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Abstract4

Most traits expressed by organisms, such as gene expression profiles, developmental trajectories,5

behavioural sequences and reaction norms are function-valued traits (colloquially ”phenotypically6

plastic traits”), since they vary across an individual’s age and in response to various internal and/or7

external factors (state variables). Furthermore, most organisms live in populations subject to limited8

genetic mixing and are thus likely to interact with their relatives. We here formalise selection on9

genetically determined function-valued traits of individuals interacting in a group-structured pop-10

ulation, by deriving the marginal version of Hamilton’s rule for function-valued traits. This rule11

simultaneously gives a condition for the invasion of an initially rare mutant function-valued trait and12

its ultimate fixation in the population (invasion thus implies substitution). Hamilton’s rule thus un-13

derlies the gradual evolution of function-valued traits and gives rise to necessary first-order conditions14

for their uninvadability (evolutionary stability). We develop a novel analysis using optimal control15

theory and differential game theory, to simultaneously characterise and compare the first-order con-16

ditions of (i) open-loop traits - functions of time (or age) only, and (ii) closed-loop (state-feedback)17

traits - functions of both time and state variables. We show that closed-loop traits can be represented18

as the simpler open-loop traits when individuals do no interact or when they interact with clonal rel-19

atives. Our analysis delineates the role of state-dependence and interdependence between individuals20

for trait evolution, which has implications to both life-history theory and social evolution.21

22

Keywords: dynamic game theory; optimal control; dynamic programming; adaptive dynamics; life-23

history evolution; kin selection; invasion implies substitution.24
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1 Introduction25

All biological organisms are open systems exchanging energy, matter, and information with their sur-26

rounding. As such, most if not all traits of an organism may vary in response to changes of its internal27

factors as well as to changes in its external biotic and abiotic environmental conditions. Examples include28

gene expression profiles, physiological processes, reaction norms, life-history traits, developmental trajec-29

tories, morphological shapes, and behavioural sequences. We collectively call these traits function-valued30

traits by which we mean phenotypes whose expression depends on some parameter(s) or variable(s) (e.g.,31

time, space, internal or external biotic and abiotic conditions), and these traits are often called colloqui-32

ally as “phenotypically plastic traits” in evolutionary biology (West-Eberhard, 2003, p. 33). Formalising33

how selection shapes these traits is relevant as it helps to understand their evolution and the mechanistic34

constraints involved in their functioning. This has been done for genetically determined function-valued35

traits using different theoretical approaches that consider different biological perspectives on the evolution36

of these traits.37

First, the evolution of life-history schedules has often been studied by applying Pontryagin’s maximum38

principle (e.g., León, 1976; Macevicz and Oster, 1976; Oster and Wilson, 1977; Schaffer, 1982; Iwasa and39

Roughgarden, 1984; Sibly et al., 1985; Stearns, 1992; Perrin, 1992; Koz lowski, 1992; Perrin et al., 1993;40

Bulmer, 1994; Irie and Iwasa, 2005; Parvinen et al., 2013; Lehmann et al., 2013; Metz et al., 2016). Here,41

a trait evolves to vary as a function of the age or time of interaction of individuals, while individual fitness42

(expected survival and reproduction) can be constrained by the dynamics of state variables. These state43

variables are observables describing internal or external conditions of an individual, e.g., body size, fat44

reserves, information, resource availability, behaviour of others, that in turn depends on trait expression.45

Models applying Pontryagin’s maximum principle formalise the evolution of so-called open-loop traits46

(Weber, 2011; Liberzon, 2011), whose name emphasises that the trait itself involves no feedback loop,47

since it depends only on time (age). As such, an open-loop trait can be thought of as an entirely fixed48

course of phenotypic expression from birth to death of an individual (trait expression happens “by the49

clock”); an example would be an age-dependent growth trajectory. Evolution of open-loop traits has also50

been formalised to include interactions between relatives, which allows to consider their evolution under51

limited genetic mixing such as spatially or family-structured populations (Bulmer, 1983; Day and Taylor,52

1997, 1998, 2000; Wild, 2011; Avila et al., 2019).53

Second, in behavioural ecology and evolutionary game theory, selection on function-valued traits has54

typically been studied by using dynamic programming (see Houston et al., 1999; Mangel et al., 1988 for55

textbook treatments and e.g. Leimar, 1997; Ewald et al., 2007; McNamara and Houston, 1987; Dechaume-56

Moncharmont et al., 2005). Here, the trait evolves to vary not only as a function of time but also as a57
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function of relevant state variables. This formalises so-called closed-loop traits (Weber, 2011; Liberzon,58

2011) as these now involve a feedback between trait expression and state dynamics (see Fig. 1 for a59

schematic conceptualisation). A closed-loop trait can thus be thought of as a contingency plan, which60

specifies a conditional trait expression rule according to fitness relevant conditions an individual may be61

in. An example would be an ontogenetic allocation of resources to somatic functions depending on fat62

reserve (by contrast, the corresponding open-loop trait would allocate resources only depending on age).63

Both Pontryagin’s maximum principle and dynamic programming are optimal control theory ap-64

proaches (e.g., Bryson and Ho, 1975; Basar and Olsder, 1999; Dockner et al., 2000; Sydsaeter et al., 2005;65

Weber, 2011; Liberzon, 2011; Kamien and Schwartz, 2012), whose common aim is to identify a schedule66

of control variables–a trait–over a period of time that maximises (in the best response sense) an objective67

function (fitness in biology). A crucial result of this literature is that open-loop or closed-loop trait68

expression leads to different outcomes when individuals interact (e.g. Basar and Olsder, 1999; Dockner69

et al., 2000). This means that the evolution of a function-valued trait should depend on the assumptions70

about its functional dependence as well as the type of interactions individuals face. Yet the conditions71

under which it matters to distinguish between open-and closed-loop traits and how this impacts on an72

evolutionary analysis remains unclear and has, perhaps surprisingly, not been worked out in evolutionary73

biology despite the wide interest in the evolution of phenotypic plasticity.74

Function-valued traits have also been studied in quantitative genetics theory, where the directional75

selection coefficient on function-valued traits has been derived assuming no interactions between individ-76

uals (Kirkpatrick and Heckman, 1989; Gomulkiewicz and Kirkpatrick, 1992; Gomulkiewicz and Beder,77

1996; Beder and Gomulkiewicz, 1998). This selection coefficient describes selection over short time-78

scales (time-scales of demographic changes) and can be decomposed into component-wise descriptions,79

which allows to describe the direction of selection for each component of a function-valued trait. While80

this selection coefficient has been connected to long-term evolution and extended to include interactions81

between individuals in well-mixed populations (Parvinen et al., 2006; Dieckmann et al., 2006), this lit-82

erature does not distinguish between open-loop and closed-loop traits and it thus remains unclear how83

the selection coefficient on a trait connects to the dynamics state constraints (that can be physiological84

or informational) underlying trait evolution. This is why it would be useful to connect the directional85

selection coefficient on function-valued traits to optimal control theory results, because it provide a way86

to analyse how selection on traits depends on inter-dependencies and constraints between different trait87

components.88

There are thus different approaches to the evolution of function-valued traits, but the scope of existing89

results and the connection between them is not clear. In contrast, for selection on quantitative scalar traits90

general results have long been proven to hold. In particular, for small trait deviations (weak selection),91
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the selection coefficient on a scalar quantitative trait in a population subject to limited genetic mixing92

can be expressed as a marginal version of Hamilton’s rule, where the direct and indirect fitness effects93

(the “cost” and “benefit”) are given by partial derivatives of individual fitness (e.g., Taylor and Frank,94

1996; Frank, 1998; Roze and Rousset, 2003; Rousset, 2004; Lehmann and Rousset, 2014; Van Cleve,95

2015). This selection coefficient provides two useful results about gradual quantitative evolution. First,96

since the selection coefficient is independent of allele frequency and is of constant sign (Roze and Rousset,97

2003, 2004; Rousset, 2004; Lehmann and Rousset, 2014), the marginal Hamilton’s rule subtends gradual98

evolution of all scalar traits even when the survival and reproduction of individuals depend on the99

behaviour of others, such as under density- and frequency-dependent selection. Second, when the selection100

gradient vanishes, Hamilton’s rule provides the necessary first-order condition for a strategy to be locally101

uninvadable; that is, it allows to determine candidate evolutionary stable strategies, which is central to102

characterise of long-term evolution (Geritz et al., 1998; Rousset, 2004). Do these general principles of103

gradual evolution in group-structured populations that hold for scalar traits also hold for function-valued104

traits?105

Our goal in this paper is to formalise the directional selection on genetically determined function-106

valued traits when state constraints affect trait expression and the evolving population is group-structured107

(subject to limited genetic mixing). To achieve this we develop a two-step analysis. First, it is to formalise108

the directional selection coefficient on quantitative function-valued under limited genetic mixing (taking109

panmictic population as a special case into account) in order to characterise the gradual evolution of110

function-valued traits. Second, from the the directional selection we derive how state-dependence of trait111

expression affects selection on function-valued traits. The rest of this paper is organised as follows. (1)112

We derive the selection coefficient acting on a mutant allele coding for a function-valued trait in the113

island model of dispersal (group-structured population) under weak selection, which yields the marginal114

version of Hamilton’s rule for function-valued traits. We deduce from Hamilton’s rule the necessary115

first-order condition for local uninvadability, which yields the candidate uninvadable function-valued116

traits and applies to both continuous and discrete traits. (2) We apply these results to time-dependent117

function-valued traits (dynamic traits) by deriving necessary conditions for uninvadability expressed in118

terms of dynamic constraints on state variables and their (marginal) effects on the reproductive value.119

This allows us to compare how selection acts on open-loop versus closed-loop traits, specifying the role of120

trait responsiveness. In turn, this allows to establish the connection between the dynamic programming121

and the maximum principle type of approaches in the context of gradual phenotypic evolution. (3) We122

illustrate the different main concepts of our approach by analysing the evolution of temporal common123

pool resource production and extraction within groups. (4) Finally, we discuss the scope of our results.124
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2 Model125

2.1 Biological scenario126

Consider a haploid population subdivided into an infinite number of homogeneous groups (without divi-127

sion into class structure) with a fixed number N of individuals, where censusing takes place at discrete128

demographic time periods. All groups are subject to the same environmental conditions and are equally129

connected to each other by random dispersal. A discrete demographic time period spans an entire life130

cycle iteration where various events can occur (e.g. growth, reproduction, dispersal) to individuals. The131

life cycle may allow for one, several, or all individuals per group to die (thus including whole group132

extinction through environmental effects or warfare). Generations can thus overlap but when this occurs,133

the parents are considered equal (in respect to their “demographic properties”) to their offspring in each134

generation (since there is no within-group class structure). Dispersal can occur before, during, or after135

reproduction, and more than one offspring from the same natal group can establish in a non-natal group136

(i.e., propagule dispersal). We refer to this group-structured population where all individuals within137

groups are indistinguishable, as the homogeneous island population (i.e., broadly this corresponds to the138

infinite island model of dispersal of Wright, 1931, used since at least Eshel, 1972 under various versions139

to understand selection on social traits, e.g., Rousset, 2004, and where the specifics of our demographic140

assumptions are equivalent to those considered in Mullon et al. 2016).141

We assume that two alleles segregate in the homogeneous island population at a locus of interest: a142

mutant allele with trait um ∈ U [T ] and a resident (wild-type) allele with trait u ∈ U [T ]. Here, U [T ] is143

the set of feasible traits that individuals can potentially express and is formally defined as the set of real-144

valued functions with range U and domain T , where T is a space of some index variable(s) representing,145

for instance, time, an environmental gradient or cue. We assume here that T is a closed interval over146

some discrete or continuous index variable t. If t is discrete, then the element u ∈ U [T ] is a vector147

and if t is continuous then the element u ∈ U [T ] is a piece-wise continuous function. Hence, we write148

u = {u(t)}t∈T to emphasise that it consists of the (finite or infinite) collection of all point-wise values149

u(t) of the trait. Namely, u can be thought of as a continuous or a discrete “path” (or a schedule, or a150

trajectory) on the space T . Note that in Table 1 we have outlined a list of symbols of key components151

of our model.152

The crucial assumption of this paper is that the mutant trait um can be expressed in the following

form as a small deviation from the resident trait:

um = u + ǫη (um(t) = u(t) + ǫη(t) point-wise for all t ∈ T ), (1)

5



where the phenotypic deviation function η = {η(t)}t∈T must satisfy u + ǫη ∈ U [T ] for sufficiently small153

non-negative parameter ǫ. Because U [T ] may have a boundary, not all phenotypic deviations generate a154

mutant strategy um that remains within the bounds of the feasible trait space um ∈ U [T ], independent of155

the choice of ǫ (see Section 2.3.2). Note that we are making a distinction between a phenotypic deviation156

η (a function) and the effect size ǫ (a scalar) of that deviation. In the literature, a (scalar) mutant effect157

is often modelled with the notation δ = ηǫ (e.g. Rousset, 2004). This distinction between phenotypic158

deviation and effect size in the notation is necessary for analysing selection on function-valued traits.159

2.2 Allele frequency change and short-term evolution160

Our first aim is to characterise the change in mutant allele frequency in the homogeneous island population161

under weak selection (ǫ ≪ 1). To that end, it is useful to follow the direct fitness approach (Taylor and162

Frank, 1996; Rousset and Billiard, 2000; Rousset, 2004) and introduce the individual fitness function163

w : U [T ]3 → R+ such that w(u•, u◦, u) gives the expected number of successful offspring produced over164

one life cycle iteration by a focal individual (possibly including self through survival) with trait u•, when165

its average neighbour in the focal group has trait u◦ and an average individual (from other groups) in166

the population has trait u, which is taken here to be the resident trait for simplicity of presentation.167

We note that any individual in the population can be taken to be the focal individual (Rousset and168

Billiard, 2000; Rousset, 2004) and that the fitness of this individual can always be expressed in terms of169

average phenotypes of other individuals in different roles with respect to the focal (e.g., group neighbour,170

cousin, members of other groups, etc.), whenever mutant and resident phenotypes are closely similar (see171

the argument in Appendix A.2 for function-valued traits and a textbook argument for scalar traits e.g.172

Rousset, 2004, p. 95). These individuals in different roles, as well as the focal individual itself, are actors173

on the fitness of the focal. Here, the focal individual is regarded as the recipient of the trait expressions174

of different actors (i.e. focal individual, average neighbour, average individual in other groups), which175

corresponds to the direct fitness or recipient-centred approach (e.g. Rousset, 2004, Chapter 7).176

In terms of this definition of individual fitness, we define the direct fitness effect of expressing the

mutant allele as

−cη(u) = ǫ× lim
ǫ→0

[
w(u + ǫη, u, u) − w(u, u, u)

ǫ

]

, (2)

which is the effect that the focal individual has on its own fitness if it would switch from expressing the

resident to the mutant allele for a small allelic effect. Analogously, we define the indirect fitness effect of
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expressing the mutant allele as

bη(u) = ǫ× lim
ǫ→0

[
w(u, u + ǫη, u) − w(u, u, u)

ǫ

]

, (3)

which is the effect that the whole set of neighbours have on focal’s fitness if they were to all switch177

from expressing the resident to the mutant allele. Finally, let us denote by r(u) the neutral relatedness178

between two randomly sampled group neighbours (Michod and Hamilton, 1980; Frank, 1998; Rousset,179

2004) in the homogeneous island population that is monomorphic for the resident; namely, r(u) is the180

probability that in a neutral process (where all individuals are alike) the two homologous alleles of181

these individuals coalesce in the same common ancestor (e.g., Roze and Rousset, 2003; Rousset, 2004;182

Lehmann and Rousset, 2014; Van Cleve, 2015). Note that relatedness defined as such depends only on183

the resident trait. In Appendix A, we show that the change ∆p in the frequency p of the mutant allele184

over one demographic time period (one life cycle iteration) can be expressed in terms of these quantities185

as follows.186

Invasion implies substitution principle result. In the homogeneous island population with two al-

leles, the change in mutant allele frequency p in the population takes the form

∆p = p(1 − p)sη(u) + O(ǫ2), (4)

where p(1 − p) is the genetic variance at the locus of interest,

sη(u) = −cη(u) + r(u)bη(u) (5)

is a selection coefficient of order O(ǫ) that is independent of p, and O(ǫ2) is a remainder of all higher187

order terms. This entails an “invasion implies substitution” property of the mutant allele, which says188

that if sη(u) > 0, the mutant allele coding for a small function-valued deviation ǫη is selected for and not189

only invades but substitutes the (ancestral) resident allele [since effects of order O(ǫ2) can be neglected in190

eq. (4) whenever sη(u) is non-zero].191

We have thus formalised an “invasion implies substitution”-principle (see Priklopil and Lehmann, 2020192

for a review) for function-valued traits in the homogeneous island population and which takes the form193

of Hamilton’s rule: the mutant spreads if r(u)bη(u) − cη(u) > 0. This novel result is a multidimensional194

generalisation of previous analogous results for scalar traits (Roze and Rousset, 2003, 2004; Rousset,195

2004; Lehmann and Rousset, 2014).196

Owing to its simplicity, the function-valued trait nature of our result is perhaps yet not fully apparent,
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but is made explicit on noting that the direct and indirect effects (eqs. 2–3) are both formally Gâteaux

derivatives, which are directional derivatives (see section A.1 in Appendix for a formal definition and

e.g., Troutman, 1991, p. 45–50, Luenberger, 1997, p. 171–178) and represent change in fitness resulting

from a sum of all weighted component-wise changes in trait expression (over the domain T ) induced by

the mutation function η. To outline the component-wise change in fitness, it is useful to decompose the

selection coefficient as

sη(u) = ǫη · s(u) = ǫ

∫

T

η(t)s(t, u)dt, (6)

where · is an inner product on functions (the generalisation of a dot product, see e.g. Anton and Rorres,

2013, Chapter 6), s(u) = {s(t, u)}t∈T is the selection gradient function, where the component s(t, u)

gives the selection gradient on component u(t) of the trait, i.e. the value of u at time t, holding other

components u(t′) (for all t′ 6= t ∈ T ) of the trait fixed. Each component of the selection gradient function

is then given by

s(t, u) = −c(t, u) + r(u)b(t, u), (7)

where

−c(t, u) =
∂w(u•, u◦, u)

