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In this paper we study the influence of populations mobility on the spread of a vector-borne disease.

We focus on the chikungunya epidemic event that occurred in 2005–2006 on the Réunion Island, Indian

Ocean, France, and validate our models with real epidemic data from the event. We propose a

metapopulation model to represent both a high-resolution patch model of the island with realistic

population densities and also mobility models for humans (based on real-motion data) and mosquitoes.

In this metapopulation network, two models are coupled: one for the dynamics of the mosquito

population and one for the transmission of the disease. A high-resolution numerical model is created

from real geographical, demographical and mobility data. The Island is modeled with an 18,000-nodes

metapopulation network. Numerical results show the impact of the geographical environment and

populations’ mobility on the spread of the disease. The model is finally validated against real epidemic

data from the Réunion event.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Many factors have influenced the emergence and re-emergence
of vector-borne diseases (Gratz, 1999; Sutherst, 2004). Brutal
changes in natural habitats such as massive or recurrent population
migrations tend to speed up the spread of vector-borne diseases.
The spatiotemporal evolution of such diseases is becoming a key
issue for epidemiologists. To this purpose, models that consider the
spatial distribution of a natural environment are of great interest. In
this paper we are interested in the spatial spread of a vector-borne
disease under the effect of human and vector mobilities. Indeed,
human migration is one of the factors that have influenced the re-
emergence of several diseases (Knobler et al., 2006; Martens and
Hall, 2000). The modeling of geographical environments and popu-
lation mobilities is becoming mandatory in this context. There are
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several approaches to describe such spread. One of the typical
approaches, introducing spatial spread variation in epidemic models,
involves the use of partial differential (Bailey, 1980; Murray, 2002;
Fitzgibbon and Langlais, 2003). However, in the case of human
mobility these approaches may not be appropriate. The theory of
‘‘metapopulation’’, first introduced in 1969 (Levins, 1969), in the
field of ecology, allows such modeling. Several researches have been
devoted to the study of disease spread in heterogeneous environ-
ments (Dushoff and Levin, 1995; Wang and Zhao, 2004; Lloyd and
May, 1996). In Colizza and Vespignani (2008) and Cosner et al.
(2009), authors study the influence of human dispersal among n

patches in the dynamics of disease spread. In Balcan et al. (2010),
authors, to study the spread of seasonal influenza, focus on air
displacements and model the environment with a network where
nodes are airports and edges represent flights. In Longini (1988) and
Rvachev and Longini (1985), authors are also interested in the case
of influenza and mobility in terms of long journeys. In Arino and Van
den Driessche (2003), Arino (2009) and Arino et al. (2005), the
authors propose a virus spread model based on this theory. In
Menach et al. (2005) and Smith et al. (2004), the mobility of
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mosquitoes has been modeled to study the spatiotemporal
dynamics of malaria. Other studies focus on direct-transmission
diseases like Arino et al. (2005) and Arino and Van den Driessche
(2003). In Balcan et al. (2010), influenza in the case of long trips
(aircraft flights) is tackled. In Auger et al. (2008), the authors rely on
the Ross–Macdonald model (Ross, 1910; Hackett, 1958), to consider
human mobility.

Human mobility is usually considered in epidemic problems.
Also, models that consider the dynamics of the vector population
are numerous. However, to our knowledge, no model considers
the coupling of population dynamics with populations mobility as
we propose here. Moreover our approach promotes the consid-
eration of vectors’s mobility since the resolution of our model is
greater than that of usual models.

In this paper we are proposing to couple two models (pub-
lished in Moulay et al., 2010): a mosquito dynamics model
(growth and evolution of the population) with a transmission
virus model between two populations (humans and mosquitoes).
The dynamics of the mosquito population is described by a stage
structured model based on its biological life cycle. The different
compartment states are egg, larva, pupa and adult. The disease
transmission model is, for the human population, a SIR (Suscep-
tible, Infected, Recovered) model. For adult mosquitoes, the
transmission model is a SI (Susceptible, Infected) model.

Those two models are formalized using the metapopulation
theory. It considers a network where nodes represent real
habitats of the environment. In each of these nodes, transmission
and population dynamics models appear and are coupled with
neighbor nodes. Links in the network represent both the local
neighborhood of a node and farther nodes that code for the
mobility of humans.

We focus on a real case of chikungunya epidemic with the
2005–2006 event that occurred on the Réunion Island, a French
island in the Indian Ocean. The island is modeled with a network.
Since we want that network to reflect the local population’s
density, we consider the road network of the island as a proxy
to the human density, considering that each crossroad is a node of
the network. Then the local population on each node is adjusted
according to real data given by the French Institute for Statistics
(INSEE). Finally the entire island is modeled with an 18,000 nodes
network.

In Gonzalez et al. (2008), authors propose various distributions
that match a data set of real human mobility patterns (cell phone
probes). We rely on these distributions to create human mobility
patterns for the population in our model. We assume that
individuals only change disease status when they are on a node
and not during displacements. See Cui et al. (2006) for a model
with disease transmission during travel.

Results show the decisive influence of mobilities over the
spread of the disease. It is not only human mobility but also local
vector interaction that plays an important role at the considered
scale. Results are then compared to real epidemic data regarding
the 2005–2006 event at the scale of the entire Réunion Island and
the model is validated.

