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Abstract

A continuous-time Markov chain (CTMC) model is formulated for an influenza epidemic with drug resistance. This stochastic model

is based on an influenza epidemic model, expressed in terms of a system of ordinary differential equations (ODE), developed by

Stilianakis, N.I., Perelson, A.S., Hayden, F.G., [1998. Emergence of drug resistance during an influenza epidemic: insights from a

mathematical model. J. Inf. Dis. 177, 863–873]. Three different treatments—chemoprophylaxis, treatment after exposure but before

symptoms, and treatment after symptoms appear, are considered. The basic reproduction number, R0, is calculated for the

deterministic—model under different treatment strategies. It is shown that chemoprophylaxis always reduces the basic reproduction

number. In addition, numerical simulations illustrate that the basic reproduction number is generally reduced with realistic treatment

rates. Comparisons are made among the different models and the different treatment strategies with respect to the number of infected

individuals during an outbreak. The final size distribution is computed for the CTMC model and, in some cases, it is shown to have a

bimodal distribution corresponding to two situations: when there is no outbreak and when an outbreak occurs. Given an outbreak

occurs, the total number of cases for the CTMC model is in good agreement with the ODE model. The greatest number of drug resistant

cases occurs if treatment is delayed or if only symptomatic individuals are treated.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Antiviral drug resistance is an important concern in
public health. The emergence and spread of drug resistance
leads to treatment failure, limits the effectiveness of
subsequent treatments, and results in the evolution of
more virulent strains. In the past few years, many studies
have focused on this topic (Austin and Anderson, 1999;
Blower and Volberding, 2002; Blower and Chou, 2004;
Blower et al., 1998, 2005; Blower and Gerberding, 1998;
Ferguson et al., 2003; Hayden, 2001, 2006; Levin et al.,
1999, 2004; Longini et al., 2005; Moscona, 2005; Regoes
and Bonhoeffer, 2006; Sánchez et al., 2005; Stilianakis
et al., 1998). Some of these studies investigated drug
resistance in tuberculosis (Blower and Chou, 2004; Blower
and Gerberding, 1998), some in HIV (Blower and
Volberding, 2002; Blower et al., 2005; Sánchez et al.,
e front matter r 2007 Elsevier Ltd. All rights reserved.
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2005), and some in HSV-2 (Blower et al., 1998). In
addition, there have been studies on the development of
drug resistance during influenza epidemics (Ferguson et al.,
2003; Hayden, 2001, 2006; Longini et al., 2005; Moscona,
2005; Regoes and Bonhoeffer, 2006; Stilianakis et al.,
1998). Much of this work has emphasized the importance
of mathematical models to gain further insight into the
development of drug resistance.
Antiviral drugs such as amantadine and rimantadine (M2

protein inhibitors) have been used for influenza A prevention
and control. Such treatments are about 80–90% effective at
preventing infection, and can reduce the duration of the flu by
about 1–5 days, if given within 48h of infection (Bright et al.,
2005). However, drug-treated persons infected with influenza
may shed resistant viruses within 5–7 days after treatment
(CDC, 2005). Recently, high levels of resistance to amantadine
and rimantadine have been detected among influenza A
viruses. It has been shown that resistance to amantadine and
rimantadine increased from 0.4% in 1994–1995 to 12.3% in
2003–2004 among circulating influenza viruses collected
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worldwide between October 1994 and March 2005 (Bright
et al., 2005; CDC, 2006). In another US study conducted from
October through December 2006, 92.3% of influenza A
(H3N2) viruses isolated from 209 patients showed a change in
an amino acid known to be correlated with adamantine
resistance (Bright et al., 2006). Currently, both of these drugs
are not recommended (CDC, 2006). Other antiviral drugs,
such as the neuraminidase inhibitors zanamivir and oseltami-
vir, are currently recommended (CDC, 2006). Only oseltamivir
has been approved for prophylaxis but both zanamivir and
oseltamivir are effective (84% and 82%, respectively) at
preventing infection (Harper et al., 2005). However, recent
studies have shown development of drug resistance in patients
infected with influenza A when treated with oseltamivir, 18%
of children infected with the H3N2 virus (Kiso et al., 2004) and
two out of eight patients infected with the H5N1 virus (de Jong
et al., 2005). Studies on oseltamivir resistance are under
investigation (CDC, 2006; Moscona, 2005).

Vaccination is a major preventive strategy in the control
of influenza A but is not considered in this investigation.
Instead we concentrate on the effectiveness of antiviral
treatment and the development of drug resistance in a
small community of susceptible individuals.

There are three major antiviral treatment strategies for
influenza classified according to the time at which the
treatments are given. These three strategies are chemopro-
phylaxis, drug treatment after exposure but before
symptoms appear, and drug treatment after symptoms
appear. Chemoprophylaxis is treatment with a drug to
prevent the development of the disease and is given prior to
exposure. The effectiveness of these three treatment
strategies are studied using a susceptible-infected-recovered
(SIR) model for an influenza epidemic.

A variety of models have been developed to study the
dynamics of an influenza epidemic or pandemic (Ferguson
et al., 2003, 2005, 2006; Germann et al., 2006; Levin et al.,
2004; Longini et al., 2005; Regoes and Bonhoeffer, 2006;
Stilianakis et al., 1998). Some of these models consider
drug resistance as a major factor in the epidemic process
(Ferguson et al., 2003; Regoes and Bonhoeffer, 2006;
Stilianakis et al., 1998). Other models have been applied to
large scale pandemics with spatially explicit dynamics and
require extensive computer simulations (Ferguson et al.,
2005, 2006; Germann et al., 2006; Longini et al., 2005).
These latter models are either fully stochastic (Germann
et al., 2006; Longini et al., 2005) or include random
contacts (Ferguson et al., 2005, 2006). The small scale
stochastic dynamics of an influenza epidemic have not been
studied in these models.

In this investigation, we apply the deterministic SIR
model developed by Stilianakis et al. (1998) and a
continuous-time Markov chain (CTMC) model, to study
how the epidemic progresses under different treatment
strategies. The effectiveness of the three antiviral treatment
strategies are compared in the deterministic and stochastic
models. The basic reproduction number, R0, is computed
when there is no treatment and compared to the
reproduction numbers when there is treatment. In the
numerical examples, we show that the basic reproduction
number is reduced with treatment. Because the general
form of R0 with treatment involves a large number of
parameters, it is difficult to determine whether all treatment
strategies reduce R0. Extensive numerical examples illus-
trate some of the differences between the deterministic and
stochastic models. The final size distribution is computed
for the CTMC model. In some cases, it is shown to have a
bimodal distribution corresponding to two situations:
outbreak or no outbreak. Given an outbreak occurs, the
total number of cases for the CTMC model are compared
to the deterministic model.

2. Description of models

Two models, a deterministic model and a stochastic
model are described. The deterministic model is a system of
ordinary differential equations (ODE) originally developed
by Stilianakis et al. (1998) for the development of drug
resistance during treatment for influenza during an out-
break. This deterministic model serves as the basis for
development of a stochastic model, a CTMC model. The
CTMC model includes variability due to birth, death,
transmission, and recovery processes.

2.1. Deterministic model

The influenza model developed by Stilianakis et al.
(1998) is an SIR model, where the total population size is
assumed to be constant. Fig. 1 is a compartmental diagram
illustrating the transmission dynamics among the suscep-
tible and infected states. The recovered state is not included
in this diagram.
The model includes two susceptible states, eight infected

states, and one recovered state. The susceptible and
infected states are further subdivided according to whether
individuals are asymptotic or symptomatic, treated or
untreated, and resistant or sensitive to the drugs. Sub-
scripts on the variables identify the particular subtype. The
susceptible individuals are divided into S ¼ susceptible
persons not taking drugs and Spr ¼ susceptible persons
taking drugs prophylactically. The infected individuals are
divided into I ¼ infected untreated persons, Is ¼ infected
untreated persons who develop clinical symptoms, Ir ¼

infected untreated asymptomatic persons who shed drug-
resistant virus, Is;r ¼ infected untreated persons with
clinical symptoms who shed drug-resistant virus, I tr ¼

infected treated asymptomatic persons, I s;tr ¼ infected
treated persons who develop clinical symptoms, Ir;tr ¼

infected treated asymptomatic persons who shed drug-
resistant virus, and Is;r;tr ¼ infected treated persons with
clinical symptoms who shed drug-resistant virus.
The parameters in this diagram indicate transition rates

between compartments. For example, gi is the recovery rate
for asymptomatic (i ¼ 1) and symptomatic (i ¼ 2) indivi-
duals. Recovery is faster for drug-sensitive individuals after
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Fig. 1. A compartmental diagram of an SIR influenza model with drug

therapy.
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treatment, r1g1 and r2g2, where

ri41; i ¼ 1; 2. (2.1)

The transmission rate depends on the type of infection. The
rate of transmission from an asymptomatic infected person to
a susceptible person is b1SI and the rate of transmission from
a symptomatic infected person to a susceptible person is
b2SIs. A mass action transmission rate is assumed. However,
because the population size is constant ð� NÞ, this assumption
is equivalent to the more commonly used standard transmis-
sion rate, where b1 and b2 are replaced by l1=N and l2=N,
respectively. Transmission is reduced if either susceptible or
infected individuals have been treated. If the susceptible
individuals have been given prophylaxis, then the transmis-
sion rate is p2b1SprI and p2b2SprIs, 0op2o1. If the infected
individuals have been treated, then the transmission rate is
p1b1SItr and p1b2Is;tr, 0op1o1. Finally, if both susceptible
and infected individuals have been treated, then the transmis-
sion rate is p3b1SprI tr and p3b2SprIs;tr, 0op3o1. In general,
p3op2op1: Furthermore, b1;r and b2;r are transmission rates
between susceptible and infected individuals that are drug
resistant. Generally, due to a ‘‘cost of resistance’’,

b1;rpb1 and b2;rpb2. (2.2)