∂u•(t)

∣
∣
∣
∣
u•=u◦=u

and b(t, u) =
∂w(u•, u◦, u)

∂u◦(t)

∣
∣
∣
∣
u•=u◦=u

, (8)

are, respectively, the effect on the focal’s own fitness from changing marginally component u•(t) of its197

trait, while holding other trait components u•(t′) (for t′ 6= t) fixed, while b(t, u) is the effect of all group198

neighbours on the focal individuals fitness when changing marginally component u◦(t) of their traits,199

while holding other components u◦(t′) (for t′ 6= t) of their traits fixed. That is, the costs and benefits are200

partial derivatives and s(t, u) is the inclusive fitness effect on a focal individual. When t is discrete and201

T finite, eq. (7) corresponds to the trait specific inclusive fitness effect derived previously for a backdrop202

monomorphic resident homogeneous island population (Mullon et al., 2016, eq. 12).203

Eq. (6) shows that the selection coefficient is a weighted change of trait-specific changes. Note that204

for continuous index variable t over the interval T , the partial derivatives −c(t, u) and b(t, u) in eq. (8)205

are formally functional derivatives (e.g. Troutman, 1991, p. 45–50, Luenberger, 1997, p. 171–178). In the206

absence of interactions between relatives s(t, u) reduces to β(y) in eq. 1 of Gomulkiewicz and Kirkpatrick207

(1992) for y = t, G(a) in eq. 4 of Parvinen et al. (2006) for a = t, or g(a;u) in eq. 3 in Metz et al. (2016)208

for a = t (but see ∆Wincl(t) in eq. 25 of Day and Taylor, 2000, which allows for interactions between209

relatives).210
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2.3 Necessary condition for local uninvadability and long-term evolution211

It follows from our “Invasion implies substitution principle” result that a necessary first-order condition

for a trait u∗ to be locally uninvadable (resistant to invasion by any mutant in a small radius ǫ ≪ 1) is

given by a non-positive selection coefficient for all admissible mutants in the resident u∗ population, that

is

sη(u∗) = ǫη · s(u∗) ≤ 0 ∀ um(= u∗ + ǫη) ∈ U [T ]. (9)

Local resistance to invasion by sets of alternative mutants allows to characterise candidate long-term212

evolutionary outcomes (Eshel and Feldman, 1984; Eshel, 1996; Eshel et al., 1998) and is a first-step213

(and often the only accessible computational step under limited genetic mixing) towards characterising214

uninvadable traits.215

A crucial question is whether a locally uninvadable strategy u∗ will be approached by gradual evolution216

from within its neighbourhood and thus be convergence stable (Eshel, 1983; Lessard, 1990; Geritz et al.,217

1998; Rousset, 2004; Leimar, 2009). Because characterising convergence stability involves a second order218

analysis of the selection coefficient, which is involved for multidimensional traits (Lessard, 1990; Leimar,219

2009), it will not be investigated further in this paper. For the same reason, we will also not consider220

sufficient conditions for local uninvadability. In the remainder of this section, we focus on characterising221

in more detail the necessary condition of local univadability (eq. 9) in terms of the selection gradient222

function s(u), which allows removing the considerations of mutational effect η.223

2.3.1 Local uninvadability for scalar-valued traits224

Let us first consider the case of scalar quantitative traits, where the trait of each individual is an element

belonging to a bounded subset U ⊂ R of the real line. That is, the resident and mutant traits stay within

the feasibility bounds umin ≤ u, um ≤ umax). For this case, the index t in eq. (7) can be dropped and one

obtains the standard selection gradient on a scalar-valued trait for the homogeneous island population:

s(u) =
∂w(u•, u◦, u)

∂u•

∣
∣
∣
∣
u•=u◦=u

+ r(u)
∂w(u•, u◦u)

∂u◦

∣
∣
∣
∣
u•=u◦=u

(10)

(Taylor and Frank, 1996; Frank, 1998; Roze and Rousset, 2003, 2004; Rousset, 2004; Lehmann and225

Rousset, 2014; Van Cleve, 2015).226

Note that for u = umin an admissible phenotypic deviation η must be non-negative η ≥ 0 and

for u = umax it must be non-positive η ≤ 0 while for umin ≤ u ≤ umax the deviation η is unrestricted.

Substituting this into the first-order condition for uninvadability eq. (9) yields that the necessary condition
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for uninvadability for scalar bounded traits can be expressed in the following form

u∗ = umin only if s(u∗) ≤ 0,

umin < u∗ < umax only if s(u∗) = 0,

u∗ = umax only if s(u∗) ≥ 0.

(11)

Note that if the set of admissible traits is unbounded (i.e. U = R), then the first-order necessary condition227

for local uninvadability is given by the second line of eq. (11).228

2.3.2 Local uninvadability for function-valued traits229

Let us return to the general case where the trait of each individual is an element of U [T ], being either a

vector (T discrete) or a (bounded and piece-wise continuous) function (T continuous). More precisely, for

all t ∈ T the resident and mutant traits stay within the feasibility bounds umin(t) ≤ u(t), um(t) ≤ umax(t),

such that umin = {umin(t)}t∈T and umax = {umax(t)}t∈T . Now, an admissible deviation η = {η(t)}t∈T

must satisfy for all t ∈ T similar conditions as given for the scalar-traits in Section (2.3.1), that is, for

u(t) = umin(t) an admissible phenotypic deviation η must be non-negative η(t) ≥ 0 and for u(t) = umax(t)

it must be non-positive η(t) ≤ 0 while for umin(t) < u(t) < umax(t) the deviation η(t) is unrestricted.

Substituting the admissible deviations into eq. (9) yields that a candidate uninvadable strategy u∗ =

{u∗(t)}t∈T ∈ U [T ] satisfies for all t ∈ T :

u∗(t) = umin(t) only if s(t, u∗) ≤ 0

umin(t) < u∗(t) < umax(t) only if s(t, u∗) = 0

u∗(t) = umax(t) only if s(t, u∗) ≥ 0,

(12)

which is thus equivalent to eq. (11) in a point-wise way.230

3 From the selection gradient to candidate optimal controls231

The point-wise description of the candidate uninvadable trait u∗ given by eq. (12) is unlikely to be di-232

rectly useful in solving for u∗ in concrete applications because factors characterising the organism and its233

environment change over time (e.g. organisms can grow and the resources in the environment can get de-234

pleted). Hence, solving u∗ from eq. (12) would entail simultaneously solving a large number of equations,235

while tracking the changes in the relevant time-dependent factors. A more useful characterisation of u∗
236

can be achieved with the use of the mathematical framework of optimal control theory, most notably237

dynamic programming and Pontryagin’s maximum principle, both of which have been used abundantly238
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in evolutionary biology and in different contexts (e.g., León, 1976; Iwasa and Roughgarden, 1984; Mangel239

et al., 1988; Houston et al., 1999; Stearns, 1992; Perrin, 1992; Perrin et al., 1993; Koz lowski, 1992; Day240

and Taylor, 1997, 2000; Cichon and Kozlowski, 2000; Irie and Iwasa, 2005; Lehmann et al., 2013; Priklopil241

et al., 2015; English et al., 2016; Metz et al., 2016; Avila et al., 2019).242

3.1 Key concepts243

3.1.1 Fitness function, control variables and state constraints244

For space reasons, we focus on a continuous time formulation (but parallel developments apply to discrete

time), and assume that a demographic time period is characterised by the time interval T = [0, tf ] during

which the trait expression is observed. This time interval can be thought of as the length of the lifespan

of organisms or the time during which behavioural interactions occur between individuals (e.g. a mating

season, winter season), which eventually leads to reproduction. More specifically, we now assume that

the fitness of the focal individual can be written in the form

w(u•, u◦, u) =

∫ tf

0

f(t,u•(t),x•(t))dt + Φ(x•(tf)), (13)

where f(t,u•(t),x•(t)) is the rate of increase of individual fitness at time t and Φ(x•(tf)) is the scrap

value - contribution to individual fitness at the final time t = tf (formally f : U3 × R
3 → R+ and

Φ : R3 → R+). Here,

u•(t) = (u•(t), u◦(t), u(t)) , and x•(t) = (x•(t), x◦(t), x(t)) (14)

collect, respectively, the trait expression levels u•(t), u◦(t), and u(t) at time t of the focal individual,245

that of an average neighbour, and an average individual from the population, and the state variables246

x•(t), x◦(t), and x(t) of these respective individuals (note that the “•” in the subscript of u• and x•247

emphasises that these controls and state variables collect those of all actors on the fitness of the focal248

recipient). State variables describe some measurable conditions of an individual (e.g. size, stored energy,249

hunting skill) or that of its environment (e.g. amount of resource patches, environmental toxicity). The250

defining feature of a state variable in our model is that its time dynamics depends on the evolving trait of251

one or more individuals in interaction and we will henceforth from now on call the elements of u•(t) the252

control variables, which is customary for these type of models in the evolutionary literature (e.g., Perrin,253

1992; Day and Taylor, 2000).254

Because models with both control and state variables become rapidly notationally complex, we assume

that both the controls and the state variables are one-dimensional real numbers. The state of every
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individual is assumed to change according to the function g : U3 × R
3 → R, such that

dx•(t)

dt
= g((u•(t), u◦(t), u(t))

︸ ︷︷ ︸

u•(t)

, (x•(t), x◦(t), x(t))
︸ ︷︷ ︸

x•(t)

) (15)

with initial condition (“i.c.”) x•(0) = xinit and which is the rate of change of the state of a focal individual

with control u•(t) in state x•(t), when its neighbours have average control u◦(t) and average state x◦(t)

in a population where the average control (in other groups) is u(t) and the average state is x(t). Similarly,

we can also express the rate of change of the state of an average neighbour of the focal and an average

individual in the rest of the population, respectively, as

dx◦(t)

dt
= g(u◦(t),x◦(t)),

dx(t)

dt
= g(u(t),x(t)), (16)

where the vectors

u◦(t) = (u◦(t), un(t), u(t)), x◦(t) = (x◦(t), xn(t), x(t)),

u(t) = (u(t), u(t), u(t)), x(t) = (x(t), x(t), x(t))

(17)

collect the (average) controls and states of actors on the state variables of an average neighbour of the

focal individual (first line), and on an average individual in the population (second line), respectively

(here and throughout all vectors are defined by default as being column vectors). These actors are thus

second-order level actors on the focal recipient since they affect the state variables of actors affecting the

focal’s fitness. Note that the subscripts of the control vectors (u◦(t) and x◦(t)) and state vectors (u(t)

and x(t)) emphasise the individual (actor) from who’s perspective the second-order actors’ control and

variables are collected. Accordingly, the vectors in eq. (17) contain elements

un(t) =
1

N − 1
u•(t) +

(
N − 2

N − 1

)

u◦(t), xn(t) =
1

N − 1
x•(t) +

(
N − 2

N − 1

)

x◦(t), (18)

which are, for an average neighbour of the focal, the control and state expressions of average neighbours255

viewed as actors on the focal individual. While we have so far explicitly distinguished between the states256

of different individuals, which is required if state represents some property of individual’s condition (e.g.257

body size or individual knowledge), nothing prevents the individual state to represent some environmental258

condition common to the group or population and which can be influenced by individual behaviour (e.g.259

local amount of resources in the group, in which case x•(t) = x◦(t), see concrete example in section 4).260

Note that while tracking the dynamics of three state variables (eqs. 15–18) may appear complicated, it261

is much simpler than tracking the state of all individuals in a group separately (which would require as262
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many equations as there are individuals in the group and is the approach taken in Day and Taylor, 1997,263

2000 and differential game theory, e.g., Dockner et al., 2000; Weber, 2011).264

Finally, we now make a couple of remarks about the properties of the fitness function w(u•, u◦, u)265

(eq. 13) and its dynamic constraints (eqs. 15–16), which is a special case of a fitness function w(u•, u◦, u)266

considered in section 2. First, the fitness function (13) depends on the full trajectories of the control267

u• = {u•(t)}t∈T and state x• = {x•(t)}t∈T variables, but since the state variables are fully determined268

by the controls (by way of eqs. 15–16) and the initial condition xinit (which we assume here to be fixed),269

then fitness is determined by the controls. In particular, if fitness depends only on the state of the system270

at the final time tf (w(u•, u◦, u) = Φ(x•(tf))), then fitness still depends critically on the control variables.271

We assumed in section 2 that the fitness w(u•, u◦, u) is Gâteaux differentiable (eqs. 2 and 3), which272

means here that functions f , Φ and g are smooth enough with respect to its arguments (see e.g. section273

3 of Liberzon, 2011 for textbook treatment of assumptions and Clarke, 1976 for minimal assumptions274

needed). We finally note that in the homogeneous island population, individual fitness depends in a275

non-linear way on various vital rates (e.g, Roze and Rousset, 2003, eq. 35, Akçay and Van Cleve, 2012,276

eq. A12, Van Cleve, 2015, eq. 38, Mullon et al., 2016, eq. box 1a), which themselves may depend on277

integrals depending on the control schedules of the individuals in interaction. Such situations can be278

analysed either by defining state variables whose integrated values represent the integral, and are covered279

by the scrap value Φ(x•(tf)) in eq. (13), or by noting that to the first-order, functions of integrals can be280

replaced by integrals of first-order Taylor series of fitness and hence the f(u•(t),x•(t)) fitness component281

in eq. (13) may be evaluated as a first-order Taylor expansion of fitness in its vital rates (e.g., Van Cleve,282

2015, eq. 39, Mullon et al., 2016, eq. A60-A61).283

3.1.2 Concept of neutral reproductive and shadow value284

A central role in our analysis will be played by the (neutral) reproductive value

v(t,x(t);u) =

∫ tf

t

f (τ,u(τ),x(τ)) dτ + Φ(x(tf)) (19)

of an individual at time t in a resident population, which gives the total contribution to fitness from time t

onward of a (recipient) individual when the current state variables of the actors on its fitness is x(t). The

argument u has been separated with the semicolon in order to emphasise that the reproductive value is

evaluated assuming a fixed control trajectory where u is treated as a parameter. Hence, the reproductive

value is formally a function of current time t and state x(t) (v : T × R
3 → R+). In Appendix B.1, we
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show that the reproductive value satisfies the following partial differential equation (PDE)

−∂v(t,x(t);u)

∂t
= f(t,u(t),x(t)) + g(u(t),x(t))

(

1 · λ(t,x(t);u)
)

(20)

with final condition (“f.c.”) v(tf ,x(tf);u) = Φ(x(tf)), where 1 = (1, 1, 1), “·” is the inner product of

vectors and the vector

λ(t,x(t);u) = ∇v(t,x(t);u) =

(
∂v(t,x•(t);u)

∂x•(t)
,
∂v(t,x•(t);u)

∂x◦(t)
,
∂v(t,x•(t);u)

∂x(t)

)∣
∣
∣
∣
x•(t)=x(t)

(21)

is the gradient of the reproductive value with respect to the changes in the state variables of each individual285

affecting the focal’s fitness (and associated with fixed resident control path u). In the last equality, we286

use the vector x•(t) as an argument of the reproductive value (which is defined in a resident population),287

which might be confusing at first glance, since all individuals in the resident population are actually in288

the same state. However, the reason why we use the vector x•(t) when expressing the partial derivatives289

is because we want to emphasise which state (focal indidivual’s, average neighbour’s or average in other290

groups) we are varying.291

The “-” sign on the left-hand-side of eq. (20) indicates that the reproductive value of an individual is292

growing when looking backwards in time. Hence, it grows according to the current rate f(t,u(t),x(t)) of293

fitness increase and the sum 1 ·λ(t,x(t);u) of the effects of the current state change of each type of actor294

on the future fitness of the focal individual, weighted by the change g(u(t),x(t)) of state of the actors295

that are all the same in a resident population. The elements of the gradient λ(t,x(t);u) are called the296

shadow values of the states in the optimal control literature (see e.g. Dorfman, 1969; Caputo and Caputo,297

2005), since by changing state, there is no immediate effect on fitness, but only future fitness effects.298

3.1.3 Concept of open and closed-loop controls299

Because the internal and external conditions of organisms vary, trait expression can evolve to be func-

tionally dependent on these conditions (Sibly and McFarland, 1976; McFarland, 1977; McFarland and

Houston, 1981; Houston et al., 1999). Hence, trait expression can depend on time and state variables.

