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a b s t r a c t 

The theory of repeated games analyzes the long-term relationship of interacting players and mathemat- 

ically reveals the condition of how cooperation is achieved, which is not achieved in a one-shot game. 

In the repeated prisoner’s dilemma (RPD) game with no errors, zero-determinant (ZD) strategies allow a 

player to unilaterally set a linear relationship between the player’s own payoff and the opponent’s pay- 

off regardless of the strategy that the opponent implements. In contrast, unconditional strategies such 

as ALLD and ALLC also unilaterally set a linear payoff relationship. Errors often happen between players 

in the real world. However, little is known about the existence of such strategies in the RPD game with 

errors. Here, we analytically search for all strategies that enforce a linear payoff relationship under ob- 

servation errors in the RPD game. As a result, we found that, even in the case with observation errors, 

the only strategy sets that enforce a linear payoff relationship are either ZD strategies or unconditional 

strategies and that no other strategies can enforce it, which were numerically confirmed. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The two-player repeated prisoner’s dilemma (RPD) game is a

odel for exploring the long-term relationships of players, which

athematically reveals how cooperation and competition arise

mong competitive players ( Mailath and Samuelson, 2006 ). In the

ne-shot PD game, defection is the only Nash equilibrium. On the

ther hand, cooperation is possible in the RPD game because play-

rs can reward cooperating partners by cooperating in the future.

lso, players can punish defecting partners by defecting in the

uture. This mechanism is called direct reciprocity ( Trivers, 1971;

owak, 2006; Sigmund, 2010 ) and makes it possible for players to

utually cooperate in the RPD game. In the context of the RPD

ame, theoretical biologists are interested in which strategies win

n evolving populations. This question falls into the field of evo-

utionary games (Maynard Smith, 1982) . A series of the results

f evolutionary games in the RPD game brought promising find-

ngs. Especially, with noise, generous tit-for-tat ( Nowak and Sig-

und, 1992 ) and win-stay lose-shift ( Nowak and Sigmund, 1993;

raines and Kraines, 1993 ) were robust to various kinds of evo-

utionary opponents. In this way, theoretical biologists have tradi-

ionally focused on strong strategies obtained from evolutionary
∗ Corresponding author. 

E-mail address: ichinose.genki@shizuoka.ac.jp (G. Ichinose). 
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onsequences. However, we can ask a question from a different

oint of view: Are there any strategies which always win against

he opponent irrespective of the opponent’s strategy? Answering

his question fosters greater understanding of the RPD game. 

In 2012, Press and Dyson suddenly answered this question

y finding a novel class of strategies which contain such ulti-

ate strategies, called zero-determinant (ZD) strategies ( Press and

yson, 2012 ). ZD strategies impose a linear relationship between

he payoffs for a focal player and his opponent regardless of

he strategy that the opponent implements. The discovery of ZD

trategies inspired various relevant studies, including their evolu-

ion ( Stewart and Plotkin, 2012; Akin, 2016; Adami and Hintze,

013; Hilbe et al., 2013a; 2013b; Chen and Zinger, 2014; Szolnoki

nd Perc, 2014b; 2014a; Wu and Rong, 2014; Hilbe et al., 2015;

iu et al., 2015; Xu et al., 2017; Wang and Guo, 2019; Stewart

nd Plotkin, 2013; Mao et al., 2018; Xu et al., 2019 ), multiplayer

ames ( Hilbe et al., 2014b; 2015; Pan et al., 2015; Milinski et al.,

016; Stewart et al., 2016 ), continuous action spaces ( McAvoy and

auert, 2016; Milinski et al., 2016; Stewart et al., 2016; McAvoy

nd Hauert, 2017 ), alternating games ( McAvoy and Hauert, 2017 ),

nimal contests (Engel and Feigel, 2018) , human reactions to com-

uterized ZD strategies ( Hilbe et al., 2014a; Wang et al., 2016 ),

nd human-human experiments ( Hilbe et al., 2016; Milinski et al.,

016; Becks and Milinski, 2019 ), which promote an understand-

ng of the nature of human cooperation. For further understanding,

ee the recent elegant classification of strategies, partners (called

https://doi.org/10.1016/j.jtbi.2019.06.009
http://www.ScienceDirect.com
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“good strategies” in Ref. Akin, 2016; Akin, 2015 ) and rivals, in direct

reciprocity ( Hilbe et al., 2018 ). In contrast, unconditional strategies

such as ALLC and ALLD can also unilaterally set a linear payoff re-

lationship against the opponent ( Hilbe et al., 2013b; Ichinose and

Masuda, 2018 ). A previous study revealed that those two types of

strategies are the only sets which enforce a linear payoff relation-

ship in the RPD game ( Ichinose and Masuda, 2018 ). 

These two types of strategies were found in the case of no er-

rors. Errors (or noise) are unavoidable in human interactions and

they may lead to the collapse of cooperation due to negative ef-

fects. Thus, the effect of errors has been considered in the litera-

ture of the RPD game ( Kandori, 2002; Nowak et al., 1995; Fuden-

berg et al., 2012; 1994; Sekiguchi, 1997; Barlo et al., 2009; Mailath

and Morris, 2002; Mailath and Olszewski, 2011; Hilbe et al., 2017 ).

However, except for ( Hao et al., 2015 ), the effect of errors has not

been considered for strategies that enforce a linear payoff rela-

tionship. There are typically two types of errors: perception errors

( Fudenberg et al., 2012 ) and implementation errors (Fudenberg et

al., 1994) . Hao et al. considered the former case of the errors where

players may misunderstand their opponent’s action because the

players can only rely on their private monitoring ( Kandori, 2002;

Sekiguchi, 1997 ) instead of their opponent’s direct action. They re-

markably showed that ZD strategies can exist even in the case that

such observation errors are incorporated ( Hao et al., 2015 ). In their

model, they mathematically searched for one of the cases where

determinants become zero in line with Press and Dyson’s formal-

ism ( Press and Dyson, 2012 ). More specifically, they only searched

for the case where the second and fourth columns of the determi-

nant take the same value as Press and Dyson did in the case of no

errors. They did not consider other possible strategies that make

the determinant zero in the case of errors. In this study, from all

possibilities, we mathematically searched for all of the cases where

the determinant becomes zero. As a result, we found that only

ZD strategies ( Press and Dyson, 2012 ) and unconditional strategies

( Hilbe et al., 2013b; Ichinose and Masuda, 2018 ) are the two types

which enforce a linear payoff relationship and that no other strate-

gies exist to make the determinant zero. We also confirmed this

result by numerical calculations. 

2. Model 

We consider the symmetric two-person RPD game with obser-

vation errors in line with the previous studies ( Sekiguchi, 1997;

Hao et al., 2015 ). Each player i ∈ { X, Y } chooses an action a i ∈ { C , D } .
Each player cannot see what action the opponent chose. Instead,

they can only observe a signal ω i ∈ { g, b }, where g and b denote

good and bad signals, respectively. The signal cannot be observed

by the other player, meaning that the signal is private information.

Each player’s signal ω i basically depends on the opponent’s ac-

tion but is also affected by noise from the environment, which is a

stochastic variable. In other words, a player observes g (or b ) when

the other player chooses an action C (or D). However, when an er-

ror occurs, a player observes b (or g ) although the other player

chooses an action C (or D) due to observation errors. We define

σ ( ω| a ) as the probability that a signal profile ω = (ω X , ω Y ) is real-

ized, given that an action profile a = (a X , a Y ) occurs. Let ε be the

probability that an error happens to one particular player but not

to the other and ξ be the probability that an error happens to both

players. Then, the probability that an error occurs to neither player

is 1 − 2 ε − ξ . For example, when both players choose action C, we

have σ (g, g| C , C) = 1 − 2 ε − ξ , σ (b, g| C , C) = σ ( g, b | C , C) = ε, and

σ (b, b| C , C) = ξ . The realized payoff for each player depends only

on the action he chose and the signal he received, which is de-

noted by u ( a , ω ). Let u (C , g) , u (C , b) , u (D , g) , and u (D , b) be R,
i i i i i i i 
, T , and P , respectively. Then the payoff matrix is given by 

( g b 

C R S 
D T P 

)
. (1)

The entries represent the payoffs that a focal player gains in a sin-

le round of the repeated game. Each row and column represents

he action that the focal player chose and the signal he observed,

espectively. In each stage, player i ’s expected payoff value over all

ossible signals, when two players have an action profile a , is rep-

esented by 

f i (a ) = 

∑ 

ω 

u i (a i , ω i ) σ (ω| a ) . (2)

he expected payoffs under different action profiles

(C , C) , (C , D) , (D , C) , and (D , D) are denoted by R E , S E , T E and

 E , respectively. According to Eq. (2) , R E , S E , T E , and P E are derived

s R E = R (1 − ε − ξ ) + S(ε + ξ ) , S E = S(1 − ε − ξ ) + R (ε + ξ ) ,

 E = T (1 − ε − ξ ) + P (ε + ξ ) , P E = P (1 − ε − ξ ) + T (ε + ξ ) , respec-

ively. We assume that 

 E > R E > P E > S E , (3)

hich dictates the prisoner’s dilemma condition. Both players ex-

ect a larger payoff by selecting D rather than C irrespective of

he other’s action because T E > R E and P E > S E hold. We also assume

hat 

 R E > T E + S E , (4)

hich guarantees that mutual cooperation is more beneficial than

he two players alternating C and D in the opposite phase, i.e., CD,

C, CD, DC, . . . , where the first and second letter represent the

ctions selected by X and Y , respectively. The two players repeat

he game whose payoff matrix in each round is given by Eq. (1) . 