The parameter d1 describes the rate at which symptoms
develop, I becomes Is, Ir becomes Is;r, and Ir;tr becomes
Is;r;tr, whereas the transition rate from I tr to Is;tr is d2. It
takes a longer period of time to develop symptoms after
treatment; therefore,

d14d2. (2.3)

Parameters k1 and k2 are the rates of developing drug
resistance during treatment (due to treatment failure) either
before (k1) or after symptoms develop (k2), k1ok2. Three
different types of treatment strategies are considered,
chemoprophylaxis (treatment of susceptible individuals
prior to exposure), treatment after exposure but before
symptoms, and treatment after symptoms appear. The per
capita rate of these three treatment strategies is yi, i ¼ 1; 2; 3.
Stilianakis et al. (1998) state that for small closed

populations, treatment of individuals who show clinical
symptoms would not have an important effect on the
epidemic process (third treatment strategy). They argued
that chemoprophylaxis reduces the risk of infection and
therefore, emergence of drug resistance was expected to be
low in this case. They also concluded that if chemopro-
phylaxis was combined with the treatment after symptoms
appear, then this combination would lead to a result
similar to chemoprophylaxis treatment itself.
Stilianakis et al. (1998) analyzed a flu outbreak in a closed

population, such as a school or nursing home in which the
total population size remains constant; and thus assumed that
there are no births and deaths during the epidemic. But for
the pandemic situation, which could be longer and include
more individuals, the assumption of a closed population is
not applicable. In addition to births and deaths, there may be
immigration and emigration. Based on this consideration, we
include births (immigration) and deaths (emigration) in the
SIR epidemic model. Births are assumed to occur at a
constant rate L and deaths at a per capita rate m. If L and m
are small relative to the time scale, then these demographic
parameters have little effect on the outcome. The SIR model
with births and deaths takes the following form:

dS

dt
¼ L� ðb1I þ b2Is þ b1;rI r þ b2;rI s;r þ p1b1I tr

þ p1b2I s;tr þ b1;rI r;tr þ b2;rI s;r;trÞS � ðy1 þ mÞS,
dSpr

dt
¼ � ðp2b1I þ p2b2Is þ b1;rI r þ b2;rI s;r þ p3b1I tr

þ p3b2I s;tr þ b1;rI r;tr þ b2;rI s;r;trÞSpr þ y1S � mSpr,

dI

dt
¼ ðb1I þ p1b1I tr þ b2Is þ p1b2Is;trÞS

� ðg1 þ d1 þ y2 þ mÞI ,
dIs

dt
¼ d1I � ðg2 þ y3 þ mÞIs,

dIr

dt
¼ ðb1;rI r þ b1;rI r;tr þ b2;rI s;r þ b2;rI s;r;trÞS

þ ðb1;rI r þ b2;rI s;rÞSpr � ðg1 þ d1 þ y2 þ mÞI r,

dIs;r

dt
¼ d1Ir � ðg2 þ y3 þ mÞIs;r,

dI tr

dt
¼ ðp2b1I þ p2b2Is þ p3b1I tr þ p3b2Is;trÞSpr � ðr1g1

þ d2 þ k1 þ mÞI tr þ y2I ,

dIs;tr

dt
¼ d2I tr � ðr2g2 þ k2 þ mÞI s;tr þ y3I s,

dIr;tr

dt
¼ ðb1;rI r;tr þ b2;rI s;r;trÞSpr � ðg1 þ d1 þ mÞI r;tr

þ k1I tr þ y2Ir,
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dIs;r;tr

dt
¼ d1Ir;tr � ðg2 þ mÞIs;r;tr

þ k2Is;tr þ y3Is;r,

dR

dt
¼ g1ðI þ I r þ Ir;trÞ þ g2ðIs þ Is;r þ I s;r;trÞ þ r1g1I tr

þ r2g2Is;tr � mR.

This model is used as a basis for formulating the stochastic
model.

2.2. Continuous-time Markov chain model

Based on the preceding deterministic model, we develop
a CTMC model, where time is continuous and the class
variables are discrete. Considering time t as a continuous
variable, where t 2 ½0;1Þ, and according to the population
classification in the deterministic model, we define the
random vector

~X ðtÞ ¼ ðSðtÞ;SprðtÞ; IðtÞ; IsðtÞ; IrðtÞ; Is;rðtÞ; I trðtÞ; Is;trðtÞ,

Ir;trðtÞ; Is;r;trðtÞ;RðtÞÞ
T

and D~X ðtÞ ¼ ~X ðtþ DtÞ � ~X ðtÞ. The probability of a transi-
tion is

ProbfD~X ðtÞ ¼ ða; b; c; d; e; f ; g; h; i; j; lÞj~X ðtÞg. (2.4)

We assume that Dt is sufficiently small so that the values of
a; b; c; . . . ; l take on the values �1 or 0. At most one change
occurs during the time interval Dt. There are 36 possible
changes in states, where at least one of the a; b; c; . . . ; l is
nonzero. From the deterministic model, it is straightfor-
ward to write down the infinitesimal transition probabil-
ities. The transition probabilities (2.4) are described
according to the changes in each of the states, DSðtÞ,
DSprðtÞ, DIðtÞ, etc. We assume the change in state is zero
unless otherwise indicated and, for simplicity, the t

dependence in the functions is omitted, e.g., S and I

instead of SðtÞ, IðtÞ. For example, a change in the
susceptible class, DS ¼ a, can be due to a birth, a ¼ 1,
an infection from contact with infected drug-sensitive
individuals, a ¼ �1 and DI ¼ c ¼ 1, an infection from
contact with infected resistant individuals, a ¼ �1 and
DIr ¼ e ¼ 1, chemoprophylaxis, a ¼ �1 and DSpr ¼ b ¼ 1,
or a death, a ¼ �1. The corresponding probabilities
associated with these changes are

ProbfDS ¼ 1j~X g ¼ LDtþ oðDtÞ,

ProbfðDS;DIÞ ¼ ð�1; 1Þj~X g

¼ ðb1I þ b2Is þ p1b1I tr þ p1b2Is;trÞS Dtþ oðDtÞ,

ProbfðDS;DIrÞ ¼ ð�1; 1Þj~X g

¼ ðb1;rI r þ b2;rI s;r þ b1;rI r;tr þ b2;rI s;r;trÞS Dtþ oðDtÞ,

ProbfðDS;DSprÞ ¼ ð�1; 1Þj~X g ¼ y1S Dtþ oðDtÞ,

ProbfDS ¼ �1j~X g ¼ mSDtþ oðDtÞ::
The transition probabilities for the 36 possible changes
in state are defined below:

LDtþ oðDtÞ; a ¼ 1;

ðb1I þ b2Is þ p1b1I tr a ¼ �1; c ¼ 1;

þp1b2Is;trÞSDtþ oðDtÞ;

ðb1;rI r þ b2;rI s;r þ b1;rI r;tr a ¼ �1; e ¼ 1;

þb2;rI s;r;trÞS Dtþ oðDtÞ;

y1S Dtþ oðDtÞ; a ¼ �1; b ¼ 1;

mS Dtþ oðDtÞ; a ¼ �1

ðp2b1I þ p2b2I s þ p3b1I tr b ¼ �1; g ¼ 1;

þp3b2Is;trÞSprDtþ oðDtÞ;

ðb1;rI r þ b2;rI s;rÞSpr Dtþ oðDtÞ; b ¼ �1; e ¼ 1;

ðb1;rI r;tr þ b2;rI s;r;trÞSpr Dtþ oðDtÞ; b ¼ �1; i ¼ 1;

mSpr Dtþ oðDtÞ; b ¼ �1;

g1I Dtþ oðDtÞ; c ¼ �1; l ¼ 1;

d1I Dtþ oðDtÞ; c ¼ �1; d ¼ 1;

y2I Dtþ oðDtÞ; c ¼ �1; g ¼ 1;

mI Dtþ oðDtÞ; c ¼ �1;

g2Is Dtþ oðDtÞ; d ¼ �1; l ¼ 1;

y3Is Dtþ oðDtÞ; d ¼ �1; h ¼ 1;

mIs Dtþ oðDtÞ; d ¼ �1;

g1Ir Dtþ oðDtÞ; e ¼ �1; l ¼ 1;

d1Ir Dtþ oðDtÞ; e ¼ �1; f ¼ 1;

y2Ir Dtþ oðDtÞ; e ¼ �1; i ¼ 1;

mIr Dtþ oðDtÞ; e ¼ �1;

g2Is;r Dtþ oðDtÞ; f ¼ �1; l ¼ 1;

y3Is;r Dtþ oðDtÞ; f ¼ �1; j ¼ 1;

mIs;r Dtþ oðDtÞ; f ¼ �1;

r1g1I tr Dtþ oðDtÞ; g ¼ �1; l ¼ 1;

d2I tr Dtþ oðDtÞ; g ¼ �1; h ¼ 1;

k1I tr Dtþ oðDtÞ; g ¼ �1; i ¼ 1;

mI tr Dtþ oðDtÞ; g ¼ �1;

r2g2I s;tr Dtþ oðDtÞ; h ¼ �1; l ¼ 1;

k2I s;tr Dtþ oðDtÞ; h ¼ �1; j ¼ 1;

mIs;tr Dtþ oðDtÞ; h ¼ �1;

g1Ir;tr Dtþ oðDtÞ; i ¼ �1; l ¼ 1;

d1Ir;tr Dtþ oðDtÞ; i ¼ �1; j ¼ 1;

mIr;tr Dtþ oðDtÞ; i ¼ �1;

g2Is;r;tr Dtþ oðDtÞ; j ¼ �1; l ¼ 1;

mIs;r;tr Dtþ oðDtÞ; j ¼ �1;

mRDtþ oðDtÞ; l ¼ �1:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
These transition probabilities completely define the CTMC
model. Sample paths, mean values, and the final size
distribution of the CTMC model are compared to the
solution of the ODE model in Section 4.



