematical theory of spread speeds for multi-species 

cooperative systems. In that paper, conditions were given which insure that all species spread at the 

same spread speed, and that this speed agrees with the more easily calculated speed of a linearized 

problem.  In order to apply methods from Weinberger et al. (2002) to equation (1), we must first convert 

(1) into a cooperative system.  Unfortunately, the standard change of variables for converting a 

competitive Lotka-Volterra model into a cooperative Lotka-Volterra model does not work for our stage-

structured system. The change of variables approach does not work because the model includes both 

intraspecific and interspecific competition between juveniles and adults in the invading species and 

resident species. However, because our model is approximately linear near the resident equilibrium, a 

heuristic argument motivates us to assume the following change of variables:      ,      ,     
  

  ,     
    , where    and    are, respectively, the equilibrium values of resident juveniles and 

adults when they are the only species present (i.e., prior to introduction of the invasive species). 

Applying our change of variables and dropping all higher order terms gives the linear system 

   

  
   

    

   
 (       

      
 )              (3.a) 

   

  
   

    

   
 (       

      
 )              (3.b) 

   

  
   

    

   
 (        

      
 )   (       

 )   (           ) 
    (3.c) 

   

  
   

    

   
 (        

      
 )   (       

 )   (           ) 
     (3.d) 

which is now a cooperative system under the conditions fR −αrRr  > 0 and pr −αRrR  >0. Using this 

approximation and spread speed formulas for linear cooperative systems established in Weinberger et al. 

(2002) , and under certain parameter restrictions, it is possible to obtain an expression for the spread 

speed (see Appendix B), which is shown (below) to match predictions from the full system in equation 
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(1) for a wide range of parameters. The spread speed is the asymptotic rate at which the invader with 

positive initial distribution on a bounded interval expands its spatial range. 

There is one special case where the approximate spread speed solution is particularly simple and 

insightful.  Specifically, when adults and juveniles of the invading species disperse at equal rates, 

        , but have potentially different competition coefficients and loss rates, the approximate 

expression for the spread speed of the invasion,  ̅, is (see Appendix B) 

 ̅  √   √√( 
   
      

    )
        ( 

   
      

    ) . (4) 

In (4),   
          is the difference between the effect of resident adults on adult invaders and the 

effect of resident adults on juvenile invaders.    
          is the same, but for the effect of resident 

juveniles rather than resident adults.  Likewise,   
          is the sum of the effect of resident 

adults on both juvenile and adult invaders, while   
          is the sum of the effect of resident 

juveniles.  Finally,            is the difference between the loss rate of adult invaders and the loss 

rate of juvenile invaders, while            is the sum of the two loss rates.  Equation (4) 

provides an asymptotic spread speed at which the invader spreads for large time, t.  In the next 

section, we demonstrate how formula (4) works to predict the spreading speed of the full nonlinear 

system (1) for several biologically meaningful cases.  Additional interpretation of Eq. (4) and results 

from the approximate solution appear in the Discussion.   

 

Numerical Solution: To find numerical estimates of spread speed, we begin by assuming that resident 

adults and juveniles are established at their (well-mixed, monoculture) equilibrium abundances across a 

finite domain       , where   is the domain size, and is selected large enough to ensure that  

  (| |  )    (| |  )    , with      
   (i.e., the total invader population reaching the boundary is 

less than some small threshold).  We then introduce a narrow pulse of invaders at the center of the 
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domain.  Specifically we choose   (   )   
    

 
, and   (   )   

    
 
 where    and    are the 

equilibrium densities of the juvenile and adult invaders respectively in an invader monoculture.  

Using the pdepe package in Matlab, we then numerically integrate Eq. (1), assuming Dirchlet 

boundary conditions (we also tested Neumann boundary conditions, and found boundary conditions 

to have no effect, which is to be expected based on our select of L sufficiently large to ensure that 

the invader does not reach the boundary at high densities over the course of the simulation). As the 

invaders spread out toward the domain edges, we perform a numerical search for the approximate 

location of the invasion wave-front as a function of time – that is, beginning from the center of the 

domain and moving to the right, we searched for the first x value in the solution vector obtained from 

pdepe that gives   ( )    ( ) above some small threshold,   .  We take this to be the wavefront.  

