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Hypercycles are information integration systems which are thought to overcome the information crisis

of prebiotic evolution by ensuring the coexistence of several short templates. For imperfect template

replication, we derive a simple expression for the maximum number of distinct templates nm that can

coexist in a hypercycle and show that it is a decreasing function of the length L of the templates. In the

case of high replication accuracy we find that the product nmL tends to a constant value, limiting thus

the information content of the hypercycle. Template coexistence is achieved either as a stationary

equilibrium (stable fixed point) or a stable periodic orbit in which the total concentration of functional

templates is nonzero. For the hypercycle system studied here we find numerical evidence that the

existence of an unstable fixed point is a necessary condition for the presence of periodic orbits.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Most of the modern theoretical work on prebiotic evolution
was prompted by the seminal paper of Eigen (1971) which
explored the fate of a population of competing macromolecules in
an environment with limited resources. The main conclusion of
Eigen’s work is that the length of a replicating polymer (i.e., a
RNA-like template) is limited by the replication accuracy per
nucleotide, and so primordial replicators would have to replicate
with implausible high accuracy in order to reach the length of
today’s RNA viruses (about 103–104 nucleotides). This finding,
together with the observation that distinct templates cannot
coexist in the competition-only scenario (Swetina and Schuster,
1982), come to be known as the information crisis of prebiotic
evolution.

In fact, this information crisis would be resolved by the co-
existence of several distinct, short templates, i.e., by the splitting
of the information in short modules, similarly to the division of
the genome in chromosomes found in many present-day organ-
isms. In this case, the total information content of the template
pool is the product of the number of different templates and the
maximum information coded per template (roughly the template
length L), provided the template types have the same concentra-
tion. But template coexistence can be achieved only if some sort of
cooperation between templates is imposed a priori to the
molecular population. To this end Eigen and Schuster (1979)
proposed a cyclic reaction scheme, termed hypercycle, in which
ll rights reserved.

: +551633739877.
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each replicator would aid in the replication of the next one, in a
regulatory cycle closing on itself. An alternative proposal confines
the templates in packages or prebiotic vesicles which are deemed
viable provided it encloses a number n of distinct functional
templates (Niesert et al., 1981; Szathmáry and Demeter, 1987;
Zintzaras et al., 2002; Fontanari et al., 2006).

Perhaps because hypercycles and vesicle models are more
difficult to analyze than the naked-gene (quasispecies) scenario,
the all-important question of whether these information integra-
tion systems exhibit a similar phenomenon as the error threshold
of the quasispecies model was put off. Only recently a re-
examination of a prototypical package model—the model of
Niesert et al. (1981)—revealed that package models in general
suffer from the same malady as the quasispecies model: in the
case of imperfect replication an increase in the number n of
distinct templates confined in the vesicle must be followed by
a decrease of their lengths, otherwise the package becomes
unviable. As a result, the product nL (i.e., the total information
content of the package) tends to a constant value that depends
essentially on the spontaneous mutation rate per nucleotide
(Silvestre and Fontanari, 2007, 2008). Our aim in this contribution
is to investigate whether a similar restriction to the total amount
of information in the pool of templates holds for hypercycle
systems as well.

The dynamics of hypercycle systems in the presence of a
variety of mutant types was extensively investigated by Stadler
and Schuster (1992) and Happel and Stadler (1998). We refer the
reader to Bresch et al. (1980), Szathmáry and Demeter (1987) and
Sardanyés and Solé (2007) for an emphasis on the destabilizing
effects of mutant parasites and to Boerlijst and Hogeweg (1991)
and Cronhjort and Blomberg (1994) for an analysis of the

www.sciencedirect.com/science/journal/yjtbi
www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2008.07.023
mailto:fontanari@ifsc.usp.br


ARTICLE IN PRESS

D.A.M.M. Silvestre, J.F. Fontanari / Journal of Theoretical Biology 254 (2008) 804–806 805
robustness conferred by spatial organization against those
mutants. However, the formulation of Campos et al. (2000) in
which the mutants form an error tail class seems more
appropriate to study the error threshold phenomenon and so
our analysis will build heavily on that paper.