ARTICLE IN PRESS
Y. Xu et al. / Journal of Theoretical Biology 248 (2007) 179–193 183
An Itô stochastic differential equation (SDE) model can
be formulated based on the transition probabilities defined
for the CTMCmodel (Allen, 1999, 2003, 2007; Kirupaharan
and Allen, 2004), e.g.,

d~X ðtÞ ¼ ~f ð~X ðtÞÞdtþDð~X ðtÞÞd ~W ðtÞ, (2.5)

where ~f ð~X ðtÞÞ is the drift vector, Dð~X ðtÞÞ is the diffusion
matrix, and ~W ðtÞ is a vector of independent Wiener
processes. For large population sizes and large number of
infected individuals, the dynamics of the SDE model follow
closely those of the CTMC model. The SDE formulation is
described briefly in Appendix A. We do not apply the SDE
model here because in most of the numerical simulations,
only one initial infected individual is introduced into a
population of size 400. However, we found that the mean
of the SDE model agrees well with the mean of the CTMC
model and the ODE model (o3% difference in number of
symptomatic cases with no treatment) when the initial
number of infected individuals is X10 in a population of
size 400 or X5 in a population of size 800.
3. Basic reproduction number

In the study of infectious diseases, one of the most
interesting questions is whether the disease will invade the
population. The basic reproduction number, generally
denoted R0, is a parameter used to determine whether
the disease will invade. The basic reproduction number is
defined as the number of secondary infections caused by
one infected individual in an entirely susceptible popula-
tion (Hethcote, 2000). It is one of the most important
parameters in epidemiology. If R0o1, then the disease-free
equilibrium (DFE) is locally asymptotically stable and
there is no disease outbreak, but if R041, then the DFE is
unstable and an outbreak occurs.

The basic reproduction number is useful in predicting
outbreaks in stochastic models as well. For example, in the
case of a simple CTMC SIR epidemic model with Ið0Þ
initial infected individuals, the basic reproduction number
provides an estimate for the probability of an outbreak
(Allen, 2003; Bailey, 1975),

1�
1

R0

� �Ið0Þ

. (3.6)

There is no outbreak with probability 1=R0

� �Ið0Þ
. Hence,

the final size distribution of the epidemic may be bimodal,
with one mode at zero when there is no outbreak and the
other mode centered at the average number of cases when
there is an outbreak (Bailey, 1953; Ludwig, 1975).
Eventually, however, the epidemic dies out because I � 0
is an absorbing state.

The basic reproduction number is calculated for the
deterministic model under various treatment strategies.
Although extensive numerical simulations were performed
in Stilianakis et al. (1998), the basic reproduction number
and treatment reproduction numbers were not computed.
The effect of treatment, yi40, on the reduction of R0 is
examined in Section 4.
To compute the basic reproduction number we apply

a method known as the next generation approach
(Diekmann et al., 1990; van den Driessche and Watmough,
2002). In this method it is necessary to compute the DFE.
For the deterministic model, it is straightforward to verify
that there are two disease-free equilibria for this system. If
y1 ¼ 0, i.e., no prophylaxis, then the DFE is S̄ ¼ L=m with
all other states zero, and if y1a0, then the DFE is

S̄ ¼
L

mþ y1
; S̄pr ¼

Ly1
mðmþ y1Þ

(3.7)

and all other states zero. If L ¼ 0 ¼ m as in the original
model of Stilinakis et al. (1998), the DFE depends on the
initial population size. If the initial population size is K,
L ¼ 0 ¼ m, and y1 ¼ 0, then the DFE is S̄ ¼ K with all
other states zero, but if y1a0, the DFE is S̄ ¼ 0, S̄pr ¼ K,
and all other states zero.
In the next generation approach, the system of ODE is

decomposed into two vector components ~F and ~V, with
only the eight infective states included. The element Fi in
~F is the rate of appearance of new infections in infective
state i. For vector ~V, let Vþi be the rate of transfer of
individuals into infective state i by methods other than
transmission and V�i be the rate of transfer of individuals
out of infective state i. Then the element Vi in ~V is defined
as V�i �Vþi (van den Driessche and Watmough, 2002).
Next, the Jacobian matrices for ~F and ~V are calculated
and evaluated at the DFE. Jacobian matrices F and V are
obtained,

F ¼
@Fi

@xj

� �
and V ¼

@Vi

@xj

� �
.

Then R0 is the spectral radius of the matrix FV�1, denoted
as

R0 ¼ rðFV�1Þ.

In the next section, the value of R0 is computed in the
general case when all three treatments are applied.
3.1. General form for R0

The expression for R0 is related to the treatment
parameters yi, i ¼ 1; 2; 3. Suppose yia0, i ¼ 1; 2; 3, and
the DFE for the case La0am is given by (3.7), where, for
simplicitly, we let K1 and K2 denote

S̄ ¼ K1 ¼
L

mþ y1
; S̄pr ¼ K2 ¼

Ly1
mðmþ y1Þ

(3.8)

and K1 þ K2 ¼ K ¼ L=m. If L ¼ 0 ¼ m, then K1 ¼ 0 and
K2 ¼ K .
To simplify the computation, we rearrange the order of

the eight infected states in the ODE system as follows: I, Ir,
I tr, Ir;tr, Is, Is;r, Is;tr, and Is;r;tr. The vectors ~F and ~V
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corresponding to these eight states are

~F ¼

ðb1I þ p1b1Itr þ b2Is þ p1b2Is;trÞS

ðb1;rI r þ b1;rI r;tr þ b2;rI s;r þ b2;rI s;r;trÞS þ ðb1;rI r þ b2;rI s;rÞSpr

ðp2b1I þ p2b2Is þ p3b1Itr þ p3b2I s;trÞSpr

ðb1;rI r;tr þ b2;rI s;r;trÞSpr

0

0

0

0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(3.9)

and

~V ¼

ðg1 þ d1 þ y2 þ mÞI

ðg1 þ d1 þ y2 þ mÞIr

ðr1g1 þ d2 þ k1 þ mÞI tr � y2I

ðg1 þ d1 þ mÞIr;tr � k1I tr � y2I r

ðg2 þ y3 þ mÞIs � d1I

ðg2 þ y3 þ mÞIs;r � d1I r

ðr2g2 þ k2 þ mÞIs;tr � d2I tr � y3Is

ðg2 þ mÞIs;r;tr � d1I r;tr � k2Is;tr � y3I s;r

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

. (3.10)

Jacobian matrices F and V are given in Appendix A.
Because of the zeros in ~F, matrix FV�1 simplifies. The last
four rows are all zeros and the spectral radius of FV�1 can
be computed from a 4� 4 submatrix, M4, defined in
Appendix A. Hence,

R0 ¼ rðFV�1Þ ¼ rðM4Þ.

3.2. No treatment

When there is no treatment, yi ¼ 0 ði ¼ 1; 2; 3Þ in the
deterministic model. In this case, the DFE is S̄ ¼ K with all
other states zero, and the rates of generating new infections
only appear in compartments I and Ir since S̄pr ¼ 0.
Vectors ~F and ~V include the transfer rates from the eight
infective states. In this case, only the first two rows of ~F
are nonzero (see (3.9)) and ~V is given by (3.10). Computing
Jacobian matrices F and V lead to a matrix F with only the
first two rows nonzero and a matrix V with the same form
as in the general formulation given in Appendix A.
Therefore, the spectral radius of FV�1 is determined by
the following 2� 2 submatrix:
M2 ¼

b1K
g1 þ d1 þ m

þ
b2Kd1

ðg1 þ d1 þ mÞðg2 þ mÞ
0

0
b1;rK

g1 þ d1 þ m
þ

b2;rKd1
ðg1 þ d1 þ mÞðg2 þ mÞ

0
BBB@

1
CCCA
so that R0 ¼ rðFV�1Þ ¼ rðM2Þ. Because of the relations
given in (2.2), it follows that

R0 ¼
b1K

g1 þ d1 þ m
þ

b2Kd1
ðg1 þ d1 þ mÞðg2 þ mÞ

. (3.11)
The basic reproduction number is the sum of two terms. The
first term is due to infections from the asymptotic class I and
the second term from infections in the symptomatic class Is.
If there are no births nor deaths, L ¼ 0 ¼ m, then the basic
reproduction number is given by (3.11), where m ¼ 0.