Specifically, we find    such that  

{
  ( )    ( )          
  ( )    ( )          

     (5) 

where         
   is the small threshold used to track the progress of the invasion wave.     

describes the location of the wave  front at time t based on the location of density level δ2.  In 

practice, simulations are not sensitive to the value of δ2, provided that it is sufficiently small. 

Consider the time-points t1, t2, ..., tm  and the corresponding values     ,     ,…,    . The average 

wave front propagation speed, c̃, which provides an estimate for the spreading speed, is then 

given by  

 ̃  
∑      
 
   

∑   
  

   

 

This can be written in the more compact form 

 ̃  (   )            (6) 
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where   is a vector of time-points and   is a corresponding vector of wave-front locations.  We obtain  ̃ 

by fitting a straight line to the     curve using a least-squares calculation; however, to avoid fitting 

transient dynamics, we only apply equation (6) to the linear region of the     curve, after all transient 

behavior has disappeared.  To ensure that we are only fitting the linear regime, we insist that our least-

squares fit gives         , which will not be true if we attempt to fit time-points during the transient 

phase. 

Parameters: Except when stated otherwise, we focus on comparing results from our stage-structured 

model to results from the fully parameterized, single-stage competition model in Okubo et al. (1989).  To 

achieve comparable parameterization schemes across the two models, we assume birth, maturation, and 

death rates for the two-stage model that reproduce the low-density population growth rates from the 

single-stage model.  In addition, we require that our choices for these parameters yield the same age-

structures as the Leslie matrices used to parameterize the original model (Okubo et al. 1989).  

Competition and diffusion coefficients are also selected to match those used in Okubo et al. (1989).  

Appendix C provides a detailed summary of our parameterization scheme.   

  While maturation rates, death rates, and fecundity must vary across stages to satisfy our 

constraints on population growth rate and stage structure, this is not true for diffusion or competition 

coefficients.  For these parameters, we consider scenarios in which juvenile and adult coefficients are 

identical, as well as scenarios in which the coefficients differ between stages.  To ensure that all 

comparisons are fair (i.e., not determined by an overall increase/decrease in diffusion or competition), we 

select stage-dependent diffusion and competition coefficients such that the population averages of these 

parameters would remain constant in a well-mixed system at equilibrium.  If, for example, juvenile 

diffusion increases, then adult diffusion must decrease by a corresponding amount to ensure that the 

average diffusion coefficient across the entire population remains the same.  
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Results 

Single-Stage vs. Stage-Structured Models 

We begin by considering the effect of stage-structure itself.  Starting from equation (4), which assumes 

that         , we set                     .  This gives 

 ̅   √    √     (
  

  
)     (7) 

where    
 

 
√  

        
  

 
 corresponds to the population growth rate of the invader in the single-

stage model (see Appendix D) and          is the size of the entire resident population.  By 

applying a similar linear approximation to the single-stage model in equation (2) (see Appendix D), we 

can show that the predicted spread speed for the simpler, single-stage model is identical to the spread 

speed for the stage structured model (see Appendix D), suggesting that stage structure, in and of itself, 

does not impact spread speed.  This is because separating individuals into different stages that share the 

same parameters is equivalent to not separating them at all. For the remainder of the paper, we will not 

distinguish between the single-stage model and the two-stage model with identical parameters across 

stages, but will use a single curve to represent both.   

Stage-Structured Interspecific Competition 

Next, we consider the effects of stage-structured interspecific competition.  Based on our linear 

approximation (see Appendix B), we expect that the invasion spread speed will only depend on 

interspecific competition exerted by the residents on the invaders, and not on interspecific competition 

exerted by the invaders on the residents.  If adult and juvenile invaders experience the same per-capita 

level of interspecific competition, then     
      

      
      

 .  However, we also require that 

the average competition experienced by the entire invading population (at equilibrium) be comparable to 

the competition experienced by the invading population in the single-stage model.  For this reason, it 
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must also be true that  
(    

      
 )   (    

      
 )  

     
    ( 

    ), where    and    are the equilibrium 

abundances of the two invader stages in an invader monoculture (i.e., when only invaders are present).  In 

this case, equation (4) again reduces to equation (7). Thus, stage-structured interspecific competition does 

not alter the spread speeds of the invasion provided that both juvenile and adult invaders face similar 

levels of competitive pressure.   

