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Environmental stochasticity is known to be a destabilizing factor, increasing abundance fluctuations and
extinction rates of populations. However, the stability of a community may benefit from the differential
response of species to environmental variations due to the storage effect. This paper provides a sys-
tematic and comprehensive discussion of these two contradicting tendencies, using the metacommunity
version of the recently proposed time-average neutral model of biodiversity which incorporates en-
vironmental stochasticity and demographic noise and allows for extinction and speciation. We show that
the incorporation of demographic noise into the model is essential to its applicability, yielding realistic
behavior of the system when fitness variations are relatively weak. The dependence of species richness
on the strength of environmental stochasticity changes sign when the correlation time of the environ-
mental variations increases. This transition marks the point at which the storage effect no longer suc-
ceeds in stabilizing the community.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

One of the biggest puzzles in community ecology is the per-
sistence of high-diversity assemblages. The competitive exclusion
principle (Gause, 2003; Hardin et al., 1960) predicts that the
number of species coexisting in a local community should be
fewer than or equal to the number of limiting resources, in ap-
parent contrast with the dozens and hundreds of locally coexisting
species of freshwater plankton (Hutchinson, 1961; Stomp et al.,
2011), trees in tropical forests (Ter Steege et al., 2013) and coral
reef species (Connolly et al., 2014). This problem has received
considerable attention in recent decades, with many mechanisms
suggested to circumvent the mathematical constraints embodied
in the exclusion principle and many works that try to provide
empirical support to these theories (Chesson, 2000; Gravel et al.,
ino).
2011; Amarasekare, 2003).
Within this framework, neutral theories, and in particular the

neutral theory of biodiversity (NTB) suggested by Hubbell (2001),
Volkov et al. (2003), and Rosindell et al. (2011), play an important
role. Under neutral dynamics all individuals are considered as
having the same fitness, and abundance variations are the result of
demographic noise alone. The number of individuals belonging to
each species varies randomly within the limit imposed by the
overall size of the community, with most populations eventually
drifting to extinction. However, the neutral turnover rate is very
slow, and diversity is maintained due to the introduction of new
species into the system, either via speciation (in the meta-
community) or by migration (in a local community).

The slow turnover dynamics in the neutral model is not only an
advantage, it is also a disadvantage, and has triggered one of the
main lines of criticism directed at the neutral model. It turns out
that pure ecological drift is far too slow to account for both the
observed short-term fluctuations and the long term dynamics
(Ricklefs, 2006; Nee, 2005; Leigh, 2007; Kalyuzhny et al., 2014a,
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2014b; Chisholm et al., 2014). For example, the abundance of the
most common species in the Barro-Colorado Island Smithsonian
50 ha plot has decreased from 40,000 to 30,000 individuals
(>1 cm dbh) during about half of a generation, while under pure
demographic noise one expects variations of order ∼N 200
within a whole generation. The abundance of the most common
species in the Amazon basin is about 109 individuals (Ter Steege
et al., 2013). Under neutral dynamics, this is the expected age (in
generations) of that species, and since the generation time for
tropical trees is about 50 years, this timescale ( ·5 1010 y) is longer
than the age of the universe (Ricklefs, 2006; Nee, 2005; Leigh,
2007). Recent work (Chisholm and ODwyer, 2014; see also Danino
and Shnerb, 2015) shows that species' ages in neutral models are
in fact lower than these early estimates by about two orders of
magnitude, however these ages are still too high to be realistic.

Motivated by these difficulties, recent works (Kalyuzhny et al.,
2015; Kessler and Shnerb, 2014) have pointed towards a general-
ized neutral theory that will include both demographic and en-
vironmental stochasticity. Basically, this new model accepts the
equivalence principle, but assumes that the fitness of all species,
when averaged over time, are equal while at any instant some
species have higher fitness than the others due to temporal var-
iations in parameters such as temperature, precipitation, etc. Ac-
cordingly, all species are equivalent and abundance variations are
driven by fluctuations (Azaele et al., 2016). The ability of this time-
averaged neutral theory of biodiversity (TNTB) to explain various
empirical patterns, including species abundance distributions,
temporal fluctuations statistics and the growth in system dissim-
ilarity over time, was demonstrated in Kalyuzhny et al. (2015).

However, by introducing a species-specific response to en-
vironmental variations, the TNTB finds itself entering the domain
of another celebrated mechanism that was suggested to explain
species coexistence, the storage effect introduced by Chesson in
the 1980s. In particular, Chesson and Warner (1981) considered
the “lottery game” in which the fitness of each species, as reflected
by the chance of its offspring successfully occupying a vacancy in
the community, fluctuates in time. This differential response of
species, when superimposed on buffered population growth and
covariance between environment relative probability and com-
petition (Chesson, 1994) was shown to stabilize the system.
Chesson and Warner showed how rare species, when compared
with common species, have fewer per-capita losses when their
fitness is low and more gains when their fitness is high. Accord-
ingly, the population of rare species increases (their average
growth rate is positive just because their relative abundance is
low) and the system supports a stable equilibrium: species'
abundance fluctuates, but are attracted to a finite value by a re-
storing force.

Hubbell's NTB, which takes into account demographic noise
and speciation but with no environmental noise, provides us with
one set of predictions for the patterns characterizing a community,
such as species abundance distribution and species richness. The
Chesson–Warner lottery game, taking into account only environ-
mental stochasticity (without demographic noise or speciation)
suggests another set. What happens under the general model of
TNTB, where all these elements play a role? What patterns does it
predict, and how do they depend on the strength of the storage
effect? In Kalyuzhny et al. (2015) the TNTB was presented in the
context of a mainland-island model and simulated island dy-
namics were compared with data from the Barro-Colorado Island
(BCI) plot. Here we aim at understanding the metacommunity
dynamics of the TNTB and to explore its relationships with both
NTB and the lottery game.