Focusing on the resident trait u(t), we can conceptualise trait expression in (at least) two different ways

that are relevant to evolutionary biology. Namely,

u(t) =







d(t,x(t)) closed-loop (feedback) control

d(t) open-loop control,
(22)
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where the function d : T ×R
3 → U is the trait expression rule (or decision rule for short) in the so-called300

closed-loop (or feedback or Markovian) form of the control variable (Basar and Olsder, 1999, p. 221,301

Dockner et al., 2000, p. 59).302

3.2 First-order conditions for closed-loop controls303

3.2.1 The first-order condition in terms of dynamic constraints304

Let us now evaluate the point-wise fitness effects of Hamilton’s marginal rule (7) by substituting the

fitness function eq. (13) into eq. (8) and taking the derivative with respect to u•(t) and u◦(t). Calculations

displayed in Appendix B (in particular eqs. B.16–B.28) then show that the direct effect is

−c(t, u) =
∂f(t,u•(t),x(t))

∂u•(t)

∣
∣
∣
∣
u•(t)=u(t)

︸ ︷︷ ︸

effect on current fitness

+
∂g(u•(t),x(t))

∂u•(t)

∣
∣
∣
∣
u•(t)=u(t)

︸ ︷︷ ︸

effect on current state change

· λ(t,x(t);u)
︸ ︷︷ ︸

state change effect
on future fitness

(23)

and the indirect effect is

b(t, u) =
∂f(t,u•(t),x(t))

∂u◦(t)

∣
∣
∣
∣
u•(t)=u(t)

︸ ︷︷ ︸

effect on current fitness

+
∂g(u•(t),x(t))

∂u◦(t)

∣
∣
∣
∣
u•(t)=u(t)

︸ ︷︷ ︸

effect on current state change

· λ(t,x(t);u)
︸ ︷︷ ︸

state change effect
on future fitness

.
(24)

The derivatives are evaluated at u = d(x) = {d(t,x(t))}t∈T for closed-loop controls and at u =305

d = {d(t)}t∈T for open-loop controls, where d(t,x(t)) = (d(t,x(t)), d(t,x(t)), d(t,x(t))) and d(t) =306

(d(t), d(t), d(t)) are vectors of closed-loop and open-loop trait expression rules, respectively, evaluated in307

a resident population.308

We now make two observations about the direct and indirect effects. First, the perturbations of309

the change of the state variables (∂g(u•(t),x(t))/∂u•(t) and ∂g(u•(t),x(t))/∂u◦(t)) have cascading310

downstream effects on fitness growth rate f(t,u•(t),x•(t)), but since under a first-order analysis ev-311

erything else than the original perturbation needs to be held constant, the downstream effects are312

accounted for by the shadow values λ(t,x(t);u) evaluated in the resident population. Second, the313

state dynamics of an average individual in the population is not affected from variations in u• and314

u◦ (∂g(u(t),x(t))/∂u•(t) = ∂g(u(t),x(t))/∂u◦(t) = 0, by way of eq. 16).315

In order to obtain a full characterisation of the first-order condition taking into account the dynamic

constraints brought by the shadow value, it is useful to introduce the Hamiltonian function

H
(

t,u•(t),x•(t),λ(t,x(t);u)
)

= f(t,u•(t),x•(t)) + g(u•(t),x•(t)) · λ(t,x(t);u). (25)

This can be thought of as the contribution to individual fitness of all current “activities” (Dorfman, 1969,316
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p. 822); namely, the (phenotypic) expressions u•(t) of all individuals currently in state x•(t) at t, holding317

everything else fixed in a resident population. It is thus the sum of the current rate of fitness contribution318

f(t,u•(t),x•(t)) and the changes in states g(u•(t),x•(t)) = (g(u•(t),x•(t)), g(u◦(t),x◦(t)), g(u(t),x(t)))319

weighted by λ(t,x(t);u) evaluated in the resident population, since the shadow values do not directly320

depend on the activities at time t. Our next result (proved in Appendices B.1 and B.2) establishes the321

necessary condition for uninvadability for closed-loop control paths as follows.322

Closed-loop control result. Let u∗ = d∗(x∗) = {d∗(t,x∗(t))}t∈T be a candidate uninvadable closed-

loop control path with associated state path x∗ = {x∗(t)}t∈T , where x∗(t) = (x∗(t), x∗(t), x∗(t)) and

shadow value λ∗(t,x∗(t)) = λ(t,x∗(t);u∗). The candidate uninvadable control path d∗(x∗) has to nec-

essarily satisfy eq. (12), where the point-wise selection coefficient s(t, u∗) on control component u∗(t) =

d∗(t, x∗(t)) can be written for all t ∈ T as

s(t, u∗) =




∂H
(

t,u•(t),x∗(t),λ∗(t,x∗(t))
)

∂u•(t)
+ r(u∗)

∂H
(

t,u•(t),x∗(t),λ∗(t,x∗(t))
)

∂u◦(t)





u•(t)=d∗(t,x∗(t))

,

(26)

where d∗(t,x∗(t)) = (d∗(t,x∗(t)), d∗(t,x∗(t)), d∗(t,x∗(t))), the state variable satisfies

dx∗(t)

dt
= g(d∗(t,x∗(t)),x∗(t)) with i.c. x∗(0) = xinit, (27)

and the shadow value function λ∗(t,x∗(t)) = ∇v∗(t,x∗(t)) is obtained from the reproductive value function

v∗(t,x∗(t)) = v(t,x∗(t);u∗) that satisfyies

−∂v∗(t,x∗(t))

∂t
= H

(

t,d∗(t,x∗(t)),x∗(t),λ∗(t,x∗(t))
)

with f.c. v∗(tf ,x
∗(tf)) = Φ(x∗(tf)). (28)

We now emphasise two points about this result where all quantities are evaluated on the resident323

control u∗ = d∗(x∗) and state x∗ paths. First, the dynamic constraints entail solving forward in time324

eq. (27), which is an ODE (ordinary differential equation), and solving backwards in time eq. (28),325

which is a PDE (partial differential equation). Thus, the Hamiltonian can be thought as the growth326

rate of the reproductive value (when looking backwards in time). For a reader familiar with the dynamic327

programming literature, the reproductive value v∗(t,x∗(t)) is not the so-called value function of the model328

and hence eq. (20) (even when evaluated along the candidate uninvadable control path u• = u∗) is not the329

eponymous Hamilton-Jacobi-Bellman equation (e.g., Bryson and Ho, 1975; Kamien and Schwartz, 2012;330

Basar and Olsder, 1999; Dockner et al., 2000; Liberzon, 2011; Weber, 2011). This means that the above331

result says nothing about the sufficiency of uninvadability, like any standard first-order selection analysis.332
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In this regard, our result provides a weaker, yet simpler and novel condition to characterise closed-loop333

controls. In this way our analysis does not reduce to standard optimal control theory approach and is a334

separate approach.335

Second, by substituting eq. (25) into (26) yields that any interior candidate uninvadable strategy

satisfying s(t, u∗) = 0 (recall 12) must satisfy

−
[
∂f(t,u•(t),x∗(t))

∂u•(t)
+ r(u∗)

∂f(t,u•(t),x∗(t))

∂u◦(t)

]

u•(t)=d∗(t,x∗(t))
︸ ︷︷ ︸

current inclusive fitness effect

=

[
∂g(u•(t),x∗(t))

∂u•(t)
+ r(u∗)

∂g(u•(t),x∗(t))

∂u◦(t)

]

u•(t)=d∗(t,x∗(t))

· λ∗(t,x∗(t))

︸ ︷︷ ︸

state-modulated future inclusive fitness effect

, (29)

This fundamental balance condition says that the current inclusive fitness effect (on the focal individual)

is traded-off (hence the negative sign) by the state-modulated future inclusive fitness effect resulting from

the change in state variables. This trade-off is instrumental in allowing to characterise the candidate

uninvadable control u∗(t) = d∗(t,x∗(t)), which can be typically done in two steps. The first step is to

determine u∗(t) satisfying (29), while treating the system state x∗(t) and its shadow value λ∗(t,x∗(t))

as parameters, yielding the implicit expression

u∗(t) = D(t,x∗(t),λ∗(t,x∗(t))), (30)

in terms of some function D (that satisfies eq. 29). Essentially, this step is akin to solving a static (one-336

dimensional) first-order condition (and which can in principle also be used whenever s(t, u∗) 6= 0, Dockner337

et al., 2000, p. 97). We will refer to this first-step characterisation as the static characterisation, since it338

allows to characterise the general nature of the solution in terms of x∗(t) and λ∗(t,x∗(t)) independently of339

their explicit values. The second step entails solving for the trajectories of x∗(t) and v∗(t,x∗(t)) generated340

by eqs. (27) and (28) under eq. (30) and then taking the gradient of ∇v∗(t,x∗(t)) to obtain λ∗(t,x∗(t)).341

Finally, after solving for trajectories x∗(t) and λ∗(t,x∗(t)) we can explicitly characterise the candidate342

uninvadable control by substituting these solutions into eq. (30). Solving eq. (28) for v∗(t,x∗(t)) is the343

main technical challenge in finding the candidate uninvadable traits.344

It is also often the case in biological models that the Hamiltonian is affine in the control variables so

that fitness depends linearly on the evolving traits (e.g. Macevicz and Oster, 1976; Perrin, 1992; Perrin

et al., 1993; Irie and Iwasa, 2005; Avila et al., 2019). In such cases, controls do not appear in the selection

gradient (26) and hence, one can not directly determine from it the static characterisation (30). These

types of controls are known to be singular arcs (see Kelley, 1964; Kopp and Moyer, 1965; Goh, 1966
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for classic developments and see e.g. Sethi and Thompson, 2006; Bryson and Ho, 1975 for textbook

treatments). In order to characterise the candidate uninvadable singular arc, we can take the total time

derivative of the selection gradient s(t, u∗), which (potentially) provides an additional algebraic equation

in the variables (u∗, x∗, λ∗) that can contain the control(s) with a non-zero coefficient. In case it does

not, another time derivative can be taken until expression for u∗ can be obtained. Hence, for singular

arcs, we can obtain the static characterisation (30) by applying

(
d

dt

)i

s(t, u∗) = 0 ∀i ∈ {1, 2, ...}, (31)

until u∗ can be obtained. Note that for a candidate uninvadable control to be a singular arc, eq. (31)345

has to hold for a finite interval. If eq. (31) does not hold over a finite interval, then u∗ is known to be346

a bang-bang control (see e.g. Sethi and Thompson, 2006; Bryson and Ho, 1975), meaning that u∗ takes347

the values only on its boundaries (u∗(t) = umax(t) or u∗(t) = umin(t), owing to eq. 12).348

3.2.2 Shadow value dynamics and state feedback in a resident population349

From the static (first-step) characterisation of u∗(t) = d∗(t,x∗(t)) (eq. 30), we observe that the candidate

uninvadable trait is at most a function of λ∗(t,x∗(t)), but does not directly depend on the reproductive

value v∗ itself. Furthermore, taking the partial derivative of eq. (28) with respect to x∗(t) and using the

definition of the Hamiltonian (25) and re-arranging (see sections B.1.2 and B.3 in Appendix) yields

− dλ∗(t,x∗(t))

dt
= ∇H

(

t,d(t,x(t)),x(t),λ∗(t,x∗(t))
)∣
∣
∣ x(t)=x∗(t)
d(t,x(t))=d∗(t,x∗(t))

=




∂H
(

t,d(t,x•(t)),x•(t),λ∗(t,x∗(t))
)

∂x•(t)
,
∂H
(

t,d(t,x•(t)),x•(t),λ∗(t,x∗(t))
)

∂x◦(t)
,

∂H
(

t,d(t,x•(t)),x•(t),λ∗(t,x∗(t))
)

∂x(t)





x(t)=x∗(t)
d(t,x•(t))=d∗(t,x∗(t))

(32)

with f.c. λ∗(tf ,x
∗(tf)) = ∇Φ(x∗(tf)) and where d(t,x•(t)) = (d(t,x•(t)), d(t,x◦(t), d(t,x(t)). The

dynamics of the shadow value, given by eq. (32), may at first glance appear to be an ODE (and therefore

easier to solve than eq. 28, which is clearly a PDE for the reproductive value v∗). This may lead one

to hope that it is possible to circumvent from explicitly determining v∗, by simply solving eq. (32) to

directly obtain λ∗. But this hope is crushed by the trait dependence on state, which entails that eq. (32)

depends on the derivatives of the elements of d(t,x•(t)) with respect to state, which in turn depends on
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higher-order derivatives of v(t,x∗(t);u∗). This can be seen by using eq. (30), whereby

∂d(t,x•(t))

∂x•(t)

∣
∣
∣
∣
x•(t)=x∗(t)

=
∂D(t,x•,λ(t,x•(t);u∗))

∂x•(t)

∣
∣
∣
∣
x•(t)=x∗(t)

, (33)

which unveils that eq. (32) is actually a PDE. This means that in general it is not possible to determine350

the candidate uninvadable trait from using eq. (32), which has been repeatedly stressed in optimal control351

theory (e.g. Starr and Ho, 1969a,b; Başar, 1977). However, the analysis of the components of eq. (32) has352

less been stressed, but turns out to be informative in highlighting the main similarities and differences353

between selection on closed-loop and open-loop controls.354

Lets now decompose eq. (32) for the component λ∗
•(t,x∗(t)) = ∂v(t,x•(t);u∗)/∂x•(t)|x•(t)=x∗(t) (sim-

ilar results hold for the other shadow values (see Appendix B.3) and write

− dλ∗
•(t,x∗(t))

dt
=

∂H
(

t,d(t,x•(t)),x•(t),λ∗(t,x∗(t))
)

∂x•(t)

∣
∣
∣
∣
∣
∣ x•(t)=x∗(t)
d(t,x•(t))=d∗(t,x∗(t))

=
∂H(t,u∗(t),x•(t),λ∗(t,x∗(t)))

∂x•(t)

∣
∣
∣
∣
x•(t)=x∗(t)

︸ ︷︷ ︸

direct effect of state change

+

∂H(t,d(t,x•(t)),x∗(t),λ∗(t,x∗(t)))

∂x•(t)

∣
∣
∣
∣
d(t,x•(t))=d∗(t,x∗(t))

︸ ︷︷ ︸

feedback effect of state change

, (34)

with f.c. λ∗
•(tf ,x

∗(t)) = ∂Φ(x•(tf))/∂x•(tf)|x•(tf )=x∗(tf ). This says that the rate of change of the shadow

value is given by a direct effect of state change on the Hamiltonian (current fitness effect and state-

modulated fitness effect) and a feedback effect on the Hamiltonian, which arises since closed-loop traits

react to changes in the state. Using the expression for the Hamiltonian in eq. (25), the expressions for

direct and indirect effects in eq. (23)–(24), and noting that ∂d(t,x(t))/∂x•(t) = 0, the trait feedback

effect can be further expanded as

∂H(t,d(t,x•(t)),x∗(t),λ∗(t,x∗(t)))

∂x•(t)

∣
∣
∣
∣
x•(t)=x∗(t)

= −c(t, u∗)
∂d(t,x•(t))

∂x•(t)

∣
∣
∣
∣
x•(t)=x∗(t)

+ b(t, u∗)
∂d(t,x◦(t))

∂x•(t)

∣
∣
∣
∣
x•(t)=x∗(t)

(35)

where the derivatives ∂d(t,x•(t))/∂x•(t) and ∂d(t,x◦(t))/∂x•(t) give the trait sensitivities of the focal355

individual and its average neighbour, respectively, at time t to changes in focal’s state variable x•(t).356

Hence, the feedback effect of state change is equal to the trait sensitivities of all individuals in the group357

weighted by their effects on the focal’s fitness (the latter are effectively the direct and indirect fitness358

effects).359
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We now make three observations about eqs. (34)–(35). First, trait sensitivities result in inter-temporal360

feedbacks in trait expressions. We can see this by first observing that current trait expression affects361

changes in state variables (by way of the second line of eq. 29) which affect future fitness (measured362

by the shadow value). In turn, the dynamics of shadow value takes into account that closed-loop traits363

respond to changes in state variables (by way of the second line of eq. 35). That is, the shadow value takes364

into account the effects of current trait expression on future trait expression. Hence, under closed-loop365

control, the current trait expression of one individual is linked to future trait expression of itself and other366

individuals in its group. Second, the sign of the feedback effect of state change (sign of eq. 35) determines367

the direction of the effect of trait sensitivities on the shadow values. This means that the sign of the368

feedback effect balances the trade-off between current and future (state-modulated) fitness effects (by way369

of eq. 29). For positive feedback effect, trait sensitivity increases future (inclusive) fitness gains (second370

line of eq. 29), while for negative feedback effect, trait sensitivity decreases future (inclusive) fitness gains.371

Third, the shadow value dynamics given by eqs. (34)–(35) is different from that in classical results from372

dynamic game theory (first developed by Starr and Ho, 1969a,b), where the feedback effect through the373

focal’s own trait variation does not appear due to the absence of interactions between relatives, whereby374

−c(t, u∗) = 0 at s(t, u∗) = 0. By contrast, in our model with interactions between relatives one has375

−c(t, u∗) + r(u∗)b(t, u∗) = 0 at s(t, u∗) = 0. Thus, we recover the classical result for the feedback effect376

from dynamic game theory when r(u∗) = 0.377

We now consider three scenarios (which are relevant for biology) under which the feedback term378

(given by eq. 35) that describes the dynamics of λ∗
•(t,x∗(t)) vanishes (similar arguments also hold for379

the feedback term λ∗
◦(t,x∗(t)) and recall that we do not need to consider the dynamics λ∗(t,x∗(t)) here,380

because λ∗(t,x∗(t)) does not affect the selection gradient). That is, we consider scenarios for which381

eq. (32) is a system of ODE’s (for components λ∗
•(t,x∗(t)) and λ∗

◦(t,x∗(t))) and therefore solving a382

PDE (28) for v∗(t,x∗(t)) is not necessary to determine the candidate uninvadable trait. These three383

scenarios are as follows.384

(i) Open-loop u(t) = d∗(t) controls. Because the traits do not depend on the state variables, ∂d•(t)/∂x•(t) =385

0 and ∂d◦(t)/∂x•(t) = 0, which implies that eq. (35) vanishes.386

(ii) No social interactions in the group, meaning that fitness components of individuals do not depend387

on traits and states of other individuals in the group, i.e. the fitness components f , Φ and g of388

the focal individual do not depend on u◦ and x◦, hence b(t, u∗) = 0. It then further follows from389

eq. (26) that in order for s(t, u∗) = 0 to be satisfied, we need c(t, u∗) = 0. It then follows directly390

that eq. (35) vanishes.391

(iii) In a population of clonal groups (r(u∗) = 1) that share a common state variable (x•(t) = x◦(t),392
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e.g. common resource in the group). Two observations can be made for this scenario. First, from393

eq. (26) it follows that −c(t, u∗)+b(t, u∗) = 0 for clones at s(t, u∗) = 0. Second, since x•(t) = x◦(t),394

then e.g. ∂d(t,x•(t))/∂x•(t) = ∂d(t,x◦(t))/∂x•(t). Combining these two observations directly395

leads to conclude that the feedback term eq. (35) vanishes.396

There are a two implications that follow for these three cases. First, open-loop and closed-loop evolu-397

tionary equilibria are in general different, since the state-feedback effect causes inter-temporal feedbacks398

between trait expressions of locally interacting individuals under closed-loop controls, which are not399

possible under open-loop controls. However, if individuals do not locally interact or if they interact in400

clonal groups, then closed-loop and open-loop representation of controls produces the same candidate401

uninvadable trait and state trajectories. Second, since the feedback effect (eq. 35) vanishes for open-loop402

controls, the sign of the feedback effect is crucial in comparing closed-loop and open-loop controls. Most403

importantly, the sign of the feedback effect allows to compare the balance of the trade-off between current404

versus future (inclusive) fitness effects between open-loop and closed-loop controls (by way of eq. 29).405