3.3. Treatment given after exposure

Assume treatment is given after exposure, y2a0 and
y1 ¼ 0 ¼ y3. The DFE is S̄ ¼ K with all other states zero.
Since y1 ¼ 0, the spectral radius of FV�1 can be determined
by a 2�2 matrix M2. Denote the reproduction number
with treatment y2 as R

½2�
0 . (In the remaining discussion, we

shall refer to R0, defined in (3.11), as the ‘‘basic
reproduction number’’ and R

½i�
0 as the ‘‘reproduction

number’’ with treatment yi.) Then

R
½2�
0 ¼

K

g1 þ d1 þ y2 þ m
max b1 1þ

p1y2
r1g1 þ d2 þ k1 þ m

� ��

þ
b2

g2 þ m
d1 þ

p1y2d2ðg2 þ mÞ
ðr1g1 þ d2 þ k1 þ mÞðr2g2 þ k2 þ mÞ

� �
,

b1;r 1þ
y2

g1 þ d1 þ m

� �
þ

b2;r
g2 þ m

d1 þ
y2d1ðg2 þ mÞ

ðg1 þ d1 þ mÞðg2 þ mÞ

� �	
. ð3:12Þ

The reproduction number is the sum of four terms
that depend on drug-sensitive infected individuals,
I ; I tr; Is; Is;tr, or on resistant infected individuals
Ir; I r;tr; Is;r; Is;r;tr (whichever sum is larger). If there are
no births or deaths, L ¼ 0 ¼ m, then the reproduction
number is given by (3.12), where m ¼ 0. If y2 ¼ 0, then the
expression (3.12) simplifies to (3.11). Also, if p1 � 0
(treatment reduces transmission rate almost to zero) and
b1;r and b2;r are sufficiently small, then R

½2�
0 pR0. However,

if p1 is not sufficiently small, then it is not clear whether
treatment y2 reduces the basic reproduction number.

3.4. Treatment given after infection

Assume drug treatment is given after infection, y3a0
and y1 ¼ 0 ¼ y2. The DFE is S̄ ¼ K with all other states
zero. In this case, the spectral radius of FV�1 can also be
determined by a 2�2 matrix M2, R
½3�
0 ¼ rðM2Þ, where

R
½3�
0 ¼

K

g1 þ d1 þ m
max b1 þ

b2d1
g2 þ y3 þ m

1þ
p1y3

r2g2 þ k2 þ m

� �
;

�

b1;r þ
b2;rd1

g2 þ y3 þ m
1þ

y3
g2 þ m

� �	
. ð3:13Þ
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The reproduction number is the sum of three terms which
in turn depend on the drug-sensitive cases, I ; I s; Is;tr, or on
the resistant cases, Ir; I s;r; I s;r;tr, whichever sum is larger. If
there are no births or deaths, L ¼ 0 ¼ m, then the
reproduction number is given by (3.13), where m ¼ 0. If
y3 ¼ 0, the expression (3.13) simplifies to (3.11). Also if
p1 � 0 and b1;r and b2;r are sufficiently small, then
R
½3�
0 pR0:

3.5. Prophylaxis

Assume chemoprophylaxis of susceptible individuals,
y1a0 and y2 ¼ 0 ¼ y3. The DFE is given by (3.7), where
we let K1 and K2 be the values of S̄ and S̄pr; respectively, as
in (3.8). Since y1a0, R

½1�
0 ¼ rðM4Þ, where M4 is given in

(A.17). However, in the simpler case where there are no
births and deaths, L ¼ 0 ¼ m, with the DFE S̄ ¼ 0 and
S̄pr ¼ K , the reproduction number simplifies to

R
½1�
0 ¼ K max p3

b1
r1g1 þ d2 þ k1

��

þ
b2d2

ðr1g1 þ d2 þ k1Þðr2g2 þ k2Þ

�
,

b1;r
g1 þ d1

þ
b2;rd1

g2ðg1 þ d1Þ

	
. ð3:14Þ

The reproduction number is the sum of two terms that
depend on drug-sensitive cases, I tr; I s;tr or on resistant
cases, I r;tr; Is;r;tr. For chemoprophylaxis, it is always the

case that R
½1�
0 pR0 because of the relations (2.1)–(2.3).

It is important to note that R
½1�
0 does not depend on the

treatment rate y1. However, the DFE (3.7) does depend on
y1. For y1 � m, the DFE (3.7) is very close to S̄ � 0 and
S̄pr � K . In this case, if prophylaxis is begun in advance of
the epidemic, as a preventive strategy, most individuals will
have been treated (in state Spr). Then R

½1�
0 o1 predicts local

stability of this equilibrium.
3.6. Combined strategies

Assume the treatment strategies given after exposure y2
and after infection y3 are combined (y1 ¼ 0). The DFE in
this case is S̄ ¼ K with all other states zero. Similar to the
previous cases, R

½2;3�
0 can be computed from a 2�2 matrix

M2. Then

R
½2;3�
0 ¼ K max

b1
v11

1þ
p1y2
v33

� �
þ

b2
v11v55

d1 þ
p1ðy3d1v33 þ y2d2v55Þ

v33v77

� �
;

�

b1;r
v11

1þ
y2
v44

� �
þ

b2;rd1
v11v55

1þ
y3v44 þ y2v55

v44v88

� �	
, ð3:15Þ

where the values of vii are the diagonal elements of matrix
V defined in (A.16). The reproduction number is the sum of
four terms which depend on sensitive cases, I ; I tr; Is; Is;tr

or on resistant cases, Ir; Is;r; Ir;tr; Is;r;tr. Combining other
treatment strategies, the values of the reproduction
numbers, R
½1;3�
0 or R

½1;2�
0 , can be computed from a 4� 4

matrix.
The effectiveness of the treatment strategies is difficult to

assess from the various formulas for the reproduction
number because of the large number of parameters.
Treatment after infection or after exposure may even
increase the basic reproduction number R0, given in (3.11),
if some of the parameters related to drug resistance are not
sufficiently small, e.g., pi, bi;r. However, it is interesting to
note that chemoprophylaxis always results in a reduction
of R0. The reproduction numbers will be computed for the
numerical examples studied in the next section.
4. Numerical simulations

For the numerical simulations, basic parameter values
are chosen for the epidemic situation discussed in
Stilianakis et al. (1998), but we use the more general model
with births and deaths. In their study, the parameter values
were chosen to fit an epidemic that occurred in a boarding
school for boys with treatment based on the antiviral drug
amantadine. Two different population sizes are assumed,
K ¼ 400 and 800. In addition, a population size of K ¼ 358
is assumed, as in the cases studied in Stilianakis et al.
(1998). The results of the ODE model are compared to the
CTMC model. We choose m ¼ 1=ð80� 365Þday�1 so that
the average life expectancy is 80 years. If the birth rate
L ¼ 5

365
day�1, then K ¼ L=m ¼ 400. If the birth rate L is

changed to L ¼ 10
365

day�1, then K ¼ 800. The dynamics are
graphed over a 30-day time period; an epidemic occurs
when there is no treatment. Because the values of L and m
are small, the numerical results for the ODE model when
La0am are very close to the results when L ¼ 0 ¼ m.
The initial number of infected individuals is assumed to

be either Isð0Þ ¼ 1 or Isð0Þ ¼ 5; one or five individuals
exhibit symptoms of the disease. In addition, the initial
number of susceptible individuals is Sð0Þ ¼ K � Isð0Þ and
Sprð0Þ ¼ 0. All other initial states are zero. Unless specified
otherwise, treatment is started immediately (at t ¼ 0). In
one example, treatment begins at day seven. The basic
parameter values for the epidemic case are given in Table 1.
4.1. Comparison of the ODE and the CTMC models: no

treatment

First, the CTMC model is compared to the ODE model
when there is no treatment, yi ¼ 0, i ¼ 1; 2; 3. Fig. 2 graphs
a solution of the ODE model and three sample paths of the
CTMC model when the population sizes are K ¼ 400 and
800 and the initial number of symptomatic individuals are
Isð0Þ ¼ 1 and 5, respectively. The graphs show the total
number of sick individuals (those exhibiting symptoms)
versus time. These individuals are easily identifiable during
an epidemic because of their symptoms. In particular,
IsðtÞ þ Is;trðtÞ þ I s;rðtÞ þ Is;r;trðtÞ is graphed for each model
for a period of 30 days. Each of the figures contains plots of
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three sample paths for the stochastic model when K ¼ 400
and Isð0Þ ¼ 1 and when K ¼ 800 and Isð0Þ ¼ 5.

In Fig. 2, an outbreak does not occur for one of the three
sample paths. This is due to the fact that the final size
distribution is bimodal (see Fig. 3). When the final size is
Table 1

Basic parameter values (Stilianakis et al., 1998)

Parameter Basic values (day�1) Parameter Basic values (day�1)

b1 6� 10�4 g1 0:50

b1;r b1=5 ¼ 1:2� 10�4 g2 0:25

b2 6� 10�3 r1 2:0

b2;r b2=5 ¼ 1:2� 10�3 r2 1:33

p1 0:67 k1 0:25� 0:02 ¼ 0:005
p2 0:33 k2 0:25� 0:20 ¼ 0:05
p3 0:10 y1 0:70
d1 0:50 y2 0:70
d2 0:10 y3 0:70
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Fig. 2. Comparison of the ODE model (smooth curve) to the CTMC model,

(R0 ¼ 5:04) (left) or K ¼ 800 and Isð0Þ ¼ 5 (R0 ¼ 10:08) (right). Three sampl
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Fig. 3. Approximate final size distribution ProbfFinal Size ¼ ng for the CTMC

(right) based on 1000 sample paths and no treatment. The bar width in the freq

the final size is multiplied by 2� 103.
zero or very small there is no outbreak but when the
number of cases is relatively large there is an outbreak.
Applying the estimate in (3.6) for the CTMC model, when
R0 ¼ 5:04 and Isð0Þ ¼ 1, the probability of an outbreak is
� 0:8 and the probability of no outbreak is � 0:2. For
R0 ¼ 10:08 and Isð0Þ ¼ 5, the probability of an outbreak is
very close to one. These estimates are in good agreement
with the approximate final size distribution based on 1000
sample paths (Fig. 3). The final size distribution is clearly
bimodal when K ¼ 400 and Isð0Þ ¼ 1 (an outbreak occurs
with probability 0.82 and no outbreak with probability
0.18). The bimodality is not evident when K ¼ 800 and
Isð0Þ ¼ 5 because for all 1000 sample paths there is an
outbreak. Given an outbreak occurs, the average number
of symptomatic cases after 30 days is � 199 when K ¼ 400
and Isð0Þ ¼ 1 and � 397 when K ¼ 800 and Isð0Þ ¼ 5.
These values are in good agreement with the ODE model,
where the total number of symptomatic cases after 30 days
is 198 when K ¼ 400 and Isð0Þ ¼ 1 and is 400 when
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where yi ¼ 0, i ¼ 1; 2; 3, L ¼ 5
365

and where either K ¼ 400 and Isð0Þ ¼ 1

e paths are illustrated.
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model when K ¼ 400 and Isð0Þ ¼ 1 (left) and when K ¼ 800 and Isð0Þ ¼ 5

uency histogram equals 2. Hence, for 1000 sample paths, the probability of
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K ¼ 800 and Isð0Þ ¼ 5 (the initial number of symptomatic
cases is not included in these estimates).