To do that, we first revisit the storage effect, using the original
Chesson–Warner model. In Section 2 we consider the storage
effect for two species, emphasizing the transition it shows from a
balanced system, where the abundance of both species fluctuates
around one half of the community, and an imbalanced state, with
one rare and one frequent species. A deeper analysis of the equi-
librium distribution poses a conceptual problem, namely that the
result is independent of the amplitude of the environmental var-
iations. This problem is discussed in Section 3, and indicates the
necessity of incorporating demographic stochasticity into the
model. Before doing that, in Section 4 we consider the original
lottery game for communities with many species and discuss its
applicability to empirical systems. Finally in Section 5 the TNTB
model, in which environmental variations, demographic stochas-
ticity and speciation affect the community, is analyzed. Conclu-
sions are presented in the last section.
2. A lottery game for two species

In this section we study the simplest case, the storage effect in a
community with two species playing the lottery game. Since we
are ultimately interested in the TNTB, we assume that the fitness
of both species is equal when averaged over time (species are
equivalent). Note that the scope of the storage effect is wider, and
it may stabilize a community even when the average fitnesses are
different; we will return to this point in the discussion section.

To provide an intuitive numerical example, let us consider an
extremely simple game. Imagine a forest with 100 trees, NA of
species A and = −N N100B A of species B. For simplicity we assume
that there is no spatial structure, seeds and seedlings of both
species are all around the forest, with relative frequencies that
reflect the relative abundance of adult trees. During every year 20%
of the trees are selected at random, independent of their species
affiliation, to die (so that the generation time is five years). The
gaps that remain after the trees’ death are filled by seedlings,
where the chance of each seedling to capture the vacancy depends
of its relative fitness, with the fitness varying in time. To have
equivalent species the temporal fitness is taken to be an in-
dependent and identically distributed (i.i.d.) variable, so the
chance of a particular species to be the fitter of the two in a certain
year is 1/2. Under an extreme, “winner takes all” scenario, the
fittest species of a given year captures all the 20 empty slots.

Now let us follow the dynamics. Consider the case where, at the
beginning of a certain year, NA¼20 and NB¼80. After the death
step, NA¼16 and NB¼64 (this is an average, since trees are picked
to die at random, but for our purpose it is sufficient to trace the
average). Now there are two options: if the winner of this year is
species A, the year ends with = =N N36, 64A B , while if the fittest
species is B, the outcome will be = =N N16, 84A B . One can easily
see that the gain of A when it wins, 16, is higher than the potential
gain of B, which increases its population only by four individuals
when it wins. By the same token the losses of A when it is the
inferior species are smaller then the losses of B in the parallel
situation.

While this example is misleading in several respects (in parti-
cular the unrealistic winner takes all assumption strongly affects
the results), it still provides the basic intuition: although the
average fitness of both species is the same, environmental varia-
tions provide benefit to the rarer one, as the opportunities for the
rare species (when it wins) are greater than those of a common
species and its risks (when it loses) are less. Accordingly, an ef-
fective stabilizing force acts against any deviation from the 50–50
partition.

Having established this intuition, let us turn to the original
two-species model as presented in Chesson and Warner (1981). In
this model there is no demographic noise, so the absolute number
of individuals has no importance. Accordingly, the variables are



Fig. 1. The equilibrium probability distribution function, Peq(x), given by Eq. (4), is
plotted against x for different values of δ (see legend). For δ < 1/2 the distribution
peaks around the symmetric point 0.5, and the peak becomes sharper when δ

decreases (still the decay is slower than exponential). At δ = 1/2c the distribution is
flat, and for smaller values of δ it develops two peaks close to the extinction and the
fixation points and a valley in the middle. The distribution is normalizable as long
as δ < 1. Had the dynamics of Eq. (1) allowed an absorbing state (e.g., if one con-
sider the fraction x smaller than xmin as the state with no individual) the chance of
extinction in case of δ⪡1/2 would have been much smaller than the chance if
δ > 1/2. As discussed in the main text, the pdf's shown here are independent of sE2.
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species relative fractions. For two species, these are x1 and
= −x x12 1.
The model has a two step dynamics. During the death step a

fraction δ of the trees are removed, so the loss of species number 1,
for example, is δ·x1. The gaps are filled by seedlings. The number of
seedlings for a species is proportional to its abundance, and the
chance of a single seedling to capture the empty slot is determined
by its species' fitness. Accordingly the abundance of the two spe-
cies after these steps, death and recruitment, is given by,
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where >f 0i
t is the fitness of the i-th species during the t-th step.

For our two species system one can replace x2 by − x1 1 to get a
single recursion equation,
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When the fitness is fixed in time, the fittest species will win the
game and the abundance of the inferior species decreases mono-
tonically towards zero. Chesson discovered that, when the fitness
fluctuates in time, it stabilizes the populations. As we are inter-
esting in time-averaged neutral models, we require the long-term
averages of f1 and f2 to be equal.

Two parameters are needed to characterize environmental
stochasticity: its strength and its duration (correlation time).