The remainder of this paper is organized as follows. The next
section recalls original transmission and population dynamics
models that this work is inspired from. Section 3 introduces the
original metapopulation model that is able to include the previous
models in a network of patches, linked to represent populations
mobility. Then, in Section 4, according to the wish to validate the
model against a real epidemic, a numerical implementation of the
metapopulation model is constructed. This section details the
construction of the metapopulation network in terms of environ-
ment and populations mobility. Section 5 presents various analyses
performed on the model, showing the impact of mobilities. A
validation is then proposed with a comparison with real epidemic
data. Then a stochastic analysis of the model is proposed to study
the robustness of the system. Finally Section 6 concludes the paper.
2. Original model

We first recall the model proposed and studied in Moulay et al.
(2010) describing the vector dynamics. The formulated model is a
stage structured model based on the biological mosquito life
cycle. The vector population is subdivided into several classes: the
aquatic stages consisting in eggs E and larvae/pupae L, and then
the adult stage A, representing adult females. We assume first
that the number of eggs b, laid by females, is proportional to the
number of females itself. Second, the number of eggs and larvae
are regulated by the effect of a carrying capacity KE and KL,
respectively. Then we formulate a transmission virus model
where the adult female stage A is subdivided into two epidemio-
logical states: susceptible Sm and infectious Im. It assumes that
there is no vertical transmission of the virus, so that births from
susceptible and infectious mosquitos occur in the egg stage with
the same rate.

The human population consists in three epidemiological
states: susceptible (or non-immune) SH , infectious IH , and
removed (or immune) RH . It is assumed that there is no vertical
transmission of the disease, so that all births occur in the
susceptible human class, at the rate bH 40. Moreover, we assume
that the total human population NH remains constant, and thus
birth and death rates are equal. An infected human is infectious
during 1=gh days, called the viremic period, and then becomes
resistant or immune.

Forces of infections used in the model, which describe the
rates of apparition of new infections, are standard and modeled
by the mass–action principle normalized by the total population
of humans, given by bmIHðtÞSmðtÞ=NH and bHImðtÞSHðtÞ=NH where
bm and bH are the transmission parameters.

These hypothesis are summed up in Fig. 1.
Based on our model description (see Fig. 1) and assumptions,

we establish the following equations:

dE

dt
ðtÞ ¼ bAðtÞ 1�

EðtÞ

KE

� �
�ðsþdÞEðtÞ

dL

dt
ðtÞ ¼ sEðtÞ 1�

LðtÞ

KL

� �
�ðsLþdLÞLðtÞ

dA

dt
ðtÞ ¼ sLLðtÞ�dmAðtÞ

dSm

dt
ðtÞ ¼ sLLðtÞ�dmSmðtÞ�bm

IHðtÞ

NH
SmðtÞ

dIm

dt
ðtÞ ¼ bm

IHðtÞ

NH
SmðtÞ�dmImðtÞ

dSH

dt
ðtÞ ¼�bH

ImðtÞ

NH
SHðtÞþbHðSHðtÞþ IHðtÞþRHðtÞÞ�dHSHðtÞ

dIHðtÞ

dt
¼ bH

ImðtÞ

NH
SHðtÞ�gIHðtÞ�dHIHðtÞ

dRHðtÞ

dt
¼ gIHðtÞ�dHRHðtÞ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

The study of the model is detailed in Moulay et al. (2010). For
this model (1), the second basic reproduction number is given by

R0 ¼
bmbH

dmðgþbHÞ

1

NH
1�

1

r

� �
sKEsLKL

dmðsKEþðsLþdLÞKLÞ

where r¼ ðb=ðsþdÞÞðs=ðsLþdLÞÞðsL=dmÞ:

The threshold r governs the dynamics of mosquitoes. In this
paper we assume that r41. This ensures the existence, persis-
tence and global stability of a unique endemic equilibrium
ðEn,Ln,An

Þ, which corresponds to the biological and interesting



Fig. 2. Human population mobility between nodes i and j.

Fig. 1. Compartmental model for the dynamics of Aedes albopictus mosquitos and

the virus transmission to human population. bðtÞ ¼ bAðtÞð1�EðtÞ=KEÞ, sðtÞ ¼ sEðtÞ

ð1�LðtÞ=KLÞ and the parameters of the model are given in Table 1.

D. Moulay, Y. Pigné / Journal of Theoretical Biology 318 (2013) 129–139 131
case. The second reproduction number R0 governs the dynamics
of the transmission model.
3. Metapopulation model

In Arino (2009), Arino et al. (2005) and Arino and Van den
Driessche (2003), Arino et al. formulate a general system of
differential equations allowing to describe human mobility. In
this model, they identify each population by its origin and its
present location. We rely on this model and extend it with the
definition of a neighborhood in which humans and mosquitoes
interact.
3.1. Human mobility

Based on the model given in Arino (2009), Arino et al. (2005)
and Arino and Van den Driessche (2003), we proposed an
extension of our previous model (Moulay et al., 2010) to describe
the spread of chikungunya under human and vector mobilities on
a large-scale network.

Assume that the number of nodes in the network is n. A
human population is identified due to two characteristics: the
node from which he is originated, i.e. his residence and the node
where he is at time t. We assume that the total human population
is constant, i.e. births and deaths occur with the same rate bH¼dH.
Moreover, we suppose that births occur in the resident node
while deaths take place in any node where the human is present.

