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The von Bertalanffy growth curve has been commonly used for modeling animal growth (particularly
fish). Both deterministic and stochastic models exist in association with this curve, the latter allowing
for the inclusion of fluctuations or disturbances that might exist in the system under consideration
which are not always quantifiable or may even be unknown. This curve is mainly used for modeling the
length variable whereas a generalized version, including a new parameter b > 1, allows for modeling
both length and weight for some animal species in both isometric (b=3) and allometric (b # 3)
situations.

In this paper a stochastic model related to the generalized von Bertalanffy growth curve is proposed.
This model allows to investigate the time evolution of growth variables associated both with individual
behaviors and mean population behavior. Also, with the purpose of fitting the above-mentioned model
to real data and so be able to forecast and analyze particular characteristics, we study the maximum
likelihood estimation of the parameters of the model. In addition, and regarding the numerical
problems posed by solving the likelihood equations, a strategy is developed for obtaining initial
solutions for the usual numerical procedures. Such strategy is validated by means of simulated

examples. Finally, an application to real data of mean weight of swordfish is presented.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Von Bertalanffy (1938) introduced an equation to study the
growth of individuals belonging to several types of animal
populations. As most growth models, it comes from an adaptation
of the Verhulst logistic growth by assuming a maximal value of
the growth variable (which might eventually be attained), and
considering the growth rate as proportional to the difference
between maximal and current value. It is currently the most
common model used by fishery biologists to study growth in fish
and its interpretations, such as fish population dynamics and the
effects of fishery regulations on the catch.

The von Bertalanffy growth curve is

Lt)y=Lo[1—e X9 t>a k>0, 1)

where L, is the upper bound for the variable under study, that
can only be reached after infinity time and k is the curvature
parameter, or von Bertalanffy growth rate that determines the
speed with which the fish attains L.,. As regards the parameter q,
sometimes named the initial condition parameter, it determines
the time at which the fish has a size equal to zero and could be
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negative (in the biological literature is common to note this
parameters as to, but we have used a in order to avoid confusion
with the notation usually employed for the initial instant in the
context of stochastic processes). From a biological point of view,
this question is meaningless because growth in the embryonic
stage usually does not fit the von Bertalanffy growth pattern.
Nevertheless, it is important to note that fish sufficiently aged to
be exploited, as for consumption, show a trend modeled by the
von Bertalanffy curve. The embryonic stage has then no interest in
this context.

A general expression for the von Bertalanffy curve, also called
“generalized von Bertalanffy growth curve” (see Garcia-Rodriguez
et al., 2005 and references therein), is

B(t) =B, [1—e X9} t>a k>0, b>1, )

where the parameter b can be known or unknown. For example,
the value b=1 (curve (1)) is used when the variable under study
is the length. However, when focusing on the weight, and taking
into account the existing relation between the weight and the
length, the value b=3 is associated with the isometric growth,
whereas the case b # 3 is related to the allometric growth.
Curves (1) and (2) provide appropriate deterministic models to
describe the growth (in length or weight) of fish and others
animals. The study of procedures in order to determine the
parameters of such curves for fitting real data has been widely
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considered. For example, Rafail (1973) developed a procedure
based on a straight-line relationship between the natural
logarithms of growth increments per unit of age against age as
the independent variable.

Nevertheless, such models do not include variability among
individuals of the same age, or environmental variability
(fluctuations or disturbances that might exist in the system under
consideration).

In order to take these variations into account, several
stochastic models have been considered in the literature. The
first type of model, according to the classification provided by
Russo et al. (2009), are those described by a stochastic differential
equation, obtained by including a noise term in the ordinary
differential equation of the respective deterministic model.

In this context, and as concerns the Bertalanffy growth model,
Lv and Pitchford (2007) have recently considered three stochastic
models, associated with the curve (1). Said models are built from
stochastic differential equations with identical von Bertalanffy
deterministic parts and different stochastic terms, to show,
among other points, that stochasticity can have positive impact
on fish recruitment. Gudmundsson’s (2005) criticism of such
models is that the solution for these differential equations may
not be strictly increasing. From this point of view, the aforemen-
tioned models may not be appropriate for the study of some
growth variables, like length, that are not subject to decreasing
(Weatherly and Gill, 1987).

Such defect, real from a theoretical point of view, is practically
diluted in practice. In the practical application of this type of
models, the noise term has a moderate magnitude (see Gutiérrez
et al., 2007 in the context of Gompertz-type growth). This feature
makes the sample paths of the resulting processes show von
Bertalanffy-like behavior patterns, except for the presence of
small random fluctuations. In addition, if the resulting stochastic
model verifies that its mean function is a von Bertalanffy growth
curve, the use of the model for fitting and predicting is fully
justified. On the other hand, such defect disappears if the
stochastic model is associated with the von Bertalanffy general-
ized curve. This allows for the study of weight-to-age (general-
izing the case for length-to-age) since the evolution of the
animal’s weight in time is not necessarily a strictly increasing
function.