Due to the mass action assumption, when y1 ¼ 0, R0 is
proportional to K. For the examples in Figs. 2 and 3, when
K ¼ 400, R0 ¼ 5:04 and when K ¼ 800, R0 ¼ 10:4. These
values are larger than estimates of R0 for influenza
pandemics which range between 1 and 2 (Gani et al., 2005).
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Fig. 4. Approximate final size distribution for the CTMC model based on

1000 sample paths when K ¼ 358 and Isð0Þ ¼ 1. Combined treatment of

symptomatic individuals and prophylaxis begins at day 7 (y1 ¼ 0:7 ¼ y3;
y2 ¼ 0). The bar width in the frequency histogram equals 2. Hence, for

1000 sample paths, the probability of the final size is multiplied by 2� 103.
4.2. Comparison of the ODE and the CTMC models:

treatment begins at day 7

In Stilianakis et al. (1998) it was assumed that the
population size included 358 susceptible individuals with
220 people immune. All of the treatments were given at day
7 and Isð0Þ ¼ 1. Some examples in Stilianakis et al. (1998)
are simulated using the ODE and the CTMC models.
However, in our simulations, we assume L ¼ 4:475

365
day�1

and m ¼ 1
ð80�365Þ

day�1. For a 30-day period, there are few
births and deaths. Thus, the simulations in the ODE model
for La0am are very close to those when L ¼ 0 ¼ m.
Treatment begins at day 7, 7 days after the initial case of
one symptomatic individual.

In the examples, we compare no treatment with
treatment of symptomatic individuals (y3 ¼ 0:7,
y1 ¼ 0 ¼ y2) and with prophylaxis and treatment of
symptomatic individuals (y3 ¼ 0:7 ¼ y3, y2 ¼ 0) for the
ODE and the CTMC models. At a treatment rate of
y3 ¼ 0:7, approximately half of the population is treated in
one day. Table 2 gives the total number of symptomatic
individuals (S cases), the total number of symptomatic and
resistant individuals (S&R cases), the total number of
infected individuals (T cases), and the total number of
resistant individuals (TR cases) after 30 days. In the
CTMC model, approximately 22–23% of the sample paths
(out of 1000 sample paths) do not generate an outbreak.
Therefore, given there is an outbreak in the CTMC model,
the mean number of cases are recorded in Table 2. Notice
that with treatment of symptomatic individuals, the
number of cases is twice that of combined treatment of
symptomatic individuals and prophylaxis. In addition, the
number of symptomatic and resistant cases is much greater
if there is only treatment of symptomatic individuals rather
than combined treatment.
Table 2

Total number of cases, total number of resistant cases, total number of sy

individuals when treatment begins at day 7, K ¼ 358 and Isð0Þ ¼ 1

Treatment day 7 ODE

S cases (T cases) S&R cases (TR cases)

yi ¼ 0; i ¼ 1; 2; 3 176 (353) 0 (0)

y3 ¼ 0:7, y1 ¼ 0 ¼ y2 167 (333) 16.6 (18.5)

y1 ¼ 0:7 ¼ y3, y2 ¼ 0 81.2 (189) 10.9 (15.5)

S, symptomatic; S&R, symptomatic and resistant; T, total cases; TR, total res
The reproduction numbers for these two cases are R
½3�
0 ¼

2:73 and R
½1;3�
0 ¼ 0:90. However, these values only apply if

treatment is given immediately (at t ¼ 0) and when initial
values are close to the DFE given by (3.7). A better
descriptor of the dynamics in these cases is R0 ¼ 4:51
(when K ¼ 358); delaying treatment causes an outbreak
because R041. Applying the estimate (3.6) to compute the
probability of an outbreak, PO¼ 0:78, which agrees with
the values given in Table 2.
The final size distributions are bimodal when there is no

treatment or when there is treatment of only symptomatic
individuals (similar to the graph on the left in Fig. 3).
However, the bimodality is not as evident when there is
combined treatment (Fig. 4). Chemoprophylaxis does not
change the probability of an outbreak (PO) but does reduce
the number of cases and results in a large variation in the
number of cases. Graphs of the solution to the ODE model
and the mean of the CTMC model (� one standard
deviation) in Fig. 5 illustrate the dynamics of the two models.
In these graphs, the mean number of symptomatic individuals
for the CTMC is less than the ODE solution because the
mean includes those few cases where there is no outbreak.
mptomatic individuals and total number of symptomatic and resistant

CTMC

Mean S cases (T cases) Mean S&R cases (TR cases) PO

176 (352) 0 (0) 0.78

166 (332) 16.3 (18.2) 0.77

80.8 (183) 10.0 (14.0) 0.78

istant cases; PO, probability of an outbreak.
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4.3. Comparison of the ODE and the CTMC models: single

and combined treatment strategies

Next, we use the ODE and the CTMC models to
compare treatment with one drug versus combined
treatment strategies (1000 sample paths are generated in
the CTMC model). We assume the population size is K ¼

400 with initial conditions Isð0Þ ¼ 1 and Sð0Þ ¼ 399. There
is no outbreak or a very minor outbreak with prophylaxis,
y1 ¼ 0:7 and y2 ¼ 0 ¼ y3 (R

½1�
0 ¼ 1:01), but an outbreak

occurs with treatment after exposure, y2 ¼ 0:7 and y1 ¼
0 ¼ y3 (R

½2�
0 ¼ 3:18, probability of an outbreak¼PO¼ 0:71,

see Table 3). With prophylaxis and treatment after
exposure, again there is no outbreak, y1 ¼ 0:35 ¼ y2 and
y3 ¼ 0 (R

½1;2�
0 ¼ 1:01). However, an outbreak occurs, if

treatment is given after symptoms appear, y3 ¼ 0:7 and
y1 ¼ 0 ¼ y2 (R

½3�
0 ¼ 3:05, probability of an out-

break¼PO¼ 0:76). Note that the treatment reproduction
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Fig. 5. Solution to the ODE and mean of the CTMC model (� one

standard deviation). Number of symptomatic individuals is graphed, K ¼

358 and Isð0Þ ¼ 1. Treatment begins at day 7 with treatment of

symptomatic individuals and prophylaxis (y1 ¼ 0:7 ¼ y3; y2 ¼ 0).

Table 3

Total number of cases, total number of resistance cases, total number of s

individuals when treatment begins at day 0, K ¼ 400 and Isð0Þ ¼ 1

Treatment day 0 ODE

S cases (T cases) S&R cases (TR cases)

yi ¼ 0, i ¼ 1; 2; 3 198 (396) 0 (0)

y1 ¼ 0:7, y2 ¼ 0 ¼ y3 3.5 (14.8) 0.6 (1.2)

y2 ¼ 0:7, y1 ¼ 0 ¼ y3 126 (379) 2.7 (3.5)

y3 ¼ 0:7, y1 ¼ 0 ¼ y2 189 (378) 21.0 (24.1)

y1 ¼ 0:35 ¼ y2, y3 ¼ 0 6.2 (25.6) 1.0 (1.8)

There is no outbreak with chemoprophylaxis.

S, symptomatic; S&R, symptomatic and resistant; T, total cases; TR, total res
numbers applied to formula (3.6) may not in general
provide a good estimate for the probability of an outbreak.
When treatment is applied early, our model is more
complex than a simple SIR epidemic model for which
formula (3.6) was derived. In the two cases with
prophylaxis treatment, there is no outbreak and the final
size distribution has the shape of an exponential distribu-
tion, PO� 0; it is not bimodal (see Fig. 6). Thus, as
expected, chemoprophylaxis or chemoprophylaxis com-
bined with treatment prior to symptoms is a better strategy
than treatment after symptoms appear.
The CTMC model predicts the same number of

symptomatic individuals as in the ODE model given there
is an outbreak. But the CTMC model often predicts a
positive probability of no outbreak. For the strategies
treatment after exposure, y2 ¼ 0:7, y1 ¼ 0 ¼ y3, and treat-
ment after symptoms appear, y3 ¼ 0:7, y2 ¼ 0 ¼ y1, the
probability of no outbreak is 0:29 and 0:24, respectively.
ymptomatic individuals and total number of symptomatic and resistant

CTMC

Mean S cases (T cases) Mean S&R cases (TR cases) PO

199 (396) 0 (0) 0.82

3.5 (14.3) 0.6 (1.1) 0

125 (377) 2.7 (3.6) 0.71

190 (377) 21.4 (24.7) 0.76

5.8 (24.3) 0.7 (1.3) 0

istant cases; PO, probability of an outbreak.
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Fig. 6. Approximate final size distribution for the CTMC model based on

1000 sample paths when K ¼ 400 and Isð0Þ ¼ 1. Chemoprophylaxis begins

at day 0 (y1 ¼ 0:7, y2 ¼ 0 ¼ y3). The bar width in the frequency histogram

equals 1. Hence, for 1000 sample paths, the probability of the final size is

multiplied by 103.
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It is interesting to note that the reproduction number
R
½1�
0 ¼ 1:01 calculated for y1 ¼ 0:7 and y2 ¼ 0 ¼ y3 in

Table 3 is based on the resistant cases, e.g., see formula
(3.14). A few resistant cases develop but an outbreak is
averted. The treatment reproduction numbers R

½2�
0 ¼ 3:18

and R
½3�
0 ¼ 3:15 for the examples y2 ¼ 0:7, y1 ¼ 0 ¼ y3 and

y3 ¼ 0:7, y1 ¼ 0 ¼ y2 in Table 3 (calculated formulas (3.12)
and (3.13)) depend on the sensitive cases.