Let us denote by SHijðtÞ, IHijðtÞ and RHijðtÞ respectively the
susceptible, infected and removed human populations originated
from node i and present on node j at time t. We denote by Smi and
IHi the susceptible and infected mosquitoes present in node i

respectively. In the first assumption mosquitoes mobility is
neglected, which looks realistic compared to the distance of
human displacements. So, resident mosquitoes from node i are
also present on this node.
The total number of susceptible, infected and removed human
residents of node i is given, respectively, by SH

r
i ¼

Pn
j ¼ 1 SHij,

IH
r
i ¼

Pn
j ¼ 1 IHij and RH

r
i ¼

Pn
j ¼ 1 RHij: The total number of sus-

ceptible, infected and removed human present on node i is
given, respectively, by SH

p
i ¼

Pn
j ¼ 1 SHji, IH

p
i ¼

Pn
j ¼ 1 IHji and RH

p
i ¼Pn

j ¼ 1 RHji: The number of human residents on node i is then equal
to NH

r
i ¼ SH

r
i þ IH

r
i þRH

r
i and the human population present on node

i is NH
p
i ¼ SH

p
i þ IH

p
i þRH

p
i .

As in Sattenspiel and Simon (1988) and Arino and Van den
Driessche (2003), we define the travel rate from node i to node j

by gimji, where giZ0 corresponds to the per capita rate at which
residents of node i leave this node and a fraction mjiZ0 of them
go to node j, with mii ¼ 0. Residents of node i, present on node j,
then return to node i with a per capita rate rijZ0, with rii ¼ 0.
Displacements between two nodes are represented in Fig. 2.

The dynamics of human populations (susceptible, infected and
removed) resident and present on node i is given by

dSHii

dt
¼ dHðNH

r
i�SHiiÞ�giSHiiþ

Xn

k ¼ 1

rikSHik�bHi

Imi

NH
p
i

SHii

dIHii

dt
¼�dHIHii�giIHiiþ

Xn

k ¼ 1

rikIHikþbHi

Imi

NH
p
i

SHii�gHIHii

dRHii

dt
¼�dHRHiiþgHIHii�giRHiiþ

Xn

k ¼ 1

rikRHik

The dynamics of human populations (susceptible, infected and
removed) resident on node i and present on node j is given by

dSHij

dt
¼�dHSHijþgimjiSHii�rijSHij�bHj

Imj

NH
p
j

SHij

dIHij

dt
¼�dHIHijþgimjiIHii�rijIHijþbHj

Imj

NH
p
j

SHij�gHIHij

dRHij

dt
¼�dHRHijþgimjiRHii�rijRHijþgHIHij

The dynamics of mosquito populations (eggs, larvae and
pupae, adult females) given in Moulay et al. (2010) in each node is

dSmi

dt
¼ sLLi�dmSmi�bmi

Smi

NH
p
i

IH
p
i ð2aÞ

dImi

dt
¼ bmi

Smi

NH
p
i

IH
p
i �dmImi ð2bÞ

dEi

dt
¼ bðSmiðtÞþ ImiðtÞÞ 1�

EiðtÞ

KEi

� �
�ðsþdÞEiðtÞ ð2cÞ

dLi

dt
¼ sEiðtÞ 1�

LiðtÞ

KLi

� �
�ðsLþdLÞLiðtÞ ð2dÞ

where the dynamic of immature stages E and L is described by
corresponding equations in system (1).
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Remark 1.
(i)
 Note that the infection transmitted in node i between
susceptible mosquitoes and infected humans depends now
on the human population present on this node NH

p
iXn

j ¼ 1
bmi

Smi

NH
p
i

IHji ¼ bmi

Smi

NH
p
i

IH
p
i

(ii)
 The distance between nodes is not explicitly taken into
account; nevertheless it is implicitly included in the coeffi-
cients mji and rij.
(iii)
 In the following we focus on daily displacements; humans
who leave their resident node, obviously return to their
resident node on a daily basis. Displacement matrices
MT
¼ ½gimji� and R¼ ½rij� have the same zero/nonzero pattern.
The human mobility model and the virus transmission
dynamics are given by the following equation:

dSHii

dt
¼ dHðNH

r
i�SHiiÞ�giSHiiþ

Xn

k ¼ 1

rikSHik�bHi

Imi

NH
p
i

SHii ð3aÞ

dSHij

dt
¼ gimjiSHii�dHSHij�rijSHij�bHj

Imj

NH
p
j

SHij ð3bÞ

dIHii

dt
¼�dHIHii�giIHiiþ

Xn

k ¼ 1

rikIHikþbHi

Imi

NH
p
i

SHii�gHIHii ð3cÞ

dIHij

dt
¼ gimjiIHii�dHIHij�rijIHijþbHj

Imj

NH
p
j

SHij�gHIHij ð3dÞ

dRHii

dt
¼ gHIHii�dHRHii�giRHiiþ

Xn

k ¼ 1

rikRHik ð3eÞ

dRHij

dt
¼ gimjiRHiiþgHIHij�dHRHij�rijRHij ð3fÞ

dSmi

dt
¼ sLLn

i �dmSmi�
Xn

j ¼ 1

bmi

SmiIHji

NH
p
i

ð3gÞ

dImi

dt
¼
Xn

j ¼ 1

bmi

SmiIHji

NH
p
i

�dmImi ð3hÞ

where Ln

i ¼ ð1�1=rÞðKLi=gLiÞ and gLi ¼ 1þðððsLþdLÞKLiÞ=sKEiÞ are
given by the endemic equilibrium of the vector population
dynamic model. In this model, each node is described by
ð3nþ2Þn equations.

3.1.1. Equilibrium of the model

Proposition 3.1. The nonnegative orthant Rð3nþ2Þn
þ is positively

invariant under the flow of (3) and, for all t40, SHii40 and

SHij40 provided that gimji40. Moreover, solutions of (3) are

bounded.