The sole motivation of this contribution is to show that the
condition for the viability of the hypercycle derived in Campos
et al. (2000) is in fact valid for all n and not only for the regime
where fixed points are stable, i.e., for np4. This is so because we
found numerically that a necessary condition for the presence of
stable periodic orbits is the existence of an unstable fixed point.
For the purpose of completeness, in the following section we
describe the model and re-derive the main results regarding the
existence of fixed point (and hence of stable periodic solutions)
for the hypercycle system.
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2. Model

The hypercycle system we consider here is composed of n

‘functional’ elements I1; . . . ; In and its error tail Ie. The templates
are capable of self-replication with productivity values Ai ði ¼

1; . . . ;nÞ and Ae. As usual, we introduce the kinetic constants Ki

that measure the strength of the influence of template Ii�1 on the
growth promotion of template Ii. The key ingredient in the
modeling is that in both processes of growth of template Ii the
probability of success is given by the parameter Q 2 ½0;1�, so that
an erroneous copy, which will then belong to the error tail, is
produced with probability 1� Q. Back-mutations from the error
class to the functional class, as well as mutations between
elements of the functional class, are neglected. This formulation
is equivalent to considering polynucleotides of length L!1

whose mutation probability per nucleotide u goes to 0 such that
the replication accuracy per genome is finite, i.e., expð�LuÞ ! Q .

The concentrations xi ði ¼ 1; . . . ;nÞ of the hypercycle functional
elements and the concentration xe of the error tail evolve in time
according to the kinetic equations (Campos et al., 2000)

_xi ¼ xiðAiQ þ Kixi�1Q �FÞ; i ¼ 1; . . . ;n (1)

and

_xe ¼ xeðAe �FÞ þ ð1� Q Þ
Xn

i¼1

xiðAi þ Kixi�1Þ, (2)

where x0 � xn and

F ¼
Xn

i¼1

xiðAi þ Kixi�1Þ þ xeAe (3)

is a dilution flux that keeps the total concentration constant, i.e.,Pn
i¼1
_xi þ _xe ¼ 0. As usual, the dot denotes a time derivative.

Henceforth we will assume that

Xn

i¼1

xi þ xe ¼ 1. (4)

In accord with the usual assumption of package models that
functional templates and parasites are selectively neutral (Niesert
et al., 1981; Silvestre and Fontanari, 2008) we set Ai ¼ Ae ¼ a, and
Ki ¼ K40 for i ¼ 1; . . . ;n, resulting in the so-called symmetric hyper-
cycle. Hence by measuring the self-replication productivity a and the
time t in units of K we can set K ¼ 1 without loss of generality.
Fig. 1. Time evolution of the total concentration of functional templates for n ¼ 12,

a ¼ 0:001 and (top to bottom) Q ¼ 0:5;0:4;0:3;0:2;0:19639;0:1. The periodic

solutions disappear at Q � 0:19639, the value at which the condition (6) for the

existence of a nontrivial equilibrium is violated. We have no proof for this

remarkable coincidence. For lower values of replication accuracy the dynamics

converges to the trivial fixed point xe ¼ 1, which is always stable.
3. Analysis of the steady state

Here we focus only on the fixed-point solutions xi40 for
i ¼ 1; . . . ;n. In this case, the condition _x2 ¼ 0 yields F ¼ Q aþ x1ð Þ
which, inserted in the equations _x3 ¼ � � � ¼ _xn ¼ _x1 ¼ 0, yields
x1 ¼ x2 ¼ � � � ¼ xn. Using these results in Eq. (3) we find that x1 is
given by the roots of the quadratic equation

nx2
1 � Qx1 þ að1� Q Þ ¼ 0, (5)

which has two real positive roots provided the condition

Q2
� 4nað1� Q ÞX0 (6)

is satisfied.
The analysis of the roots of Eq. (5) and the numerical

evaluation of the Jacobian eigenvalues indicate that the smaller
root is always unstable, whereas the larger root is (locally) stable
for np4. In addition, the disordered fixed point xi ¼ 0; 8i and xe ¼

1 is always stable (Campos et al., 2000).
It is well known that for n44 the steady state of the hypercycle

is characterized by stable periodic solutions (Eigen and Schuster,
1979; Hofbauer and Sigmund, 1988; Hofbauer et al., 1991) where
the concentrations xi vary wildly reaching values dangerously
close to zero, which would certainly doom a finite-population
system (Nuño and Tarazona, 1994). Nevertheless, here we take an
optimistic stance and assume that the hypercycle is an acceptable
information integrator even in the regime where it exhibits
periodic solutions: the n templates do coexist in this regime after
all, albeit with (very) distinct concentrations. The issue is then to
determine the region in the space of the parameters Q and a

where the steady-state solution is such that
Pn

i¼1xn ¼ 1� xe is
nonzero.