1. The strength of the environmental stochasticity, sE2, manifests
itself in the spread of the fitness parameters fi. Without loss of
generality one may take

= ( )γf e , 2i
i

where the parameter γi is an independent and identically dis-
tributed (iid) variable picked from a distribution (say, a Gaussian
or a uniform distribution) with zero mean and variance sE

2. If
σ = 0E

2 then ≡f 1i , all species have the same fitness and the

dynamics stops, =+x xi
t

i
t1 . The larger sE2, the stronger the fitness

variability.
2. δ is the correlation time of the environmental noise, measured

in units of generations (see also the description of our agent-
based simulation of the model in Appendix B). Our analysis of
Eq. (1) is based on the assumption that the fitness fi is picked at
random every elementary timestep, i.e., between t and +t 1 and
so on. Within this period a fraction δ of the individuals die. To
give a concrete example, in Kalyuzhny et al. (2015) the correla-
tion time of the environmental stochasticity in the Barro-
Colorado Island plot was found to be about 10 years, while
the generation time is about 50 years. To model this dynamics
using Eq. (1) one may take δ = 1/5, meaning that the replace-
ment of 1/5 of the trees takes place under (more or less) the
same fitness regime.

Hatfield and Chesson (1989) showed how to map the discrete
time equation (1) to a Fokker–Planck equation for ( )P x t,1 , the
probability that the relative abundance of species number 1 is x1,
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We recapitulate the derivation of (3) from (1) in Appendix A.
The steady-state solution can be seen to be

( ) = [ ( − )] ( )δ −P x C x x1 , 4eq 1 1 1
1 2

where Γ δ Γ δ= ( − ) ( − )C 2/ 2 / 1/ 12 .
This result emphasizes two general features of the storage ef-

fect. First, the right hand side of the Fokker–Planck equation (3)
has two terms. The first is the “drift” term, describing the dynamics
of the average value of x1, which drives x1 towards 1/2. The “dif-
fusive” term, involving the second derivative with respect to x1,
has the coefficient [ ( − )]x x11 1

2, meaning that the random wan-
dering of the system is strongest when =x 1/21 and approaches
zero at the edges, =x 01 and =x 11 since there is no dynamics (and
no fluctuations) if either species reaches fixation. As discussed in
Ohkubo et al. (2008), the resulting ( )P xeq 1 reflects the balance be-
tween these two opposing forces: the diffusive aspects of the
dynamics acts to trap the system close to the edges where the
“diffusion constant” associated with abundance fluctuations van-
ishes while the drift term pushes x1 to the stable fixed point in the
middle.

The net result is determined by the ratio between these terms,
i.e., by δ, as illustrated in Fig. 1: for δ < 1/2 the deterministic term
wins, leading to a distribution with a single maximum at 1/2,
meaning that at any instant of time the community is likely to be
well balanced, with both species represented by roughly the same
number of individuals. For δ > 1/2, on the other hand, Peq is con-
vex, with probability mass concentrated near the edges at zero and
one. In this case the community is unbalanced, (almost) any
snapshot picture of the community reveals strong dominance of
one species, although the equivalence ensures that the time
average fraction of each species is around 1/2.

The distribution peak for δ < 1/2 resembles the Gaussian or
exponential peak one finds when the system supports a de-
terministic stable equilibrium (an attractive fixed point of a non-
linear system), but this similarity is slightly misleading. The decay
of Peq towards the edges is described by a power-law, not by an
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exponential or a Gaussian. This happens since the fixed point at 1/
2 is noise-induced in the first place.

The second key feature of Eq. (4) is that it has been derived
from Eq. (1) by expanding it to the leading order in the fitness
differences, so the emerging Peq is independent of sE

2 (see Ap-
pendix A for more details). This approximation becomes better
and better as sE2 decreases; accordingly, the storage effect appears
to stabilize the two-species community even for vanishingly small
values of sE2. The amplitude of fitness variations only sets the time
scale, such that the time needed for the system to reach the
equilibrium distribution scales like σ1/ E

2 and diverges when the
environmental noise vanishes, but Peq itself stays the same. In the
next section we discuss the conceptual difficulties associated with
this outcome.

For the sake of completeness we note that the storage effect
acts to destabilize the system when the environmental stochasti-
city acts on mortality rather than on fecundity. One may realize
that easily by repeating the “loser loses all” version of the nu-
merical example above, where the low fitness species suffers all
the mortalities but the recruitment depends on abundance and is
independent of fitness. Under such scenario the rarer species has
more to lose than the commoner one, as a the fixed number of
deaths would represent a larger share of its population (Hatfield
and Chesson, 1989).
3. Storage effect and demographic stochasticity: a conceptual
discussion

The results presented in the last section, and in particular the
properties of Peq, suggest that this classical model of the storage
effect, with pure environmental noise, is incomplete and leads
inevitably to a conceptual breakdown. In this section these diffi-
culties are presented, and the inclusion of demographic stochas-
ticity into the model is suggested as a possible (and plausible)
solution.

As seen above, Peq depends only on δ, the correlation time of
environmental variations, and not on their strength sE

2 (as long as
higher orders in sE

2 may be neglected). However, the environment
is fluctuating on every timescale: the wind changes its velocity and
direction, clouds cover the sky and cast a shadow, temperature
changes slightly and so on. All these processes have correlation
times of minutes or hours but their effect is minute. Still, under the
rules that govern the lottery game, such processes have the ability
to induce stability in the long run since δ → 0 and the amplitude of
fitness fluctuations is irrelevant.