Results change, however, when juvenile invaders experience either more or less interspecific competition 

than their adult counterparts.  Figure 1a shows both numerical and analytical (see equation (4)) spread 

speed predictions for the invader population as a function of interspecific competition from the resident 

population.  In this figure, we assume that            (
     

      
) and that             (

     

      
), 

where   is a measure of how much more intense interspecific competition is in the adult stage as 

compared to the juvenile stage.  These two relationships ensure that the average competition faced by the 

invader population remains constant (at equilibrium) and equal to the competition faced by invaders in the 

single-stage model, 
(    

      
 )   (    

      
 )  

     
    ( 

    ).      indicates that both stages 

experience equal competition;     indicates that adult invaders face less competition than juvenile 

invaders;     indicates that adult invaders face more competition than juvenile invaders.  Figure 1b 

expands on the results from Figure 1a by showing the invasion spread speed as a function of interspecific 

competition coefficients for both adult and juvenile invaders.   

From Figure 1, we see that the invader population advances at a faster rate when interspecific competition 

is relatively more intense in the juvenile stage, and at a slower rate when competition is relatively more 

intense in the adult stage.  To understand this result more fully, we again rely on our assumed 

relationships from above and substitute            (
     

      
) and          

    (
     

      
) into equation (4).  We then take the following derivative 
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Figure 1  (a) Spread speed of the invasion as a function of average interspecific competition across adult 

and juvenile invaders,    .  The linear approximation, equation (4), is shown as thick solid lines while the 

numerical solution of the full model is shown as thin lines.  Stage-structured interspecific competition 

coefficients are defined as:            (
     

      
) and             (

     

      
).       (dotted line, 

open triangles) indicates that adult invaders experience 10 times as much interspecific competition as 

juvenile invaders,     (solid line, closed circles) indicates that adult and juvenile invaders experience 

equal interspecific competition and       (dotted line, open diamonds) indicates that adult invaders 

experience 1/10
th
 as much interspecific competition as juvenile invaders. (b) Spread speed of the invasion 

as a function of interspecific competition on adult and juvenile invader populations,    ,    ,    , and  

   .  Stage-structured interspecific competition coefficients are defined as         and        .  

Invader spread speeds are shown as a heat-map, with red indicating faster spread speeds and blue 

indicating slower spread speeds.  In both figures, invader intraspecific competition coefficients are 

defined as:                    , and figure axes are non-dimensionalized by dividing invader 

interspecific competition coefficients by the invader intraspecific competition coefficient.  All other 

parameters are as defined in Appendix C. 

   

  
|
   

 
 

 
   ( 

    )√
  

      ( 
    )

(
  

√        
 
 (

     

     
))  (8) 

where, as before,    
 

 
√  

        
  

 
 is the overall population growth rate of the invader.  Equation 

(8) suggests that the invasion spread speed will decrease with increasing interspecific adult competition 

provided that 
  

  
 
      

      
, but will increase with increasing interspecific adult competition otherwise.  

(Note that because of the equivalences necessary to hold population growth rate and adult mortality 

constant, an increase in interspecific adult competition necessarily implies a decrease in interspecific 
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juvenile competition). Thus, comparing systems with the same overall population growth rate, and the 

same juvenile and adult mortality (but variable fecundity and maturation rates), we see that spread speed 

will become an increasing function of interspecific adult competition when the relative abundance of 

juveniles at equilibrium drops below a critical value.  For the simplest scenario, with equivalent juvenile 

and adult loss rates, the critical value turns out to be  
  

  
  .  Thus, spread speed increases with decreased 

interspecific competition on the less abundant stage.  Numerical simulations again support this conclusion 

(see Appendix G).  