Proof. We easily see that solutions of system (3) remain non-
negative. Indeed, it is sufficient to show that for all non-negative
initial conditions, the vector-field points to the interior of the
positive orthant. Assume now that SHii ¼ 0 at t¼0, then
dSHii=dt¼ dHNH

r
i þ
Pn

k ¼ 1 rikSHik40, thus SHii40 for t40. Equally,
if SHij ¼ 0 at time t¼0, then dSHij=dt¼ gimjiSHii40:

Finally, the boundedness follows from the positive invariance

of Rð3nþ2Þn
þ and the constant population property. Indeed

dNH
r
i =dt¼ 0, which means that, for any node i, the resident

population is constant, and thus by extension, the whole population
is constant. Moreover, solutions of (3) are bounded; since

ðRþ Þð3nþ2Þn is invariant, human population is constant and vector

population is bounded (Moulay et al., 2010). &

Definition 3.2 (Arino, 2009). 1. The system is at equilibrium if the
time derivatives in (3) are zero.

2. A node i is at the disease free equilibrium (DFE) if IHji ¼ 0,

Imi ¼ 0 for all j¼ 1, . . . ,n.

3. The n-nodes model given by (3) is at the DFE if each node is at

the DFE, i.e., IHji ¼ 0 and Imi ¼ 0, for all i,j¼ 1, . . . ,n.

Proposition 3.3. System (3) always has the following disease free

equilibrium:

SH
n

ii ¼
1

1þgi

Pn
k ¼ 1

mki

dHþrik

0
B@

1
CANH

r
i , SH

n

ij ¼ gi

mji

dHþrij
SH

n

ii

IH
n

ii ¼ 0, IH
n

ji ¼ 0

RH
n

ii ¼ 0, RH
n

ji ¼ 0

Sm
n

i ¼
sL

dm
Ln

i , Im
n

i ¼ 0, for all i,j¼ 1, . . . ,n, ia j:

Proof. It is sufficient to remark that

1�
Xn

k ¼ 1

mkirik

dHþrik
¼
Xn

k ¼ 1

mki�
Xn

k ¼ 1

mkirik

dHþrik
¼ dH

Xn

k ¼ 1

mki

dhþrik
: &

Theorem 3.4 (Arino, 2009). Assume that system (3) is at equili-

brium and a node i is at the DFE. Then all nodes that can be accessed

from node i and all nodes that have an access to node i are at the DFE.

Moreover, if the outgoing matrix MT is irreducible, then all nodes are

at the DFE.

Proof. See appendix.

Definition 3.5 (Arino, 2009). The disease is endemic within the
population if the number of infective individuals is positive in this
population.

The disease is endemic on node i if there is a population on

node i in which the disease is endemic, i.e., there exists

kAf1, . . . ,ng such as IHki40.

Theorem 3.6 (Arino, 2009). Assume that system (3) is at equili-

brium and the disease is endemic on node i. Then the disease is

endemic on all nodes that can be reached from node i. In particular, if

the matrix MT is irreducible, then the disease is endemic in all nodes.

Proof. See appendix.

3.2. The vector mobility model

Contrary to human displacements, it is unrealistic to identify
mosquitoes by their origin and destination. Nevertheless, we
know that Aedes albopictus mosquitoes have a limited flight range.
Most mosquitoes disperse less than 200 m away from their
original breeding place (Vermillard, 2009; Nishida and Tenorio,
1993). Indeed, mosquitoes present in a node i may have activity in
neighboring nodes j, depending on their proximity (defined later).
Metapopulation models of the spread of vector-borne diseases
(see for instance Zongo, 2008; Tsanou, 2011) that include human
long-distance displacements do not take into account mosquito
mobility. In our case of daily movements and very precise
resolution, we cannot neglect the influence of mosquito displace-
ments. We propose to model this activity using the biological
radius of interaction around their breeding sites. Let us denote by
dij the distance between nodes i and j and by dmax the maximum
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Fig. 3. Estimated population distribution of the Réunion in 2007, according to the

French Institution for Statistics, on a 1 km2 granularity.
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interaction radius of mosquitoes (approximately 200 m). In parti-
cular, we have dii ¼ 0 for all i¼ 1, . . . ,n. Now we assume that
mosquitoes originated from node i interact with the population of
node j, according to a function of the distance linearly decreasing.
This function is given by

cðdijÞ ¼

dmax�dij

dmax
if dijodmax

0 else

8<
: ð4Þ

Then, model (3) becomes

dSHii

dt
¼ dHðNH

r
i�SHiiÞ�giSHiiþ

Xn

k ¼ 1

rikSHik�
Xn

k ¼ 1

bHicðdikÞ
Imk

NH
p
i

SHii

ð5aÞ

dSHij

dt
¼ gimjiSHii�dHSHij�rijSHij�

Xn

k ¼ 1

bHjcðdikÞ
Imk

NH
p
j

SHij ð5bÞ

dIHii

dt
¼�dHIHii�giIHiiþ

Xn

k ¼ 1

rikIHikþ
Xn

k ¼ 1

bHicðdikÞ
Imk

NH
p
i

SHii�gHIHii

ð5cÞ

dIHij

dt
¼ gimjiIHii�dHIHij�rijIHijþ

Xn

k ¼ 1

bHjcðdikÞ
Imk

NH
p
j

SHij�gHIHij ð5dÞ

dRHii

dt
¼ gHIHii�dHRHii�giRHiiþ

Xn

k ¼ 1

rikRHik ð5eÞ

dRHij

dt
¼ gimjiRHiiþgHIHij�dHRHij�rijRHij ð5fÞ

dSmi

dt
¼ sLLi�dmSmi�

Xn

k ¼ 1

bmicðdikÞ
Smi

NH
p
k

IH
p
k ð5gÞ

dImi

dt
¼
Xn

k ¼ 1

bmicðdikÞ
Smi

NH
p
k

IH
p
k�dmImi ð5hÞ

which describes both the vector population dynamic and the
virus transmission, through the human and vector mobilities in
the network. Note that aquatic stages of eggs and larvae remain
described by Eq. 2(c) and (d) and complete the model.
4. Application