Clearly, a reasonable model should yield a Peq that depends on
sE

2. It is highly implausible that infinitesimal changes in wind
direction or in temperature play an essential role in stabilizing
natural communities, no matter how much time the system is
allowed to relax. A lower cutoff below which environmental var-
iations are negligible has to be introduced. For example, one may
suggest that the minimal correlation time that the model has to
take into account is the time between two consecutive deaths of
individuals, since all the events that affect the fitness of species
between two deaths are integrated to determine the success
probability of every seedling competing to replace a dead tree. By
doing that one already introduces the discreteness of individuals
into the model. Demographic stochasticity, which is the en-
dogenous noise associated with the discreteness of the birth–
death process, provides the natural mathematical tool to deal with
these aspects of reality. Quantifying the strength of demographic
noise by the parameter sD

2 (the value of this parameter is dis-
cussed below), we expect that the equilibrium distribution (4)
should be obtained, from a general theory with demographic
fluctuations, in the limit σ σ →/ 0D E

2 2 , but for any finite demographic
noise the ratio between sE
2 and sD

2 should enter the expression
for Peq.

Another aspect of the result (4), which also provides a hint
about the importance of discreteness, is the transition between the
single peak, balanced distribution at small values of δ and the
imbalanced distribution at large δ. Mathematically speaking, as
long as the distribution is normalizable the solution is legitimate,
so the theory holds for all δ < 1 and breaks down only when δ = 1,
where Peq diverges like x�1 at the edges. However in practice,
when the number of individuals has to be an integer, this formal
approach may be misleading. If the overall size of the community
is J individuals, the case <x J1/ should be considered as extinction.
No matter what δ is, in the long run one of the two species in-
evitably goes extinct and the system reaches fixation. This feature
is missing in the lottery game, where all positive values are al-
lowed for x. Most importnatly, when δ41/2, the time to fixation is
short and there is no timescale over which demographic fluctua-
tions can be ignored.

Accordingly, the stability of the system depends not only on the
shape of Peq, but also on the rate at which the abundance of a
single species scans through all the values of x and reaches values
below J1/ , a feature that depends strongly on sE

2 (Kessler et al.,
2015). Even if Peq(x) is very small for x close to zero in the regime
δ < 1/2, under strong environmental noise the species' abundance
samples the whole phase space on relatively short timescales,
leading to fast fixation. As we shall see, since the decay of Peq at the
edges is a power law at best, one cannot neglect extinctions even
when J is large.

Demographic stochasticity has two aspects. First, it opens the
possibility of extinction by allowing a species to reach an ab-
sorbing state at zero concentration. Second, it provides another
source of noise, which scales like the square root of the population
size, as opposed to the linear scaling that characterizes environ-
mental stochasticity (Kalyuzhny et al., 2014b; Lande et al., 2003).
These two aspects of demographic noise are of importance to the
study of the storage effect, and they manifest themselves in TNTB.
However, before considering TNTB we would like to address the
possible relevance of the storage effect, in its traditional form with
only environmental stochasticity, to the statistics of high-diversity
assemblages.
4. The lottery game for many species

The applicability of the storage effect as a possible explanation
for an empirical system with tens and hundreds of species was
considered by Hubbell (2001), during the introduction of the
neutral model. The observed species abundance distribution in the
tropical forest is very wide, with support over a few decades of
abundance; Hubbell argued that the prediction for a system sta-
bilized by the storage effect is a narrow species abundance dis-
tribution (SAD) with a Gaussian-like peak around some typical
value. Accordingly, Hubbell concluded that the storage effect is
inappropriate for explaining patterns of species diversity in the
tropical forest. Since most of the diverse communities are char-
acterized by a hollow curve of species abundances (Ulrich et al.,
2010) with many rare species and a few common ones, this ar-
gument suggests that the storage effect plays at best only a minor
role in their dynamics.

In this section we will show that, in the limit of weak en-
vironmental stochasticity considered above, when the number of
species S is much larger than one, the storage effect yields a
Gamma-like distribution for the SAD. The Gamma distribution is
known to be mathematically flexible, it fits many empirical SADs
and indeed it may resemble very closely the zero-sum multi-
nomial distribution proposed by Hubbell. Furthermore, it contains



Fig. 2. The species abundance distribution Peq(x), given by Eq. (7) for S¼100 spe-
cies, is plotted here vs. x for three values of δ. In all cases the SAD approximates a
Gamma distribution, with shape factor α > 1 for δ δ< = 0.0196c and α < 1 if
δ δ> ≈ 0.0196c . At the critical δ the power vanishes and the distribution has an
almost pure exponential decay as demonstrated in the semi-logarithmic plot in the
inset.
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the commonly observed Fisher log series SAD as a limiting case
(see e.g., Azaele et al., 2006, 2015; Connolly et al., 2014).

The generic, S species, generalization of Eq. (1) is,
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∑ ( )
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The solution for Peq was obtained by Hatfield and Chesson (1997)
(see also Gillespie, 1980),
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2 1 1 1

This is a very strong result, although it has not received its due
attention in the literature. To compare directly the expression (6)
to observed SADs we have extracted the single species probability
distribution function by integrating out −S 1 species to obtain, say,

( )P xeq 1 (since all species are symmetric, we will denote it by Peq(x)).
The result is,

( )( ) = ( − ) ( )δ δ− −
( − ) − −

⎛
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⎠⎟P x Ax x1 , 7eq S

S
S
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where A is a normalization factor.
Eq. (7) is an exact formula that reduces to (4) where S¼2, but in

this section we are interested in its implication for ⪢S 1. In this
parameter regime we need consider only ⪡x 1, since the typical
fraction of a single species never substantially exceeds S1/ , as we
shall see.