Stage-Structured Intraspecific Competition 

Next, we consider stage-structured intraspecific competition.  In this case, the spread speed of the 

invasion is given by equation (7), suggesting that intraspecific competition in the invader population does 

not affect invasion rates, and that intraspecific competition in the resident population only affects invasion 

rates if it alters the total abundance of the resident species at the resident species equilibrium.  If adult and 

juvenile residents experience the same per-capita level of intraspecific competition, then     
  

    
      

      
 .  However, we also require that the average competition experienced by the 

entire resident population (at equilibrium) be comparable to the competition experienced by the resident 

population in the single-stage model.  For this reason, it must also be true that  

(    
      

 )   (    
      

 )  

     
    ( 

    ).  In this case, the total abundance of resident species,   , 

only depends on the average competition coefficient,    , and not on how this is partitioned among 

stages (see Appendix F).  Consequently, stage-structured intraspecific competition does not impact the 

spread speed of the invader, provided that both adult residents and juvenile residents experience the same 

level of intraspecific competition. 

The situation is different when adult residents experience either more or less intraspecific competition 

than juvenile residents.  If, for example,             (
     

      
) and             (

     

      
), 
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where   is a measure of how much more intense intraspecific competition is in the adult stage, then    is 

a function of  ; thus from equation (7), the spread speed of the invader will depend on   as well.  Figure 

2a shows spread speed predictions for both the linear approximation (equation (7)) and the numerical 

solution as a function of the average intraspecific competition coefficient for the resident population for 

scenarios where adult invaders experience less (     ), equivalent (   ), and more (    ) 

intraspecific competition than their juvenile counterparts.  Figure 2b expands on the results from Figure  

 

Figure 2  (a) Spread speed of the invasion as a function of average intraspecific competition across adults 

and juveniles of the resident population,    .  The linear approximation, equation (4), is shown as thick 

solid lines while the numerical solution of the full model is shown as thin lines.  Stage-structured 

intraspecific competition coefficients are defined as:            (
     

      
) and         

    (
     

      
).       (dotted line, open triangles) indicates that adults in the resident population 

experience 10 times as much intraspecific competition as juveniles,     (solid line, closed circles) 

indicates that adults and juveniles in the resident population experience equal intraspecific competition 

and       (dotted line, open diamonds) indicates that adults in the resident population experience 1/10
th
 

as much intraspecific competition as juveniles. (b) Spread speed of the invasion as a function of 

intraspecific competition on adults and juveniles in the resident population,    ,    ,    , and     .  
Stage-structured intraspecific competition coefficients are defined as         and        .  Spread 

speeds of the invader are shown as a heat-map, with red indicating faster spread speeds and blue 

indicating slower spread speeds.  In both figures, intraspecific competition coefficients for the invading 

population are defined as:                    , and figure axes are non-dimensionalized by 

dividing intraspecific competition coefficients for the resident population by intraspecific competition 

coefficients for the invading population. All other parameters are as defined in Appendix C. 
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2a by showing spread speed of the invasion as a function of both juvenile and adult intraspecific 

competition among residents.    

Not unexpectedly, higher rates of intraspecific competition among residents (and thus overall lower 

resident abundances) result in faster spread speeds of the invasion.  Less obviously, invaders spread more 

quickly when intraspecific competition is more intense on the adult residents than on the juvenile 

residents.  Similar to interspecific competition, this trend appears to depend on the relative abundance of 

adult to juvenile residents.  Thus, when adult residents strongly outnumber juveniles, invader spread 

speeds are faster with increased intraspecific competition on the less abundant juvenile resident stage (and 

thus decreased intraspecific competition on the more abundant adult resident stage; numerical results not 

shown). 

Stage-Structured Dispersal 

Next, we consider the effects of stage-structured dispersal.  In this case, our linear approximation does not 

give a simple expression for spread speed.  However, it is still possible to use this approximation to obtain 

an estimate of spread speed (see Appendix B).  In addition, we can use our numerical scheme (see 

Methods) to determine spread speed based on a full solution of the PDE in system (1).  Figure 3a shows 

spread speed predictions for both the linear approximation and the numerical solution as a function of the 

average diffusion coefficient of the invader.  In Figure 3a, we assume that      (
     

      
) and that 

      (
     

      
), such that the average diffusion coefficient across the entire invading population 

remains constant and equal to the diffusion coefficient of invaders in the single-stage model, 
   

     
 

     
 

  .   , like   and  , is a measure summarizing differences between adult and juvenile invaders.  