Consider two players X and Y that adopt memory-one strate-

ies, with which they use only the outcomes of the last round to

ecide the action to be submitted in the current round. Even in

he case of memory- n strategies, errors can be considered. In fact,

ilbe et al. incorporated implementation errors in such a situa-

ion ( Hilbe et al., 2017 ). A memory-one strategy is specified by a

-tuple; X ’s strategy is given by a combination of 

p = (p 1 , p 2 , p 3 , p 4 ) , (5)

here 0 ≤ p 1 , p 2 , p 3 , p 4 ≤ 1. The subscripts 1, 2, 3, and 4 of p mean

revious outcome C g , C b , D g and D b , respectively. In Eq. (5) , p 1 is

he conditional probability that X cooperates when X cooperated

nd observed signal g in the last round, p 2 is the conditional prob-

bility that X cooperates when X cooperated and observed signal b

n the last round, p 3 is the conditional probability that X cooper-

tes when X defected and observed signal g in the last round, and

 4 is the conditional probability that X cooperates when X defected

nd observed signal b in the last round. Note that, in this model,

 depends on X ’s action and its private observation in the last

ound ( Sekiguchi, 1997; Hao et al., 2015 ). Contrary, p depends on

 ’s and Y ’s direct actions in the last round in the case of no errors.

imilarly, Y ’s strategy is specified by a combination of 

 = (q 1 , q 2 , q 3 , q 4 ) , (6)

here 0 ≤ q 1 , q 2 , q 3 , q 4 ≤ 1. Because both players adopt a memory-

ne strategy, the stochastic state of the two players in round t

s described by v (t) = (v 1 (t) , v 2 (t) , v 3 (t) , v 4 (t)) , where the sub-

cripts 1, 2, 3, and 4 of v mean the stochastic state (C,C), (C,D),

D,C), and (D,D), respectively. v 1 ( t ) is the probability that both play-

rs cooperate in round t, v 2 ( t ) is the probability that X cooperates

nd Y defects in round t , and so forth. The state transition matrix

 of this noisy repeated game is given by 
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⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

⎛ 

⎜ ⎝ 

τ p 1 q 1 
+ εp 1 q 2 
+ εp 2 q 1 
+ ξ p 2 q 2 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

τ p 1 (1 − q 1 ) 
+ εp 1 (1 − q 2 ) 
+ εp 2 (1 − q 1 ) 
+ ξ p 2 (1 − q 2 ) 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

τ (1 − p 1 ) q 1 
+ ε(1 − p 1 ) q 2 
+ ε(1 − p 2 ) q 1 
+ ξ (1 − p 2 ) q 2 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

τ (1
+ ε(
+ ε(
+ ξ (⎛ 

⎜ ⎝ 

εp 1 q 3 
+ ξ p 1 q 4 
+ τ p 2 q 3 
+ εp 2 q 4 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

εp 1 (1 − q 3 ) 
+ ξ p 1 (1 − q 4 ) 
+ τ p 2 (1 − q 3 ) 
+ εp 2 (1 − q 4 ) 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

ε(1 − p 1 ) q 3 
+ ξ (1 − p 1 ) q 4 
+ τ (1 − p 2 ) q 3 
+ ε(1 − p 2 ) q 4 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

ε(1
+ ξ (
+ τ (
+ ε(⎛ 

⎜ ⎝ 

εp 3 q 1 
+ τ p 3 q 2 
+ ξ p 4 q 1 
+ εp 4 q 2 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

εp 3 (1 − q 1 ) 
+ τ p 3 (1 − q 2 ) 
+ ξ p 4 (1 − q 1 ) 
+ εp 4 (1 − q 2 ) 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

ε(1 − p 3 ) q 1 
+ τ (1 − p 3 ) q 2 
+ ξ (1 − p 4 ) q 1 
+ ε(1 − p 4 ) q 2 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

ε(1
+ τ (
+ ξ (
+ ε(⎛ 

⎜ ⎝ 

ξ p 3 q 3 
+ εp 3 q 4 
+ εp 4 q 3 
+ τ p 4 q 4 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

ξ p 3 (1 − q 3 ) 
+ εp 3 (1 − q 4 ) 
+ εp 4 (1 − q 3 ) 
+ τ p 4 (1 − q 4 ) 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

ξ (1 − p 3 ) q 3 
+ ε(1 − p 3 ) q 4 
+ ε(1 − p 4 ) q 3 
+ τ (1 − p 4 ) q 4 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

ξ (1
+ ε(
+ ε(
+ τ (

here τ = 1 − 2 ε − ξ . Each row and column represents the previ-

us states and the following states of the game, respectively. Then,

he stochastic state of the two players in round t + 1 is calculated

y v (t + 1) = v (t) M. The stationary distribution for M is a vector v

uch that 

 = v M. (8) 

q. (8) and M 

′ ≡ M − I yield 

 M 

′ = 0 . (9) 

pplying Cramer’s rule to matrix M 

′ , we obtain 

dj(M 

′ ) M 

′ = 0 , (10)

here Adj ( M 

′ ) is the adjugate matrix of M 

′ . Here, Eqs. (9) and

10) imply that every row of Adj ( M 

′ ) is proportional to v . Therefore,

 is solely represented by the components of matrix M 

′ . Choosing

he fourth row of the matrix Adj ( M 

′ ), we see that v is composed of

he determinant of the 3 × 3 matrixes formed from the first three

olumns of M 

′ . We add the first column of M 

′ into the second and

hird columns. Even by this manipulation, this determinant is un-

hanged. The result of these manipulations is a formula for the dot

roduct of an arbitrary vector f = ( f 1 , f 2 , f 3 , f 4 ) with the station-

ry distribution vector v , which can be represented by the form of

he determinant 

 · f = 

∣∣∣∣∣∣∣
τ p 1 q 1 + εp 1 q 2 + εp 2 q 1 + ξ p 2 q 2 − 1 μp 1 + ηp 2 − 1 

εp 1 q 3 + ξ p 1 q 4 + τ p 2 q 3 + εp 2 q 4 ηp 1 + μp 2 − 1 

εp 3 q 1 + τ p 3 q 2 + ξ p 4 q 1 + εp 4 q 2 μp 3 + ηp 4 
ξ p 3 q 3 + εp 3 q 4 + εp 4 q 3 + τ p 4 q 4 ηp 3 + μp 4 

where μ = 1 − ε − ξ and η = ε + ξ . If we replace the arbitrary vec-

or f with X ’s expected payoff vector S X = (R E , S E , T E , P E ) , we obtain

 · S X . Then, we divide it by v · 1 . Finally, we can obtain player X ’s

er-round expected payoff in the form of the determinant as fol-

ows: 

 X = 

v · S X 
v · 1 

= 

D ( p , q , S X ) 

D ( p , q , 1 ) 
, (12) 

here 1 = (1 , 1 , 1 , 1) is needed for the normalization. Similarly,

layer Y ’s per-round payoff can be represented by the form of the

eterminant 

 ( p , q , αS X + βS Y + γ 1 ) = 

∣∣∣∣∣∣∣
τ p 1 q 1 + εp 1 q 2 + εp 2 q 1 + ξ p 2 q 2 − 1 

εp 1 q 3 + ξ p 1 q 4 + τ p 2 q 3 + εp 2 q 4 
εp 3 q 1 + τ p 3 q 2 + ξ p 4 q 1 + εp 4 q 2 
ξ p 3 q 3 + εp 3 q 4 + εp 4 q 3 + τ p 4 q 4 
t  
 

)(1 − q 1 ) 
 1 )(1 − q 2 ) 
 2 )(1 − q 1 ) 
 2 )(1 − q 2 ) 

⎞ 

⎟ ⎠ 

 

)(1 − q 3 ) 
p 1 )(1 − q 4 ) 
p 2 )(1 − q 3 ) 
 2 )(1 − q 4 ) 

⎞ 

⎟ ⎠ 

 

)(1 − q 1 ) 
p 3 )(1 − q 2 ) 
p 4 )(1 − q 1 ) 
 4 )(1 − q 2 ) 

⎞ 

⎟ ⎠ 

 

)(1 − q 3 ) 
 3 )(1 − q 4 ) 
 4 )(1 − q 3 ) 

p 4 )(1 − q 4 ) 

⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (7) 

 1 + ηq 2 − 1 f 1 
q 3 + ηq 4 f 2 
 

+ μq 2 − 1 f 3 
q 3 + μq 4 f 4 

∣∣∣∣∣∣∣
≡ D ( p , q , f ) , (11) 

 Y = 

v · S Y 
v · 1 

= 

D ( p , q , S Y ) 

D ( p , q , 1 ) 
, (13) 

here S Y is Y ’s expected payoff vector ( R E , T E , S E , P E ). Hereafter, we

nly consider the relationship between those two expected pay-

ffs because they converge to certain expected values, respectively,

f the stationary distributions exist in infinitely repeated games.

n contrast, other types of the payoff are worth investigating in

nitely repeated games. 