The second type of stochastic models are those that assume
that the parameters of the von Bertalanffy curve are different for
each member of the population and are thus considered random
variables with a certain probability distribution.

Among the authors that deal with this second type of models,
we must emphasize the one by Cheng and Kuk (2002), that
considered the parameters of the model as random effects
following a trivariate normal distribution. More recently, Tovar-
Avila et al. (2009) considered a reparametrization of the von
Bertalanffy growth rate using three different probability distribu-
tion functions: Weibull, gamma and log-normal. Such models
show an increasing behavior and consider individual variations,
but are limited by the fact that they do not account for
environmental variations, caused by multiple factors which are
not always quantifiable or may even be unknown.

Russo et al. (2009), in order to overcome the flaws of the two
types of models already mentioned, introduced a type of
stochastic models related to the von Bertalanffy curve as a
solution for stochastic equations that include a subordinator
(a class of strictly increasing stochastic processes which make the
solution process of the stochastic equation also increasing). Such
models account for both individual and environmental sources of
randomness.

In practical situations, the use of a stochastic model for fitting,
making forecasts or drawing conclusions about the particular

growth of the individuals of a population or about the mean
population growth, requires the estimation of the unknown
parameters of the model.

As a first approach along this line, some authors, such as
Kimura (1980), have studied likelihood methods under the
assumption of independent and normally distributed errors using
classic nonlinear least square methods. Wang (1999) introduced
unbiased estimating functions for a class of growth models that
incorporate stochastic components and explanatory variables.
More recently, Hart and Chute (2009) introduced a novel linear
mixed-effects method for estimating von Bertalanffy growth
parameters from growth increment data that lack explicit age
information. In Cheng and Kuk (2002) the problem of estimating
the parameters of their already mentioned model is considered
(see also Laslett et al., 2003 for a discussion of the results).

Russo et al. (2009) also dealt with the problem of parameter
estimation based on the probability distributions of the growth
variable in each of the observed time instants.

Nevertheless, in the case of models described by stochastic
processes that are a solution of stochastic differential equations,
an efficient estimation of parameters must be based on data that
provide information of the evolution of variables along time
(sample paths). Thus such estimation must be based on data
which can be of two types:

e Data related to the time evolution of the variable of interest
(length, weight, etc.) for each individual of a sample of the
population.

e Data relative to the characteristic of interest taken at different
time instants from recapture. In this case, data belong to different
individuals. This is the most usual case, since measuring growth
variables for the same individual at successive time instants can
be time-consuming and expensive. For this reason, it is common
to consider a single sample path composed of the mean of the
recapture data in each time instant.

In the first case, and using several sample paths, it is possible to
estimate a model related to the particular growth of individuals,
whereas in the second case, and from a single sample path, the
estimated model is associated with the mean population growth.

Thus, the aim of this article is twofold. Firstly, the introduction of
a stochastic model (specifically a diffusion process) to model
behavior patterns associated with the generalized von Bertalanffy
curve (2) that allows the consideration of both length and weight for
some animal species. To this end, the model is obtained by applying
the methodology developed by Gutiérrez et al. (2007) in the context
of gompertzian growth: from the deterministic equation, whose
solution is the curve of interest, a stochastic component is
introduced as well as the condition that the mean function of the
resulting diffusion process be a curve of the type (2) (that fits well
the sample data and can be used for forecasting purposes) is
imposed. The building of the model as well as the study of some of
its characteristics (probability distribution of the process, mean,
mode and quantile functions) is presented in Sections 2 and 3. For
point predictions the mean and the mode functions can be used,
whereas for interval predictions, the quantile functions provide
intervals containing the growth variable of the process, for each
time, with a specific probability. Furthermore, the consideration of a
diffusion process in this context will allow the study of time
variables, such as first-passage-times, associated with von Berta-
lanffy type growth models.

Secondly, since the purpose of model is to fit and forecast real
data, the next objective is the estimation of the model. In Section 4
an inferential study of the parameters of the process is carried out
(particularly their maximum likelihood estimation) on the basis of
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discrete sampling (in both cases, by considering one or several
sample paths). In addition, and regarding the numerical problems
posed by solving the likelihood equations, in Section 4.1 a strategy
is developed for obtaining initial solutions in order to apply the
usual numerical procedures. Such strategy is validated by means of
simulated examples in Section 5. Finally, in Section 6 the
possibilities of the new stochastic model, relative to fit, forecasting
and first-passage-times, are illustrated by means of an application
to real data of mean weight of swordfish in Southeastern Pacific.