Willing to validate this approach, this section proposes a
comparison of this model with a real-life example of chikungunya
epidemic, namely the event that occurred in 2005–2006 on the
Réunion Island, Indian Ocean. This validation process makes a
strong usage of real and realistic data to reflect the original
environment as much as possible. This last one is modeled based
on real geographical information. Populations mobility is mod-
eled following existing real data analysis. Finally, epidemiological
results are compared to real data from the 2005–2006 event.

4.1. Distribution of the human population

The Réunion Island is a mountainous region and the local
population is not uniformly spread over the land. To reflect this
particular density in the metapopulation model, we rely on two
realistic sources of information.

The INSEE gives access to an estimated density of the popula-
tion, based on a mesh zoning of the space (INSEE, 2012). This
zoning consists of squares of one kilometer length. In each square,
the number of people living is estimated based on both tax cards
and cadastral data. Fig. 3 shows these 1 km2 squares with their
associated population.

There is good confidence in the quality of this data; however,
the limited granularity of one square kilometer is not precise
enough for our purpose. Indeed this model envisions a lower scale
of interaction between humans and mosquitoes, since the latter
only have a couple hundreds of meters interaction range.

Second, the road network is used as a proxy to the human
density. Indeed, the road network is denser where the population
is itself dense, and lighter where no one lives. Data extracted from
OpenStreetMap (OSM) (OpenStreetMap, 2012) provide road infor-
mation and especially road intersections at a high resolution
(scale of one meter). We propose to use those intersections as the
nodes of the metapopulation model.

Then the human population is distributed on these nodes. Each
of them belongs to one of the 1 km2-areas of the INSEE. So, on
each of these squares, the local population can be evenly dis-
tributed among its own nodes. If a square has no node associated
to it (it happens on low density areas) then a single node is
created with the corresponding population.

Finally, this distribution is at least as relevant as the real data
given by the INSEE at the scale of 1 km2, but the resolution goes
below the 1 km limit, thanks to the crossroad/node analogy. Fig. 4
illustrates the main steps of the construction of the model.
4.1.1. Distribution of the mosquito population

No information about the density of mosquito population is
available. Moreover, we are not interested in the whole popula-
tion but rather in the part of it that interacts with humans. Our
hypothesis is that the density of mosquitoes is homogeneous.

To retrieve this density from the human-centered network,
each node is given a number of mosquitoes (through the carrying
capacities) proportional to the geographical surface associated
with that node, thanks to a simple Voronoı̈ tessellation.

Since we only consider mosquitoes that interact with humans,
the surface is upper-bounded with the disk of radius dmax that
expresses the maximum interaction distance for a mosquito in
its life.

Let Si be the surface of node i. Let Smax ¼ pd2
max be the surface

associated with the maximal interaction radius dmax. Carrying



Fig. 4. Schematic construction of the nodes of the metapopulation network. (a) Network nodes are the road intersections, knowing that this network may not be totally

accurate (red roads missing in the map). (b) Distribution of the population on nodes according to the INSEE data. Empty cells (with no known road network) are given one

node (as in (b), second row, rightmost cell). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Parameters of the mosquito and transmission dynamics models. Most of the

values were obtained from other publications in the field (Bacaer, 2007; Delatte

et al., 2009; Dumont and Chiroleu, 2010; Moulay et al., 2012).

Parameters Description Value

b Oviposition rate 6.0

KE Egg carrying capacity 1000

KL Larva carrying capacity KE=2

s Transfer rate E-L 1=3

sL Transfer rate L-A 1=10

d Egg mortality rate 1=3

dL Larva mortality rate 1=3

dm Female adult mortality rate 1=14

bH Human birth/death rate 1=ð78n365Þ

bH Infection rate: vector to human See Section 5.5

bm Infection rate: human to vector See Section 5.5

gH Human recovery rate 1=7
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capacities for each node are then set as follows: KEi
¼ KE jðSiÞ and

KLi
¼ KL jðSiÞ, with KE and KL, constants for the carrying capacities

of eggs and larvae, respectively, and jðSiÞ is equal to Si=Smax and is
upper bounded by 1.

4.1.2. Human mobility

In the model, human trips are given by outgoing matrix MT and
incoming matrix R and represent for any pair i and j, the
probability for humans living on i to go to j. Non-null values in
the matrix define edges between nodes in the metapopulation
network.

To reach realistic motion we need to rely on realistic data or
the model for human mobility. Unfortunately, we could not get
such information for the Island, so we rely on some more general
analysis work from M. C. González, C. A. Hidalgo and A. Barabási
(Gonzalez et al., 2008) who analyzed mobile phone communica-
tion logs of 100,000 users. These logs register the geographical
position of mobile phones when calls happen or when texts are
emitted/received. Mobile phones are a good proxy for human
mobility because users always carry their phone.

The authors were able to produce general laws on observed
mobility patterns. These results give general formulas that
describe the mobility observed. We use these formulas to gen-
erate new human mobility patterns. We consider the three
following measures.