If the feedback effect is positive, then the (inclusive) fitness gain from future (second line of eq. 29) is406

higher under closed-loop control than under open-loop control. If the feedback effect is negative, then407

the (inclusive) fitness gain from future is lower under closed-loop control than under open-loop control.408

3.3 First-order conditions for open-loop controls409

We now focus specifically on open-loop controls by pointing out the simplifications that arise when the

decision rule depends only on time:

u(t) = d(t). (36)

As we showed in the previous section, for open-loop controls the state-feedback term in eq. (35) for410

the dynamics of the shadow value λ∗
•(t,x∗(t)) vanishes since ∂d•(t)/∂x•(t) = 0 and ∂d◦(t)/∂x•(t) = 0411

(similarly it vanishes also for λ∗
◦(t,x∗(t)) and λ∗(t,x∗(t))), which implies that eq. (32) is a system of412

ODE’s). Hence, we can characterise the necessary condition for an open-loop control paths as follows.413

Open-loop control result. Let u∗ = d∗ = {d∗(t)}t∈T be the candidate uninvadable open-loop control

path with associated state path x∗ = {x∗(t)}t∈T and shadow value λ∗(t) = λ∗(t,x∗(t)). The candidate un-

invadable control path u∗ = d∗ has to necessarily satisfy eq. (12), where the point-wise selection coefficient

s(t, u∗) on a control component u∗(t) = d∗(t) can be written for all t ∈ T as

s(t, u∗) =




∂H
(

t,u•(t),x∗(t),λ∗(t)
)

∂u•(t)
+ r(u∗)

∂H
(

t,u•(t),x∗(t),λ∗(t)
)

∂u◦(t)





u•(t)=d∗(t)

(37)
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where d∗(t) = (d∗(t), d∗(t), d∗(t)), the state variable satisfies

dx∗(t)

dt
= g(d∗(t),x∗(t)) with i.c. x∗(0) = xinit, (38)

and the shadow values satisfy

−dλ∗(t)

dt
= ∇H

(

t,d∗(t),x(t),λ∗(t)
)∣
∣
∣
x(t)=x∗(t)

with f.c. λ∗(tf) = ∇Φ(x(tf))|x(tf )=x∗(tf ). (39)

This result is Pontryagin’s weak principle for interactions between relatives (since only small mutant414

deviations are considered, Speyer and Jacobson, 2010, p. 74) and only requires consideration of the shadow415

value. It has been derived previously Day and Taylor (1997, 2000), for a slightly less general model, where416

individuals locally play the field (fitness only depends on the traits of individuals in the focal group) or417

interact in a pairwise way (see also Day and Taylor, 1998; Wild, 2011 for related work). Yet this result418

covers both group-structured and panmictic populations and thus covers the first-order condition result419

of Metz et al. (2016) as well as those of classical life-history models (e.g., Perrin and Sibly, 1993 for a420

review). We here re-derived this result as a corollary of the closed-loop result of the previous section when421

the feedback-terms describing the dynamics of the shadow value λ(t) vanish (i.e, eq. 35 vanishes). Hence,422

we closed the loop between the selection gradient on function-valued traits, invasion implies substitution,423

Hamilton’s rule, dynamic programming, and Pontryagin’s (weak) maximum principle.424

3.4 Special case controls425

We now work out further simplifications that arises in the characterisation of the first-order condition426

when more specific biological assumptions are made.427

3.4.1 Stationary controls428

For instance, under several biological situations, the individual fitness function (eq. 13) can be expressed

in the simpler form

w(u•, u◦, u) =

∫ ∞

0

e−µtf̃(u•(t),x•(t))dt. (40)

Here, the time horizon is large (tf → ∞), there is no scrap value (Φ(x•(tf)) = 0), µ is a constant429

mortality (or discount) rate so that e−µt can be interpreted as the probability of survival until time430

t, and f̃(u•(t),x•(t)) = eµtf(t,u•(t),x•(t)) is the current rate of fitness increase at time t, which is431

assumed to not dependent on the time variable t (in game theory, fitness functions like eq. 40 cover the432

so-called infinite-horizon autonomous differential games, Dockner et al., 2000; Weber, 2011).433
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The relevant feature of this setting is that, conditional on reaching a certain time (or age), the

remaining fitness is the same as the original fitness; future fitness is thus time invariant. This can

be seen more explicitly by considering the reproductive value. Indeed, conditional on reaching time t,

which occurs with probability e−µt, the conditional reproductive value starting at t–the current-value

reproductive value–is given by

ṽ(t,x(t);u) = eµtv(t,x(t);u) =

∫ ∞

t

e−µ(τ−t)f̃ (u(τ),x(τ)) dτ. (41)

This takes exactly the same functional form starting at any time t ∈ [0,∞) (in game-theory terms it is

said that “fundamentals of the game do not change over time” Dockner et al., 2000, p. 97). Owing to this

time invariance, trait expression could be taken to be time invariant as well and we now let the control

take the following form

u(t) = d(x(t)), (42)

which we call a (closed-loop) stationary control (called a stationary feedback control or a stationary

Markov strategy in game theory, e.g., Dockner et al., 2000; Weber, 2011). On substituting the stationary

control (42) into eq. (41), we see that the current-value reproductive value is independent of time and

thus stationary

ṽ(t,x(t);u) = ṽ(x(t);u) for all t ∈ [0,∞). (43)

This means that given some fixed initial value x(t) = xinit, the current-value reproductive value is the

same regardless of the time the process is started. So any variation in the initial value has a time-

independent effect on ṽ(t,x(t);u), which, more formally owing to eq. (43) satisfies

∂ṽ(t,x(t);u)

∂t
=

∂ṽ(x(t);u)

∂t
= 0 and ∇ṽ(t,x(t);u) = ∇ṽ(x(t);u) = λ̃(x(t);u) (44)

where λ̃(x(t);u) = eµtλ(t,x(t);u) is the current-value shadow value that depends on time only indirectly434

through x(t).435

This feature of stationary controls allows to markedly simplify their first-order characterisation (as

shown by many examples of the game theory literature e.g., Dockner et al., 2000; Weber, 2011, p. 97). In

order to carry out this characterization explicitly it is useful to use the notion of current-value Hamiltonian
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(Weber, 2011, p. 111), which in our setting is defined as

H̃
(

u•(t),x•(t), λ̃(x(t);u)
)

= eµtH
(

t,u•(t),x•(t),λ(t,x(t);u)
)

= f̃(u•(t),x•(t)) + g(u•(t),x•(t)) · λ̃(x(t);u). (45)

Applying eqs. (41)–(45) to eqs. (26)–(28) establishes the necessary condition for uninvadability of sta-436

tionary controls as follows.437

Stationary (closed-loop) control result. Let u∗ = d∗(x∗) = {d∗(x∗(t))}t∈T be a candidate unin-

vadable stationary (closed-loop) control path with associated state path x∗ = {x∗(t)}t∈T and stationary

current-value shadow value λ̃∗(x∗(t)) = ∇ṽ∗(x∗(t)) with current-value reproductive value ṽ∗(x∗(t)) =

ṽ(x∗(t);u∗). The candidate uninvadable control path d∗(x∗) has to necessarily satisfy eq. (12), where the

point-wise selection coefficient s(t, u∗) on control component u∗(t) = d∗(x∗(t)) can be written for all t ∈ T

as

s(t, u∗) = eµt




∂H̃
(

u•(t),x∗(t),λ∗(x∗(t))
)

∂u•(t)
+ r(u∗)

∂H̃
(

u•(t),x∗(t),λ∗(x∗(t))
)

∂u◦(t)





u•(t)=d∗(x∗(t))

, (46)

where d∗(x∗(t)) = (d∗(x∗(t)), d∗(x∗(t)), d∗(x∗(t))), the state variable satisfies

dx∗(t)

dt
= g(d∗(x∗(t)),x∗(t)) with i.c. x∗(0) = xinit, (47)

and the current-value reproductive value satisfies

µ ṽ∗(x∗(t)) = H̃
(

d∗(x∗(t)),x∗(t), λ̃∗(x∗(t))
)

. (48)

Here, eq. (48) follows from taking the (partial) time derivative of (first two equalities of) eq. (41) to438

obtain ∂ṽ(x(t);u)/∂t = µeµtv(t,x(t);u)+eµt∂v(t,x(t);u)/∂t = µṽ(x(t);u)+eµt∂v(t,x(t);u)/∂t = 0 and439

then using eqs. (28) and (45). By contrast to eq. (28), eq. (48) does not involve any partial derivatives440

with respect to time. Furthermore, if x∗(t) is one-dimensional then λ̃∗(x∗(t)) is also one-dimensional,441

and in this case eq. (48) is an ordinary differential equation. Hence, the analysis of stationary controls is442

generally more tractable.443

3.4.2 Constant controls444

We finally turn to a type of control that that is not analysed in the optimal control theory literature,445

yet is relevant to evolutionary biology. This is the case of constant control u(t) = uc ∈ R for all t ∈ T ,446
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where the subscript c emphasises that the control is independent of time. While constant controls are447

essentially scalar traits, these traits may nevertheless affect the dynamics of state variables that in turn448

affect fitness, and this makes the analysis of a necessary first-condition for uninvadability time-dependent.449

We finally provide this characterisation as a corollary of the ”Open-loop control result” result as follows.450

Constant control result. Let u∗
c ∈ R be a candidate uninvadable constant control (a scalar trait) with

associated state path x∗ = {x∗(t)}t∈T and shadow value λ∗(t). The candidate uninvadable control u∗ has

to satisfy eq. (10) with the (scalar) selection coefficient

s(u∗) =

∫ tf

0




∂H
(

t,u•(t),x∗(t),λ∗(t)
)

∂u•(t)
+ r(u∗)

∂H
(

t,u•(t),x∗(t),λ∗(t)
)

∂u◦(t)





u•(t)=u
∗

c

dt, (49)

where u∗
c = (u∗

c , u
∗
c , u

∗
c), the state variable satisfies

dx∗(t)

dt
= g(u∗

c ,x
∗(t)) with i.c. x∗(0) = xinit, (50)

and the shadow values satisfy

−dλ∗(t)

dt
= ∇H

(

t,u∗
c ,x(t),λ∗(t)

)∣
∣
∣
x(t)=x∗(t)

with f.c. λ∗(tf) = ∇Φ(x(tf))|x(tf )=x∗(tf ). (51)

The key difference between this result and the ”Open-loop control result” is eq. (49), which says that451

the selection coefficient depends on the derivatives of the Hamiltonian integrated over the interaction452

period T . This follows directly from the fact that the control is a scalar and a mutant schedule is deviated453

in the same direction at all time points (hence there are no differences in point-wise deviations). Rather454

surprisingly, this or closely related results do not seem to have appeared previously in the optimal control455

nor evolutionary biology literature, even for the special cases of no interactions between individuals. But456

it may be useful for example in connecting our approach with neural networks or genetic networks (see457

Discussion).458

4 Examples459

4.1 Common pool resource production460

4.1.1 Biological scenario461

We here present an application of our results to the production of common pool resource that returns462

fitness benefits to all group members but is produced at a personal fitness cost. The evolving trait we463
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consider is the schedule u = {u(t)}t∈T of effort invested into resource production during an interaction464

period T ∈ [0, tf ] and we will hereinafter refer to the control u(t) as the production effort at time t. Let465

u•(t), u◦(t), u(t) denote the production efforts at time t of the focal individual, average neighbour in466

the focal group, and average individual (from other groups) in the population, respectively. Let xc(t)467

and x(t) be the resource level at time t (the total amount of resources produced) in the focal group468

and the average group in the population, respectively. Note that here we have a common state variable469

xc(t) = x•(t) = x◦(t) between individuals in the same group and individuals interact through the state470

only locally (resources produced in other groups does not directly affect the fitness of individuals in the471

focal group).472

We study the evolution of the production effort under two different scenarios: (i) individuals can473

adjust their production effort according to the (local) resource level xc(t) (closed-loop control) and (ii)474

individuals are committed to a fixed schedule of production effort (open-loop control). One difficulty in475

analysing the evolution of such traits is that limited genetic mixing generates relatedness between group476

members but also competition between them, which leads to kin competition (e.g., Taylor, 1988; Frank,477

1998; Rousset, 2004; Van Cleve, 2015). Since we want to highlights the key effects of the evolution of478

open-loop and closed-loop controls in the context of interactions between relatives in a simple way, we479

want to avoid the complexities brought by kin competition and thus assume implicitly a life cycle that480

entails no kin competition and that relatedness is independent of the control r(u) = r.481

In particular, we assume that individual fitness takes the form

w(u•, u◦, u) = xc(tf) − ceffort

∫ tf

0

u•(t)2 dt, (52)

which depends on the resource level xc(tf) in the group at the end of interaction period tf and on the

accumulated (personal) cost of producing the common resource for the group (the second term in eq. 52).

Here ceffort is a parameter scaling the personal cost. The resource level xc(tf) and ceffort are measured

in units of the number of offspring to the focal individual and scaled such that they inherently take into

account the proportional effect of density-dependent competition (proportional scaling of fitness does not

affect the direction of selection). We assume that xc(t) depends on the total amount of production effort

that individuals in the focal’s group invest into producing it and that the return from this effort decreases

exponentially with the current level of resource

dxc(t)

dt
= a

(

u•(t) + (N − 1)u◦(t)
)

e−xc(t) xc(0) = 0, (53)

where the parameter a > 0 is the efficiency of producing the common resource.482
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We now make two observation about this model. First, neglecting the effects of kin competition in483

eq. (52) does not lead to any loss of generality in our forthcoming analysis, since taking kin competition484

into account would only affect the final results by re-scaling the value of relatedness (e.g., Van Cleve, 2015;485

Mullon et al., 2016). Second, the mathematical properties and thus the structure of the game embodied486

in eqs. (52)–(53) are equivalent to those of the parental investment game model of Ewald et al. (2007)487

from which we took inspiration. However, biologically eqs. (52)–(53) have a different interpretation, since488

our model considers interactions between relatives (Ewald et al., 2007 considers pair-wise interactions489

of non-relatives) and we will compares open-loop and closed-loop controls (Ewald et al., 2007 compares490

static traits with closed-loop traits). The forthcoming analysis will also conceptually depart from that of491

Ewald et al. (2007), because it will be based on the (neutral) reproductive value function (28), while their492

analysis is based on solving the Hamilton-Jacobi-Bellman equation for the optimal value function (see493

Ewald et al., 2007, p. 1456) with which the present n− player scenario cannot be obtained as a trivial494

extension of the approach used in (Ewald et al., 2007).495

4.1.2 Static characterisation of the production effort496

From eq. (52), the reproductive value (eq. 19) for this model is

v(t, x(t);u) =

[

x(tf) − ceffort

∫ tf

t

u(t)2 dt

]

(54)

We denote the corresponding shadow value with λc(t, x;u) = ∂v(t, xc(t);u)/∂xc(t)|xc(t)=x(t). Eq. (52)

also entails that the fitness components f and Φ (as defined in eq. 13) take the form

f(t,u•(t), xc(t)) = −ceffortu•(t)2 and Φ(xc(tf)) = xc(tf), (55)

while the rate of change of the state variable xc(t) is given by

gc(u•(t), xc(t)) = a
(

u•(t) + (N − 1)u◦(t)
)

e−xc(t). (56)

On substituting eqs. (55)–(56) into the Hamiltonian (25) produces

H
(

t,u•(t), xc(t), λc(t, x(t);u)
)

= −ceffort

(

u•(t)
)2

+a
(

u•(t) + (N −1)u◦(t)
)

e−xc(t)λc(t, x(t);u), (57)
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which gives the direct fitness effect

−c(t, u∗) =
∂H
(

t,u•(t), x∗(t), λ∗
c(t, x∗(t))

)

∂u•(t)

∣
∣
∣
∣
∣
∣
u•(t)=u∗(t)

= −2ceffortu
∗(t) + aλ∗

c(t, x∗(t))e−x∗(t) (58)

and the indirect fitness effect

b(t, u∗) =
∂H
(

t,u•(t), x∗(t), λ∗
c(t, x∗(t))

)

∂u◦(t)

∣
∣
∣
∣
∣
∣
u•(t)=u∗(t)

= (N − 1)aλ∗
c(t, x∗(t))e−x∗(t), (59)

where λ∗
c(t, x∗(t)) = λc(t, x

∗(t);u∗). Hence, the balance condition (29) for this model reads

2ceffortu
∗(t) = [a + ra(N − 1)] e−x∗(t)λ∗

c(t, x∗(t)). (60)

This says that the net effect on accumulated personal cost due to spending effort to produce a unit resource

must balance out the inclusive fitness benefit associated with that unit resource. Solving eq. (60) for u∗(t)

yields

u∗(t) = γe−x∗(t)λ∗
c(t, x∗(t)), (61)

where

γ =
a(1 + (N − 1)r)

2ceffort
(62)

scales the benefit to cost ratio of producing the resource, note also that γ > 0. Eq. (61) says that497

(candidate uninvadable) production effort u∗(t) decreases exponentially with the resource level x∗(t),498

increases linearly with the shadow value and relatedness, and is not directly dependent on time. This499

general nature of the solution applies to both open-loop and closed-loop controls and is depicted in Fig. 2.500

4.1.3 Closed-loop production effort501

We now turn to analyse u∗(t) explicitly as a function of time when the control is the closed-loop u∗(t) =

d∗(t, x∗(t)), which requires to evaluate x∗(t) and v∗(t, x∗(t)) = v(t, x∗(t);u∗). To that end, we evaluate

the dynamic eq. (53) for xc(t) along u• = u∗ and xc = x∗ and substituting the expression for u∗(t) from

eq. (61), whereby

dx∗(t)

dt
= aNγλ∗

c(t, x∗(t))e−2x∗(t) with i.c. x∗(0) = 0. (63)
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Substituting eq (57) and eq. (61) into eq. (28) and simplifying yields

−∂v∗(t, x∗(t))

∂t
= c1e

−2x∗(t)(v∗x(t, x∗(t)))2 with f.c. v∗(tf , x
∗(tf)) = x∗(tf), (64)

where

c1 = γ(aN − ceffortγ) =
aγ

2
(2N − (1 + (N − 1)r(u∗))) > 0. (65)

Using the method of characteristics, Ewald et al. (2007) showed that the partial differential equation (64)

has the following solution

v∗(t, x∗(t)) = log

(
1

2

√

8c1(tf − t) + exp(2x∗(t)) +
exp(x∗(t))

2

)

− c1(tf − t)
(

1
2

√

8c1(tf − t) + exp(2x∗(t))) + exp(x∗(t))
2

)2

(66)

(our eq. 64 corresponds to eq. (21) of Ewald et al., 2007 where c1 = 3/2k and their solution is presented

on page 1459 of their paper, where c1 = c = 3/2k). Taking the derivative with respect to x∗(t) and upon

simplifying yields the expression for the shadow value

λ∗
c(t, x∗(t)) =

2 exp(x∗(t))
√

8c1(tf − t) + exp(2x∗(t)) + exp(x∗(t))
. (67)

Substituting this into the static characterisation eq. (61) shows that

u∗(t) = d∗(t, x∗(t)) =
2γ

(√

8c1(tf − t) + exp(2x∗(t)) + exp(x∗(t))
) , (68)

where the state variables is the solution of

dx∗(t)

dt
= 2aNγ

exp(−x∗(t))
√

8c1(tf − t) + exp(2x∗(t)) + exp(x∗(t))
with i.c. x∗(0) = 0, (69)

which was obtained by substituting eq. (67) into eq. (63) and for which we were not able to find a closed502

form expression.503
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4.1.4 Open-loop production effort504

We turn to derive the candidate uninvadable open-loop trait u∗(t) = d∗(t). Substituting eq. (57) and

eq. (61) into eq. (39), we arrive, by using eq. (63), at the following two-point boundary value system

ẋ∗(t) = aNγλ∗
c(t)e−2x∗(t) with i.c. x∗(0) = 0

−λ̇∗
c(t) = −aNγ

(

λ∗
c(t)

)2

e−2x∗(t) with f.c. λ∗
c(tf) = 1.