Moreover, we can consider the linear combination of s X and s Y ,

hich can be given by the form of the determinant 

s X + βs Y + γ = 

D ( p , q , αS X + βS Y + γ 1 ) 

D ( p , q , 1 ) 
, (14)

here α, β , and γ , are arbitrary constant. The numerator of the

ight side of Eq. (14) is expressed in the following: 

 1 + ηp 2 − 1 μq 1 + ηq 2 − 1 αR E + βR E + γ
 1 + μp 2 − 1 μq 3 + ηq 4 αS E + βT E + γ

p 3 + ηp 4 ηq 1 + μq 2 − 1 αT E + βS E + γ
p 3 + μp 4 ηq 3 + μq 4 αP E + βP E + γ

∣∣∣∣∣∣∣
. (15) 

If Eq. (15) is zero, the relationship between the two players’ pay-

ffs becomes linear. In the next section, we search for all of the

olutions which satisfy this condition. 

. Result 

We search for strategies that impose a linear relationship be-

ween the two players’ payoffs regardless of their opponent’s

trategies in the RPD game with observation errors, which satisfy

he following equation: 

s X + βs Y + γ = 0 . (16)

f the numerator of the right side of Eq. (14) is zero, Eq. (16) holds.

n other words, if D ( p , q , αS X + βS Y + γ 1 ) = 0 is satisfied, there is

 linear payoff relationship between the two players’ payoffs. 

Press and Dyson (2012) (without error) and

ao et al. (2015) (with error) only searched for the case that

he second and fourth columns take the same value. This
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i  
makes the determinant become zero. Here, from all possibil-

ities, we search for all of the cases (including this case) that

D ( p , q , αS X + βS Y + γ 1 ) = 0 holds. The following determinant

theorem gives such a condition. 

Theorem 1. For an n × n matrix A, the following holds: 

det ( A ) = 0 ⇔ The columns of matrix A are 

linearly dependent vectors . 

We define a i ( i ∈ {1, 2, 3, 4}) as i -th column vector of the deter-

minant of Eq. (15) . From the above theorem, if the columns of the

determinant of Eq. (15) are linearly dependent vectors, there exist

real numbers s, t, u, v, α, β , and γ , except for the trivial solution

( (s, t, u, v ) = (0 , 0 , 0 , 0) , (α, β, γ ) = (0 , 0 , 0) ), such that 

s a 1 + t a 2 + u a 3 + v a 4 = 0 , (17)

where vector 0 denotes a zero vector. 

3.1. Without errors (perfect monitoring) 

3.1.1. Mathematical analysis 

In this section, we search for all of the strategies that en-

force a linear payoff relationship without errors ( ε = 0 and ξ = 0 ).

When there are no errors, the expected payoffs correspond to

the original payoffs, i.e., S X = (R E , S E , T E , P E ) = (R, S, T , P ) and S Y =
(R E , T E , S E , P E ) = (R, T , S, P ) , respectively. In addition, by substitut-

ing ε = 0 and ξ = 0 into Eq. (15) , we obtain 

D ( p , q , αS X + βS Y + γ 1 ) = 

∣∣∣∣∣∣∣
p 1 q 1 − 1 p 1 − 1 q 1 − 1 αR + βR + γ

p 2 q 3 p 2 − 1 q 3 αS + βT + γ
p 3 q 2 p 3 q 2 − 1 αT + βS + γ
p 4 q 4 p 4 q 4 αP + βP + γ

∣∣∣∣∣∣∣
,

(18)

which is the same with Press and Dyson’s determinant

( Press and Dyson, 2012 ). By the extensive calculations pro-

vided in Appendix A , we found the only strategies that impose

a linear payoff relationship between the two players’ payoffs are

either 

p 1 − 1 = αR + βR + γ

p 2 − 1 = αS + βT + γ

p 3 = αT + βS + γ

p 4 = αP + βP + γ , (19)

or 

p 1 = p 2 = p 3 = p 4 . (20)

Eq. (19) corresponds to ZD strategies without error

( Press and Dyson (2012) , Eq.(1) of Hilbe et al. (2013b) , Eq.(1)

of Hilbe et al. (2013a) , and Eq. (3) of Hilbe et al. (2018) ). Eq. (20) is

called unconditional strategies (Hilbe et al., 2013b) . Only these

strategy sets p can impose a linear relationship and no other

strategies can impose it. 

To conclude, in the RPD game under perfect monitoring, we

showed that either ZD strategies or unconditional strategies can

impose a linear relationship between the two players’ payoffs. This

is consistent with the previous result in the case with a discount

factor but no errors (Ichinose and Masuda, 2018) . 

3.1.2. Numerical examples 

We show numerical examples that ZD strategies and uncon-

ditional strategies can impose a linear relationship between the

two players’ payoffs while others cannot in the RPD game with-

out errors. Fig. 1 shows the relationship between the two play-

ers’ expected payoffs per game with payoff vector (T , R, P, S) =
(1 . 5 , 1 , 0 , −0 . 5) . The gray quadrangle in each panel represents the

easible set of the payoffs. We fixed one particular strategy for

layer X (vertical line) and randomly generate 10 0 0 strategies that

atisfy 0 ≤ q 1 , q 2 , q 3 , q 4 ≤ 1 for player Y (horizontal axis). Thus, each

lack dot represents the payoff relationship between two players.

n addition, the blue and red are the particular cases for player

 . Red is the case that player Y is ALLD and blue is the case that

layer Y is ALLC. 

Fig. 1 (A) shows the case with a Win-Stay-Lose-Shift (WSLS)

trategy vs. 10 0 0 + 2 strategies. As WSLS strategies are neither ZD

or unconditional strategies, the payoff relationships are not linear.

.1.3. Numerical examples of ZD strategies 

Equalizer ( Press and Dyson, 2012 ), Extortioner ( Press and

yson, 2012 ), and Generous strategies ( Stewart and Plotkin, 2013 )

re known as the three most prominent ZD strategies. Here, we

ake up the first two as the numerical examples of ZD although

enerous strategies play an important role in the evolution of

ooperation. In contrast to Extortion, Generous strategies always

btain lower payoffs than the opponent except for mutual cooper-

tion. Hence, Generous strategies are known as one of the cooper-

tive ZD strategies. Because Extortion never loses in a one-to-one

ompetition, Extortion is feasible in a small population. However,

n a large evolving population, cooperative groups are more suc-

essful than the group of Extortioners. Thus, evolution leads from

xtortion to Generous strategies ( Stewart and Plotkin, 2013 ). In

his sense, Generous strategies are important. Fig. 1 (B) is the case

ith an Extortioner strategy vs. 10 0 0 + 2 strategies. Extortioner

trategies are the subset of ZD strategies ( Press and Dyson, 2012 )

See Box 1 in ( Hilbe et al., 2018 ) for a clear explanation of Ex-

ortioner (extortionate) strategies). Extortioner strategies can al-

ays gain a higher payoff than the one’s opponent, except for the

oint ( P, P ), regardless of the opponent’s strategies. When we set

(α, β, γ ) = (0 . 01 , −0 . 15 , 0) in Eq. (19) , we obtain an Extortioner

trategy, p = (0 . 86 , 0 . 77 , 0 . 09 , 0) , with 0 . 01 s X − 0 . 15 s Y = 0 . In this

articular case, the Extortioner strategy (player X ) gains the payoff

fteen times higher than player Y . 

Fig. 1 (C) is the case with an Equalizer strategy vs. 10 0 0 + 2

trategies. Note that, only in this case, the vertical and horizon-

al axes are reversed. Thus, the horizontal axis is the payoff of

qualizer (player X ) and the vertical axis is the payoff of player Y .

qualizer strategies are also the subset of ZD strategies ( Press and

yson, 2012 ). If a player uses Equalizer strategies, he can fix

he opponent’s payoff to be one particular value. When we set

(α, β, γ ) = (0 , −2 / 3 , 1 / 3) in Eq. (19) , we obtain an Equalizer strat-

gy, p = (2 / 3 , 1 / 3 , 2 / 3 , 1 / 3) , which can fix the opponent’s payoff

t s Y = 0 . 5 irrespective of the opponent’s strategies. 

Fig. 1 (D) is the case with TFT p = (1 , 0 , 1 , 0) strategy vs. 10 0 0 +
 strategies. When we set (α, β, γ ) = (0 . 5 , −0 . 5 , 0) in Eq. (19) , we

btain TFT p = (1 , 0 , 1 , 0) , which means that TFT is also the subset

f ZD strategies. Actually, TFT is a special case of ZD strategies with

 X = s Y called “fair strategies” (Hilbe et al., 2014b) . Moreover, the

trategies that p 1 = 1 , p 4 = 0 , p 2 + p 3 = 1 including TFT can im-

ose the linear payoff relationship s X = s Y . See Appendix B for the

roof. 

.1.4. Numerical examples of unconditional strategies 

Fig. 1 (E) is the case with ALLC vs. 10 0 0 + 2 strategies. ALLC

s one of the examples of unconditional strategies ( r, r, r, r ),

 ≤ r ≤ 1 where r = 1 . If we substitute r = 1 and (T , R, P, S) =
(1 . 5 , 1 , 0 , −0 . 5) into Eq. (34) , we obtain (β, γ ) = (3 α, −4 α) and

e have a straight line represented by s X + 3 s Y − 4 = 0 . We nu-

erically see that the payoff of ALLC is always lower than the op-

onent’s payoff except for ( R, R ). 