The search for steady-state solutions with nonvanishing
concentration of functional templates can be carried out straight-
forwardly through the numerical integration of the differential
equations (1)–(2). The procedure is illustrated in Fig. 1 for n ¼ 12:
for a fixed value of a we decrease Q until we reach a threshold
value below which the only steady-state solution is xe ¼ 1.

Remarkably, through this numerical analysis we find that the
region of viability of the hypercycle (i.e., the region in the space
ðQ ; aÞ characterized by a nonzero concentration of functional
templates, regardless of whether the stable solution is a fixed
point or a periodic orbit, as shown in Fig. 2 for n ¼ 5) is
determined by the condition of existence of real fixed points,
Eq. (6). We are not aware of a mathematical proof for this result.
For n ¼ 2, index theory can be used to show that inside the region
enclosed by a periodic orbit there must exist at least one fixed
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Fig. 2. Bifurcation diagram in the space ðQ ; aÞ for n ¼ 5. Periodic stable solutions

exist only in the region above the curve, where inequality (6) is satisfied.

The symbols � are the results obtained using the numerical procedure illustrated

in Fig. 1.
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point so that the absence of fixed points precludes the existence of
periodic orbits (Guckenheimer and Holmes, 1983, p. 51). It seems,
however, that this result cannot be extended to n42. The theorem
proved by Hofbauer et al. (1991) is not helpful either: it asserts
that for a hypercycle system with no error tail (i.e., Q ¼ 1) if the
(unique) fixed point becomes unstable then there is a stable
periodic orbit, whereas our conjecture is that if there is a stable
periodic orbit then there must be at least one unstable fixed point.

In summary, we find that the hypercycle system is viable
provided the number of functional templates n satisfies the
condition npnm where

nm ¼
Q2

4að1� Q Þ
. (7)

Since nm is a monotonously increasing function of Q 2 ½0;1� and Q,
in turn, is a monotonously decreasing function of L (recall that
Q ¼ expð�uLÞ) we find that nm decreases with increasing L. Hence,
all other things being equal if the number of functional templates
n is increased then their lengths L must decrease accordingly so as
to guarantee that npnm is fulfilled. This remark shows that an
information preservation principle similar to that derived for
package models holds for the hypercycle as well, which suggests a
reconsideration of the whole approach based on the coexistence
of distinct templates to address the information crisis of prebiotic
evolution.
4. Conclusion

In our analysis we have opted for the choice of parameters that
most favored the stability of the hypercycle. For instance,
introduction of other interactions such as the catalytic promotion
of the growth of the templates in the error tail by functional
templates—an assumption implicit in the package models—can
only reduce the value of nm. (We have verified that the catalytic
coupling between functional templates and the error tail does not
produce any qualitatively new result.) Similarly, the parameter
setting that corresponds to the elementary hypercycle in which
Ai ¼ 0;8i but Ae ¼ 1 results also in a reduction of nm. Asymmetric
hypercycles in which the templates have distinct productivities Ai
leads to internal competition and again to the decrease of nm

(Campos et al., 2000). Hence Eq. (7) must be seen as an upper
bound to the maximum number of functional templates in the
hypercycle.

The effect that a change dL causes on nm is given by

dnm

nm
¼ �u 2þ

Q

1� Q

� �
dL. (8)

In the case the functional templates have a high replication
accuracy (i.e., 1� Q � uL � 0) we find that the product nmL tends
to a constant value, similarly to the findings for the package
models (Silvestre and Fontanari, 2007, 2008).

We stress that Eq. (7) is worthful because its validity is not
restricted to the regime where the nontrivial fixed point is stable:
it holds also in the regime where the only stable solutions are
periodic orbits. We provide only numerical evidence to support
this remarkable finding which is based on the conjecture that the
existence of an unstable fixed point is a necessary condition for
the presence of stable periodic orbits in the system of ordinary
differential equations (1)–(2). It would be very interesting to find
a proof for this conjecture.
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