Trips length: The distribution of the length of a human trip Dr

in kilometer according to the following power law:

PðDrÞ ¼ ðDrþDr0Þ
�b expð�Dr=kÞ ð6Þ

where Dr0 ¼ 1:5 km is the cutoff value of the law and k¼ 80 km.
Presence probability: Given N possible destinations for each

individual, their presence probability in each destination is
approximated with the following Zipf law:

f ðk;NÞ ¼
1=kPN

n ¼ 1ð1=nÞ

where k is the rank of each destination when decreasingly sorted.
Return probability: The authors observe that there is a peak of

probability of returning to the same place every 24 h. In other
words, the human mobility mainly follows a daily pattern such as
home/work trips.

From these measures we generate artificial per-individual
trips on the island that respect the observed properties in the
original data set.

Remark 2. The model defines matrices MT and R as tables
indicating respectively departures and returns. The mobility
model we could create from Gonzalez et al. (2008) however gives
the probability of presence for a human, given all its possible
destinations. Our hypothesis here is that there is a link between
departures/returns probabilities and presence probabilities that
we do not investigate in this paper.

4.1.3. Mosquito mobility

As stated in the model description, mosquitoes are not
identified with origins and destinations. Since we are aware of
their limited flight range, their mobility is thus defined by a
geographical disk area of interaction centered at their origin node.
Function (4) defines their interaction with humans.

This new mobility pattern is constructed, in the metapopula-
tion network, with edges linking nodes that are below the
interaction range dmax.
5. Results

In this section we show and discuss results of the simulation of
our metapopulation model applied to the scenario of the Réunion
Island described in the previous section. Our results are then
compared with real data from the 2005–2006 epidemic event.
5.1. Analysis of the metapopulation network

The metapopulation network can be represented by two
graphs sharing the same set of nodes, or in other words, it is a
graph with two subsets of edges. One subset is for human
mobility and one is for mosquito mobility. The purpose of
Table 2 is to give some metrics for those two graphs to give a
general overview of their dimensions. Indeed due to its size
visualization of all networks is not proposed since it does not
give any useful information.
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5.2. Spread of the disease in the network

In this scenario we observe the spread of the disease with one
infected individual put on one node of the network. Provided
infection parameters (bH and bm) are set high enough, the
insertion of this individual in a system at disease-free equilibrium
may start an epidemic event. Three nodes of the network are
monitored: the first where the individual was inserted, a one-hop
neighbor, and a farther one located 6 km from the insertion node.
Four metrics are observed: susceptible humans (SH), susceptible
mosquitoes (Sm), infected humans (IH), and infected mosquitoes
(Im).

Fig. 5 shows, as expected, a shift in time of the evolution from
the closest nodes to the farther one. However, that shift (and thus
the spread of the disease) is not proportional to the geographical
distance between nodes but rather to a graph distance. The third
observed node is 60 hops far from the insertion node in the
mosquito mobility graph and only four hops away in the human
mobility graph. Human mobility, thus, greatly speeds up the
spread.
Table 2
Metrics for the two graphs of the metapopulation network.

Metric Mosquitoes Humans

Number of nodes 17,988 17,988

Number of links 151,772 744,313

Average degree � 17 � 83

Connectivity no (1729 connected components) Yes

Diameter 71 (for the biggest component) 15

Fig. 5. Spread of the disease in the network for three observed nodes. The first is the in

The third, 6 km away from the first node, is 60 hops away in the mosquito mobility grap

are normalized. A shift (or delay) effect in the spread is observed.
5.3. Consequences of the mosquito mobility

As stated in the Introduction, most of the metapopulation
models on vector-borne viruses focus on long distance and long
duration journeys for the human population. In those models the
vector mobility can easily be ignored. Here we consider daily-
based mobility with short journeys. We believe this shorter scale
in time and space brings the new constraint that mosquito
mobility cannot be neglected anymore.

The effect of local mosquito interaction is shown with a
scenario where again, a disease free population is inserted with
an infected human. Two experiments are carried out, one with
mosquito mobility and one without. Human mobility is kept in
both scenarios.

Fig. 6 shows the number of instantaneous infected humans
(IH). The infection starts rapidly and is concentrated with mos-
quito mobility enabled. Oppositely, without this mobility, the
spread takes more time to start and the peak is less important. It
is clear that mosquito mobility at this scale has to be considered.
5.4. Consequences of the human mobility

Human mobility has an obvious effect on the mobility. The
purpose here is to analyze realistic and slight modifications of this
mobility like quarantine measures that may be taken in case of
epidemics.

This scenario proposes to stop the human mobility on infected
parcels. So quarantine measures will be localized only on nodes
where a given threshold of infection is reached. In quarantined
nodes inhabitants are not allowed to move out and no foreigners
fected human. The second is an immediate neighbor (125 m away from the first).

h and 4 hops away in the human mobility graph. Quantities of population (y-axis)
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are allowed in. Since mosquitoes are not stopped by quarantine
measures, they continue to interact within all nodes.

Fig. 7 shows global instantaneous and cumulated infection
values for humans at the scale of all populations. In this scenario,
the disease would, without any control, reach 35% of the popula-
tion, just like the chikungunya event of 2005–2006.

Results show the possibility to rapidly reduce the instanta-
neous infection rate. For instance, the IH peak is almost divided by
two when the quarantine threshold is set to 10%. However,
looking at cumulated infection cases (seroprevalence), such a
threshold does not significantly reduce the total amount of
infections. To expect a real effect on the total number of infections
one have to set the threshold below 1%. Here, each node on
average has less than 50 humans, so any threshold below 2% is
technically impossible to achieve.