Specifically,   captures how readily and how much adults invaders disperse relative to juveniles.  Figure 

3b extends the results in Figure 3a by considering spread speed as a function of both adult and juvenile 

dispersal.  From Figure 3, we see that increasing adult dispersal increases the overall rate of spread of the 

population, whereas increasing juvenile dispersal does the opposite.  Again, this relationship is reversed 
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when adults outnumber juveniles, thus the invaders spread faster when the less abundant stage has a 

higher dispersal rate (numerical results not shown). 

 

Figure 3  (a) Spread speed of the invasion, as a function of average invader diffusion, for both the linear 

approximation (thick solid lines) and the numerical solution of the full model (thin lines).  Stage-

structured diffusion coefficients are defined as follows:      (
     

      
) and       (

     

      
).       

(dotted line, open triangles) indicates that invading adults disperse 10 times as much as invading 

juveniles,     (solid line, closed circles) indicates that invading adults and juveniles disperse at equal 

rates and       (dotted line, open diamonds) indicates that invading adults disperse 1/10
th
 as much as 

juveniles.  (b) Spread speed of the invasion as a function of adult and juvenile diffusion,     and    .  
Spread speeds are shown as a heat-map, with red indicating faster spread speeds and blue indicating 

slower spread speeds.  All other parameters are as defined in Appendix C. 

 

Discussion 

In the context of competition models, spread speed conveys the rate at which a native species will be 

displaced by an alien introduction.  This provides important guidance regarding which invasive species 

should receive the most immediate and most aggressive attention – critical information, given the limited 

funds that are typically available for managing invasions.   Efforts to predict the spread speed of different 

invasive species vary widely.  The simplest approach is to build differential or integro-difference equation 

models based on one or two fundamental life-history traits (for example population growth rate and 

dispersal) and then to use these models to derive simple expressions for spread rate as a function of 
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species characteristics (Fisher 1937; Li et al. 2005; Okubo et al. 1989).  At the other extreme are 

computationally intensive stochastic simulation models (Pitt et al. 2009; Rushton et al. 1997; Sebert-

Cuvillier et al. 2008).  These models incorporate extremely detailed life-histories, and account for realistic 

spatial and environmental variables through integration with geographic information systems (GIS).  

Intermediate between the highly abstract differential equation or integro-difference models and the large-

scale simulations are efforts to extend simple models to more complicated scenarios.  The goal is two-

fold.  First, because simple models can help to elucidate the qualitative roles of specific life-history traits 

or environmental variables, these models can often explain results from more detailed simulations.  This 

helps to pin-point the particular factors in the simulation models that are important determinants of spread 

speed outcomes.  Second, because predictions from simple models are relatively robust (or, at the very 

least, it is easier to identify the conditions under which they will fail), qualitative models can yield 

broadly applicable guiding principles for management decisions.  This is beneficial, because it 

circumvents the need for time-consuming and costly model building for every different invasive species 

scenario. 

In this paper, we extend a spatially explicit Lokta-Volterra competition model (Okubo et al. 1989) by 

including stage structure.  Interestingly, just as the single-stage model suggested that competition 

modifies the spread speed of an invasion by adding a negative term corresponding to ‘competitive drag’, 

our model shows that, even when stage-structure is added, spread speed has a similar functional form 

(Eqs. 4 and 7).  In our model, however, the ‘competitive drag’ term becomes much more complicated.  

Despite this, we find that the existence of stage structure, in and of itself, does not alter spread speed 

predictions (Eq. 7 and Appendix D).  Rather, to alter spread speed predictions, stage structure must be 

accompanied by specific forms of heterogeneity among stages (see below). For example, we find that 

spread speeds are not affected when different stages of the invasive species face different levels of 

intraspecific competition, when different stages of the resident species disperse at different rates, or when 

different stages of the resident population either face or exert different levels of interspecific competition 
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(Eq. 4).  Meanwhile, spread speeds are affected when different stages of the resident population face 

different levels of intraspecific competition, when different stages of the invasive population disperse at 

different rates, or when different stages of the invasive population face different levels of interspecific 

competition (Eq. 4).   