It should be noted that the reproduction number for
chemoprophylaxis assumes the disease-free equilibrium is
given by (3.7). Thus, the reproduction number is useful in
prediction of an outbreak only if the population size is
initially close to the disease-free equilibrium. That is,
individuals need to be successfully prophylaxed prior to
introduction of any infective individual for the reproduc-
tion number to be applied. For example, for the parameter
values in the previous simulations with K ¼ 400 and with
y1 as low as y1 ¼ 0:1, the disease-free equilibrium in (3.7) is
S̄pr ¼ 399:86 and S̄ ¼ 0:14.

In the last example, we compare the dynamics of
chemoprophylaxis given before or after introduction of
infectives and the level of treatment. If chemoprophylaxis
is given at levels of y1 ¼ 0:1 or y1 ¼ 0:7 for a sufficiently
long period of time, then the class Spr builds up to a level
close to K (¼400) in both cases. If, after chemoprophylaxis,
an infective is introduced, there is no outbreak (or a very
minor outbreak) because the reproduction number is very
close to one in both cases. If, however, an infective is
introduced at the same time chemoprophylaxis is begun
(Sð0Þ ¼ 399 and Sprð0Þ ¼ 0, and Isð0Þ ¼ 1), the level of
treatment y1 has a big effect on the number of cases that
occur. In this case R

½1�
0 is a good predictor of the dynamics

only at high treatment levels (e.g., y1 ¼ 0:7). Graphs of the
susceptible individuals in Fig. 7 for the ODE model
illustrate that with a treatment level of y1 ¼ 0:7, the DFE
is reached very quickly; Spr is close to 400 after a short
period of time. But with low levels of treatment y1 ¼ 0:1,
Spr approaches a value less than 200 because individuals
are getting infected faster than being treated. For the ODE
model, when y1 ¼ 0:1 the total number of symptomatic
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Fig. 7. Graphs of the susceptible individuals, SðtÞ (solid curve) and SprðtÞ (das

and y1 ¼ 0:1, y2 ¼ 0 ¼ y3 (right); Sð0Þ ¼ 399 and Sprð0Þ ¼ 0.
cases after 30 days is 76 with 2.3 symptomatic and resistant
cases (232 total cases and 3.6 total resistant cases), whereas
with y1 ¼ 0:7, the total number of symptomatic cases is 3.5
with 0.6 symptomatic and resistant cases (13.8 total cases
and 1.2 total resistant cases). These estimates agree with the
CTMC model given that an outbreak occurs. The final size
distribution for the case y1 ¼ 0:7 has a shape similar to that
given in Fig. 4.
5. Summary

We formulated a CTMC model for an influenza
epidemic with drug resistance and computed reproduction
numbers for the ODE model under different treatment
strategies. We also compared the number of cases predicted
by the ODE model to the CTMC model and studied the
effects of different treatment strategies through numerical
simulations.
Treatment, especially with amantadine or rimantadine,

can lead to the shedding of drug resistant virus. Formulas
(3.11)–(3.15) for the reproduction numbers clearly show
the contributions from the resistant cases and the sensitive
cases. Under particular treatment strategies it is possible
that the resistant cases rather than the sensitive cases will
determine the magnitude of the reproduction number.
Resistant cases that arise due to treatment may cause a
minor outbreak in an epidemic situation or result in disease
persistence in a pandemic situation.
Based on the numerical examples, the basic reproduction

number R0 decreased with all of three of the treatments
considered: chemoprophylaxis, treatment of exposed in-
dividuals before symptoms appear, and treatment of
symptomatic individuals. In all cases, chemoprophylaxis
was the most effective treatment strategy. This was also
shown by Stilianakis et al. (1998). In addition, we have
shown that chemoprophylaxis will always reduce the basic
reproduction number. Combining treatment strategies, the
same or greater reduction in cases can be achieved as with a
single strategy but the combined treatment rates can be
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hed curve), for the ODE model with K ¼ 400; y1 ¼ 0:7, y2 ¼ 0 ¼ y3 (left)
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lower than a single treatment rate (compare y1 ¼ 0:7, y2 ¼
0 ¼ y3 with y1 ¼ 0:35 ¼ y2, y3 ¼ 0 in Table 3).

Caution is needed when the reproduction numbers
calculated for various treatment strategies are used to
predict an outbreak. With chemoprophylaxis, calculation
of the reproduction number assumes that the population
has already been treated at a level y1 so that initial number
of susceptible individuals is reduced and is close to the
disease-free equilibrium (DFE) (3.7). If this is not the case,
for example, if chemoprophylaxis is started at the same
time symptomatic individuals are introduced into the
population, then a high level of chemoprophylaxis is
needed to reach the DFE rapidly to prevent further
infection.

In our numerical examples, drug resistance contributed
to the overall number of cases. But in the epidemic
situation considered here, they represented a small
proportion of the cases. The small number of resistant
cases is due to the assumed lower transmission rates for
resistant cases than sensitive cases. However, even though
the number of resistant cases is small, they may still impact
the basic reproduction number and lead to minor out-
breaks. They also represent a danger in that they might set
off a second drug resistant wave of the epidemic
(Stilianakis et al., 1998).

We have shown for small population sizes and for small
initial number of infected individuals, variability in the
epidemic process may result in no outbreak (probability
1�PO). Therefore, treatment applied to a small population
may be more effective than predicted by the ODE model.
In addition, the final size distribution for the CTMC model
shows that there may be a large variability in number of
cases (Fig. 4).

In all cases, chemoprophylaxis was the most effective
strategy. This work thus supports the conclusions of the
recent large scale simulations of influenza A outbreaks that
suggest that prophylaxis, targeted to regions where
influenza infections are occurring, should be the backbone
of any strategy to contain influenza (Ferguson et al., 2005,
2006; Germann et al., 2006; Longini et al., 2005). While the
parameters used in our simulations apply to amantadine
treatment they can be modified to the case of treatment
with neuraminidase inhibitors as recently shown by Regoes
and Bonhoeffer (2006).

Our models assume a single well-mixed population. They
need to be generalized to more realistic situations that
contain age and spatial structure and which relax the well-
mixed assumption for contacts between individuals. These
more general models will be especially important in
pandemic planning for an H5N1 outbreak.
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Appendix A

A.1. SDE model

We assume the changes DSðtÞ, DSprðtÞ, etc. (�1 or 0) are
small relative to the total population size. To compute the
drift vector ~f ð~X ðtÞÞ in (2.5), we apply the transition
probabilities for the CTMC model and compute the
expectations. The expectation of DSðtÞ is

EðDSðtÞÞ ¼ ½L� ðb1I þ b2I s þ b2;rI s;r þ p1b1I tr þ p1b2Is;tr

þ b1;rI r;tr þ b2;rI s;r;trÞS � ðy1 þ mÞS�Dtþ oðDtÞ

¼ f 1ð
~X ðtÞÞDtþ oðDtÞ,

where the right side equals the values of the random
variables at time t. In particular,

EðD~X ðtÞÞ ¼ E

DSðtÞ

DSprðtÞ

..

.

DRðtÞ

0
BBBBBB@

1
CCCCCCA
¼

f 1ð
~X ðtÞÞDtþ oðDtÞ

f 2ð
~X ðtÞÞDtþ oðDtÞ

..

.

f 11ð
~X ðtÞÞDtþ oðDtÞ

0
BBBBBBB@

1
CCCCCCCA

¼ ~f ð~X ðtÞÞDtþ oðDtÞ,

where the drift vector ~f ð~X ðtÞÞ has the same form as the
right side of the ODE model.
To compute the diffusion matrix Dð~X ðtÞÞ in (2.5), we

find the covariance matrix Sð~X ðtÞÞ ¼ EðD~X ½D~X �TÞ�
EðD~X Þ½EðD~X Þ�T ¼ EðD~X ðD~X ÞTÞ þ oðDtÞ. Then Sð~X ðtÞÞ ¼
Dð~X ðtÞÞDTð~X ðtÞÞDtþ oðDtÞ. Matrix D~X ðD~X ÞT is an 11�11
symmetric positive definite matrix of the form

ðDSÞ2 DSDSpr DSDI 	 	 	 DS DR

DS DSpr ðDSprÞ
2 DSpr DI 	 	 	 DSpr DR

..

. ..
. ..

.
	 	 	 ..

.