5.5. Parameters analysis

The identification of predominant parameters of the system is
needed to understand its behavior. We propose here a numerical
analysis of the parameters of the system. An in depth statistical
sensitivity analysis or the analytical estimation of parameters
would be of great interest too, but are out of the scope of
this paper.

Infection rate parameters, bH (mosquitoes to humans) and bm

(humans to mosquitoes) have a strong impact on the results.
Depending on the values selected for bH and bm, the infection
goes from a few isolated cases to an epidemic that contaminates
the whole population.

Fig. 8 shows a scatter plot of values taken by bH and bm. For
each couple (bH , bm) the seroprevalence (after 400 days of
epidemic) is observed. Values in percentage represent the ratio
of the total human population ever infected depending on the two
parameters. Contour lines help in finding, given a seroprevalence
percentage, values for bH and bm. These values are used in the
validation.

5.6. Validation against real data

We propose a validation with a comparison against real data
from the 2005–2006 chikungunya epidemic. The two first cases of
chikungunya where reported at the beginning of March 2005. The
disease propagated during the following weeks and reached a
peak at mid of May. The number of new cases then started to
decrease until authorities thought the event was over at the end
of the year 2005 with a seroprevalence (total number of cases) of
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6,000 people. But in the second half of December 2005 the spread
started over with a strength that was not comparable to the
previous peak. This second event reached a peak in February 2006
with more than 47,000 cases in a week. This sudden reactivation
of the spread was later explained by a genetic mutation of the
virus that lead to a new and more infective strain (Vazeille et al.,
2007). After the peak, the number of cases slowly started to
decrease. The epidemic was declared over by April 2006. In the
end, the InVS (French Institute for Health Care) counted 265,733
cases of chikungunya from March 2005 to April 2006. This
represents more than 35% of the total population of the Island.
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The following results are compared to real data indicating,
week per week, new cases of the disease. This information was
kindly provided by the InVS.

Back to our model, the new virus strain with its stronger
infection rate is modeled thanks to infection rates bH and bm. We
try to reproduce all the events by starting the simulation of the
epidemic with one set of parameters, and then, by changing only
one time the values of bH and bm at the moment it appears in the
real event. The two sets of parameters were selected experimen-
tally with the help of the previous study (see Fig. 8) giving
possible values for bH and bm for a given seroprevalence.

Fig. 9 compares the evolution of the real seroprevalence of the
chikungunya event, with simulation results obtained with our
model. Although the two curves do not fit perfectly, it allows a
visual overall validation of the model.

These results are a first step in the validation of this approach.
In these experiments, only infection rates were investigated. Of
course, other parameters need to be considered especially those
leading the human mobility. Moreover, the metapopulation
approach needs to be validated at a lower scale than the scale
of the entire Island. These last observations form the perspectives
of this work.
5.7. Stochastic analysis of the model

The model can be affected by stochastic changes. Indeed, the
human mobility given by matrices MT and R is defined according
to the mobility probability law given in Gonzalez et al. (2008).

We propose to study the robustness of the system by running
simulations of the model with various instances of the human
mobility matrices and thus observe the variations in the obtained
results. The population itself and the number of displacements do
not change, only the destinations are different.

Fig. 10 illustrates the evolution of infected humans on various
(randomly chosen) nodes in the network, within the very same
scenario that the mutation experiment described in Section 5.6.
We assume that observations made on IH also apply on the other
outputs of the model. Thirty different human mobility matrices
are used. The figure shows that the height of the variation,
although different on each node, remains within coherent
te
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and maximum values over the 30 experiments. Darker blue curves show first and

ces to color in this figure legend, the reader is referred to the web version of this



Table 3
Highest values of standard deviation (SD) for IH on a random selection of nodes.

Node 1 Node 2 Node 3 Node 4 Node 5

Population 24 16 932 21 78

SD 0.27 0.16 0.76 0.17 0.13

Date of SD (in 2006) 1–24 1–16 2–15 1–12 2–21

% of population 1.11 1.05 0.08 0.84 0.16
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boundaries. Indeed when considering, for each node, the date
when the standard deviation is the highest, compared to the
node’s population, it remains below 2% of that population, as
illustrated in Table 3.

When considering simulation results at the scale of the whole
network, the variation is even lower with a maximum standard
deviation (on 10 January, 2016) of 544 infected humans which
represents less that 0.07% of the population of the Island.

These results tend to confirm the robustness of the system
against stochastic variations.
6. Conclusion

In this work the main concern was to try to validate dynamical
systems for the spread of a vectorial disease against a real
epidemic scenario. We focused on the Réunion Island epidemic
that occurred in 2005–2006.

Many issues appear when trying to bridge the gap between
global models and real life problems. Among them we chose to
focus on the modeling of populations’ mobilities. This logically
implied a realistic modeling of environment, bringing us from
temporal modeling to spatio-temporal modeling.

Designed to consider spatial interactions, the theory of metapo-
pulations allows the special geographical environment of the Island
to be included in the original model. This metapopulation network
was created based on real geographical and demographical data. It
could then handle local interactions between nodes and thus allow
population mobilities to become part of the model too.

We proposed two mobility models. The first one, for humans,
is based on the analysis of real human mobility data sets (mobile
phone probes). The second model, for mosquitoes, is based on
local interactions between nodes.

After various studies of the consequences of mobilities on the
spread of the disease, and after an analysis of the parameters of
the system, a validation of the model against real seroprevalence
data from the Réunion epidemic was proposed. Results validate
the approach and clearly identify human mobility as a key
parameter in the spread of such an epidemic.