Fig. 1 (F) is the case with ALLD vs. 10 0 0 + 2 strategies. ALLD

s also one of the examples of unconditional strategies ( r, r, r,
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A B C

D E F

Fig. 1. The payoff relationships between two players in the RPD game without errors. Payoff vector: (T, R, P, S) = (1 . 5 , 1 , 0 , −0 . 5) . (A) WSLS strategy vs. 10 0 0 + 2 strategies. 

(B) Extortioner strategy vs. 10 0 0 + 2 strategies. (C) Equalizer strategy vs. 10 0 0 + 2 strategies. (D) TFT strategy vs. 10 0 0 + 2 strategies. (E) ALLC vs. 10 0 0 + 2 strategies. (F) 

ALLD vs. 10 0 0 + 2 strategies. 
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 ), 0 ≤ r ≤ 1 where r = 0 . If we substitute r = 0 and (T , R, P, S) =
(1 . 5 , 1 , 0 , −0 . 5) into Eq. (34) , we obtain (β, γ ) = (3 α, 0) and we

ave a straight line represented by s X + 3 s Y = 0 . We numerically

ee that the payoff of ALLD is always higher than the opponent’s

ayoff except for ( P, P ). Unlike ZD strategies, the slopes of the

traight lines in Fig. 1 (E) and (F) are always negative (Hilbe et al.,

013b) . 

.2. With observation errors (imperfect monitoring) 

.2.1. Mathematical analysis 

In the same way as no errors, we search for strategies that im-

ose a linear relationship between the two players’ payoffs regard-

ess of the opponent’s strategy in the RPD game with observation

rrors. If the numerator of the right side of Eq. (14) is zero, the

ollowing equation holds: 

s X + βs Y + γ = 0 . (21)

In other words, if D ( p , q , αS X + βS Y + γ 1 ) = 0 is satisfied, there

s a linear payoff relationship between the two players’ payoffs. By

he extensive calculations provided in Appendix C , we found the

nly strategies that impose a linear payoff relationship between

he two players’ payoffs are either 

p 1 + ηp 2 − 1 = αR E + βR E + γ

p 1 + μp 2 − 1 = αS E + βT E + γ

μp 3 + ηp 4 = αT E + βS E + γ

ηp 3 + μp 4 = αP E + βP E + γ , (22) 
r 

p 1 = p 2 = p 3 = p 4 . (23)

Eq. (22) is ZD strategies with observation errors. This is con-

istent with Hao et al. (2015) . Eq. (23) is unconditional strategies.

oreover, we analytically show the feasible payoff range for un-

onditional strategies. See Appendix D . 

In summary, in the RPD game even with observation errors (im-

erfect monitoring), we showed that either ZD strategies or uncon-

itional strategies can impose a linear relationship between the

wo players’ payoffs and that no other strategies can impose it.

his is a new fact discovered in this study. 

.2.2. Numerical examples 

As well as the case without errors, we show numerical exam-

les that ZD strategies and unconditional strategies can impose a

inear relationship between the two players’ payoffs while others

annot in the RPD game with errors. Fig. 2 shows the relation-

hip between the two players’ expected payoffs per game with

ayoff vector (T , R, P, S) = (1 . 5 , 1 , 0 , −0 . 5) . The gray quadrangle in

ach panel represents the feasible payoff set. As error rates are in-

reased, the size of the feasible payoff set becomes smaller. We

xed one particular strategy for player X (vertical line) and ran-

omly generate 10 0 0 strategies that satisfy 0 ≤ q 1 , q 2 , q 3 , q 4 ≤ 1

or player Y (horizontal axis). Each black dot represents the payoff

elationship between two players without errors ( ε + ξ = 0 ), the

ame as Fig. 1 . Moreover, green, light green, and light blue dots

orrespond to the cases of ε + ξ = 0 . 1 , 0 . 2 , and 0.3, respectively.
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Fig. 2. The payoff relationships between two players in the RPD game with errors. Payoff vector: (T, R, P, S) = (1 . 5 , 1 , 0 , −0 . 5) . (A) WSLS strategy vs. 10 0 0 + 2 strategies. (B) 

Extortioner strategy vs. 10 0 0 + 2 strategies. (C) Equalizer strategy vs. 10 0 0 + 2 strategies. (D) TFT strategy vs. 10 0 0 + 2 strategies. (E) ALLC vs. 10 0 0 + 2 strategies. (F) ALLD 

vs. 10 0 0 + 2 strategies. 
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We do not consider the case of ε + ξ ≥ 1 / 3 because it does not

satisfy the prisoner’s dilemma condition: T E > R E > P E > S E . As in the

case with no errors, red is the case that player Y is ALLD and blue

is the case that player Y is ALLC. 

Fig. 2 (A) shows the case with a Win-Stay-Lose-Shift (WSLS)

strategy vs. 10 0 0 + 2 strategies. In this case, ξ = 0 is fixed and ε
is varied to 0.1, 0.2 and 0.3. As in the case with no errors, the pay-

off relationships are not linear in this case because WSLS strategies

are neither ZD nor unconditional strategies. 

3.2.3. Numerical examples of ZD strategies 

Fig. 2 (B) is the case with an Extortioner strategy vs. 10 0 0 + 2

strategies. As shown in Fig. 1 , p = (0 . 86 , 0 . 77 , 0 . 09 , 0) (black dots)

is the extortion strategy without errors. In this case, player X can

always gain a higher payoff than the opponent (with the slope of

15), except for the point ( P, P ), regardless of the opponent’s strate-

gies. p = (0 . 926875 , 0 . 818125 , 0 . 111875 , 0 . 003125) (green) and p =
(1 , 0 . 86 , 0 . 14 , 0) (light green) are the extortion strategies when

ε + ξ = 0 . 1 and 0.2, respectively. Unlike Extortioner without errors,

there exists the region that the expected payoff of the Extortioner

with errors is lower than the opponent’s payoff near ( P E , P E ). 

Hao et al. already proved this fact ( Hao et al., 2015 ). They

call it dominant extortion when the expected payoff of a focal

player is always higher than the opponent except for ( P, P ). This

is only possible when there are no errors. When there are errors,

only contingent extortion can exist as Hao et al. proved. We as-

sume that player X adopts the contingent extortion. The contin-

gent extortion implies that when player Y tries to increase his pay-
ff, he will increase X ’s payoff even more. However, in some re-

ions near ( P E , P E ), X ’s payoff is lower than Y ’s payoff. We mathe-

atically restate the difference between dominant and contingent

ased on Hao et al.’s formalism ( Hao et al., 2015 ). We transform

= φs ′ , β = −φ, γ = φ(1 − s ′ ) l in Eq. (22) in line with Hilbe’s for-

alism ( Hilbe et al., 2013b ). We determine l, s ′ so that l = P E +
, 1 /s ′ > 1 are satisfied where 1/ s ′ is the slope of the line. Note

hat the inverse of s ′ is considered as the slope because, in Hilbe’s

ormalism, s ′ is the coefficient for player Y while in our and Hao’s

ormalism s ′ is the coefficient for player X . Also, φ, � must sat-

sfy 0 ≤ p 1 , p 2 , p 3 , p 4 ≤ 1. When ε + ξ = 0 (no error), if we set

(s ′ , φ, �) = (1 / 15 , 0 . 15 , 0) , we obtain l = P E in Eq. (22) and p be-

omes p = (0 . 86 , 0 . 77 , 0 . 09 , 0) (black dots in Fig. 2 (B)). In this case,

he payoff of player X is always higher than player Y except for

he point ( P, P ). However, when ε + ξ > 0 , there is no solution in

q. (22) when � = 0 . Thus, �> 0 is needed, which means that

here are the cases that the payoff of player X is lower than that

f player Y . For instance, when ε + ξ = 0 . 1 , 0 . 2 are given, if we

et (s ′ , φ, �) = (1 / 15 , 0 . 15 , 0 . 1) and (s ′ , φ, �) = (1 / 15 , 0 . 15 , 0 . 2) ,

p = (0 . 926875 , 0 . 818125 , 0 . 111875 , 0 . 003125) (green in Fig. 2 (B))

p = (1 , 0 . 86 , 0 . 14 , 0) (light green in Fig. 2 (B)) are obtained. In those

ases, X ’s payoff is lower than Y ’s payoff near ( P E , P E ) although Y ’s

ncrease leads to X ’s increase even more. 

Fig. 2 (C) is the case with an Equalizer strategy vs. 10 0 0 + 2

trategies. Note that, only in this case, the vertical and horizon-

al axes are reversed. Thus, the horizontal axis is the payoff of

qualizer (player X ) and the vertical axis is the payoff of player

 . As Hao et al. already suggested ( Hao et al., 2015 ), there exist
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qualizer strategies even if errors are incorporated. When ε + ξ =
 (no error), if we set (α, β, γ ) = (0 , −2 / 3 , 1 / 3) in Eq. (22) , we

btain an Equalizer strategy, p = (2 / 3 , 1 / 3 , 2 / 3 , 1 / 3) , which can

x the opponent payoff at s Y = 0 . 5 irrespective of the opponent’s

trategies as shown by black dots in Fig. 2 (C). When ε + ξ = 0 . 1 , if

e set (α, β, γ ) = (0 , −0 . 695653 , 0 . 347827) , we obtain an Equal-

zer strategy, p = (0 . 8 , 0 . 365217 , 0 . 634783 , 0 . 2) which can fix the

pponent payoff at s Y = 0 . 5 as shown by green dots in Fig. 2 (C).

lso, when ε + ξ = 0 . 2 , if we set (α, β, γ ) = (0 , −0 . 3 , 0 . 15) , we

btain an Equalizer strategy, p = (0 . 99 , 0 . 74 , 0 . 26 , 0 . 01) which can

x the opponent payoff at s Y = 0 . 5 as shown by light green dots in

ig. 2 (C). As error rates are increased, the payoff range for Equal-

zer becomes smaller. 