DS DR DRDSpr DRDI 	 	 	 ðDRÞ2

0
BBBBB@

1
CCCCCA
.

Applying the 36 transition probabilities defined for the
CTMC model, the nonzero entries in EðD~X ðD~X ÞTÞ are
given as follows:

EððDSÞ2Þ ¼ ½Lþ ðb1I þ b2Is þ b1;rI r þ b2;rI s;r þ p1b1I tr

þ p1b2Is;tr þ b1;rI r;tr þ b2;rI s;r;trÞS

þ ðy1 þ mÞS�Dtþ oðDtÞ,

EðDS DSprÞ ¼ � y1S Dtþ oðDtÞ,

EðDS DIÞ ¼ � ðb1I þ b2Is þ p1b1I tr þ p1b2Is;trÞSDtþ oðDtÞ,

EðDSDIrÞ ¼ � ðb1;rI r þ b2;rI s;r þ b1;rI r;tr þ b2;rI s;r;trÞS Dtþ oðDtÞ,
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EððDSprÞ
2
Þ ¼ ½ðp2b1I þ p2b2Is þ b1;rI r þ b2;rI s;r þ p3b1I tr

þ p3b2Is;tr þ b1;rI r;tr þ b2;rI s;r;tr þ mÞSpr þ y1S�

�Dtþ oðDtÞ,

EðDSpr DIrÞ ¼ � ðb1;rI r þ b2;rI s;rÞSpr Dtþ oðDtÞ,

EðDSpr DItrÞ ¼ � ðp2b1I þ p2b2Is þ p3b1Itr þ p3b2Is;trÞSpr Dt

þ oðDtÞ,

EðDSpr DIr;trÞ ¼ � ðb1;rI r;tr þ b2;rI s;r;trÞSpr Dtþ oðDtÞ,

EððDIÞ2Þ ¼ ½ðb1I þ b2Is þ p1b1Itr þ p1b2Is;trÞS

þ ðg1 þ d1 þ y2 þ mÞI �Dtþ oðDtÞ,

EðDI DIsÞ ¼ � d1I Dtþ oðDtÞ,

EðDI DItrÞ ¼ � y2I Dtþ oðDtÞ,

EðDI DRÞ ¼ � g1I Dtþ oðDtÞ,

EððDIsÞ
2
Þ ¼ ½d1I þ ðg2 þ y3 þ mÞIs�Dtþ oðDtÞ,

EðDIs DIs;trÞ ¼ � y3Is Dtþ oðDtÞ,

EðDIs DRÞ ¼ � g2Is Dtþ oðDtÞ,

EððDIrÞ
2
Þ ¼ ½ðb1;rI r þ b2;rI s;r þ b1;rI r;tr þ b2;rI s;r;trÞS

þ ðb1;rI r þ b2;rI s;rÞSpr þ ðg1 þ d1 þ y2 þ mÞIr�

�Dtþ oðDtÞ,

EðDIr DIs;rÞ ¼ � d1Ir Dtþ oðDtÞ,

EðDIr DIr;trÞ ¼ � y2Ir Dtþ oðDtÞ,

EðDIr DRÞ ¼ � g1Ir Dtþ oðDtÞ,

EððDIs;rÞ
2
Þ ¼ ½d1Ir þ ðg2 þ y3 þ mÞIs;r�Dtþ oðDtÞ,

EðDIs;r DIs;r;trÞ ¼ � y3Is;r Dtþ oðDtÞ,

EðDIs;r DRÞ ¼ � g2Is;r Dtþ oðDtÞ,

EððDItrÞ
2
Þ ¼ ½ðp2b1I þ p2b2Is þ p3b1I tr þ p3b2Is;trÞSpr

þ ðr1g1 þ d2 þ k1 þ mÞI tr þ y2I �Dtþ oðDtÞ,

EðDI tr DIs;trÞ ¼ � d2Itr Dtþ oðDtÞ,

EðDI tr DIr;trÞ ¼ � k1Itr Dtþ oðDtÞ,

EðDI tr DRÞ ¼ � r1g1Itr Dtþ oðDtÞ,

EððDIs;trÞ
2
Þ ¼ ½y3Is þ d2I tr þ ðr2g2 þ k2 þ mÞIs;tr�Dtþ oðDtÞ,

EðDIs;tr DIs;r;trÞ ¼ � k2Is;tr Dtþ oðDtÞ,

EðDIs;tr DRÞ ¼ � r2g2Is;tr Dtþ oðDtÞ,

EððDIr;trÞ
2
Þ ¼ ½ðb1;rI r;tr þ b2;rI s;r;trÞSpr þ y2Ir þ k1I tr

þ ðg1 þ d1 þ mÞIr;tr�Dtþ oðDtÞ,

EðDIr;tr DIs;r;trÞ ¼ � d1Ir;tr Dtþ oðDtÞ,
F ¼

b1K1 0 p1

0 b1;rðK1 þ K2Þ

p2b1K2 0 p3

0 0

0 0

0 0

0 0

0 0

0
BBBBBBBBBBBBB@
EðDIr;tr DRÞ ¼ � g1Ir;tr Dtþ oðDtÞ,

EððDIs;r;trÞ
2
Þ ¼ ½y3Is;r þ k2Is;tr þ d1Ir;tr þ ðg2 þ mÞIs;r;tr�Dtþ oðDtÞ,

EðDIs;r;tr DRÞ ¼ � g2Is;r;tr Dtþ oðDtÞ,

EððDRÞ2Þ ¼ ½g1ðI þ Ir þ Ir;trÞ þ g2ðIs þ Is;r þ Is;r;trÞ þ r1g1I tr

þ r2g2Is;tr þ mR�Dtþ oðDtÞ.

The diffusion matrix D can be defined so that it has
dimension 11� 36. Entries in the matrix D consist
of the square root of the births, the deaths, and the
transitions. The nonzero entries in the first three rows
and first eight columns of D are defined explicitly as
follows:

Dð~X ðtÞÞ ¼

ffiffiffiffi
L
p

�
ffiffiffiffiffiffi
mS
p

d1;3 d1;4 �
ffiffiffiffiffiffiffiffi
y1S
p

0 0 0 	 	 	

0 0 0 0
ffiffiffiffiffiffiffiffi
y1S
p

d2;6 d2;7 d2;8 	 	 	

0 0 �d1;3 0 0 0 0 0 	 	 	

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.
	 	 	

0
BBBBB@

1
CCCCCA
,

where

d1;3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1I þ b2Is þ p1b1I tr þ p1b2Is;trÞS

p
,

d1;4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1;rI r þ b2;rI s;r þ b1;rI r;tr þ b2;rI s;r;trÞS

q
,

d2;6 ¼ �
ffiffiffiffiffiffiffiffiffi
mSpr

p
,

d2;7 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1;rI r þ b2;rI s;rÞSpr

q
,

d2;8 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1;rI r;tr þ b2;rI s;r;trÞSpr

q
.

The dependence on time, e.g., S � SðtÞ, is omitted
for simplicity. Vector ~W ðtÞ in (2.5) equals ðW 1ðtÞ;
W 2ðtÞ; . . . ;W 36ðtÞÞ

T, a vector of 36 independent Wiener
processes. Other SDE formulations and more details
may be found in the references (Allen, 2007;
Xu, 2006).
A.2. Basic reproduction number

To compute the basic reproduction number for the
ODE system, where yia0, i ¼ 1; 2; 3, the Jacobian
matrices F and V are computed from the vectors ~F and
~V, defined in (3.9) and (3.10), respectively. Computing
F and V and evaluating at the DFE, S̄ ¼ K1; S̄pr ¼ K2,
lead to
b1K1 0 b2K1 0 p1b2K1 0

0 b1;rK1 0 b2;rðK1 þ K2Þ 0 b2;rK1

b1K2 0 p2b2K2 0 p3b2K2 0

0 b1;rK2 0 0 0 b2;rK2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCCCA
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and

V ¼

v11 0 0 0 0 0 0 0

0 v11 0 0 0 0 0 0

�y2 0 v33 0 0 0 0 0

0 �y2 �k1 v44 0 0 0 0

�d1 0 0 0 v55 0 0 0

0 �d1 0 0 0 v55 0 0

0 0 �d2 0 �y3 0 v77 0

0 0 0 �d1 0 �y3 �k2 v88

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

,

(A.16)

where

v11 ¼ g1 þ d1 þ y2 þ m,

v33 ¼ r1g1 þ d2 þ k1 þ m,

v44 ¼ g1 þ d1 þ m,

v55 ¼ g2 þ y3 þ m,

v77 ¼ r2g2 þ k2 þ m,

v88 ¼ g2 þ m.