(70)

This system has one real-valued solution

x∗(t) = log

(

t
(√

4aNγtf + 1 − 1
)

2tf
+ 1

)

λ∗
c(t) =

(√
4aNγtf + 1 − 1

) (
t
(√

4aNγtf + 1 − 1
)

+ 2tf
)

4aNγt2f
,

(71)

and substituting this solution back into eq. (61) produces

u∗(t) = d∗(t) =

√
4aNγtf + 1 − 1

2tf
, (72)

which turns out to be constant in time.505

4.1.5 Comparison between closed-loop and open-loop production efforts506

This example illustrates our generic result that in a population of clonal groups (r = 1) closed-loop and507

open-loop equilibria coincide (Figure 3). In a population of non-clonal groups (r < 1) the production508

effort u∗(t) and the resulting amount of resource x∗(t) tend to be lower under the closed-loop equilibrium509

(hereinafter, we simply write “equilibrium”) than under the open-loop equilibrium (Figure 3). Overall,510

the production effort monotonically increases over time for the closed-loop control and stays constant511

under the open-loop control (Figure 3).512

The difference between closed-loop and open-loop (non-clonal) equilibria arises from the difference in

the shadow value dynamics (recall section 3.2.2). We find that the shadow value is lower under closed-

loop control than under open-loop control when r(u∗) < 1 (Fig. 4). This is so because of the feedback

effect of state change (eq. 35), which for our example is

∂H(d(t, xc(t)), x
∗(t), λ∗

c(t, x∗(t)))

∂xc(t)

∣
∣
∣
∣
xc(t)=x∗(t)

=
(

b(t, u∗) − c(t, u∗)
) ∂d(t, xc(t))

∂xc(t)

∣
∣
∣
∣
xc(t)=x∗(t)

< 0. (73)

Since this is negative, the shadow value declines faster backwards in time than under the closed-loop513

equilibrium. In order to understand why the feedback effect is negative, we need to consider the signs514
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of b(t, u∗) − c(t, u∗) and the trait sensitivity ∂d(t, xc(t))/∂xc(t) (which is here the same for all group515

members). The term b(t, u∗) − c(t, u∗) is positive when groups are non-clonal and zero when they are516

clonal (Fig. 5, panel a). This means that if everyone in the group produces more of the resource, then the517

focal’s fitness increases under the non-clonal equilibrium and is unaffected under the clonal equilibrium.518

The trait sensitivity is always negative (Fig. 5, panel b). Hence, individuals will reduce their production519

effort in response to an increase in the resource level and the magnitude of this effect is larger for higher520

values of relatedness.521

In conclusion, investment effort is lower for closed-loop traits than for open-loop traits in a population522

of non-clonal groups (r(u∗) < 1), because closed-loop trait expression takes into account that other523

individuals will reduce their production effort in response to the focal individual increasing its production524

effort. In a population of clonal groups where the focal individual increases its trait expression, the525

response from other individuals will not affect the fitness returns to the focal. For open-loop controls, the526

response from other individuals can never affect the fitness returns, because open-loop control trajectories527

are pre-determined at birth (full commitment to control trajectory) and trait expression can not be528

adjusted in response to changes in the resource level. For clonal groups, trait sensitivity to changes in the529

resource level does not alter individual behaviour, because everyone’s interests in the group are aligned.530

4.2 Common pool resource extraction531

4.2.1 Biological scenario532

We finally present an application for a stationary (closed-loop) control, which involves the same demo-

graphic assumption as the previous example but with fitness given by eq. (40). And we now let u•(t),

u◦(t), u(t) denote the extraction rates of a given resource with abundance xc(t) at time t in the focal

group, which is again taken as a common state variable among group members (xc(t) = x•(t) = x◦(t)).

This resource is assumed to follow the dynamics

dxc(t)

dt
= −

(

u•(t) + (N − 1)u◦(t)
)

with i.c. xc(0) = xinit > 0, (74)

and is thus depleted at a rate given by the sum of the extraction rates within the focal’s group. We

assume that the resources extracted by the focal individual translates into current-value fitness according

to

f̃ (u(t),x(t)) = a
u•(t)1−σ

1 − σ
, (75)
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where the parameter a > 0 is the efficiency of turning extracted resources into producing offspring and533

σ ∈ (0, 1) is a parameter shaping the concavity of the production function, which thus exhibits diminishing534

returns (we used eq. 75 instead of the perhaps biologically more realistic Holling type 2 functional response535

for ease of calculations). The model defined by eqs. (74)–(75) recasts into the homogeneous island model536

the standard baseline resource extraction game of environmental economics (Dockner et al., 2000, chapter537

12.1, Weber, 2011, chapter 4.3).538

4.2.2 Static characterisation of the extraction rate539

On substituting eqs. (74)–(75) into the current-value Hamiltonian (45) and considering only a current-

value shadow value λ̃c
∗(x∗(t)) = etµλ∗

c(t, x∗(t)) (since we have common state variable) produces

H̃
(

u•(t),x•(t), λ̃c(x(t);u)
)

= a
u•(t)1−σ

1 − σ
− λ̃c(x(t);u)

(

u•(t) + (N − 1)u◦(t)
)

. (76)

This yields the direct fitness effect

−c(t, u∗) =
∂H̃
(

u•(t), x∗(t), λ̃c
∗(x∗(t))

)

∂u•(t)

∣
∣
∣
∣
∣
∣
u•(t)=u∗(t)

= au∗(t)
−σ − λ̃c

∗
(x∗(t)) (77)

and the indirect fitness effect

b(t, u∗) =
∂H̃
(

u•(t), x∗(t), λ̃c
∗(x∗(t))

)

∂u◦(t)

∣
∣
∣
∣
∣
∣
u•(t)=u∗(t)

= −(N − 1)λ̃c
∗
(x∗(t)). (78)

For this model, the balance condition reads

au∗(t)
−σ

= [1 + r(N − 1)]λ̃c
∗
(x∗(t)). (79)

This says that the net present personal benefit of a unit extracted resource must balance out the future

inclusive fitness cost resulting from depleting that unit resource, and yields the equilibrium extraction

rate

u∗(t) =

(

[1 + r(N − 1)]λ̃c
∗
(x∗(t))

a

)−(1/σ)

. (80)

4.2.3 Stationary (closed-loop) extraction rate540

Let us now analyse u∗(t) explicitly as a function of time when the control is stationary u∗(t) = d∗(x∗(t)).

Substituting eq. (76) and eq. (80) into eq. (48), simplifying and dropping the time index on the state
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variables yields

µv∗(x∗(t)) = c1v
∗
x(x∗(t))(σ−1)/σ, (81)

which is a differential equation for v∗(x∗) where v∗x(x∗(t)) = λ̃c
∗(x∗(t)) and

c1 =

(
1 + r(N − 1)

a

)−1/σ (
1 + r(N − 1)

(1 − σ)
−N

)

(82)

is a constant that we assume to be positive (which thus requires that 1+r(N−1) > N(1−σ)). Following

Dockner et al. (2000, p. 325) and arguments therein, the solution to eq. (81) under the given constraints

is

v∗(x∗(t)) =

(
µ

c1

)−σ (
x∗(t)

1 − σ

)1−σ

. (83)

Owing to the fact that λ̃c
∗(x∗(t)) = (µ/c1)

−σ
(x∗(t)/1 − σ)

−σ
, the stationary control (80) written explic-

itly as a function of time becomes

u∗(t) = d(x∗(t)) = κx∗(t), (84)

where

κ =
µ

1 + r(N − 1) + N(σ − 1)
(85)

can be interpreted as the equilibrium extraction rate of a unit resource by an individual, since x∗(t) such

units are available at t. Substituting eq. (84) into eq. (74) and solving the latter gives the candidate

uninvadable control and state path explicitly as

u∗(t) = e−tNκκxinit

x∗(t) = e−tNκxinit.

(86)

When r = 0, we thus recover the standard result for the stationary control established in the game theory541

literature [the symmetric stationary Markov Nash equilibrium (Dockner et al., 2000, eq. 12.38)], while542

when r = 1 we recover the game theory cooperative solution (Dockner et al., 2000, eq. 12.7).543
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4.2.4 Open-loop extraction rate544

We now work out an open-loop control for this model and to this end it is useful to express the static

characterisation (80) in terms of the original shadow value λ∗
c(t) (not the current value shadow value

λ̃c
∗(t)), which, on recalling that λ̃c

∗(t) = etµλ∗
c(t), yields

u∗(t) = e−tµ/σ

(
[1 + r(N − 1)]λ∗

c(t)

a

)−(1/σ)

. (87)

Note that λ̇∗
c(t) = 0 in eq. (39) because the partial derivative of the current-value Hamiltonian H̃ with

respect to the second argument is zero (by way of eq. 76) and recall also that H̃ = etµH (hence the

partial derivative of Hamiltonian with respect to its third argument is also zero). From this it follows

that λ∗
c(t) = K for some constant K > 0 (positive since otherwise no resources will be extracted).

Inserting this into eq. (87) and then substituting the resulting expression for u∗(t) into the state dynamic

(74) gives

ẋ∗(t) = −Ne−tµ/σ

(
[1 + r(N − 1)]K

a

)−(1/σ)

with i.c. xc(0) = xinit, (88)

whose solution is

x∗(t) = xinit −
(

1 − e−tµ/σ
)( [1 + r(N − 1)]K

a

)−(1/σ)
Nσ

µ
. (89)

We now seek an open-loop solution u∗(t) that satisfies

lim
t→∞

x∗(t) = 0. (90)

That is, we assume that all the resources will be depleted asymptotically. In game-theory terms, this

corresponds to the case of a strictly feasible open-loop control (see Dockner et al., 2000, p. 319–320),

which implies that we do not allow for individuals to extract all the resources in finite time (see Dockner

et al., 2000, p. 321–323 for alternative open-loop controls when this is allowed). Now substituting eq. (89)

into eq. (90) and taking the limit yields that K = a
(

Nσ
xinitµ

)σ

/(1 + r(N − 1)). In turn, using the value of

this constant in eq. (87) and eq. (89) allows us to determine explicitly the candidate equilibrium control

and state paths as

u∗(t) = e−tµ/σ µxinit

Nσ

x∗(t) = e−tµ/σxinit.

(91)
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[Note that formally this solution also satisfies open-loop solution with a terminal condition limt→∞ x∗(t) ≥545

0, which implies a transversality condition given by Note 3 by Sydsaeter et al., 2005, p. 349 and were546

their x1 = 0 and λ(t) = etµλ∗(t) > 0 for our problem, which leads together with Note 4 that the terminal547

condition limt→∞ x∗(t) ≥ 0 simplifies to (90)].548

4.2.5 Comparison between closed-loop and open-loop resource extraction rate549

Resource extraction crucially depends on relatedness r under the (stationary) closed-loop control and550

resources are extracted much faster when relatedness is low (see Fig. 6). Interestingly, under open-551

loop control resource extraction is independent of relatedness and corresponds, regardless of population552

structure, exactly to the open-loop control established for this model in the game theory literature553

(Dockner et al., 2000, Chapter 12.1), which itself corresponds to the so-called ”cooperative solution”554

maximizing group payoff (Dockner et al., 2000, Theorem 12.1, p. 320). Hence, relatedness can have no555

impact on slowing down the extraction rate, which already takes the optimal path from the perspective556

of the group. Intuitively, one thus expects that the closed-loop equilibrium coincides with the open-loop557

equilibrium when groups are clonal (r = 1), which is indeed the case and again instantiates our broad558

result that state-feedback has no effect when interacting individuals are clonal.559

5 Discussion560

We formalised the directional selection coefficient on a genetically determined function-valued trait when561

interactions occur between individuals in a group-structured population subject to limited genetic mixing.562

This selection coefficient describes the directional evolution of a quantitative function-valued trait and563

determines three relevant evolutionary features. First, it gives the invasion condition of a mutant allele564

coding for a multidimensional phenotypic deviation (the deviation of a whole function) of small magnitude565

and takes the form of Hamilton’s marginal rule −c+rb > 0, where the marginal direct fitness effect −c and566

the marginal indirect fitness effect b are given by directional derivatives (formally Gâteaux derivatives).567

Second, the selection gradient is frequency-independent (same for all allele frequencies) and thus underlies568

gradual evolution of function-valued traits, since −c+rb > 0 implies not only initial invasion of the mutant569

function-valued deviation, but also substitution of the resident ancestral type in the population. Finally,570

the stationary selection gradient (i.e. when −c + rb = 0) gives the necessary first-order condition for571

uninvadability and allows to characterise long-term evolutionary outcomes. While these three features572

are well known to hold for scalar traits (e.g., Rousset, 2004; Lehmann and Rousset, 2014; Van Cleve,573

2015), our derivation of Hamilton’s marginal rule for multidimensional traits generalises them to traits574

of arbitrary complexity.575
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Connecting Hamilton’s marginal rule with optimal control and differential game theory, we developed576

an approach to characterise necessary first-condition for the uninvadability of dynamic traits, which577

applies to both open-loop controls, whose expression is only time-dependent, and closed-loop controls,578

whose expression is dependent on dynamic state variables as well. We showed that Hamilton’s rule in this579

context can be decomposed into current inclusive fitness effect, on one side, and future inclusive fitness580

effect, on the other. The latter effect arises through changes in the states of interacting individuals and581

depends on the (neutral) shadow values of the states. The shadow value of a state measures how a current582

change in that state variable affects all future fitness contributions in a population at a demographic583

equilibrium in the absence of selection (the neutral reproductive value). The shadow values are thus584

central in balancing the trade-off between current and future fitness effects and thus in shaping inter-585

temporal trade-offs; a feature well-know for open-loop controls (e.g., Perrin and Sibly, 1993 for a review)586

and that we showed applies equally well to closed-loop traits, which is a result that seems to have neither587

appeared previously in the differential game theory literature.588

Open-loop and closed-loop trait characterisations have sometimes been used in the literature to analyse589

the same biological phenomena. Our analysis allows for a direct comparison between these two different590

modes of trait expression. While the selection coefficient takes the same form (Hamilton’s rule) for591

both, the dynamic constraints are different and this is captured by differences in the dynamics of the592

shadow value. For open-loop traits, the shadow value dynamics for a given state depends only on how593

variation in that state variable affects current fitness and state dynamics. For closed-loop traits, the594

shadow value dynamics depends additionally on the state feedback effect, which captures how a variation595

in the state variable brings forth variations in traits of all individuals in interaction and this in turn596

affects current fitness and state dynamics (eq. 35). This causes inter-dependencies between the states of597

different individuals and inter-temporal effects between trait expressions that are absent under open-loop598

controls. Analysis of the feedback effect leads to two insights about the role of state-dependence of trait599

expression in shaping trait evolution. First, the sign of the feedback effect (the sign of eq. 35) determines600

if the shadow value is larger (for positive feedback effect) or smaller (for negative feedback effect) for601

closed-loop traits than for open-loop traits. Second, state-dependence of trait expression plays no role602

if there are no social interactions between individuals or interactions occur only between clones (r = 1),603

in which cases the candidate uninvadable open-loop and closed-loop trait expressions coincide (and the604

state-feedback term is zero). This means that the use of closed-loop controls appearing in life-history605

models without interactions between individuals (e.g., Houston et al., 1999) do not lead to different results606

if instead an open-loop representation of traits would have been used.607

We worked out two examples to illustrate these concepts, one of common pool resource production608

and the other of common pool resource extraction. Interactions under closed-loop trait expression cause609
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individuals to invest less into common pool resource production (and more in extraction) at an evolu-610

tionary equilibrium. These results are in line with the literature of economic game theory, where “period611

commitments” lead to higher levels of cooperation in common pool situations (Meinhardt, 2012). Indeed,612

an open-loop control can be viewed as a trait (or strategy) committing to its expression over the entire613

interaction time period, since it cannot be altered in response to some change experienced by individuals.614

A closed-loop control has no commitment over time since it is expressed conditional on state. Depend-615

ing on the nature of the interaction between individuals, closed-loop trait expression can then also lead616

to higher levels of cooperation. A concrete example is an analysis of the repeated prisoner’s dilemma617

game, where open-loop controls lead to defection, while closed-loop controls can sustain cooperation (e.g.,618