Fig. 2 (D) is the case with TFT p = (1 , 0 , 1 , 0) strategy

s. 10 0 0 + 2 strategies. When ε + ξ = 0 (no error), if we set

p = (1 , 0 , 1 , 0) in Eq. (22) , we obtain (α, β, γ ) = (0 . 5 , −0 . 5 , 0) ,

hich means that s X = s Y (black dots) in the case of TFT.

hen ε + ξ = 0 . 1 , 0 . 2 , and 0.3, if we set p = (1 , 0 , 1 , 0) in

q. (22) , we obtain (α, β, γ ) = (0 . 386555 , −0 . 672269 , 0 . 142857) ,

(α, β, γ ) = (0 . 0714286 , −1 . 07143 , 0 . 5) , and (α, β, γ ) =
(−2 . 36364 , −3 . 63636 , 3) , respectively. Thus, we obtain the cor-

esponding lines, (α, β, γ ) = (0 . 386555 , −0 . 672269 , 0 . 142857)

green), (α, β, γ ) = (0 . 0714286 , −1 . 07143 , 0 . 5) (light green), and

(α, β, γ ) = (−2 . 36364 , −3 . 63636 , 3) (light blue), respectively.

hen there are no errors, s X = s Y always holds. However, there

re errors, this does not hold any more. As error rates are in-

reased, the difference between s X and s Y becomes larger. In

eneral, when there are errors, unlike when there are no errors,

FT does not enforce a linear payoff relationship. Only when

pecial payoff matrices are given, the linear payoff relationship

emains. See Appendix E in detail. 

.2.4. Numerical examples of unconditional strategies 

Fig. 2 (E) is the case with ALLC vs. 10 0 0 + 2 strategies. ALLC is

ne of the examples of unconditional strategies ( r, r, r, r ), 0 ≤ r ≤ 1

here r = 1 . When ε + ξ = 0 (no error), by Eq. (51) , we obtain

(β, γ ) = (3 α, −4 α) . Thus, the equation of the straight line is s X +
 s Y − 4 = 0 (black dots in Fig. 2 (E)) and the domain of s X becomes

0 . 5 ≤ s X ≤ 1 from Eq. (62) . When ε + ξ = 0 . 1 , 0 . 2 , and 0.3, we

btain the corresponding lines, s X + 2 . 4 s Y − 2 . 89 = 0 (−0 . 35 ≤ s X ≤
 . 85) (green) s X + 1 . 8 s Y − 1 . 96 = 0 (−0 . 2 ≤ s X ≤ 0 . 7) (light green)

nd s X + 1 . 2 s Y − 1 . 21 = 0 (−0 . 05 ≤ s X ≤ 0 . 55) (light blue), respec-

ively. We numerically see that the payoff of ALLC is always lower

han the opponent’s payoff except for ( R E , R E ) and all the dots are

n the feasible lines (R E , R E ) − (T E , S E ) , respectively. 

Fig. 2 (F) is the case with ALLD vs. 10 0 0 + 2 strategies. ALLD

s also one of the examples of unconditional strategies ( r, r, r, r ),

 ≤ r ≤ 1 where r = 0 . When ε + ξ = 0 (no error), by Eq. (51) , we

btain (β, γ ) = (3 α, 0) . Thus, the equation of the straight line is

 X + 3 s Y = 0 (black dots in Fig. 2 (F)) and the domain of s X becomes

 ≤ s X ≤ 1.5 from Eq. (62) . When ε + ξ = 0 . 1 , 0 . 2 , and 0.3, we obtain

he corresponding lines, s X + 2 . 4 s Y − 0 . 51 = 0 (0 . 15 ≤ s X ≤ 1 . 35)

green) s X + 1 . 8 s Y − 0 . 84 = 0 (0 . 3 ≤ s X ≤ 1 . 2) (light green) and
 X + 1 . 2 s Y − 0 . 99 = 0 (0 . 45 ≤ s X ≤ 1 . 05) (light blue), respectively.

e numerically see that the payoff of ALLD is always higher than

he opponent’s payoff except for ( P E , P E ) and all the dots are on

he feasible lines (S E , T E ) − (P E , P E ) , respectively. 

. Conclusions 

We analyzed strategies that enforce linear payoff relationships

nder observation errors in the RPD game. Press and Dyson firstly

eveloped a new mathematical formalism for the expected payoffs

f two players and found that if the second and fourth columns

f the specific determinant take the same value, the determinant

ecomes zero, which implies the two players’ expected payoffs be-

ome linear ( Press and Dyson, 2012 ). Hao et al. used the same lin-

ar algebra technique and extended it to the case with observation

rrors ( Hao et al., 2015 ). Here, not just the case where the sec-

nd and fourth columns of the determinant take the same value,

e searched for all of the strategies which make the determinant

ero under observation errors. As a result, we found that the only

trategy sets that enforce a linear payoff relationship are either ZD

trategies or unconditional strategies, which was consistent with

he case of the RPD game with a discount factor ( Ichinose and Ma-

uda, 2018 ). We confirmed that the solutions are correct by show-

ng some numerical calculations. 

Press and Dyson first discovered strategies that make the

eterminant for the expected payoffs zero by finding that the

econd and fourth columns of the determinant take the same

alue ( Press and Dyson, 2012 ). They call these strategies “zero-

eterminant strategies” (original ZD strategies) and all subsequent

tudies also call them “zero-determinant strategies.” By searching

or all possibilities, we found that not only these original ZD strate-

ies but also unconditional strategies make the determinant zero

ith a different form and that no other strategies exist to make

he determinant zero. In this sense, strictly speaking, both the orig-

nal ZD strategies and unconditional strategies may be called “zero-

eterminant strategies.”

The original ZD strategies and the unconditional strategies are

he only sets which impose a linear payoff relationship irrespec-

ive of the opponent strategies, not only in the case with a dis-

ount factor ( Ichinose and Masuda, 2018 ) but also in the case with

bservation errors as shown here. This result suggests that, in any

ase, those two sets are the only types of strategies that enforce a

inear payoff relationship between two players. To investigate the

nference, one possible direction of future research is analyzing the

ase of the RPD game with a discount factor under observation er-

ors. 
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) into Eq. (17) to obtain 

 0 . (24) 

 0 . (25) 

1 ) = 0 irrespective of Y ’s strategy q , meaning that Eq. (25) must hold 

q in Eq. (25) must equal to zero, that is, the following conditions are 

(26) 

 we obtain 

t (27) 

26) and (27) are satisfied simultaneously, D ( p , q , αS X + βS Y + γ 1 ) = 0 

uation from the first three in Eq. (26) : 

(28) 

he case that s = 0 holds, the second and third equations automatically 

 and u = 0 . Second, in the cases that s 	 = 0 and p 1 = p 4 hold, we obtain 

th equations, respectively. Therefore, the solutions of Eq. (26) are either 

k that these solutions can also satisfy Eq. (27) in the following. 

n 

t (29) 

(30) 

(31) 

u, v ) = (0 , 0 , 0 , 0) . Also, we solve Eq. (31) and obtain the trivial solution 

of t = 0 . Therefore, in the following, we only consider t 	 = 0. Replacing 

(32) 

e solutions that Eq. (17) hold. This strategy set p can impose a lin- 

rror ( Press and Dyson (2012) , Eq.(1) of Hilbe et al. (2013b) , Eq.(1) of 
Appendix A. Detailed calculations without errors 

We substitute the column vectors of the determinant of Eq. (18

s 

⎛ 

⎜ ⎝ 

p 1 q 1 − 1 

p 2 q 3 
p 3 q 2 
p 4 q 4 

⎞ 

⎟ ⎠ 

+ t 

⎛ 

⎜ ⎝ 

p 1 − 1 

p 2 − 1 

p 3 
p 4 

⎞ 

⎟ ⎠ 

+ u 

⎛ 

⎜ ⎝ 

q 1 − 1 

q 3 
q 2 − 1 

q 4 

⎞ 

⎟ ⎠ 

+ v 

⎛ 

⎜ ⎝ 

αR + βR + γ
αS + βT + γ
αT + βS + γ
αP + βP + γ

⎞ 

⎟ ⎠ 

=

By taking out q in Eq. (24) , we obtain ⎛ 

⎜ ⎝ 

(sp 1 + u ) q 1 
(sp 2 + u ) q 3 
(sp 3 + u ) q 2 
(sp 4 + u ) q 4 

⎞ 

⎟ ⎠ 

+ t 

⎛ 

⎜ ⎝ 

p 1 − 1 

p 2 − 1 

p 3 
p 4 

⎞ 

⎟ ⎠ 

+ 

⎛ 

⎜ ⎝ 

−u − s 
0 

−u 

0 

⎞ 

⎟ ⎠ 

+ v 

⎛ 

⎜ ⎝ 

αR + βR + γ
αS + βT + γ
αT + βS + γ
αP + βP + γ

⎞ 

⎟ ⎠ 

=

Here, we search for strategies which satisfy D ( p , q , αS X + βS Y + γ
true irrespective of q . Therefore, the coefficients of each element 

necessary: ⎧ ⎪ ⎨ 

⎪ ⎩ 

sp 1 + u = 0 

sp 2 + u = 0 

sp 3 + u = 0 

sp 4 + u = 0 . 