We then compute FV�1. Since in FV�1, the last four rows
are all zeros, the spectral radius is determined by the
following 4�4 submatrix of FV�1,

M4 ¼

m11 0 m13 0

m21 m22 m23 m24

m31 0 m33 0

m41 m42 m43 m44

0
BBB@

1
CCCA, (A.17)

where

m11 ¼
b1K1

v11
þ

b2K1d1
v11v55

þ
p1b1K1y2

v11v33

þ
p1b2K1ðy3d1v33 þ d2y2v55Þ

v11v33v55v77
,

m13 ¼
p1b1K1

v33
þ

p1b2K1d2
v33v77

,

m21 ¼
b1;rK1k1y2
v11v33v44

þ
b2;rK1ðk2y3d1v33v44 þ k2d2y2v44v55 þ d1k1y2v55v77Þ

v11v33v44v55v77v88
,

m22 ¼
b1;rðK1 þ K2Þ

v11
þ

b1;rK1y2
v11v44

þ
b2;rðK1 þ K2Þd1

v11v55

þ
b2;rK1d1ðy3v44 þ y2v55Þ

v11v44v55v88
,

m23 ¼
b1;rK1k1

v33v44
þ

b2;rK1ðk2d2v44 þ d1k1v77Þ

v33v44v77v88
,

m24 ¼
b1;rK1

v44
þ

b2;rK1d1
v44v88

,

m31 ¼
p2b1K2

v11
þ

p3b1K2y2
v11v33

þ
p2b2K2d1

v11v55

þ
p3b2K2ðy3d1v33 þ y2d2v55Þ

v11v33v55v77
,

m33 ¼
p3b1K2

v33
þ

p3b2K2d2
v33v77

,

m41 ¼
b1;rK2k1y2
v11v33v44

þ
b2;rK2ðk2y3d1v33v44þ k2d2y2v44v55 þ d1k1y2v55v77Þ

v11v33v44v55v77v88
,

m42 ¼
b1;rK2y2

v11v44
þ

b2;rK2d1ðy3v44 þ y2v55Þ
v11v44v55v88

,

m43 ¼
b1;rK2k1

v33v44
þ

b2;rK2ðk2d2v44 þ d1k1v77Þ

v33v44v77v88
,

m44 ¼
b1;rK2

v44
þ

b2;rK2d1
v44v88

and vii is a diagonal element in matrix V. Then
R0 ¼ rðFV�1Þ ¼ rðM4Þ.
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Allen, E., 2007. Modeling with Itô Stochastic Differential Equations.

Springer, Dordrecht, The Netherlands.

Allen, E.J., 1999. Stochastic differential equations and persistence time for

two interacting populations. Dyn. Cont. Discrete and Impulsive Syst.

5, 271–281.

Allen, L.J.S., 2003. An Introduction to Stochastic Processes with

Applications to Biology. Prentice-Hall, Upper Saddle River, NJ.

Austin, D.J., Anderson, R.M., 1999. Studies of antibiotic resistance within

the patient, hospitals and the community using simple mathematical

models. Philos. Trans. R. Soc. Lond. B 354, 721–738.

Bailey, N.T.J., 1953. The total size of a general stochastic epidemic.

Biometrika 40, 177–185.

Bailey, N.T.J., 1975. The Mathematical Theory of Infectious Diseaes and

Its Applications. Charles Griffin, London.

Blower, S., Chou, T., 2004. Modeling the emergence of the ‘hot zones’:

tuberculosis and the amplification dynamics of drug resistance. Nat.

Med. 10, 1111–1116.

Blower, S., Gerberding, J.L., 1998. Understanding, predicting and

controlling the emergence of drug-resistant tuberculosis: a theoretical

framework. J. Mol. Med. 76, 624–636.

Blower, S., Volberding, P., 2002. What can modeling tell us about the

threat of antiviral drug resistance? Curr. Opin. Inf. Dis. 15, 609–614.

Blower, S., Porco, T.C., Darby, G., 1998. Predicting and preventing

the emergence of antiviral drug resistance in HSV-2. Nat. Med. 4,

673–678.

Blower, S., Bodine, E., Kahn, J., McFarland, W., 2005. The antiretroviral

rollout and drug-resistant HIV in Africa: insights from empirical data

and theoretical models. AIDS 19, 1–14.

Bright, R.A., Medina, M., Xu, X., Perez-Oronoz, G., Wallis, T.R., Davis,

X.M., Povinelli, L., Cox, N.J., Klimov, A.I., 2005. Incidence of

adamantane resistance among influenza A (H3N2) viruses isolated

worldwide from 1994 to 2005: a cause for concern. Lancet 366,

1175–1181.

Bright, R.A., Shay, D.K., Shu, B., Cox, N.J., Klimov, A.I., 2006.

Adamantane resistance among influenza A viruses isolated early

during the 2005–2006 influenza season in the United States. J. Am.

Med. Assoc. 295, 891–894.

CDC, 2005. Prevention and control of influenza. Recommendations of the

Advisory Committee on Immunization Practices (ACIP). MMWR 54

(RR-8), 1–39.

CDC, 2006. High levels of adamantane resistance among influenza A

(H3N2) viruses and interim guidelines for use of antiviral agents—

United States, 2005–06 influenza season. MMWR 55, 44–46.

de Jong, M.D., Thanh, T.T., Khanh, T.H., Hien, V.M., Smith, G.J.D.,

Chau, N.V., Cam, B.V., Qui, P.T., Ha, D.Q., Guan, Y., Malik Peiris,

J.S., Hien, T.T., Farrar, J., 2005. Oseltamivir resistance during

treatment of influenza A (H5N1) infection. New Engl. J. Med. 353,

2667–2672.



ARTICLE IN PRESS
Y. Xu et al. / Journal of Theoretical Biology 248 (2007) 179–193 193
Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J., 1990. On the definition

and the computation of the basic reproduction ratio R0 in models for

infectious diseases in heterogeneous populations. J. Math. Biol. 28,

365–382.

Ferguson, N.M., Mallett, S., Jackson, H., Roberts, N., Ward, P., 2003. A

population-dynamic model for evaluating the potential spread of drug-

resistant influenza virus infections during community-based use of

antivirals. J. Antimicrob. Chemo. 51, 977–990.

Ferguson, N.M., Cummings, D.A.T., Cauchemez, S., Fraser, C., Riley, S.,

Meeyai, A., Iamsirithaworn, S., Burke, D.S., 2005. Strategies for

containing an emerging influenza pandemic in Southeast Asia. Nature

437, 209–214.

Ferguson, N.M., Cummings, D.A.T., Fraser, C., Cajka, J.C., Cooley,

P.C., 2006. Strategies for mitigating an influenza pandemic. Nature

442, 448–452.

Gani, R., Hughes, H., Fleming, D., Griffin, T., Medlock, J., Leach, S.,

2005. Potential impact of antiviral drug use during influenza pandemic.

Emerg. Inf. Dis. 11, 1355–1362.

Germann, T.C., Kadau, K., Longini Jr., I.M., Macken, C.A., 2006.

Mitigation strategies for pandemic influenza in the United States. Proc.

Natl Acad. Sci. USA 103, 5935–5940.

Harper, S.A., Fukuda, K., Uyeki, T.M., Cox, N.J., Bridges, C.B., 2005.

Prevention and control of influenza. MMWR Recomm. Rep. 54

(RR08), 1–40.

Hayden, F.G., 2001. Perspectives on antiviral use during pandemic

influenza. Philos. Trans. R. Soc. Lond. B 356, 1877–1884.

Hayden, F.G., 2006. Antiviral resistance in influenza viruses—implica-

tions for management and pandemic response. New Engl. J. Med. 354,

785–788.

Hethcote, H.W., 2000. The mathematics of infectious disease. SIAM Rev.

42, 599–653.
Kirupaharan, N., Allen, L.J.S., 2004. Coexistence of multiple pathogen

strains in stochastic epidemic models with density-dependent mortal-

ity. Bull. Math. Biol. 66, 841–864.

Kiso, M., Mitamura, K., Sakai Tagawa, Y., Shiraishi, K., Kawakami, C.,

Kimura, K., Hayden, F.G., Sugaya, N., Kawaoka, Y., 2004. Resistant

influenza A viruses in children treated with oseltamivir: descriptive

study. Lancet 364, 759–765.

Levin, B.R., Lipsitch, M., Bonhoeffer, S., 1999. Population biology, evolution,

and infectious disease: convergence and synthesis. Science 283, 806–809.

Levin, S.A., Dushoff, J., Plotkin, J.B., 2004. Evolution and persistence of

influenza A and other diseases. Math. Biosci. 188, 17–28.

Longini Jr., I.M., Nizam, A., Shufu, X., Ungchusak, K., Hanshaowor-

akul, W., Cummings, D.A.T., Halloran, M.E., 2005. Containing

pandemic influenza at the source. Science 309, 1083–1087.

Ludwig, D., 1975. Final size distribution for epidemics. Math. Biosci. 23,

33–46.

Moscona, A., 2005. Oseltamivir resistance—disabling our influenza

defenses. New Engl. J. Med. 353, 2633–2636.

Regoes, R.R., Bonhoeffer, S., 2006. Emergence of drug-resistant influenza

virus: population dynamical considerations. Science 312, 389–391.

Sánchez, M.S., Grant, R.M., Porco, T.C., Gross, K.L., Getz, W.M., 2005.

A decrease in drug resistance levels of the HIV epidemic can be bad

news. Bull. Math. Biol. 67, 761–782.

Stilianakis, N.I., Perelson, A.S., Hayden, F.G., 1998. Emergence of drug

resistance during an influenza epidemic: insights from a mathematical

model. J. Inf. Dis. 177, 863–873.

van den Driessche, P., Watmough, J., 2002. Reproduction numbers and

sub-threshold endemic equilibria for compartmental models of disease

transmission. Math. Biosci. 180, 29–48.

Xu, Y., 2006. Analysis and modeling of an influenza epidemic with drug

resistance. Master’s Thesis, Texas Tech University, Lubbock, TX, U.S.A.


	Stochastic model of an influenza epidemic with drug resistance
	Introduction
	Description of models
	Deterministic model
	Continuous-time Markov chain model

	Basic reproduction number
	General form for R0
	No treatment
	Treatment given after exposure
	Treatment given after infection
	Prophylaxis
	Combined strategies

	Numerical simulations
	Comparison of the ODE and the CTMC models: no treatment
	Comparison of the ODE and the CTMC models: treatment begins at day 7
	Comparison of the ODE and the CTMC models: single and combined treatment strategies

	Summary
	Acknowledgments
	SDE model
	Basic reproduction number

	References