The fact that neither stage-structured intraspecific competition in the invasive species nor stage-structured 

dispersal of the resident species matter to the invasion speed should not be surprising:  even in the 

original model, these parameters have a limited effect (Okubo et al. 1989).  For a similar reason, it is also 

not surprising that stage-structured interspecific competition on the resident species has no impact on the 

spread speed of the invasive species.  It is, however, surprising that inter-stage differences in the levels of 

interspecific competition exerted by the resident species have a minimal effect on the spread speed of the 

invasive species.  This is surprising because overall competitiveness of the resident species is expected to 

impact spread of the invasive species (Okubo et al. 1989).  Our findings, however, show that, although the 

overall competition from the resident population can affect spread of the invader, it does not matter how 

resident competitiveness is partitioned – entirely as a result of juveniles, entirely as a result of adults, or as 

a result of both. Whereas stage-structured interspecific competition does not matter when stage 

differences are restricted to the competitiveness of the resident species, stage-structure does matter when 

the different stages of the invasive species experience different competitive pressures (see Figure 1).  

Under this scenario, the two invasive stages would travel at different rates, if they were not linked by birth 

(Fagan et al. 2002) and maturation processes.  However, because the stages are, in fact, linked 

demographically, the spread of the invasion depends on the competition faced by both stages (Eq. 7) and 

how it is partitioned.  Overall, we find that the invasion tends to be faster when the competitive pressure 

is weaker on the less abundant stage. A similar result emerges for diffusion.  The spread speed depends on 

both juvenile and adult dispersal (Eq. 7), and the invasion occurs more rapidly when the less abundant 

stage disperses most.  The final parameter where stage-structure matters is intraspecific competition in the 

resident population.  Similar to interspecific competition in the invading population, stage-structured 
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intraspecific competition does not matter when both adults and juveniles of the resident species are 

equally restricted by intraspecific competition.  However, concentrating intraspecific competition on the 

less abundant stage of the resident species causes the invasive species to progress faster. 

Previous models have considered the issue of stage-dependent dispersal on rates of spread of invasive 

species (Neubert and Caswell 2000; Thieme 1979).  Neubert and Caswell (2000), for example, suggest 

that unstructured models will generally overestimate spread speeds because they ignore stages where 

dispersal does not occur.  This is a common feature of many invasive species.  In plants, for example, 

dispersal is almost always concentrated in the juvenile/seed stage; alternatively, in holometabolous 

insects, larvae are often relatively sessile while adults are winged.  Many successful invaders have some 

non-dispersing life-stages and, as a result, some models of invasive spread based on integro-difference 

equations have accounted for periods without movement and demonstrated how such non-dispersing 

stages can lead to an overall decrease in spread rate (Lewis 1997; Miller and Tenhumberg 2010).  In 

contrast, our modeling approach addresses the impacts of population structure while holding constant the 

average dispersal rate across the entire invasive population.  Such a comparison is facilitated in the 

current study because we focus on reaction-diffusion models, where diffusion coefficients can be 

averaged across the population.  Standardization in integro-difference models would require more subtle 

equalization schemes.  

Whereas differences in stage-dependent dispersal have been previously examined as a factor governing 

invasion processes, differences in competitive interactions have received less emphasis.  Indeed, the few 

studies that do consider stage-structured competition in the context of an alien invasion focus on the 

sensitivity of particular life-stages of the resident species. In contrast, our work demonstrates that the 

level of competitive pressure on different stages of the invasive species can be equally important in 

governing invasion dynamics.  In particular, we find that, all else being equal, spread speed increases with 

decreasing interspecific competition on the less abundant stage (i.e., increasing interspecific competition 

on the more abundant stage).  Given that stage-structured competition is well documented across a range 
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of different taxa (Hill et al. 1993; Peterson et al. 2004; Sakai et al. 2001), it seems likely that future 

studies in invasion biology should consider this key life-history trait.   

More generally, our investigation of stage-structured spread in competitive contexts indicates that there 

are a range of native and invasive traits that can lead to particularly fast invasion processes that rapidly 

displace resident populations.  These include 1) dispersal concentrated in the less abundant stage of the 

invasive population, 2) stronger intraspecific competition on the less abundant stage of the resident 

population, and 3) weaker interspecific competition on the less abundant stage of the invasive population.  

These findings point to key life-history traits of native and invasive species that should be monitored to 

assess the threat posed by the arrival of any invasive species. 