When Eq. (26) holds, the first terms of Eq. (25) are eliminated and

 

⎛ 

⎜ ⎝ 

p 1 − 1 

p 2 − 1 

p 3 
p 4 

⎞ 

⎟ ⎠ 

+ 

⎛ 

⎜ ⎝ 

−u − s 
0 

−u 

0 

⎞ 

⎟ ⎠ 

+ v 

⎛ 

⎜ ⎝ 

αR + βR + γ
αS + βT + γ
αT + βS + γ
αP + βP + γ

⎞ 

⎟ ⎠ 

= 0 . 

If there exist real numbers, s, t, u, v, α, β , and γ such that Eqs. (

holds irrespective of q . To solve Eq. (26) , we subtract the fourth eq⎧ ⎪ ⎨ 

⎪ ⎩ 

s (p 1 − p 4 ) = 0 

s (p 2 − p 4 ) = 0 

s (p 3 − p 4 ) = 0 

sp 4 + u = 0 . 

Then, we obtain s = 0 or p 1 = p 4 from the first equation. First, in t

hold and we obtain u = 0 from the fourth. Hence, we obtain s = 0

p 2 = p 4 and p 3 = p 4 and p 4 = −u/s from the second, third and four

(1) s = 0 and u = 0 or (2) p 1 = p 2 = p 3 = p 4 = −u/s . Next, we chec

Case (1) s = 0 and u = 0 : 

In this case, we substitute s = 0 and u = 0 into Eq. (27) to obtai

 

⎛ 

⎜ ⎝ 

p 1 − 1 

p 2 − 1 

p 3 
p 4 

⎞ 

⎟ ⎠ 

+ v 

⎛ 

⎜ ⎝ 

αR + βR + γ
αS + βT + γ
αT + βS + γ
αP + βP + γ

⎞ 

⎟ ⎠ 

= 0 . 

Here, when we set t = 0 , either equation 

v = 0 

or ⎛ 

⎜ ⎝ 

αR + βR + γ
αS + βT + γ
αT + βS + γ
αP + βP + γ

⎞ 

⎟ ⎠ 

= 0 

must hold. When we set v = 0 , we obtain the trivial solution (s, t, 

(α, β, γ ) = (0 , 0 , 0) . Hence, we do not have to consider the case 

constants −αv /t, −βv /t, and −γ v /t with α, β , and γ , we obtain, 

p 1 − 1 = αR + βR + γ

p 2 − 1 = αS + βT + γ

p 3 = αT + βS + γ

p 4 = αP + βP + γ . 

If there exist α, β , and γ for p satisfying Eq. (32) , there must b

ear relationship. Eq. (32) corresponds to ZD strategies without e

Hilbe et al. (2013a) , and Eq. (3) of Hilbe et al. (2018) ). 
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= p 4 = r and u = −sr into Eq. (27) to obtain 

t (33) 

T 33) as follows: 

 

γ

(34) 

B s. (26) and (27) are satisfied, p 1 = p 2 = p 3 = p 4 = r (0 ≤ r ≤ 1) enforces 

a nal strategies ( Hilbe et al., 2013b ). By transforming α, β , γ into α = 

φ ations, which are the same as Eq. (16) of Hilbe et al. (2013b) : 

φ (35) 

A

p 3 = 1 including TFT enforce a linear payoff relationship with s X = s Y 
u ng α, β , γ into α = φs ′ , β = −φ, γ = φ(1 − s ′ ) l where s ′ is the slope of 

t

(36) 

w  we obtain 

(37) 

T strategies specified by p 1 = 1 , p 4 = 0 and p 2 + p 3 = 1 enforce a linear 

p

A

) into Eq. (17) to obtain 

s  u 

⎛ 

⎜ ⎝ 

μq 1 + ηq 2 − 1 

μq 3 + ηq 4 
ηq 1 + μq 2 − 1 

ηq 3 + μq 4 

⎞ 

⎟ ⎠ 

+ v 

⎛ 

⎜ ⎝ 

αR E + βR E + γ
αS E + βT E + γ
αT E + βS E + γ
αP E + βP E + γ

⎞ 

⎟ ⎠ 

= 0 . (38) 

B⎛
⎜⎝

ηp 2 − 1 

p 2 − 1 

 ηp 4 
 μp 4 

⎞ 

⎟ ⎠ 

+ 

⎛ 

⎜ ⎝ 

−s − u 

0 

−u 

0 

⎞ 

⎟ ⎠ 

+ v 

⎛ 

⎜ ⎝ 

αR E + βR E + γ
αS E + βT E + γ
αT E + βS E + γ
αP E + βP E + γ

⎞ 

⎟ ⎠ 

= 0 . (39) 

H 1 ) = 0 irrespective of Y ’s strategy q , meaning that Eq. (39) must hold 

t q in Eq. (39) must equal to zero, that is, the following conditions are 
ase (2) p 1 = p 2 = p 3 = p 4 = −u/s : 

In this case, let r (0 ≤ r ≤ 1) be −u/s , we substitute p 1 = p 2 = p 3

 

⎛ 

⎜ ⎝ 

r − 1 

r − 1 

r 
r 

⎞ 

⎟ ⎠ 

+ s 

⎛ 

⎜ ⎝ 

r − 1 

0 

r 
0 

⎞ 

⎟ ⎠ 

+ v 

⎛ 

⎜ ⎝ 

αR + βR + γ
αS + βT + γ
αT + βS + γ
αP + βP + γ

⎞ 

⎟ ⎠ 

= 0 . 

here exist real numbers s, t, u, v, α, β , and γ which satisfies Eq. (

s = 

v α(S(−P − R + S) + T (P + R − T )) 

(1 − r)(P − S) + r(T − R ) 

t = 

v α(S(2 P − S + r(−P − R + S)) + T (−2 P + T + r(P + R − T )))

(1 − r)(P − S) + r(T − R ) 
u = −sr 

β = 

α((1 − r)(T − P ) + r(R − S)) 

(1 − r)(P − S) + r(T − R ) 

= 

α(S − T )((−1 + r ) 2 P + r (1 − r )(T + S) + r 2 R ) 

(1 − r)(P − S) + r(T − R ) 

∀ v , α. 

ecause there exist real numbers s, t, u, v, α, β , and γ such that Eq

 linear payoff relationship. This strategy set is called unconditio

s ′ , β = −φ, γ = φ(1 − s ′ ) l in Eq. (34) , we obtain the following equ

l = (1 − r) 2 P + r(1 − r)(T + S) + r 2 R 

s ′ = − (1 − r)(P − S) + r(T − R ) 

(1 − r)(T − P ) + r(R − S) 

= (1 − r)(T − P ) + r(R − S) . 

ppendix B. Strategies that enforce s X = s Y without errors 

We prove that strategies specified by p 1 = 1 , p 4 = 0 and p 2 + 

nder no errors. Eq. (19) can be rewritten as follows by transformi

he straight line: 

p 1 = 1 − φ(1 − s ′ )(R − l) 

p 2 = 1 − φ[ s ′ (l − S) + (T − l)] 

p 3 = φ[(l − S) + s ′ (T − l)] 

p 4 = φ(1 − s ′ )(l − P ) , 

hich corresponds to Eq. (16) of Hilbe et al. (2013b) . When s ′ = 1 ,

p 1 = 1 

p 2 + p 3 = 1 

p 4 = 0 . 

his gives (α, β, γ ) = (φ, −φ, 0) , hence, we obtain s X = s Y . Thus, 

ayoff relationship with s X = s Y . 

ppendix C. Detailed calculations with errors 

We substitute the column vectors of the determinant of Eq. (15

 

⎛ 

⎜ ⎝ 

τ p 1 q 1 + εp 1 q 2 + εp 2 q 1 + ξ p 2 q 2 − 1 

εp 1 q 3 + ξ p 1 q 4 + τ p 2 q 3 + εp 2 q 4 
εp 3 q 1 + τ p 3 q 2 + ξ p 4 q 1 + εp 4 q 2 
ξ p 3 q 3 + εp 3 q 4 + εp 4 q 3 + τ p 4 q 4 

⎞ 

⎟ ⎠ 

+ t 

⎛ 

⎜ ⎝ 

μp 1 + ηp 2 − 1 

ηp 1 + μp 2 − 1 

μp 3 + ηp 4 
ηp 3 + μp 4 

⎞ 

⎟ ⎠ 

+

y taking out q in Eq. (38) , we obtain 

 

 

 

(s (τ p 1 + εp 2 ) + uμ) q 1 + (s (εp 1 + ξ p 2 ) + uη) q 2 
(s (εp 1 + τ p 2 ) + uμ) q 3 + (s (ξ p 1 + εp 2 ) + uη) q 4 
(s (εp 3 + ξ p 4 ) + uη) q 1 + (s (τ p 3 + εp 4 ) + uμ) q 2 
(s (ξ p 3 + εp 4 ) + uη) q 3 + (s (εp 3 + τ p 4 ) + uμ) q 4 

⎞ 

⎟ ⎠ 

+ t 

⎛ 

⎜ ⎝ 

μp 1 + 

ηp 1 + μ
μp 3 +
ηp 3 +

ere, we search for strategies which satisfy D ( p , q , αS X + βS Y + γ
rue irrespective of q . Therefore, the coefficients of each element 
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(40) 

 we obtain 

t (41) 

40) and (41) are satisfied simultaneously, D ( p , q , αS X + βS Y + γ 1 ) = 0 

uation from the first, the seventh from the second, the fifth from the 

(42) 

ξ = 0 and 1 − 3 ε − ξ = 0 , (3) p 1 − p 2 = 0 and p 3 − p 4 = 0 . We further 

 Eq. (41) by dividing into three cases as follows. 