As stated above, the choice in this work was to focus on
mobilities. However, other recognized issues play a key role in the
all processes. For instance, the effect of rainfall and weather
seasons is known to directly influence mosquito evolution stages
(especially aquatic phases). Studying the effect of seasons on the
epidemic is definitely a perspective of this work.

Finally, the integration of the metapopulation model and
mobilities contributed to increase the complexity of the model.
This last model which has only been explored on a numerical
basis would need an analytical study.
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Appendix A

Let Vi- ¼ fka i : gimki40g and V-i ¼ fka i = gkmik40g be
sets of nodes that can be accessed directly from city i and nodes
that have a direct travel access to city i, respectively. Let

Ai- ¼ fka i=(ðk1, . . . ,kqÞ distincts, mk1 imk2k1
� � �mkkq

40

and gigk1
� � � gkq

40g

A-i ¼ fka i=(ðk1, . . . ,kqÞ distincts, mk1kmk2k1
� � �mikq

40

and gkgk1
� � � gkq

40g

be sets of nodes that can be accessed from city i and nodes that
have an access to city i, respectively.

Proof of Theorem 3.4. Assume that node 1 is at the DFE (without
loss of generality), i.e. IHk1 ¼ 0, 8k¼ 1, . . . ,n and Im1 ¼ 0. From
Eq. (3c), we have dIH11=dt¼

Pn
k ¼ 1 r1kIH1k: But node i¼1 is at the

DFE, i.e. dIH11=dt ¼ 0, and since r1v40, 8vAV1-, then, IH1v ¼ 0,
8vAV1-. Consider now Eq. (3d) with i¼1 and let vAV1-, then

dIH1v

dt
¼ bHv

Imv

NH
p
v

SH1v

As system (3) is at an equilibrium point, thus dIH1v=dt¼ 0.
However, bH140 and SH1v40 from Proposition 3.1, then
Imv ¼ 0 for all vAV1-. Finally, we have to show that for all
vAV1- and for all k¼ 1, . . . ,n, IHkv ¼ 0 i.e., all humans residents of
node k and present at node v are not infected. Consider Eq. (3f) for
a node vAV1-, then

dImv

dt
¼
Xn

j ¼ 1

bmv

SmvIHjv

NH
p
i

�dmImv ¼ bmv

Smv

NH
p
i

Xn

j ¼ 1

IHjv

¼ bmv

Smv

NH
p
v

IH
p
v ¼ 0

Since bmv40, and from Proposition 3.1, Smv40 then IH
p
v ¼ 0, i.e.Pn

k ¼ 1 IHkv ¼ 0. It follows that for all k¼ 1, . . . ,n, IHkv ¼ 0, since
IHijZ0 for all i,j¼ 1, . . . ,n. Thus, all adjacent nodes to node i¼1
are the DFE equilibrium. Moreover, by induction, we obtain that
all nodes vAA1- are at the DFE.

Assume now that MT is irreducible. From Eq. (3d) with j¼1, we

have dIHi1=dt¼ gim1iIHii: Since the system is at equilibrium

dIHi1=dt¼ 0, besides gim1i40 for iAV-1, then IHii ¼ 0 for all

iAV-1. Let vAV-1, from Eq. (3c), we have

dIHvv

dt
¼
Xn

k ¼ 1

rvkIHvkþbHi

Imv

NH
p
v

SHvv ¼ 0

then
Pn

k ¼ 1 rvkIHvk ¼ 0 and

bHi

Imv

NH
p
v

SHvv ¼ 0

and SHvv40, from Proposition 3.1, thus Imv ¼ 0 for all vAV-1.

Finally, consider Eq. (3f) for vAV-1, we have

dImv

dt
¼ bmv

Smv

NH
p
v

IH
p
v ¼ 0

then IH
p
v ¼ 0, i.e.

Pn
k ¼ 1 IHkv ¼ 0 8k¼ 1, . . . ,n. Thus all nodes are at

the DFE. &

Proof of Theorem 3.6. Assume that the disease is endemic in
node i¼1, i.e. there exists qA1, . . . ,n such that IHq140. We have
to show that, in this case, IH1140. If q¼1 then we can proceed.
Assume that qa1. Assume by contradiction that IH11 ¼ 0.



D. Moulay, Y. Pigné / Journal of Theoretical Biology 318 (2013) 129–139 139
Since the system is at equilibrium, from (3c), we have

0¼
dIH11

dt
¼ þ

Xn

k ¼ 1

r1kIH1kþbH1

Im1

NH
p
1

SH11

Besides bHi40 and SH1140 then Im1 ¼ 0. Thus, from Eq. (3f), we
have

0¼
dIm1

dt
¼
Xn

j ¼ 1

bmi

IHj1

NH
p
i

Sm1

Besides bmi40 and Smi4 then IHj1 ¼ 0 for all j¼ 1, . . .n, which is a
contradiction. We have IH1140, if the disease is endemic in node
1, which we now assume.

Consider Eq. (3d) with i¼1 and ja i. Assume IHij ¼ 0. Since the

system is at equilibrium, we have

0¼
dIHij

dt
¼ g1mj1IH11þbHj

Imj

NH
p
j

SHij

If jAV1- then g1mj140 thus IHii ¼ 0, which is a contradiction.

Finally IH1j40 for all jAV1-, which means that the disease is

endemic. Particularly, we deduce that IHjj40 from the first part

of the proof. By continuing, we can show that the disease is

endemic in all nodes jAA1-, that is to say, nodes reachable from

node 1. &
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