As mentioned, when ⪢S 1, Peq takes a Gamma distribution
(power law followed by an exponential cutoff) form,

≈ ( )α β− −P Ax e , 8eq
x1

where the rate factor β appears as the ⪡x 1 limit of
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with β δ= ( ) −2/ 3. The shape factor ( )α = −
δ

1
S
2 1 will be greater

than one (meaning that the distribution vanishes at zero and has a
peak in the vicinity of S1/ ) if

δ δ< =
+ ( )S
2

2
,

10c

while for δ δ> c the distribution diverges at zero but is still in-
tegrable. These behaviors are illustrated in Fig. 2. When α is small
the distribution approaches the Fisher log series, and in general it
corresponds to the generalized Fisher log series distribution that
was discussed in Kessler and Shnerb (2014). Note that if δ > 2/3
the assumption ⪡x 1 does not hold anymore; we will not consider
this case here.

For a fully surveyed empirical community the species richness S
is given, so the only parameter in (7) which is left to be fitted is δ.
This makes the fit less impressive, of course, but the model is more
parsimonious and its results may be preferred, e.g., when applying
Akaike information criterion that includes a penalty to discourage
overfitting, over two parameter theories.

In particular, to explain the observed SAD on the BCI plot as
reflecting a community that acquires its stability from the storage
effect, we first look at Fig. 3b and find the range of abundances for
which the decay of the SAD is exponential, this indicates what β1/
is. In the BCI (dbh >10 cm) this “knee” (the range of abundances in
which the SAD, on a double logarithmic scale as in 3b, curves
down) is definitely below 500 trees, i.e., below 2% of the forest
population (around 21,000 trees). Since this scale is determined by

β1/ where β δ= ( ) −2/ 3, the correlation time δ needed to explain
the SAD in the Barro-Colorado plot has to be below a fraction 0.03
of a generation. This estimate works quite nicely: Fig. 3 shows the
observed SAD for BCI trees together with the Peq presented in Eq.
(7), where the only fitted parameter is δ. Indeed the best fit was
obtained for δ = 0.027, as expected. One can see that this one
parameter fit is worse than the two-parameter fit using zero-sum
multinomials (ZSM) statistics, but it is not unacceptable. Interest-
ingly, when plotted using the double-logarithmic (Pueyo) plot
instead of Preston plot the single parameter fit using (7) looks
much better.

However, the value 1/40 (of a generation) for δ appears to be
unrealistic. As mentioned in Kalyuzhny et al. (2015) the value of δ
has been found to be around 1/5, and the order of magnitude in
difference is too large to be neglected. Similarly, estimations of the
corresponding numbers for trees in the whole Amazon basin
(Ter Steege et al., 2013) suggest that the most abundant species
constitutes about 1% of the population (meaning that the “knee”
appears at even smaller relative abundances) and the corre-
sponding value of δ, smaller than 1/200, again seems unrealistic.

Altogether, it appears that a storage model may provide the
type of hollow-curve SADs that characterize empirical systems. Its
flexibility is limited since α and β are both determined by δ, and
other theories provide better fits, still one may believe that adding
another parameter (in a theory that takes into account spatial
effects, for example) may solve this difficulty. The need to extend
the lottery model and to include demographic noise is not the
inability of (7) to support fat-tailed SADs, but the following three
arguments:

1. Conceptually, as mentioned above, we would like to find an SAD
that depends on sE, not only on δ.

2. The empirical SAD (and the theoretical expression (7) with the δ
values that yield a decent fit) has support on small absolute
numbers, meaning that extinction events must occur and are
important, or, equivalently, that demographic noise must be
taken into account.

3. The correlation time of the environmental variations needed to
account for empirical datasets appears to be unrealistically
short.

In any case, once extinctions are incorporated into the model
one should include speciation events to balance the species rich-
ness; the resulting model is the TNTB which is discussed in the
next section.



Fig. 3. Explaining the BCI plot species abundance distribution. The species abundance distribution of the BCI (1995 census) tropical forest is presented (light blue bars in the
Preston plot (a), light blue circles in the double logarithmic (Pueyo) plot (b)), together with the best fit to the SAD predicted for a lottery game with δ = 0.0265 (Eq. (7)) and
the ZSM theory (parameters taken from Volkov et al. (2003), θ = 47.22, m¼0.1). Although the ZSM appears to give a better fit, it is clear that the Chesson–Warner lottery
game does provide the kind of hollow curve SADs that appear in empirical studies. Moreover, for the ZSM two parameters were used, whereas only one parameter was
employed for the lottery game. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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5. The TNTB: storage effect, demographic noise and speciation

The time-averaged neutral theory of biodiversity deals with a
community of species, all having the same average fitness. Species
are subject to demographic and environmental stochasticity. Un-
der demographic noise species may go extinct, and these extinc-
tion events are balanced by speciation. Four parameters govern the
results: in addition to δ and sE, the correlation time and the am-
plitude of environmental variations, here one should take into
account the per-birth chance of speciation ν, and the strength of
the demographic noise, sD. One should introduce these two pro-
cesses together: without extinction, speciation will cause the
number of species to grow unboundedly. Without speciation, de-
mographic noise will lead to fixation by a single species in the long
run.

The standard way to introduce speciation is to assume that an
offspring carries the taxonomic identity of its mother with prob-
ability ν−1 , and is the originator of a new species with probability
ν (see details of our simulation technique in Appendix B). The
demographic stochasticity is characterized by sD

2, the variance of
the number of offspring per individual and usually takes a value
between 2 (for a geometric distribution of offspring) and 1 (for a
Poisson distribution). In the limit σ = 0E , without environmental
noise and storage effect, one obtains the metacommunity version
of Hubbell's neutral theory (or Kimura's neutral model), where Peq
(for a high-diversity system with < ⪡J x1/ 1 ) is given by Fisher log-
series,

( ) = ( )
σ ν σ= −P x

A
x

e , 11eq
Jx0 2 /E D

2

where A is a normalization constant. The species richness S reflects
the balance between extinction and speciation

ν
σ

ν
σ

= −
( )

σ =
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟S J

2
log

2
.