Acknowledgements: BL acknowledges financial support through the National Science Foundation 

under grant #DMS-1225693.  SB and WFF acknowledge financial support through the National Science 

Foundation under grant #DMS-1225917. 

Appendix A - Nondimensionalization 

To non-dimensionalize equation (1) in the main text, we set  

 ̂  
      

 

  
         (A.1.a) 

 ̂  
 

 
          (A.1.b) 

 ̂  
   

  
          (A.1.c) 

This gives 
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   ̂ 

  ̂ 
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      ̂  ̂      ̂  ̂      ̂  ̂     (A.2.c) 
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      ̂  ̂      ̂  ̂      ̂  ̂    (A.2.d) 

where     
  

  
,    

   
 

  
,    

   
 

  
,    

   
 

  
, and     

   

   
. 

 

Appendix B - Spread Speed of the Linear System 

To compute the spread speed for the linearized system in (3) we need 

       
    and        

    .     (B.1) 

From Weinberger et al. (2002), the matrix used to find the spreading speed is given by 

   

(

 
 

   
       
     

     

  
  

          
          

   
         

    
    

       
     )

 
 

   (B.2) 

where         
      

    ,         
      

    ,          
      

     and 

         
      

    .  Rewriting equation (B.2) as  

   (
   ( )  

      ( )
*    (B.3) 

where each     is a 2×2 matrix, we use   ( ) to denote the principal eigenvalue of    ( ) and 

  ( ) to denote the principal eigenvalue of    ( ).  The stability criterion of the resident species 

monoculture in the two-dimensional resident species only system is λ2(0) < 0, and instability of the resident 

species monoculture in the full four-dimensional system implies λ1(0) > 0. The spreading speed of the 

linear system (3) is given by 

         
  ( )

 
,      (B.4) 
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provided that   ( 
 )    ( 

 ), where    is the number at which the infimum in    is attained. 

Appendix C - Parameterization 

Parameters  

Intrinsic net growth rates:  In order to preserve both the intrinsic net growth rate and the age-structure 

suggested in Okubo et al. (1989), we consider the following well-mixed system 

   

  
                  (C.1.a) 

   

  
                                (C.1.b) 

and require that 

      
  ( )   ( )

  (   )   (   )
            (C.2.a) 

      
  ( )   ( )

  (   )   (   )
            (C.2.b) 

      
  ( )

  ( )
              (C.2.c) 

      
  ( )

  ( )
             (C.2.d) 

Equations (C.2.a-b) ensure that the stage-structured model has the same overall rate of population 

increase as the Leslie matrices in Okubo et al. (1989).  Similarly, equations (C.2.c-d) ensure that the 

stage-structured model has the same age-structure as the Leslie matrices in Okubo et al. (1989).  This, 

however, leaves us with two free parameters.  For adult fecundity, we assume the quoted rates of 

reproduction; thus considering only females,        and     .  For maturation, we assume       

    , which is slightly less than the quoted rate of 0.5 for survival from juveniles to adults.  We select this 

lower value in order to compensate for the continuous nature of our model, which enables a fraction of 
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the juvenile population to mature without suffering through a full period of juvenile death.  In general, we 

find that results are not particularly sensitive to the   values that are chosen.  Table 1 outlines the 

parameters governing net population growth rate, taking into account the conditions in equation (C.2) 

 Symbol Invading Species Resident Species 

fecundity (   )   4.5 3 

maturation rate (   )   0.35 0.35 

juvenile death (   )    0.71 0.84 

adult death (   )    0.21 0.11 

 

Carrying capacities:  We take carrying capacities directly from Okubo et al. (1989) and assume that stages 

compete equally with one another.  This gives 

                            
       

  
            

                               
       

  
             

Competition coefficients:  We consider competition coefficients taken from Figure 1 in Okubo et al. 

(1989).  Again, we ignore stage structure, at least for the initial analysis.  This gives 

                                   
                

                                  
               

where        and        are relative competition coefficients in Figure 1 of Okubo et al. (1989). 

Diffusion rates:  We explore a range of diffusion rates for each of the stages and species considered.  

Specifically, we study spread speed as a function of the non-dimensionalized parameters   ,   , and   .   