Weber, 2011). The reason why closed-loop strategies are able to sustain cooperation under repeated pris-619

oner’s dilemma is that they allow to condition trait expression on the actions of others, and thus take620

into account the future threat of punishment. In other words, for closed-loop traits current actions are621

linked to future ones. Hence, only closed-loop strategies can sustain the reciprocity principle of repeated622

games by giving rise to incentives that differ fundamentally from those of unconditional trait expression623

(see Binmore, 2020, p. 87 for a characterisation of this principle).624

We finally discuss the scope and limitations of our formalisation. First, concerning scopes, we focused625

explicitly on the two main types of controls, but also worked out the simplifications that arise under special626

cases of these controls. In particular, under (closed-loop) stationary controls, where trait expression627

depends only on state and not on time and the time horizon of the interaction period becomes large,628

the PDE for the reproductive value function no longer depends on time and becomes easier to solve629

(see ”Stationary control result”). Stationary controls have been considered in evolutionary biology and630

conservation biology, e.g. to model foraging strategies (McNamara et al., 1991; Mangel et al., 1988),631

web-building behaviour (Venner et al., 2006), adaptive management plans (Chadès et al., 2017). Finally,632

under (open-loop) constant controls, where trait expression depends neither on state nor on time, the633

ODEs’ for the shadow values and state dynamics become autonomous, which makes it the simpler case to634

analyse (see ”Constant control result”). Several concrete biological situations fall into this category. For635

instance, neural networks are dynamical systems whose output is controlled by a finite number of scalar636

weights (Haykin, 2009), the selection on which is an example of a situation with constant control if weights637

are taken to be traits evolving genetically (see Ezoe and Iwasa, 1997 for an application to evolutionary638

biology). Likewise, phenomena as different as gene expression profiles and learning during an individual’s639

lifespan can be regarded as the outcomes of dynamical systems controlled by a finite number of constant640

traits (e.g. see respectively Alon, 2020 and Dridi and Akçay, 2018). The case of constant control is thus641

likely to be widespread in models in evolutionary biology and it would be interesting to work out more642

explicitly the connection between models for the evolution of learning and those based on control theory.643
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Owing to the presence of both a state dynamics and a decision rule, the control theory approach to trait644

expression has a universal character (Haykin, 2009, chapter 15), which should thus in principle be able645

to cover all types of trait expression.646

Concerning limitations, we considered deterministic state dynamics but stochastic state dynamics may647

be interesting to consider in the future by way of applying stochastic optimal control theory (e.g. Kamien648

and Schwartz, 2012). Perhaps more importantly, we modelled a population reproducing in discrete time,649

where within each time period individuals can interact for a fixed time interval. As such, the vital rates650

of individuals can change over this interaction period, but not between interaction periods. Hence, our651

model with limited dispersal and time-dependent vital rates applies to semelparous species, which covers652

models with conflict between relatives in annual organisms (Day and Taylor, 2000; Avila et al., 2019).653

Furthermore, if we allow for complete dispersal between groups (r = 0), then our framework can be used654

to address the evolution of function-valued traits under overlapping generations with time-dependent vital655

rates as in continuous time classical life history models with and without social interactions (e.g. León,656

1976; Schaffer, 1983; Stearns, 1992; Perrin, 1992), but we add the possibility of considering the evolution657

of closed-loop controls. This scenario is encapsulated in our formalisation because the individual fitness658

function we used to analyse dynamic trait evolution (eq. 13) takes the same functional form as the basic659

reproductive number in age-structured populations (and which is sign equivalent to the Malthusian or660

the geometric growth rate, e.g., Karlin and Taylor, 1981, p. 423-424). As such, our results on closed-661

loop controls (section 3.2) allow to characterise long-term evolutionary outcomes when the fitness of an662

individual takes the form of the basic reproductive number. For this situation, our results for open-663

loop controls (section 3.3) reduce to the standard Pontryagin’s weak principle used in life-history models664

(e.g. Schaffer, 1983; Stearns, 1992; Perrin, 1992). In order to cover time-dependent vital rates with665

overlapping generations within groups under limited dispersal, one needs to track the within-group age666

structure (e.g. Ronce et al., 2000), which calls for an extension of our formalisation. Finally, we did not667

consider between-generation fluctuations in environmental conditions, which certainly affect the evolution668

of function-valued traits and it would be interesting to investigate this case. Hence, while our results are669

not demographically general, our hope is that the present formalisation is nevertheless helpful in providing670

broad intuition about the nature and conceptualisation of directional selection on phenotypically plastic671

traits.672
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Appendix A: Derivation of Hamilton’s rule for function-valued traits676

In this Appendix, we prove the gradient version of Hamilton’s rule for function-valued traits and show677

that this provides an invasion implies substitution principle under weak selection (eqs. 4–8). A central678

concept used in our proof is the notion of a Gâteaux derivative.679

A.1 Gâteaux derivative and point-wise functional derivative680

Let F : Y[T ] → R be some functional where Y[T ] is a vector space over a domain T and assume that for

some y ∈ Y[T ] the limit

dF (y + ǫη)

dǫ

∣
∣
∣
ǫ=0

= lim
ǫ→0

F (y + ǫη) − F (y)

ǫ
=

δηF (y)

δηy
(A.1)

exists for all deviations η that satisfy y + ǫη ∈ Y[T ] for a sufficiently small non-negative parameter ǫ.

Then, the function F is said to be Gâteaux differentiable at y, and δηF (y)/δηy is the shorthand notation

for a Gâteaux derivative at y in the direction of η (Hille and Phillips, 1957, Section 3). The Gâteaux

derivative can thus be thought of as a generalization of the directional derivative familiar from finite

dimensional spaces. Most rules that hold for ordinary derivatives also hold for Gâteaux derivatives, e.g.

Taylor’s theorem and the chain rule (e.g. see Section 2.1C in Berger, 1977, or, Appendix A of Engel and

Dreizler, 2013). The Gâteaux derivative can be expressed in terms of point variations (e.g. see Engel and

Dreizler, 2013, eq. A.15 and eq. A.28) as

δηF (y)

δηy
=

∫

T

∂F (y)

∂y(t)
η(t)dt, (A.2)

where

∂F (y)

∂y(t)
= lim

ǫ→0

F (y + ǫδt) − F (y)

ǫ
, (A.3)

is the point-wise functional derivative of F at y(t) and δt is the Dirac measure taking value 1 at t and681

otherwise it is 0. That is, eq. (A.3) is the partial derivative of F with respect to y at t and hence we682

use the more familiar ‘partial derivative’ notation from finite dimensional spaces. The representation in683

eqs. (A.2)-(A.3) is useful because it allows, for instance, to take a functional derivative of fitness with684

respect to the trait, and partition it into a deviation η(t) and a marginal fitness effect at a specific (single)685

time point t ∈ T , ∂F (y)/∂y(t) (i.e. a point-wise marginal fitness effect), and only then integrate over the686

domain T .687
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Table 1: Symbols of key components of the model

Control variables u, um resident and mutant trait
(evolving traits) u∗ candidate uninvadable trait

u•, u◦, u focal’s trait, average neighbour’s trait, and aver-
age trait of individuals in other groups

u• = (u•, u◦, u) a vector collecting traits from the focal’s perspec-
tive

u = {u(t)}t∈T ∈
U [T ]

all traits considered here (except section 2.3.1.
where we consider scalar traits) belong to a set
of real-valued function with range U and domain
T

Decision rules d(t,x(t)) closed-loop (feedback) control
d(t) open-loop control
d(x(t)) stationary (closed-loop) control

Components w(u•, u◦, u) focal individual’s fitness
describing f(t,u•(t),x•(t)) rate of fitness increase at time t
fitness Φ(x•(tf)) fitness increase at final time tf (scrap value)

v(t,x(t);u) (neutral) reproductive value function
λ(t,x(t);u) a vector of shadow values of state variables

(λ(·) = (λ•(·), λ◦(·), λ(·))); the shadow value of a
state variable gives the future fitness effect from
marginally changing the state (λ(t,x(t);u) =
∇v(t,x(t);u))

H Hamiltonian function, contribution to individual
fitness at time t due to current “activities”

Components sη(u) selection coefficient
describing s(u) selection gradient (sη(u) = ǫη · s(u))
selection ǫ effect size of the mutant allele (scalar)

η phenotypic deviation of the mutant allele (func-
tion; η = {η(t)}t∈T )

−cη(u), bη(u) direct and indirect fitness effects
−c(t, u), b(t, u) point-wise direct and indirect fitness effects
r(u) (neutral) relatedness between two randomly sam-

pled (without replacement) group members
State variables x, xm resident and mutant state

x∗ candidate uninvadable state
x•, x◦, x focal’s state, average neighbour’s state, and aver-

age state of individuals in other groups
x = {x(t)}t∈T all state variables x(t) ∈ R considered are real-

valued functions defined over domain T
g(u•(t),x•(t)) function describing the rate of change of a state

variable (here for the focal individual)
g(u•(t),x•(t)) A vector collecting the change rates

in state variables of the representa-
tive individuals, i.e. g(u•(t),x•(t)) =
(g(u•(t),x•(t)), g(u◦(t),x◦(t)), g(u(t),x(t)))
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A.2 Dynamics of mutant-frequency688

Consider that the mutant allele coding for trait um and the resident coding for trait u, segregate in the

homogeneous island population as described in the main text. Because no individual-level demographic

heterogeneity is assumed withing groups (i.e., no class structure), each group can be characterised, from

a population genetic state perspective, by the number of mutants that inhabit a given group and we

denote the set of all group genetic states with I = {0, 1, 2, . . . , N}. The state of the entire homogeneous

island population can thus be described with the vector φτ = {φi,τ}i∈I where φi,τ is the frequency of

groups with i mutants at demographic time τ . Since population size is constant in the homogeneous

island population (mean fitness is one), the change in the average frequency ∆pτ = pτ+1 − pτ of the

mutant allele from demographic time τ to τ + 1 (over one life-cycle iteration) can be expressed as

∆pτ = W (um, u,φτ )pτ − pτ , (A.4)

where W (um, u,φτ ) is the marginal fitness (or lineage fitness) of the mutant allele. Namely, this is the

expected number of offspring (including the surviving self) produced by a randomly sampled mutant

individual from the collection of all mutants in the population when the distribution of mutants across

groups is φτ . This fitness can be written as the average

W (um, u,qτ ) =
∑

i∈I

ŵ(um,ui,uφ)qi,τ , (A.5)

where qi,τ = iφi,τ/
∑

k∈I kφk,τ is the probability that a randomly sampled mutant resides in a group689

with i mutants (whence
∑

i qi,τ = 1) and where ui = (um, u, i − 1) and uφ = (um, u,φτ ) are vectors690

that describe, from the perspective of a mutant sampled in a group with i mutants, the distribution of691

traits among group neighbours (local individuals) and in the groups in the population at large (non-local692

individuals), respectively. The function ŵ : U × U2 × I × U2 × ∆(I) → R+ is the individual fitness693

where ∆(I) denotes the space of frequency distributions on I (i.e. the simplex in R
N+1), and as such,694

ŵ(um,ui,uφ) gives the fitness of a mutant when among its neighbours i−1 individuals have trait um and695

N − (i− 1) have trait u, and in the groups in the population at large, mutant and resident traits follow696

the φτ distribution. When the mutant is rare, eq. (A.5) reduces to the invasion fitness of the mutant697

allele in the homogeneous island population (Mullon et al., 2016, eq. 1).698
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A.3 Weak-selection approximation699

We now study mutant gene frequency change ∆pτ assuming small ǫ. To that end, it is useful to note

that the fitness of a mutant in a group in state i can be approximated by writing it in terms of average

traits as

ŵ(um,ui,uφ) = ŵ(um, ūi, ūφ) + O(ǫ2), (A.6)

where ūi = (ūi, ūi, i−1) specifies that all group neighbours have the same group average trait ūi = u+ǫηpi700

with pi = [(i− 1)/(N − 1)] being the frequency of mutants among neighbours, while ūφ = (ū, ū,φτ )701

specifies that all non-local individuals have the same average population trait ū = u + ǫηpτ with pτ =702

∑

i∈I(i/N)qi,τ being the average mutant frequency in the population. Eq. (A.6), which has been used for703

scalar traits (Rousset, 2004, p. 95), follows by Taylor expanding ŵ(um,ui,uφ) to the first-order about704

ǫ = 0 and using the chain rule (which applies to Gâteaux derivatives, e.g. eq. A.38 in Engel and Dreizler,705

2013) to see that the coefficients of the Taylor series involve (at most) Gâteaux derivatives weighted by706

average allele frequencies. This is an instantiation of the so-called generalised law of mass action (Meszéna707

et al., 2005; Dercole, 2016) and is secured by the assumption that all individuals within a group that708

have the same trait are exchangeable (individuals are demographically homogeneous).709

Because all non-local (mutant and resident) individuals are considered to have the same average trait

(the same is true for group neighbours), ŵ(um, ūi, ūφ) is de facto independent of φτ . This allows us to

further simplify the right-hand side of eq. (A.6) by writing

ŵ(um, ūi, ūφ) = w(um, ūi, ū), (A.7)

where the function w : U3 → R+ is the (average) fitness function introduced in section 2 of the main text,710

where we do not need to detail mutant distributions. Hence, w(um, ūi, ū) is the fitness of an individual711

with trait um in terms of only the average trait ūi of its group-neighbours and the average trait ū of712

individuals in the population.713

A.3.1 Allele frequency change714

Substituting eq. (A.5)–(A.7) into eq. (A.4), we can express the change in allele frequency as

∆pτ =
∑

i∈I

w(um, ūi, ū)qi,τpτ − pτ + O(ǫ2). (A.8)
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Taylor expanding the fitness function to the first-order about ǫ = 0 yields

∆pτ =
∑

i∈I

[

w(um, ūi, ū)|ǫ=0 + ǫ
dw(um, ūi, ū)

dǫ

∣
∣
∣
∣
ǫ=0

+ O(ǫ2)

]

qi,τpτ − pτ + O(ǫ2), (A.9)

where w (um, ūi, ū)|ǫ=0 = 1 (fitness in a monomorphic population is one), whereby

∆pτ =
∑

i∈I

ǫ
dw(um, ūi, ū)

dǫ

∣
∣
∣
∣
ǫ=0

qi,τpτ + O(ǫ2). (A.10)

We now apply eq. (A.1) and use the chain rule for Gâteaux derivatives (see e.g. eq. A.38 in Engel and

Dreizler, 2013), which produces

dw(um, ūi, ū)

dǫ

∣
∣
∣
∣
ǫ=0

=
δηw(um, ūi, ū)

δηum

∣
∣
∣
∣
um=ūi=ū=u

+

δηw(um, ūi, ū)

δηūi

∣
∣
∣
∣
um=ūi=ū=u

pi,τ +
δηw(um, ūi, ū)

δηū

∣
∣
∣
∣
um=ūi=ū=u

pτ , (A.11)

where all partial derivatives here and henceforth are evaluated at the resident value u. Since all the

partial derivatives are independent of any allele frequency, they give the effects on any individual’s fitness

stemming, respectively, from itself, its average neighbour, and an average population member by varying

(infinitesimally) trait expression. Hence, the type of the actor is not relevant when evaluating the fitness

effects and we can equivalently write eq. (A.11) as

dw(um, ūi, ū)

dǫ

∣
∣
∣
∣
ǫ=0

=
δηw(u•, u◦, u)

δηu•

∣
∣
∣
∣
u•=u◦=u

+
δηw(u•, u◦, u)

δηu◦

∣
∣
∣
∣
u•=u◦=u

pi,τ +
δηw(u•, u◦, u)

δηu

∣
∣
∣
∣
u•=u◦=u

pτ (A.12)

where we took into consideration that the sum of partial derivatives of the fitness function with respect715

to all of its arguments is zero (since population size is constant, see e.g. Rousset, 2004, p. 96 for scalar716

traits) and where we replaced the variables um, ūi, and ū with u•, u◦, and u (note that we have already717

substituted the resident trait into the final argument). This will be useful subsequently as it makes clear718

that fitness effects are independent of individual types and thus allows us to focus attention on the fitness719

of a focal individual.720

Substituting eq. (A.12) into eq. (A.10) gives

∆pτ = ǫ
∑

i∈I

[
δηw(u•, u◦, u)

δηu•
(1 − pτ )qi,τpτ +

δηw(u•, u◦, u)

δηu◦
(pi,τ − pτ )qi,τpτ

]

+ O(ǫ2). (A.13)

Because
∑

∈I pi,τqi,τ = pm|m,τ is the probability that, conditional on being a mutant, a randomly sam-
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pled neighbour is also a mutant, and pm|m,τpτ = pmm,τ is the probability that two randomly sampled

individuals are both mutants (i.e., frequency of mutant pairs), eq. (A.13) can be written

∆pτ = ǫ

[
δηw(u•, u◦, u)

δηu•
pτ (1 − pτ ) +

δηw(u•, u◦, u)

δηu◦
(pmm,τ − p2τ )

]

+ O(ǫ2). (A.14)

Hence, to the first order in ǫ, the dynamics of ∆pτ is a function of only direct and indirect fitness effects721

evaluated in the resident population, and the average frequency pτ and mutant-pair frequency pmm,τ .722

Further, we only need to study the dynamics of pmm,τ under neutrality (ǫ = 0) because any higher order723

terms contribute to O(ǫ2) in eq. (A.14). Eq. (A.14) thus generalises to function-valued traits, a standard724

result for scalar traits (first detailed in Roze and Rousset, 2003 and re-derived a number of times since,725

e.g., Roze and Rousset, 2004; Rousset, 2004; Roze and Rousset, 2008; Lehmann and Rousset, 2014).726

A.3.2 Mutant-pair dynamics and relatedness727

Using standard population genetic arguments for writing recursions of moments of allelic state (e.g.,

Jacquard, 1974; Nagylaki, 1992; Roze and Rousset, 2008), we have

pmm,τ+1 = P1(u)pτ + P2(u)pmm,τ + (1 − P1(u) − P2(u))p2τ , (A.15)

where P1(u) is the the fraction of pairs within groups (of two randomly sampled individuals in the same

group without replacement) that descended from the same individual in the previous demographic time

step (so that possibly one individual in the pair is the parent of the other in the presence of survival). The

quantity P2(u) is the fraction of pairs that have descended from two distinct individuals in the previous

demographic time period, and where all these coefficients are constant since they are evaluated under