12D D

0
2 2

E

What happens in TNTB, when the storage mechanism acts to-
gether with demographic noise and speciation events? Here we
would like to emphasize a few generic features of this system:
1. Demographic stochasticity allows for extinction while specia-
tion increases species richness, and the balance between these
two processes is determined by δ and sE. The lower the value of
δ, the sharper the SAD peak in the vicinity of S1/ , the time to
extinction of a single species increases, and the chance of a low-
abundance species to invade grows. Accordingly, the steady
state species richness S decreases monotonically with increas-
ing δ.
Dynamically, when the chance of extinction is low the process
of speciation acts to increase the number of species S, δc de-
creases (see Eq. (10)) and the probability mass of Peq in the
region ⪡x 1 grows, leading to an increased rate of extinction
until it balances the effect of speciation and the system reaches
a steady state at finite S.

2. The inclusion of both demographic and environmental noise
introduces a new scale into the problem. As discussed in Kessler
and Shnerb (2014) and Kessler et al. (2015), as long as σ σ≪x /D E

2 2

the dynamics of a species is dominated by demographic noise,
while, above this value, environmental variations are more
important. Accordingly, as one can see in Fig. 4, Peq of the TNTB
has two regimes. For large x one observes (8), the storage
power-law α − 1 followed by an exponential cutoff. For σ σ<x /D E

2 2

the power α − 1 is replaced by a x1/ dependence, a character-
istic of the Fisher log-series.
Therefore, the conceptual problem raised in Section 3, namely
the fact that the theory of the storage effect predicts Peq to be
independent of sE, is solved within the TNTB framework: the
ratio σ σ/D E

2 2 determines the crossover from the x1/ decay to the
behavior described by (8), and the SAD (and the overall species
richness S) does depend on sE. In the σ → 0E limit the TNTB
converges to the standard neutral theory of Hubbell.

3. Given that, one may wonder about the effect of environmental
stochasticity on species richness. On the one hand, sE is re-
sponsible for the storage effect that provides stability and al-
lows for low abundance species to invade. On the other hand
(see Eq. (14) below and the following discussion), in systems
without a storage effect (Kessler and Shnerb, 2014; Kessler et al.,
2015), environmental stochasticity clearly acts to lower S, as it
increases the rate of extinction events since environmental



Fig. 4. The light blue circles represent the SAD obtained from a simulation of the
TNTB model (see Appendix B), with σ σ δ ν= = = =− −2, 0.25, 10 , 10D E

2 2 4 3

and =J 104 . The results represent an average over time, abundances have been
recorded every 106 elementary timesteps. The red straight line has a slope �1, and
it fits the data perfectly up to σ σ/D E

2 2, the region dominated by demographic sto-
chasticity. The Gamma distribution, with α = 2 and β = 0.01 is shown by the purple
curve. The parameters α and β were obtained from the fit to the data, and differ
from the predictions of the storage theory, since the demographic noise and mu-
tations significantly weaken the storage effect. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this
paper.)

Fig. 5. S, the species richness, is plotted against sE
2, the amplitude of the en-

vironmental stochasticity. The results were obtained in simulations of a TNTB
community with J¼104, σ ν= = −2, 10D

2 3 for various environmental correlation
times δ (given in the legend in units of one generation). S reflects the balance
between extinction and speciation; the lower is δ, the stronger is the storage effect
and thus S increases. An increase in the strength of environmental variation sE

2

may either decrease S (since it increases abundance variation) or increase the
species richness by facilitating the storage effect. Here we see that the general
trend depends on the value of δ. All the lines converge to the NTB limit,

ν ν= − ( ) ≅S J log 70, when σ → 0E .

Fig. 6. S, the species richness, is plotted against sE
2, amplitude of the environ-

mental stochasticity for simulations with Q¼0 (same as in Fig. 5, empty circles) and
for the case with time independent fitness differences (ηis) with Q¼0.08 (filled
circles connected by dashed lines). All other parameters are the same used in Fig. 5.
When σ = 0E

2 time independent fitness differences lead to a biodiversity collapse,
where the fittest species is dominant and all other species are rare. On the other
hand, when sE

2 is large environmental noise washes out the effect of time in-
dependent fitness differences and S(Q) approaches ( = )S Q 0 . The species richness
peaks at intermediate level of disturbance for δ = 0.6.
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fluctuations cause a species to visit more frequently the danger-
ous zone of low abundance.
Fig. 5 solves this puzzle: it shows that the effect of environ-
mental stochasticity on species richness, when all other
parameters are kept fixed, is determined by the correlation
time δ. For small δ's the storage effect wins and in general the
species richness increases with the amplitude of environmental
variations. For large values of δ the increase in the system's
variability leads to a decrease in S.