(43) 

 0 do not hold at the same time. Therefore one of the solutions of 

atisfies Eq. (41) . We substitute s = 0 and u = 0 into Eq. (41) to obtain 

t (44) 

(45) 

(46) 

, v ) = (0 , 0 , 0 , 0) . Also, we solve Eq. (46) and obtain the trivial solution 

of t = 0 . Therefore, in the following, we only consider t 	 = 0. Replacing 

(47) 

ns that Eq. (17) hold. This solution is ZD strategies with errors. This is 

ε = 1 / 4 and ξ = 1 / 4 . When ε = 1 / 4 and ξ = 1 / 4 , the expected payoffs 

 P ) hold, which do not satisfy the condition of the prisoner’s dilemma 
necessary: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

s (εp 1 + ξ p 2 ) + uη = 0 

s (εp 3 + ξ p 4 ) + uη = 0 

s (τ p 1 + εp 2 ) + uμ = 0 

s (τ p 3 + εp 4 ) + uμ = 0 

s (εp 1 + τ p 2 ) + uμ = 0 

s (ξ p 1 + εp 2 ) + uη = 0 

s (ξ p 3 + εp 4 ) + uη = 0 

s (εp 3 + τ p 4 ) + uμ = 0 

When Eq. (40) holds, the first terms of Eq. (39) are eliminated and

 

⎛ 

⎜ ⎝ 

μp 1 + ηp 2 − 1 

ηp 1 + μp 2 − 1 

μp 3 + ηp 4 
ηp 3 + μp 4 

⎞ 

⎟ ⎠ 

+ 

⎛ 

⎜ ⎝ 

−s − u 

0 

−u 

0 

⎞ 

⎟ ⎠ 

+ v 

⎛ 

⎜ ⎝ 

αR E + βR E + γ
αS E + βT E + γ
αT E + βS E + γ
αP E + βP E + γ

⎞ 

⎟ ⎠ 

= 0 . 

If there exist real numbers, s, t, u, v, α, β , and γ such that Eqs. (

holds irrespective of q . To solve Eq. (40) , we subtract the sixth eq

third, and the eighth from the fourth in Eq. (40) to obtain: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

s (ε − ξ )(p 1 − p 2 ) = 0 

s (ε − ξ )(p 3 − p 4 ) = 0 

s (1 − 3 ε − ξ )(p 1 − p 2 ) = 0 

s (1 − 3 ε − ξ )(p 3 − p 4 ) = 0 

s (εp 1 + τ p 2 ) + uμ = 0 

s (ξ p 1 + εp 2 ) + uη = 0 

s (ξ p 3 + εp 4 ) + uη = 0 

s (εp 3 + τ p 4 ) + uμ = 0 . 

First, we solve the first four equations and obtain (1) s = 0 , (2) ε −
analyze whether these equations satisfy the last four equations and

Case (1) s = 0 : 

In this case, we substitute s = 0 into Eq. (42) to obtain {
uη = 0 

uμ = 0 , 

where μ = 1 − ε − ξ and η = ε + ξ . The equations μ = 0 and η =
Eq. (42) is s = 0 and u = 0 . Next, we check whether this solution s

 

⎛ 

⎜ ⎝ 

μp 1 + ηp 2 − 1 

ηp 1 + μp 2 − 1 

μp 3 + ηp 4 
ηp 3 + μp 4 

⎞ 

⎟ ⎠ 

+ v 

⎛ 

⎜ ⎝ 

αR E + βR E + γ
αS E + βT E + γ
αT E + βS E + γ
αP E + βP E + γ

⎞ 

⎟ ⎠ 

= 0 . 

Here, when we set t = 0 , either equation 

v = 0 

or ⎛ 

⎜ ⎝ 

αR E + βR E + γ
αS E + βT E + γ
αT E + βS E + γ
αP E + βP E + γ

⎞ 

⎟ ⎠ 

= 0 

must hold. When we set v = 0 , we obtain the trivial solution (s, t, u

(α, β, γ ) = (0 , 0 , 0) . Hence, we do not have to consider the case 

constants −αv /t, −βv /t, and −γ v /t with α, β , and γ , we obtain, 

μp 1 + ηp 2 − 1 = αR E + βR E + γ

ηp 1 + μp 2 − 1 = αS E + βT E + γ

μp 3 + ηp 4 = αT E + βS E + γ

ηp 3 + μp 4 = αP E + βP E + γ . 

If there exist α, β , and γ satisfying Eq. (47) , there must be solutio

consistent with Hao et al. (2015) . 

Case (2) ε − ξ = 0 and 1 − 3 ε − ξ = 0 : 

In this case, the equations ε − ξ = 0 and 1 − 3 ε − ξ = 0 lead to 

R E = 1 / 2(R + S) , S E = 1 / 2(R + S) , T E = 1 / 2(T + P ) , and P E = 1 / 2(T +
game: T > R > P > S . Hence, we can exclude this solution. 
E E E E 
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(42) to obtain ⎧⎪⎨
⎪⎩ (48) 

T following equations must hold. {
(49) 

T h is the other solution of Eq. (42) . Let r (0 ≤ r ≤ 1) be −u/s . Next, we 

c  2 = p 3 = p 4 = r and u = −sr into Eq. (41) to obtain 

t (50) 

T 50) as follows: 

R E − T E ))) 

γ

(51) 

T  Therefore, the unconditional strategies enforce a linear payoff relation- 

s  s, t, u, v, α, β , and γ such that Eq. (40) and Eq. (41) are satisfied. 

A ies 

 a player takes unconditional strategies. We assume that player X takes 

u onditional strategies p 1 = p 2 = p 3 = p 4 = r into Eq. (11) , we obtain 

D

 

+ ηq 2 − 1 f 1 
q 3 + ηq 4 f 2 
+ μq 2 − 1 f 3 
 3 + μq 4 f 4 

∣∣∣∣∣∣∣
. (52) 

T  1 lead to 

D (53) 

B

D (54) 

B  second, we obtain 

D (55) 
ase (3) p 1 − p 2 = 0 and p 3 − p 4 = 0 : 

In this case, we substitute p 1 − p 2 = 0 and p 3 − p 4 = 0 into Eq. 

 

 

 

 

 

μ(sp 1 + u ) = 0 

η(sp 1 + u ) = 0 

η(sp 3 + u ) = 0 

μ(sp 3 + u ) = 0 . 

he equations μ = 0 and η = 0 do not hold at the same time. The 

sp 1 + u = 0 

sp 3 + u = 0 . 

herefore, we obtain the solution p 1 = p 2 = p 3 = p 4 = −u/s, whic

heck whether this solution satisfies Eq. (41) . We substitute p 1 = p

 

⎛ 

⎜ ⎝ 

r − 1 

r − 1 

r 
r 

⎞ 

⎟ ⎠ 

+ s 

⎛ 

⎜ ⎝ 

r − 1 

0 

r 
0 

⎞ 

⎟ ⎠ 

+ v 

⎛ 

⎜ ⎝ 

αR E + βR E + γ
αS E + βT E + γ
αT E + βS E + γ
αP E + βP E + γ

⎞ 

⎟ ⎠ 

= 0 . 

here exist real numbers s, t, u, v, α, β , and γ which satisfies Eq. (

s = 

v α(S E (−P E − R E + S E ) + T E (P E + R E − T E )) 

(1 − r)(P E − S E ) + r(T E − R E ) 

t = 

v α(S E (2 P E − S E + r(−P E − R E + S E )) + T E (−2 P E + T E + r(P E + 

(1 − r)(P E − S E ) + r(T E − R E ) 
u = −sr 

β = 

α((1 − r)(T E − P E ) + r(R E − S E )) 

(1 − r)(P E − S E ) + r(T E − R E ) 

= 

α(S E − T E )((−1 + r ) 2 P E + r (1 − r )(T E + S E ) + r 2 R E ) 

(1 − r)(P E − S E ) + r(T E − R E ) 

∀ v , α. 

his strategy set is unconditional strategies p = (r, r, r, r) , 0 ≤ r ≤ 1 .