ǫ = 0 and thus depend at most on the resident trait u. The steady state can be solved explicitly and one

gets

p̂mm = r̂(u)p + (1 − r̂(u))p2, (A.16)

where

r̂(u) =
P1(u)

1 − P2(u)
(A.17)

is the relatedness in a patch at the steady state, i.e., the fraction of pairs at the steady state that have728

a common ancestor in the patch. Owing to neutrality, this is also the probability that a randomly729

sampled neighbour of a randomly sampled focal individual, carries the same allele as the focal. More-730
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over, the steady state r̂(u) changes continuously with a resident trait whenever P1(u) and P2(u) change731

continuously.732

A.4 Timescale separation and the invasion implies substitution - principle733

We can observe that the dynamics of mutant frequency pτ , given by eq. (A.14), is dominated by terms of734

order O(ǫ), while the mutant-pair frequency pτ,mm, given by eq. (A.15), is dominated by terms of order735

O(1). Hence, when ǫ is small, the variable pmm,τ undergoes significant fluctuations over the demographic736

time step ∆τ = (τ + 1) − τ = 1 (one iteration of a life cycle) while pτ is (nearly) constant. By contrast,737

pτ changes significantly over a slower time interval ∆τ∗ = ǫ∆τ while pmm,τ is near its equilibrium value.738

We will refer to ∆τ∗ as the evolutionary time step and the phenotypic effect ǫ scales the relationship739

between evolutionary and demographic time (i.e. one evolutionary time step contains 1
ǫ demographic740

time steps, and equivalently we can write 1
∆τ = ǫ 1

∆τ∗
).741

Combining eq. (A.14) and eq. (A.15), we see that the dynamics of the mutant frequency is thus fully

described by the coupled system in demographic time

∆pτ = ǫ

[
δηw(u•, u◦, u)

δηu•
pτ (1 − pτ ) +

δηw(u•, u◦, u)

δηu◦
(pmm,τ − p2τ )

]

+ O(ǫ2)

∆pmm,τ = (P2(u) − 1)pmm,τ + P1(u)pτ + (1 − P1(u) − P2(u))p2τ + O(ǫ),

(A.18)

and by a change of variables the system in eq. (A.18) can be equivalently expressed in slow evolutionary

time as

ǫ
∆pτ∗

∆τ∗
= ǫ

[
δηw(u•, u◦, u)

δηu•
pτ∗(1 − pτ∗) +

δηw(u•, u◦, u)

δηu◦
(pmm,τ∗ − p2τ∗)

]

+ O(ǫ2)

ǫ
∆∗pmm,τ∗

∆τ∗
= (P2(u) − 1)pmm,τ∗ + P1(u)pτ∗ + (1 − P1((u)) − P2(u))p2τ∗ + O(ǫ).

(A.19)

We now separate the demographic and evolutionary timescales (i.e. the timescales of pτ,mm and pτ ) by

letting ǫ → 0 and the two last systems above reduce, respectively, to

∆pτ
∆τ

= 0

∆pmm,τ

∆τ
= (P2(u) − 1)pmm,τ + P1(u)pτ + (1 − P1(u) − P2(u))p2τ

(A.20)

and

∆pτ∗

∆τ∗
=

δηw(u•, u◦, u)

δηu•
pτ∗(1 − pτ∗) +

δηw(u•, u◦, u)

δηu◦
(pmm,τ∗ − p2τ∗)

0 = (P2(u) − 1)pmm,τ∗ + P1(u)pτ∗ + (1 − P1((u)) − P2(u))p2τ∗ .

(A.21)
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Eq. (A.20) says that in a purely fast demographic time (ǫ = 0) the mutant frequency pτ = p stays constant

(“frozen in time”), while mutant-pair frequency pτ,mm changes. Eq. (A.21) says that in a purely slow

evolutionary time (ǫ = 0) the mutant-pair frequency has reached the steady state p̂mm(u) (its solution

given in eqs. A.16–A.17), while the mutant frequency pτ∗ = p changes (thus p is in a so-called quasi-steady

state – it changes so slowly that it is considered a steady state in one timescale but a fluctuating variable

in another). By performing the substitution pmm,τ∗ = p̂mm(u) and pτ∗ = p in eq. (A.21) the dynamics of

mutant frequency in slow evolutionary time is

∆p

∆τ∗
= p(1 − p)

[
δηw(u•, u◦, u)

δηu•
+

δηw(u•, u◦, u)

δηu◦
r̂(u)

]

, (A.22)

where r̂(u) is given in eq. (A.17). Because r̂(u) in eq. (A.17) persists under small perturbation of the

resident phenotype u (Section A.3.2), we can approximate eq. (A.22) with an equation in fast demographic

time whenever ǫ is sufficiently small, i.e.

∆p = ǫp(1 − p)

[
δηw(u•, u◦, u)

δηu•
+

δηw(u•, u◦, u)

δηu◦
r̂(u)

]

+ O(ǫ2), (A.23)

where we used ∆τ = 1. This gives us the invasion implies substitution - principle on the time of the

demographic process we began with (e.g., eq. A.4). Therefore, we can re-write eq. (A.23) as

∆p = p(1 − p)sη(u) + O(ǫ2), (A.24)

with

sη(u) = −cη(u) + bη(u)r̂(u), (A.25)

and by using the definition of Gâteaux derivatives in eq. (A.1) we can explicitly write

−cη(u) = ǫ
δηw(u•, u◦, u)

δηu•

∣
∣
∣
∣
u•=u◦=u

= ǫ× lim
ǫ→0

[
w(u + ǫη, u, u) − w(u, u, u)

ǫ

]

, (A.26)

which is the effect a focal individual has on itself if it were to express the mutant phenotype and

bη(u) = ǫ
δηw(u•, u◦, u)

δηu◦

∣
∣
∣
∣
u•=u◦=u

= ǫ× lim
ǫ→0

[
w(u, u + ǫη, u) − w(u, u, u)

ǫ

]

, (A.27)

which is the effect that all local individuals have on the focal individual if they were to express the742

mutant phenotype (where we have likewise substituted u in the second equality). Hence, we have derived743

eqs. (4)–(5) of the main text.744
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Appendix B: First-order condition for state-dependent models745

In this Appendix we derive the results of main text section 3. These derivation are based on standard746

approach of calculus of variations as used in optimal control theory (Liberzon, 2011; Weber, 2011), but our747

argument will somewhat differ from standard approaches insofar as we will not make use of the Hamilton-748

Jacobi-Bellman equation, since we are interested only in the necessary first-order conditions (as opposed749

to necessary conditions in the standard approach). As such, it is important to stress that throughout750

sections B.1 and B.3, where we derive the dynamics of the (neutral) reproductive value v(t,x(t);u) and751

the shadow value λ(t,x(t);u) = ∇v(t,x(t);u), we evaluate all the traits u•(t) = u◦(t) = u(t) and states752

x•(t) = x◦(t) = x(t) at some resident values. Only in section B.2 we look at small deviations from the753

resident population, by analysing the Gâteaux derivatives of the fitness function w(u•, u◦, u), where we754

show that we only need to analyse the (neutral) reproductive value v(t,x(t);u).755

For conciseness of notation, we also use the following short-hand notation: for total derivatives w.r.t.756

time t we write df(t, x(t))/ dt ≡ ḟ(t, x(t)), for partial derivatives we write ∂f(t, x(t))/∂x(t) ≡ fx(t, x(t)),757

and second-order partial derivatives we write ∂2f(t, x(t))/∂x(t)∂x(t) ≡ fxx(t, x(t)). As in the main text,758

we always use the gradient ∇ notation for gradient with respect to state variables x(t).759

B.1 Reproductive value dynamics in a resident population760

We here derive the dynamic equations for the reproductive value, eq. (20) of the main text by following761

the same line of argument as that developed in Metz et al. (2016, see eq. 71), and then we derive an762

associated equation for the reproductive value that is useful for the other derivations.763

B.1.1 Partial differential equation for the reproductive value764

Recall from eq. (19) of the main text that the reproductive value at time t is defined as

v(t,x(t);u) =

∫ tf

t

f(u(τ),x(τ))dτ + Φ(x(tf)). (B.1)

where we recall that the argument u has been separated with the semicolon in order to emphasise that the765

controls have been fixed. Hence, for a given u and initial condition x(t) at time t the state trajectory x is766

fully determined (i.e. the solution to the ODE in eq. (16) exists and is unique). Because both functions767

u and x are now given functions, the reproductive value in eq. (B.1) is considered to be a function of768

time t and the initial condition x(t) only (strictly speaking it should be a function also of the final time769

tf).770

In order to derive a dynamic equation of v(t,x(t);u), we consider a very small (but positive) time
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interval ∆t and write eq. (B.1) as

v(t,x(t);u) =

∫ t+∆t

t

f(u(τ),x(τ))dτ +

∫ tf

t+∆t

f(u(τ),x(τ))dτ + Φ(x(tf))

=

∫ t+∆t

t

f(u(τ),x(τ))dτ + v(t + ∆t,x(t) + ∆x(t);u),

(B.2)

where ∆x(t) = x(t+∆t)−x(t) is the change in the state variables over ∆t and v(t+∆t,x(t)+∆x(t);u)

is the reproductive value at t + ∆t and all arguments have been noted accordingly. Using a first-order

Taylor expansion around t, we approximate the second term in the second line of eq. (B.2) as

v(t + ∆t,x(t) + ∆x(t);u) =v(t,x(t);u) + vt(t,x(t);u)∆t

+∇v(t,x(t);u) · ∆x(t) + O(∆t2),

(B.3)

where

vt(t,x(t);u) =
∂v(t,x(t);u)

∂t
(B.4)

is the partial derivative with respect to the first-argument while

∇v(t,x(t);u) =

(
∂v(t,x•(t);u)

∂x•(t)
,
∂v(t,x•(t);u)

∂x◦(t)
,
∂v(t,x•(t);u)

∂x(t)

)

x•(t)=x(t)

(B.5)

is the vector of partial derivatives with respect to the last argument. Now approximating the first term

on the right-hand-side of eq. (B.2) by f(u(t),x(t), t)∆t, we can write eq. (B.2) as

v(t,x(t);u) = f(u(t),x(t))∆t + v(t,x(t);u)

+ vt(t,x(t);u)∆t + ∇v(t,x(t);u) · ∆x(t) + O(∆t2) (B.6)

Subtracting v(t,x(t);u) from both sides, dividing by ∆t, letting ∆t → 0, noting that ∆x(t)/∆t →

g(u(t),x(t)) (as ∆t → 0), and rearranging leads to

−vt(t,x(t);u) = f(u(t),x(t)) + ∇v(t,x(t);u) · g(u(t),x(t)) (B.7)

which is a PDE for v(t,x(t);u) with a final condition (f.c.) v(tf ,x(tf);u) = Φ(x(tf)) for the fixed control771

path u. Eq. (B.7) takes the same form as eq. 71 of (Metz et al., 2016), which was derived under an772

open-loop control life-history evolution context for a panmictic population and differs with respect to773

eq. (B.7) in terms of the definition of the arguments.774
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It is important to stress here that eq. (B.7) is not a form of the so-called Hamilton-Jacobi-Bellman775

equation for the value function evaluated on the optimal control path of optimal control theory (e.g.,776

eq. 3.7 Dockner et al., 2000, chapter 3.2, or eq. 5.10 in Liberzon, 2011 or eq. 3.16 in Weber, 2011), even777

though it has a similar structure. This is because (i) the reproductive value v is here defined to hold for778

any resident control schedule u (and is not evaluated at optimality like the value function), and (ii) the779

value function for our model cannot be computed from the reproductive value of the focal individual,780

but needs to be computed from the invasion fitness of the mutant, which is the value function in an781

evolutionary model (invasion fitness is given by eq. A.5 when the mutant becomes rare or eq. 38 in Day782

and Taylor, 2000, but in the latter case only open-loop traits were allowed).783

B.1.2 Dynamic equation for the shadow value784

Recall that the controls u(t) = d(t,x) are functions of x. We now derive the dynamic equation for the

shadow value (gradient of reproductive values), which will be useful in later proofs. Taking the gradient

of eq. (B.7) with respect to x(t), we have

−∇vt(t,x(t);u) = ∇f(u(t),x(t)) + ∇ [∇v(t,x(t);u) · g(u(t),x(t))] (B.8)

with f.c. ∇v(tf ,x(tf);u) = ∇Φ(x(tf)), where

∇f(u(t),x(t)) =
(
∂f(d(t,x•(t)),x•(t))

∂x•(t)
,
∂f(d(t,x•(t)),x•(t))

∂x◦(t)
,
∂f(d(t,x•(t)),x•(t))

∂x(t)

)

x•(t)=x(t)
d(t,x•(t))=d(t,x(t))=u(t)

,
(B.9)

∇Φ(x(tf)) =

(
∂Φ(x•(tf))

∂x•(tf)
,
∂Φ(x•(tf))

∂x◦(tf)
,
∂Φ(x•(tf))

∂x(tf)

)

x•(tf )=x(tf )

, (B.10)

are (column) vectors. Bringing all the terms to the same side and using the chain in rule to expand

∇ [∇v(t,x(t);u) · g(u(t),x(t))], we obtain

∇vt(t,x(t);u) + ∇f(u(t),x(t)) + H

(

v(t,x(t);u)
)

g(u(t),x(t))

+ ∇g(u(t),x(t))∇v(t,x(t);u) = 0, with f.c. ∇v(tf ,x(tf);u) = ∇Φ(x(tf)),

(B.11)

where 0 = (0, 0, 0) is a zero (column) vector and

H

(

v(t,x(t);u)
)

=









∂2v(t,x•(t);u)
∂(x•(t))2

∂2v(t,x•(t);u)
∂x◦(t)∂x•(t)

∂2v(t,x•(t);u)
∂x(t)∂x•(t)

∂2v(t,x•(t);u)
∂x•(t)∂x◦(t)

∂2v(t,x•(t);u)
∂(x◦(t))2

∂2v(t,x•(t);u)
∂x(t)∂x◦(t)

∂2v(t,x•(t);u)
∂x•(t)∂x(t)

∂2v(t,x•(t);u)
∂x◦(t)∂x(t)

∂2v(t,x•(t);u)
∂(x(t))2









x•(t)=x(t)

, (B.12)
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is the Hessian matrix of the reproductive value function and

∇g(u(t),x(t))

=









∂g(d(t,x•(t)),x•(t))
∂x•(t)

∂g(d(t,x◦(t)),x◦(t))
∂x•(t)

∂g(d(t,x(t)),x(t))
∂x•(t)

∂g(d(t,x•(t)),x•(t))
∂x◦(t)

∂g(d(t,x◦(t)),x◦(t))
∂x◦(t)

∂g(d(t,x(t)),x(t))
∂x◦(t)

∂g(d(t,x•(t)),x•(t))
∂x(t)

∂g(d(t,x◦(t)),x◦(t))
∂x(t)

∂g(d(t,x(t)),x(t))
∂x(t)









x•(t)=x(t)
d(t,x•(t))=d(t,x◦(t))

=d(t,x(t))=u(t)

(B.13)

is the gradient of vector g.785

Now total differentiating ∇v(t,x(t);u) with respect to time and using the property that u is fixed

along a path, we get

d∇v(t,x(t);u)

dt
= ∇vt(t,x(t);u) + H

(

v(t,x(t);u)
)

g(u(t),x(t)), (B.14)

which, on substitution into eq. (B.11), and noting that the order of taking partial derivatives can be

changed yields

− d∇v(t,x(t);u)

dt
= ∇f(u(t),x(t)) + ∇g(u(t),x(t))∇v(t,x(t);u)

with f.c. ∇v(tf ,x(tf);u) = ∇Φ(x(tf)),

(B.15)

which will be used in the next section.786

B.2 First-order condition and the Hamiltonian787

We now turn to deriving the (point-wise) direct effect −c(t, u(t)) and the indirect effect b(t, u(t)) , given788

by eqs. (23) and (24), as well as the point-wise selection gradient for closed-loop traits, eq. (26) and the789

dynamic equation for the shadow value, eq. (32).790

In Appendix A we showed that we can express the direct effect (A.26) and indirect effect (A.27) as

Gâteaux derivatives

−cη(u) = ǫ
δηw(u•, u◦, u)

δηu•

∣
∣
∣
∣
u•=u

,

bη(u) = ǫ
δηw(u•, u◦, u)

δηu◦

∣
∣
∣
∣
u•=u

(B.16)

In order to compute these Gâteaux derivatives we first re-write the fitness function w(u•, u◦, u) by aug-791

menting to it a zero quantity containing of adjoint system of constraints (see e.g. Liberzon, 2011, p. 97)792

and we then we show how to decompose the direct effect −cη(u) and indirect effect bη(u) into point-wise793

direct effects −c(t, u(t)) and point-wise indirect effects b(t, u(t)), respectively, which allows to characterise794
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the point-wise first-order condition (26).795

B.2.1 Augmenting the fitness function with an adjoint system of constraints796

Recall the individual fitness function eq. (13) of the main text and let us append to it a zero quantity

w(u•, u◦, u) =

∫

T

f(u•(t),x•(t))dt + Φ(x•(tf))

=

∫

T

f(u•(t),x•(t))dt + Φ(x•(tf)) +

∫

T

[λ(t,x(t);u) · (g(u•(t),x•(t)) − ẋ•(t))] dt

︸ ︷︷ ︸

=0

,
(B.17)

where recalling (eq. 21 of the main text) that λ(t,x(t);u) = ∇v(t,x(t);u) is the shadow value (gradient

of reproductive value function). We can integrate the last term in eq. (B.17) by parts

−
∫

T

λ(t,x(t);u) · ẋ•(t)dt

=

∫

T

λ̇(t,x(t);u) · x•(t)dt− λ(tf ,x(tf);u) · x•(tf) + λ(0,x(0);u) · x•(0),

(B.18)

and hence eq. (B.17) becomes

w(u•, u◦, u) =

∫

T

(

f(u•(t),x•(t)) + λ(t,x(t);u) · g(u•(t),x•(t)) + λ̇(t,x(t);u) · x•(t)
)

dt

− λ(tf ,x(tf);u) · x•(tf) + λ(0,x(0);u) · x•(0) + Φ(x•(tf)).