4. The NTB was criticized by many authors for its strict commit-
ment to perfect neutrality (Zhou and Zhang, 2008). Under the
rules of the neutral game, even the slightest fitness difference
leads to a fixation of the system by the fittest species (in the
absence of speciation) or to the appearance of an SAD that
reflect Darwinian dominance, with one common species that
occupies most of the community and a few rare, short lived,
species (Kessler and Shnerb, 2014). The stabilizing effect of the
storage mechanism resolves this difficulty. Even if the average
fitness of different species is not the same, the system may still
support high diversity.
To demonstrate this we have simulated the non-neutral mod-
ification of the TNTB, when the expression for fitness, Eq. (2), is
replaced by

= ( )η γ+f e , 13i
i i

t

where ηi is a time independent, species specific component of
the fitness of the i-th species, taken from a Gaussian distribu-
tion with standard deviation Q and zero mean. ηi reflects the
mean tendency of the environment to favor, or disfavor, species
i. When σ → 0E the introduction of these time independent
fitness differences leads to a biodiversity collapse, as seen in
Fig. 6. However, as sE increases, the number of species grows
since the storage effect induces stability. Finally at large sE the
effect of fitness differences disappears and the species richness
takes its Q¼0 value, as in the TNTB.
An interesting feature of the finite Q dynamics is the unimodal
dependence of S on sE

2 when δ is sufficiently large. While weak
environmental stochasticity stabilizes the species, strong varia-
tions lead to faster extinction and reduce S and biodiversity
reaches a maximum under intermediate disturbance. One may
expect such an effect in nonadditive systems (see Fox, 2013),
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and we believe that our model provides an appropriate frame-
work for its analysis.

Before concluding this section, we would like to stress that
environmental stochasticity and the storage effect are not synon-
ymous. When the environmental variations affect only the death
rate, or when δ = 1, there is no storage effect and sE is a purely
destabilizing factor. Even a slight modification of the rules gov-
erning the process may kill the storage effect. For example, in the
lottery game all the trees in the forest are competing for an open
gap, where the chance of a species to win depends on its fitness.
The pairwise competition version of the same game, where two
individuals are picked at random and an offspring of one replaces
the other with probability that depends on their relative fitness,
has no significant storage effect. With respect to this specific duel
all other trees play no role, so it corresponds to the δ = 1 case of
the lottery game. Conversely, in the NTB limit (without environ-
mental stochasticity) there is no difference between these two
versions of the neutral game, see e.g. Volkov et al. (2003).

The SAD for TNTB without the storage effect (e.g., for the pair-
wise competition case) for < ⪡J x1/ 1 was calculated in Kessler and
Shnerb (2014),

σ
σ

( ) = +
( )

ν σ− −⎛
⎝
⎜⎜

⎞
⎠
⎟⎟P x

C
x

J
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2

14
eq

E

D

no storage
2

2

1 / E
2

where C is a normalization constant. Here the power law decay x1/
that characterizes the region dominated by demographic noise is
replaced, for σ σ>x /D E

2 2, by a power law with a larger exponent
ν σ+2 / .E

2

6. Summary and discussion

Mechanisms that maintain species diversity are usually classi-
fied according to their stability properties. Some mechanisms
provide a stable equilibrium, while in other mechanisms the dy-
namics of each species is unstable and the diversity reflects a
balance between extinction and speciation/immigration. This dis-
tinction is related to timescales: under the inevitable influence of
demographic noise every species eventually goes extinct, however
in models that support a stable equilibrium the extinction time is
exponential in the species' abundance, while under unstable
equilibrium, as in the neutral model, the time to extinction scales
linearly with the abundance. To maintain the diversity of a me-
tacommunity these timescales should be comparable with the
evolutionary timescale that determines the rate at which new
species enter the system and balance the diversity losses due to
extinction.

A system that acquires its stability due to the storage effect is
somewhere in-between. The stabilization is based on environ-
mental stochasticity, which is, at the same time, a destabilizing
force. As we have seen, the outcome of the competition between
these two aspects of the same phenomenon—environmental sto-
chasticity—is determined by one parameter, δ, the correlation
time of the environment. If δ is large the destabilizing effects
dominate and environmental stochasticity reduces biodiversity.
When δ is small, as seen in Fig. 5, the stabilizing effect associated
with the storage mechanism leads to an increase of extinction
times and the overall biodiversity.

In the metacommunity version of Hubbell's neutral theory,
speciation and demographic drift are the only factors that govern
the dynamics of the community, leading to the Fisher log-series
SAD and species richness which is given by (12). The x1/ decrease
of the SAD at small x does not fit the observed statistics on, say, the
Barro-Colorado Island and other local communities, where the
slope is clearly weaker than x1/ (in a Preston plot, where the
number of species in any abundance octave is plotted without
normalization by the width of the octave, x1/ is translated into a
straight horizontal line, while the Preston plots of empirical local
communities show a unimodal behavior, see Fig. 3a). To account
for that, in the mainland-island version of NTB the statistics of a
local community are governed by two parameters, the funda-
mental biodiversity number of the metacommunity θ ν σ= J2 /M D

2

and the chance of migration to the island. The emerging zero-sum
multinomial SAD fits the empirical evidence, as may be seen in
Fig. 3 above. Nevertheless the dynamics, in particular the rate of
abundance variations, is too fast to be explained by the neutral
model (Kalyuzhny et al., 2014a, b, 2015).

TNTB, which was shown to explain both static and dynamic
patterns (Kalyuzhny et al., 2015), has three extreme limits. When
σ → 0E it converges to the NTB, as environmental variations va-
nishe. When σ σ →/ 0D E it converges to the classical lottery model of
Chesson andWarner. The other limit is δ → 1, when environmental
noise does affect the system but there is no storage. The SADs in
these three limits were presented in this paper (Eqs. (7), (11), (14)).