 

 

Appendix D – Comparison to Single-Stage Model 

We begin by solving the set of equations in (C.1) for the invading species.  This gives 

  ( )  
   (   ( )     ( )     ( ))(    )  

   (    ( )     ( )     ( ))(    )

  √        
 

  (D.1.a) 
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  ( )  
   (   ( )     ( )     ( ))  

   (    ( )     ( )     ( ))

√        
 

   (D.1.b) 

where   
 

 
√  

        
  

 
 and   

 

 
√  

        
  

 
.  Substituting both parts of equation (D.1) 

into the equation (C.2.a) gives 

       
  ( )   ( )

  (   )   (   )
            (D.2) 

From equation (2) in the main text, the single-stage model that is comparable to equation (C.1) is 

   

  
          (D.3) 

Integrating equation (D.3) gives 

  ( )    ( ) 
       (D.4) 

Substituting equation (D.4) into the single-stage equivalent of equation (C.2.a) gives 

       
  ( )

  (   )
            (D.5) 

Comparing equations (D.2) and (D.5), we conclude that a suitably parameterized two-stage model will 

have   
 

 
√  

        
  

 
   , where    is the population growth rate in the single-stage model.  

Next, we consider the spread speed prediction for the single-stage system under the same linear 

approximation that we used for the two-stage model.  In this case, we substitute     
     into 

equation (2) from the main text, where    is the equilibrium number of residents in the absence of 

competition from the invaders.  This gives 

   

  
   

    

   
     

                              (D.6.a) 

   

  
   

    

   
 (        

 )         
                      (D.6.b) 
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From equation (D.6), the matrix used to find the spread speed is 

   (
   

      
     

    
    

      
 *  (D.7) 

Denoting   ( ) the eigenvalue of the matrix in equation (D.7), the spread speed is given by 

 ̅        
  ( )

 
  √    √     (

  

  
)    ,  (D.8) 

which is identical to the spread speed of the two-stage model when competition and diffusion coefficients 

do not depend on stage. 

Appendix E – Comparison to Okubo Model 

We begin by finding an approximate expression for   , the abundance of residents in a resident 

monoculture.  Specifically, we consider the following differential equation 

 
   

  
                 (E.1) 

which is the well-mixed/non-spatial analog to equation (2.b) in the main text, and where we have  set 

     because there are no members of the invading species in the resident monoculture.    , is then 

given by finding the equilibrium solution to equation (E.1) 

        
      (E.2) 

Substituting equation (E.2) into equation (7) gives 

 ̅   √    √  (
     

     
)   (E.3) 

A key assumption necessary for obtaining the approximation in Okubo et al. (1989) is that both resident 

and invading species breed at equivalent rates, thus      .  In this case, equation (E.3) reduces to 
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 ̅   √    √  
   

   
    (E.4) 

which is identical to the approximation obtained in the original study. 

Appendix F – Resident Species Abundance 

The abundances of juveniles and adults of the resident species in a well-mixed resident monoculture are 

given by 

     
     

     ( 
 )      

       (F.1.a) 

     
     

     ( 
 )      

       (F.1.b) 

Under the assumption     
      

      
      

 , equation (F.1) can be rewritten 

     
     

    (    
      

 )     (F.2.a) 

     
     

    (    
      

 )    (F.2.b) 

Adding Eqs (F.2.a) and (F.2.b) together and assuming that  
(    

      
 )   (    

      
 )  

     
     

  

gives 

       
     

     
     

     ( 
 )    (F.3) 

Equation (F.3) implicitly defines the total abundance of residents,   .  Because this depends only on    , 

we conclude that stage-structure does not matter, provided that adults and juveniles experience equal 

intraspecific competition. 
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Appendix G – Spread Speed as a Function of Competitive or Dispersal Skew 

 

Figure G.1  Invader spread speeds as a function of competitive skew (a) and dispersal skew (b).  Blue 

lines indicate systems in which juveniles greatly outnumber adults, red lines indicate systems in which 

adults greatly outnumber juveniles and black lines indicate systems where the juvenile:adult ratio is such 

that spread speeds are relatively independent of competitive or dispersal skew.  Thick solid lines show 

results from the linear approximation.  Thin lines with closed circles represent results from the simulation 

model.  Notice that the thick and thin lines are effectively superimposed because the match is so good. 
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