(B.19)

B.2.2 Computing the Gâteaux derivatives of the fitness function797

We now substitute eq. (B.19) into eq. (B.16) and use eq. (A.2), which yields that we can express the

Gâteaux derivatives of the fitness function in terms of point-wise variations as follows

− cη(u) = ǫ
δηw(u•, u◦, u)

δηu•

∣
∣
∣
∣
u•=u

=

ǫ

∫

T

{
[

∇f(u(t),x(t)) + ∇g(u(t),x(t))λ(t,x(t);u) + λ̇(t,x(t);u)
]

·xu•
(t)η(t)

+
[

fu•
(u•(t),x(t)) + λ(t,x(t);u) · gu•

(u•(t),x(t))
]

η(t)

}

dt

+
[

∇Φ(x(tf)) − λ(tf ,x(tf);u)
]

· xu•
(tf)η(tf)

(B.20)
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and

− bη(u) = ǫ
δηw(u•, u◦, u)

δηu◦

∣
∣
∣
∣
u•=u

=

ǫ

∫

T

{
[

∇f(u(t),x(t)) + ∇g(u(t),x(t))λ(t,x(t);u) + λ̇(t,x(t);u)
]

·xu•
(t)η(t)

+
[

fu◦
(u•(t),x(t)) + λ(t,x(t);u) · gu◦

(u•(t),x(t))
]

η(t)

}

dt

+
[

∇Φ(x(tf)) − λ(tf ,x(tf);u)
]

· xu◦
(tf)η(tf),

(B.21)

where the term λ(0,x(0);u) · x•(0) has disappeared under differentiation because it is a given initial

condition, and where all the derivatives under the integrals are evaluated at u•(t) = u(t), x•(t) = x(t)

and

xu•
(t) =

(
∂x•(t)

∂u•(t)
,
∂x◦(t)

∂u•(t)
, 0

)

x•(t)=x(t)

(B.22)

xu◦
(t) =

(
∂x•(t)

∂u◦(t)
,
∂x◦(t)

∂u◦(t)
, 0

)

x•(t)=x(t)

(B.23)

are point variations of x(t) caused by variations in u•(t) and u◦(t), respectively.798

Finally, by definition of the shadow value and from eqs. (B.14) and (B.15) we have

−λ̇(t,x(t);u) = ∇f(u(t),x(t)) + ∇g(u(t),x(t))λ(t,x(t);u) (B.24)

with f.c. λ(tf ,x(tf);u) = ∇Φ(x(tf)). Hence, it follows from eqs. (B.14) and (B.15) that the terms (in

brackets) multiplying xu•
(t) and xu◦

(t) are zero. Therefore, we can write

− cη(u) = ǫ
δηw(u•, u◦, u)

δηu•

∣
∣
∣
∣
u•=u

= ǫ

∫

T

−c(t, u)η(t)dt (B.25)

and

bη(u) = ǫ
δηw(u•, u◦, u)

δηu◦

∣
∣
∣
∣
u•=u

= ǫ

∫

T

b(t, u)η(t)dt, (B.26)
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where

− c(t, u) =
∂w(u•, u◦, u)

∂u•(t))

∣
∣
∣
∣
u•(t)=u(t)

= fu•
(u•(t),x•(t))|x•(t)=x(t)

u•(t)=u(t)

+ λ(t,x(t);u) · gu•
(u•(t),x•(t))|x•(t)=x(t)

u•(t)=u(t)

=
∂H
(

u•(t),x(t),λ(t,x(t);u)
)

∂u•(t)

∣
∣
∣
∣
∣
∣
u•(t)=u(t)

(B.27)

and

b(t, u) =
∂w(u•, u◦, u)

∂u•(t))

∣
∣
∣
∣
u•=u

= fu◦
(u•(t),x•(t))|x•(t)=x(t)

u•(t)=u(t)

+ λ(t,x(t);u) · gu◦
(u•(t),x•(t))|x•(t)=x(t)

u•(t)=u(t)

=
∂H
(

u•(t),x(t),λ(t,x(t);u)
)

∂u◦(t)

∣
∣
∣
∣
∣
∣
u•(t)=u(t)

(B.28)

are point variations of w(u•, u◦, u) caused by u•(t) and u◦(t) (recall eq. A.2) and with this we have derived799

eqs. (23) and (24) of the main text.800

Substituting eqs. (B.27) and (B.28) into eq. (7) of the main text (substituting u∗ = d∗(x∗), where

d∗(x∗) = (d∗(t, x∗(t)), d∗(t, x∗(t)), d∗(t, x∗(t))) and x∗ = (x∗, x∗, x∗)) and using the definition of the

Hamiltonian

H
(

u•(t),x•(t),λ(t,x(t);u)
)

= f(u•(t),x•(t)) + g(u•(t),x•(t)) · λ(t,x(t);u) (B.29)

(eq. 25). This yields

s(t, u∗) =
∂H
(

u•(t),x∗(t),λ∗(t,x∗(t))
)

∂u•(t)

∣
∣
∣
∣
∣
∣
u•(t)=u∗(t)

+r(u∗)
∂H
(

u•(t),x∗(t),λ∗(t,x∗(t))
)

∂u◦(t)

∣
∣
∣
∣
∣
∣
u•(t)=u∗(t)

,

(B.30)

where λ∗(t,x∗(t)) = ∇v(t,x∗(t);u∗) and the evaluation can be expressed as u∗(t) = d∗(t,x∗(t)) for

closed-loop traits and as u∗(t) = d∗(t) for open-loop traits. Now recall that the dynamics of x∗(t) can

be obtained from eq. (16) when evaluating it along u∗, which yields

ẋ∗(t) = g(u∗(t),x∗(t)), x∗(0) = xinit. (B.31)

The dynamics of λ∗(t,x∗(t)) = ∇v(t,x∗(t);u∗) can be obtained from eq. (B.15) and taking into account
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the Hamiltonian function and evaluating along u∗ we obtain for closed-loop control u∗ = d∗(x∗) path

− λ̇∗(t,x∗(t)) = ∇H
(

d(t,x(t)),x(t),λ∗(t,x∗(t))
)∣
∣
∣ x(t)=x∗(t)
d(t,x(t))=d∗(t,x∗(t))

,

with f.c. λ∗(tf ,x
∗(tf)) = ∇Φ(x(tf))|x(tf )=x∗(tf )

(B.32)

and open-loop control u∗ = d∗ path

− λ̇∗(t,x∗(t)) = ∇H
(

d∗(t),x(t),λ∗(t,x∗(t))
)∣
∣
∣
x(t)=x∗(t)

,

with f.c. λ∗(tf ,x
∗(tf)) = ∇Φ(x(tf))|x(tf )=x∗(tf )

(B.33)

In conclusion, we have derived the point-wise direct and indirect effects, given by eqs. (23) and (24)801

of the main text (given here by eqs. B.27 and B.28, respectively). In addition we derived the point-wise802

selection gradient eq. (26) of the main text (here, eq. B.30) along with the dynamic eqs. (32) and (39) on803

the shadow value function λ∗(t,x∗(t)) (here, eqs. B.32 and B.33) for closed-loop controls and open-loop804

controls, respectively. With this we have derived the first-order condition of uninvadability for closed-loop805

and open-loop controls.806

B.3 Shadow value dynamics and the state feedback807

In this section we derive (34)–(33) of the main text; namely, we show that the components of the shadow

value dynamics and it depends on higher order derivatives of v∗(t,x∗(t)). To that end, it will turn out

to be useful to explicitly express the control in closed-loop form u(t) = d(t,x(t)), unless we are explicitly

evaluated at singular path u∗ = d∗(x∗). Substituting the Hamiltonian (B.29) into eq. (B.15) yields

− λ̇∗(t,x∗(t)) = ∇H
(

d(t,x(t)),x(t),λ∗(t,x∗(t))
)

| x(t)=x∗(t)
d(t,x(t))=d∗(t,x∗(t))

= ∇H
(

d∗(t,x∗(t)),x(t),λ(t,x∗(t))
)

|x(t)=x∗(t) + ∇H
(

d(t,x(t)),x∗(t),λ∗(t,x∗(t))
)

|d(t,x(t))=d∗(t,x∗(t)),

(B.34)

where

∇H
(

d(t,x(t)),x(t),λ∗(t,x∗(t))
)

=





∂H
(

d(t,x•(t)),x•(t),λ∗(t,x∗(t))
)

∂x•(t)
,
∂H

(

d(t,x•(t)),x•(t),λ∗(t,x∗(t))
)

∂x◦(t)
,
∂H

(

d(t,x•(t)),x•(t),λ∗(t,x∗(t))
)

∂x(t)



 ,

(B.35)
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∇H
(

d
∗(t,x∗(t)),x(t),λ∗(t,x∗(t))

)

=





∂H
(

d∗(t,x∗(t)),x•(t),λ∗(t,x∗(t))
)

∂x•(t)
,
∂H

(

d∗(t,x∗(t)),x•(t),λ∗(t,x∗(t))
)

∂x◦(t)
,
∂H

(

d∗(t,x∗(t)),x•(t),λ∗(t,x∗(t))
)

∂x(t)



 ,

(B.36)

∇H
(

d(t,x(t)),x∗(t),λ∗(t,x∗(t))
)

=





∂H
(

d(t,x•(t)),x∗(t),λ∗(t,x∗(t))
)

∂x•(t)
,
∂H

(

d(t,x•(t)),x∗(t),λ∗(t,x∗(t))
)

∂x◦(t)
,
∂H

(

d(t,x•(t)),x∗(t),λ∗(t,x∗(t))
)

∂x(t)



 .

(B.37)

We can express the last gradient (B.37) as

∇H
(

d(t,x(t)),x∗(t),λ∗(t,x∗(t))
)

=
∂d(t,x(t))

∂x
Hu•

(

u•(t),x∗(t),λ∗(t,x∗(t))
)

|u•(t)=d∗(t,x∗(t)),

(B.38)

where

∂d(t,x(t))

∂x
=









∂d(t,x•(t))
∂x•(t)

∂d(t,x◦(t))
∂x•(t)

∂d(t,x(t))
∂x•(t)

∂d(t,x•(t))
∂x◦(t)

∂d(t,x◦(t))
∂x◦(t)

∂d(t,x(t))
∂x◦(t)

∂d(t,x•(t))
∂x(t)

∂d(t,x◦(t))
∂x(t)

∂d(t,x(t))
∂x(t)









x•(t)=x(t)
d(t,x•(t))=d∗(t,x∗(t))

(B.39)

gives all the components of the feedback effect of state variables on trait expressions.808

Lets now further explore the elements of a matrix (B.39). From eq. (17) it follows that ∂d(t,x(t))/∂x•(t) =

∂d(t,x(t))/∂x•(t) = 0. From eqs. (17) and (18) it also follows that

∂d(t,x◦(t))

∂x•(t)

∣
∣
∣
∣
x•(t)=x(t)

=
1

N − 1

∂d(t,x◦(t))

∂xn(t)

∣
∣
∣
∣
x•(t)=x(t)

=
1

N − 1

∂d(t,x•(t))

∂x◦(t)

∣
∣
∣
∣
x•(t)=x(t)

,

∂d(t,x◦(t))

∂x◦(t)

∣
∣
∣
∣
x•(t)=x(t)

=
∂d(t, (x◦(t), x(t), x(t)))

∂x◦(t)

∣
∣
∣
∣
x•(t)=x(t)

+
N − 2

N − 1

∂d(t, (x(t), xn(t), x(t)))

∂xn(t)

∣
∣
∣
∣
x•(t)=x(t)

=
∂d(t,x•(t))

∂x•(t)

∣
∣
∣
∣
x•(t)=x(t)

+
N − 2

N − 1

∂d(t,x•(t))

∂x◦(t)

∣
∣
∣
∣
x•(t)=x(t)

,

∂d(t,x◦(t))

∂x(t)

∣
∣
∣
∣
x•(t)=x(t)

=
∂d(t,x•(t))

∂x(t)

∣
∣
∣
∣
x•(t)=x(t)

(B.40)

Hence, we can express all the non-zero derivatives in matrix (B.39) as effects of the different actors

changing their state on the focal recipient trait expression. Recall the static characterisation (30) from
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the main text, which holds for interior solutions (when selection gradient (B.30) vanishes)

d∗(t,x∗(t)) = D(t,x∗(t),λ∗(t,x∗(t))). (B.41)

Thus, from eq. (B.41) it follows we can express all the derivations of closed-loop contols d in terms of

derivations of function D, i.e.

∂d(t,x•(t))

∂x•(t)

∣
∣
∣
∣
x•(t)=x∗(t)

=
∂D(t,x•(t),λ(t,x•(t);u∗))

∂x•(t)

∣
∣
∣
∣
x•(t)=x∗(t)

,

∂d(t,x•(t))

∂x◦(t)

∣
∣
∣
∣
x•(t)=x∗(t)

=
∂D(t,x•(t),λ(t,x•(t);u∗))

∂x◦(t)

∣
∣
∣
∣
x•(t)=x∗(t)

,

∂d(t,x•(t))

∂x(t)

∣
∣
∣
∣
x•(t)=x∗(t)

=
∂D(t,x•(t),λ(t,x•(t);u∗))

∂x(t)

∣
∣
∣
∣
x•(t)=x∗(t)

,

(B.42)

Substituting eqs. (B.40) and (B.42) into eq. (B.39) yields

∂d(t,x(t))

∂x

∣
∣
∣
∣
d(t,x(t))=d∗(t,x∗(t))

=









∂D(t,x•(t),λ(t,x•(t);u
∗))

∂x•(t)
1

N−1
∂D(t,x•(t),λ(t,x•(t);u

∗))
∂x•(t)

0

∂D(t,x•(t),λ(t,x•(t);u
∗))

∂x◦(t)
∂D(t,x•(t),λ(t,x•(t);u

∗))
∂x◦(t)

+ N−2
N−1

∂D(t,x•(t),λ(t,x•(t);u
∗))

∂x◦(t)
0

∂D(t,x•(t),λ(t,x•(t);u
∗))

∂x(t)
∂D(t,x•(t),λ(t,x•(t);u

∗))
∂x(t)

∂D(t,x(t),λ(t,x(t);u∗))
∂x(t)









.

(B.43)

where all the derivatives in the matrix are evaluated at x•(t) = x(t) = x∗(t). We can observe from809

eq. (B.43) that that all the non-zero elements of matrix (B.43) depend on higher-order derivatives of810

v∗(t,x∗(t)) and hence eq. (B.34) is not and ODE for λ(t,x∗(t)) = ∇v∗(t,x∗(t)).811
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State variable(s):
e.g. body size,
hunger level,
resource level

Trait

Open loop traits:

Age-dependent ontogenetic trajectory

Age-dependent foraging behaviour

Time-dependent seasonal migration

State variable(s):
e.g. body size,
hunger level,
resource level

Trait

Closed loop traits:

State-dependent ontogenetic trajectory

Hunger-dependent foraging behaviour

State-dependent migration

Figure 1: Open-loop (age/time-dependent) and closed-loop (age/time-dependent and state-dependent)
conceptualisation of function-valued traits. Open-loop traits affect state variable(s). Closed-loop traits
affect state variable(s) and state-variable(s) affect(s) them in turn (thus there is a feedback-loop). In both
cases: (i) traits and state variables can vary over age/time and (ii) state variables affect fitness. Same
biological phenomena can be conceptualised as either open-loop or closed-loop traits.
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Figure 2: Static characterisation u∗(t) = D(t, x∗(t), λ∗
c(t, x∗(t))) (eq. 61) of the candidate uninvadable

production effort as a function of resource x∗(t) for fixed values of λ∗
c(t, x∗(t)) = 0.002 and for different

values of relatedness between individuals in the group. Parameter values: N = 10, a = 1, ceffort = 0.01.
Note that characterisation holds for both open-loop and closed-loop controls.
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(a) Candidate uninvadable production effort u∗(t)
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(b) Candidate uninvadable resource level x∗(t)

Figure 3: Candidate uninvadable production effort (panel a) and resource level (panel b) for closed-loop
(CL) (solid lines) and open-loop (OL) traits (dashed lines) for different values of average relatedness r.
Parameter values: N = 10, a = 1, ceffort = 0.01, T = 100. Note that if individuals in the group are clones
(r = 1), the closed-loop and open-loop traits coincide.
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Figure 4: Shadow value λ∗
c(t, x∗(t)) over time t for closed-loop (CL) and open-loop (OL) control and for

different values of relatedness between individuals in the group. Parameter values: N = 10, a = 1, ceffort =
0.01, T = 100. Note that characterisation holds for both open-loop and closed-loop characterisation of
the trait expression rule.
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(a) Group feedback effect: −c(t, u∗) + b(t, u∗)
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(b) Trait sensitivity: ∂d∗(t, x∗(t))/∂x∗(t)

Figure 5: Group feedback effect on focal’s fitness (panel a) and trait sensitivity (panel b) for closed-loop
(CL) control for different values of average relatedness r in the group. Parameter values: N = 10, a = 1,
ceffort = 0.01, T = 100.
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(a) Candidate uninvadable extraction rate u∗(t)
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(b) Candidate uninvadable resource level x∗(t)

Figure 6: Candidate uninvadable extraction rate (panel a) and resource level (panel b) for closed-loop
(CL) and open-loop (OL) traits for different values of average relatedness r. Parameter values: N = 10,
µ = 0.01, σ = 0.95, xinit = 100, T = 100. Note that if individuals are clones (r = 1), the closed-loop and
open-loop traits coincide and for open-loop traits extraction rate does not depend on relatedness r.
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Highlights 

 

· General principles that describe the gradual evolution of scalar traits also hold for 

function-valued traits (phenotypically plastic) traits. 

· Hamilton’s rule holds for phenotypically plastic traits that vary with age/time  and 

state variables (internal and external conditions of an individual).  

· Age-dependent (open-loop) traits and state-dependent (closed-loop) traits lead to 

different evolutionary outcomes when individuals interact. 

· State-feedbacks have a major consequence on shaping life-history trade-offs and the 

evolution of social behavior.  