In between, as showed in Section 4, the situation is more
complicated, and the way environmental stochasticity affects
species richness is determined by the correlation time δ. For short
correlation times, S is an increasing function of sE, while for longer
correlation times the situation is closer to the one discussed in
Kessler and Shnerb (2014) - a species may enjoy a long time in
which its population grows, so the SAD widens and the overall
species richness S decreases when environmental variations in-
crease in amplitude.
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Appendix A. Derivation of the Fokker–Planck equation (3)

Our starting point is the recursion relation, Eq. (1).

δ δ= ( − ) +
+ ( )

+x x
f x

f x f x
1

A.1
t t

t t

t t t t1
1

1
1 1

2 2 1 1

To translate this equation to the Fokker–Planck language, one
would like to find the average change in x1 between t and +t 1,
Δx1, and also its variance ( ) = (Δ ) − (Δ )Var x x x1 1

2
1

2. The Fokker–
Planck equation than takes the general form,
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The transition between (A.1) and (A.2) is justified if both the mean
change and its variance are small (in comparison with x1) during a
single timestep, such that a differential equation is an appropriate
description of the process, see below.

To calculate Δx1, Eq. (A.1) should be written as (we have re-
placed x2 by − x1 1, so from now on we regard x1 as x.

( )( )δΔ = − =
− +

−
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+
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t t t
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2 1

Writing = γf ei
i, and expanding Δx in powers of γ γ γΔ ≡ −1 2, we

have



Fig. A1. The predictions of the Fokker–Planck Eq. (4) for Peq(x) (full line), are compared with Peq obtained from numerical simulations of the recursion relation (1) for
different values of δ and δσE

2. For δ = 0.6 (left), the simulated Peq at σ = 1E
2 (filled blue circles) is almost indistinguishable from the Fokker–Planck predictions, while for σ = 6E

2

(open black circles) one observes a few little wiggles. For δ = 0.25 (right panel) the situation is even better, at σ = 1E
2 the approximation is exact and only for σ = 100E

2 (open
black circles) slight deviations may be identified. For smaller values of δwewere unable to identify any deviations even for larger values, up to σ = 10000E

2 . (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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where the negligence of higher orders in γΔ is justified if this
quantity is small compared to one. Since γΔ = 0 the first term on
the r.h.s. of (A.4) vanishes. The strength of the environmental
stochasticity is defined via σ γ≡ (Δ )E

2 2, so we are left with,

δσ
Δ ≈ ( − )( − ) ( )x x x x

2
1 1 2 . A.5

E
2

Writing (Δ )x 2 as the square of the r.h.s. of (A.3), expanding to
second order in γΔ , averaging over γΔ and collecting the non-
vanishing quantities one obtains,

σ δΔ ≈ ( − ) ( )x x x1 A.6E
2 2 2

1
2

1
2

Finally, keeping only second order terms in γΔ , (Δ ) ≈ ΔVar x x2, and
by plugging the results of (A.5) and (A.6) into (A.2) one obtains Eq.
(3) of the main text.

The replacement of ( ) − ( )+P x P xt t1 by the time derivative of P is
allowed if the changes in x during one timestep are small, i.e., if
δσ ⪡1E

2 . However, when comparing the results obtained from direct
simulations of the recursion relation (1) and the predictions of the
Fokker–Planck equation, say, (4), one finds that this approximation
holds in a much wider regime, see Figs. A1.

Note that, as long as the transition to the Fokker–Plank
equation (replacement of the recursion relation by a continuous in
time differential equation) may be justified, the limit σ → ∞E is
quite trivial. In this limit with probability 1/2 δ= ( − )+x x 1t t1 and
with probability 1/2 δ= + ( − )+x x x1t t t1 . Accordingly,

δΔ = ( − )x x1 2 /2 and δ( ) =Var x /42 . The resulting Fokker–Planck
equation has an x-independent diffusion term: it does not vanish
on the edges, since growth is independent of the abundance. This
leads to

( ) ∼ ( )δ
( − )

P x e , A7eq

x x4 1

meaning that the distribution in this limit is a Gaussian around
=x 1/2. In fact, writing = −y x 1/2 and expanding for small y both

(4) and (A7) converge to δ( − )yexp 4 /2 , and for small δ (where
the deviations from =x 1/2 are small) higher orders in y are
negligibly small. Therefore (see Fig. A1 and its caption) as long as δ
is small it is quite difficult to find any difference between the
prediction of (4) and the results of simulations at large sE

2.
A similar argument for S species yields ( ) ∼ ( − ( − )P x x S wexp 1/ /eq
2

where δ= ( [ − ])w S S/ 1 1/ .
Appendix B. Simulating the dynamics of a community

Our individual-based simulation technique is a simple gen-
eralization of the one used in simulations of the neutral model for
a well-mixed (panmictic) community.

We start with J individuals, each belonging to one of S species,
and each species i has a fitness γ= ( )f expi i , where the values of γi
are picked from a normal distribution with zero mean and width
sE.

During an elementary timestep one individual is chosen (at
random, independent of its species affiliation) to die. If the dying
individual is a singleton, the number of species is reduced by one.
Then, with probability ν, this individual is replaced by the origi-
nator of a new species, the number of species in the system grows
by one and a fitness is assigned to the new species using the
procedure described above.

With probability ν−1 the individual is replaced by a descen-
dant of another individual that inherits its parent's identity. The
chance of the species i to capture the empty slot is given by

∑ =f x f x/i i j
S

j j1 , where xi is the abundance of species i (an integer).

After each elementary timestep the time is incremented by J1/ .
When the time reaches δ (after δJ elementary steps) all the

fitness values fi are picked for all species using the same proce-
dure, with no correlation between the new and the old fitness.
This implies that the correlation time of the environmental var-
iations is a fraction δ of a generation.
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