hip in the RPD game with errors because there exist real numbers

ppendix D. The feasible payoff-range for unconditional strateg

In this section, we show the feasible expected payoff-range when

nconditional strategies, which is p = (r, r, r, r) . By substituting unc

 ( p , q , f ) = 

∣∣∣∣∣∣∣
τ rq 1 + εrq 2 + εrq 1 + ξ rq 2 − 1 μr + ηr − 1 μq 1

εrq 3 + ξ rq 4 + τ rq 3 + εrq 4 ηr + μr − 1 μ
εrq 1 + τ rq 2 + ξ rq 1 + εrq 2 μr + ηr ηq 1 
ξ rq 3 + εrq 4 + εrq 3 + τ rq 4 ηr + μr ηq

he equations τ = 1 − 2 ε − ξ , μ = 1 − ε − ξ and η = ε + ξ , μ + η =

 ( p , q , f ) = 

∣∣∣∣∣∣∣
r(μq 1 + ηq 2 ) − 1 r − 1 μq 1 + ηq 2 − 1 f 1 

r(μq 3 + ηq 4 ) r − 1 μq 3 + ηq 4 f 2 
r(ηq 1 + μq 2 ) r ηq 1 + μq 2 − 1 f 3 
r(ηq 3 + μq 4 ) r ηq 3 + μq 4 f 4 

∣∣∣∣∣∣∣
. 

y subtracting r times the third column from the first, we obtain 

 ( p , q , f ) = 

∣∣∣∣∣∣∣
r − 1 r − 1 μq 1 + ηq 2 − 1 f 1 

0 r − 1 μq 3 + ηq 4 f 2 
r r ηq 1 + μq 2 − 1 f 3 
0 r ηq 3 + μq 4 f 4 

∣∣∣∣∣∣∣
. 

y subtracting the third row from the first and the fourth from the

 ( p , q , f ) = 

∣∣∣∣∣∣∣
−1 −1 (μ − η)(q 1 − q 2 ) f 1 − f 3 
0 −1 (μ − η)(q 3 − q 4 ) f 2 − f 4 
r r ηq 1 + μq 2 − 1 f 3 
0 r ηq 3 + μq 4 f 4 

∣∣∣∣∣∣∣
. 
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from r times the second, we obtain 

f 1 − f 3 
f 2 − f 4 

 

+ r( f 1 − f 3 ) 

 

+ r( f 2 − f 4 ) 

∣∣∣∣∣∣∣
. (56) 

 

− f 4 
( f 1 − f 3 ) 
( f 2 − f 4 ) 

∣∣∣∣∣. (57) 

 3 

 4 

∣∣∣∣. (58) 

 determinant as follows: 

r(R E − T E ) + T E 
r(S E − P E ) + P E 

∣∣∣∣∣
− q 2 ) 1 

q 4 ) 1 

∣∣∣∣∣
. (59) 

(μ − η)(q 3 − q 4 ) to obtain 

 E } 
, (60) 

the case of x 	 = 0, let k be y / x , where −∞ < k ≤ 0 ( ∵ −1 ≤ x < 0 and 

 E } 

 

(61) 

aximum if the function f (k ) = 1 / (1 − k ) is minimum and the s X is 

 f ( k ) is f (0) = 1 and the minimum do not exist but lim k →−∞ 

f (k ) ≈ 0 . 

 r(R E − T E ) + T E . Next, in the case of x = 0 , s X = r(R E − T E ) + T E holds. 

al strategies is given by 

(62) 

pected payoffs become R E = 1 − 1 . 5(ε + ξ ) , S E = −0 . 5 + 1 . 5(ε + ξ ) , T E = 

LD ( r = 0 ), his expected payoff becomes 1 . 5(ε + ξ ) ≤ s X ≤ 1 . 5(1 − ε −
 become 0 ≤ s X ≤ 1.5, 0.15 ≤ s X ≤ 1.35, 0.3 ≤ s X ≤ 1.2, and 0.45 ≤ s X ≤ 1.05, 

hen player X takes p = (r, r, r, r) by replacing S X with S Y in Eq. (59) . 

errors only when special conditions are satisfied 

nship only when special conditions are satisfied. We prove it in this 

e a linear payoff relationship are either ZD or unconditional strategies 

m. It is obvious that TFT is not classified as an unconditional strategy 

ther TFT can be classified as ZD strategies. If there exist strategies that 

(63) 
By subtracting r times the first row from the third and the fourth 

D ( p , q , f ) = 

∣∣∣∣∣∣∣
−1 −1 (μ − η)(q 1 − q 2 ) 
0 −1 (μ − η)(q 3 − q 4 ) 
0 0 ηq 1 + μq 2 − 1 + r(μ − η)(q 1 − q 2 ) f 3
0 0 ηq 3 + μq 4 + r(μ − η)(q 3 − q 4 ) f 4

The Laplace expansion along the first column yields: 

D ( p , q , f ) = −
∣∣∣∣∣
−1 (μ − η)(q 3 − q 4 ) f 2
0 ηq 1 + μq 2 − 1 + r(μ − η)(q 1 − q 2 ) f 3 + r
0 ηq 3 + μq 4 + r(μ − η)(q 3 − q 4 ) f 4 + r

Additionally, the Laplace expansion along the first column yields: 

D ( p , q , f ) = 

∣∣∣∣ηq 1 + μq 2 − 1 + r(μ − η)(q 1 − q 2 ) r( f 1 − f 3 ) + f
ηq 3 + μq 4 + r(μ − η)(q 3 − q 4 ) r( f 2 − f 4 ) + f

Therefore X ’s expected payoff can be calculated by the form of the

s X = 

v · S X 
v · 1 

= 

D ( p , q , S X ) 

D ( p , q , 1 ) 
= 

∣∣∣∣∣
ηq 1 + μq 2 − 1 + r(μ − η)(q 1 − q 2 ) 

ηq 3 + μq 4 + r(μ − η)(q 3 − q 4 ) ∣∣∣∣∣
ηq 1 + μq 2 − 1 + r(μ − η)(q 1 

ηq 3 + μq 4 + r(μ − η)(q 3 −
Let x be ηq 1 + μq 2 − 1 + r(μ − η)(q 1 − q 2 ) and y be ηq 3 + μq 4 + r

s X = 

∣∣∣∣x r(R E − T E ) + T E 
y r(S E − P E ) + P E 

∣∣∣∣∣∣∣∣x 1 

y 1 

∣∣∣∣
= 

x { r(S E − P E ) + P E } − y { r(R E − T E ) + T

x − y 

where −1 ≤ x ≤ 0 and 0 ≤ y ≤ 1 because 0 ≤ q 1 , q 2 , q 3 , q 4 ≤ 1. In 

0 ≤ y ≤ 1). Then, Eq. (60) leads to 

s X = 

{ r(S E − P E ) + P E } − k { r(R E − T E ) + T E } 
1 − k 

= 

{ r(S E − P E ) + P E } − { r(R E − T E ) + T E } + (1 − k ) { r(R E − T E ) + T

1 − k 

= r(R E − T E ) + T E + 

[{ r(S E − P E ) + P E } − { r(R E − T E ) + T E } 
] 1 

1 − k

= r(R E − T E ) + T E − { r(R E − S E ) + (1 − r)(T E − P E ) } 1 

1 − k 
. 

Here, by the conditions 0 ≤ r ≤ 1 and T E > R E > P E > S E , the s X is m

minimum if the function f ( k ) is maximum. Then, the maximum of

Hence, the range of s X in the case of x 	 = 0 is r(S E − P E ) + P E ≤ s X <

From the above, the feasible expected payoff-range for uncondition

r(S E − P E ) + P E ≤ s X ≤ r(R E − T E ) + T E . 

For instance, when (T , R, P, S) = (1 . 5 , 1 , 0 , −0 . 5) is given, the ex

1 . 5(1 − ε − ξ ) , and P E = 1 . 5(ε + ξ ) , respectively. If player X is AL

ξ ) by Eq. (62) . Thus, when ε + ξ = 0 , 0 . 1 , 0 . 2 , and 0.3, the ranges

respectively. 

Moreover, we can even know the possible payoff range for s Y w

Appendix E. TFT can enforce a linear payoff relationship under 

In general, with errors, TFT can enforce a linear payoff relatio

section. 

As we showed in the main text, the only strategies that enforc

with observation errors. Thus, TFT must be included in one of the

because it is specified by p = (1 , 0 , 1 , 0) . Therefore, we check whe

satisfy Eq. (22) , TFT is one of the ZD strategies. 

By substituting p = (1 , 0 , 1 , 0) into Eq. (22) , we obtain 

μ − 1 = αR E + βR E + γ

η − 1 = αS E + βT E + γ

μ = αT E + βS E + γ

η = αP E + βP E + γ . 
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e solve this equation and obtain the following two types of the s

η = 0 

α = 

−1 

S E − T E 

β = 

1 

S E − T E 

= 0 , 

r 

 E + P E = T E + S E 

α = 

2(η − 1) P E + (1 − 2 η) T E + S E 
(2 P E − S E − T E )(S E − T E ) 

β = 

2(1 − η) P E + (2 η − 1) S E − T E 
(2 P E − S E − T E )(S E − T E ) 

γ = − η(S E + T E ) 

2 P E − S E − T E 
, 

hich means that only in the case that there are no errors ( η =
 E + P E = T E + S E , TFT can enforce a linear payoff relationship. Fig

black dots), TFT can enforce a linear payoff relationship. However,

ollapses. 
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