2. The generalized von Bertalanffy diffusion process

Before introducing the diffusion process, we will obtain an
equivalent expression for the generalized von Bertalanffy curve
(2), more suitable for our purpose. We will consider that the
observations of the variable under study are made from a time
instant ty >0, with X >0 the observed value at t,. With this
realistic hypothesis in mind, and taking into account (2), we
deduce that a < ty, since this function is increasing and verifies
B(a) = 0. On the other hand, as we suppose B(tg) = Xo, and denoting
c=ek, we conclude that

=t 3)
from where

_ r~p—kt b
B(t):xo<:_§ﬁ> , t2t0>1n—<c, k>0, b>1. 4)

Now we introduce the new diffusion process related to the curve
(4). To this end, we follow the methodology considered in
Gutiérrez et al. (2007) in which several methods are presented
in order to introduce a diffusion process in the context of
gompertzian growth. Specifically, we look for a process in which
the solution of the Fokker-Planck equation, without noise, is such
a curve. In addition, the resulting process must verify that the
mean function conditioned on the initial value, E[X(t)|X(to) = Xo],
coincides with (4), which is specially useful for the purposes of
forecasting.

Following the same scheme presented there, let us consider
the first order equation verified by the transition probability
density of the process, f = f(x, t|xo, to):
of _ bck i[xf],

ot~ ek_cox

with the initial condition lim;_«f(x, t|Xo, to) = d(X—Xo). Its solution
is

1—cekt\"
F&X, tlxg, t0) =0 Xx—xo (m) s
which implies that the population under consideration increases
according to (4). Now, we consider the Fokker-Planck equation of
the homogeneous lognormal diffusion process with infinitesimal
moments A;(x) = mx and Ay (X) = 62x% (m, g > 0),

of a2 &

0 2
&_—&[mxf]—i— 3 W[x f1.

and modify the infinitesimal mean by multiplying it by the term
bck/(e¥ —c). Thus, we obtain

of _ bck &
ot eki—cox
that is, the forward equation of a new diffusion process with
infinitesimal moments

bck
ekt —C

x>0, t>t

x>0, t>ty,

2 62
1+ =50 x>0, t> 1o, (5)

A(x, t) = X,

Ax(x,t) = 02X (6)

It is obvious that the solution (5), when ¢? vanishes, is the curve
(4).

Alternatively, the process can be obtained from the Langevin
equation

dx( _ bck
dt = ekt—c

X(t)+X(t)aW(b), 7
where W(t) denotes the standard Wiener process. The derivation
of (7) can be achieved from the deterministic growth equation

dx(t)  bck
dt — eki—c

X(t), X(to) = Xo, ®)

which can be seen as a generalization of the malthusian growth
model with a deterministic fertility depending on the time,
r(t)y=bck/(e*—c), and replacing this fertility with r(t)+aW(t).
Moreover, Eq. (7) has an important meaning in terms of how the
population increases. In fact, this equation can be expressed in the
form
PO _ mxo-pex. ),
where @(x,t)=1-bck/(eX—c)—(1/m)cW(t) is the well-known
regulation function (see Capocelli and Ricciardi, 1974) that, over
time, introduces several changes into m, the growth rate of the
Malthusian model.

By rewriting (7) in the usual form for stochastic differential
equations, that is

bck

dX(t) = ekt_c

X(t)ydt+oX(HdW(t), )

its solution is a non-homogeneous diffusion process {X(t);t < ty}
taking values on R* and with infinitesimal moments

Aq(x,t) = h(t)x,

Az (x,t) = 622, (10)
where h(t) = bck /(e —c) or h(t) = bck/(e"—c)+a2/2 according to
whether the It6 or the Stratonovich integral is used to solve it,

respectively. In addition, it is not difficult to show that the mean
function, conditioned on the initial value xg, is

t
E[X(t)|X(tg) = Xo] = Xo€XP ([ h(s) ds)

. 1_Ce—kr
O\ 1=ce o

1—c —kt 02
X0 <7> exp <7(t7t0)> for the Stratonovich solution.

b
for the It6 solution,

1—ce—kto
11

From (11), and taking into account our objectives, the usefulness
of the model to fit and forecasting purposes, the It6 solution must
be chosen (note that in the case of the Stratonovich solution, the
mean is not even a bounded curve), so we introduce a new von
Bertalanffy-type diffusion process associated with the curve (4) as
the diffusion process {X(t);t>ty} defined on R* and with
infinitesimal moments given by (6).

Finally, another way to develop this process, in the line shown
by Albano and Giorno (2006) in the Gompertzian case, is based on
the discretization of (8) and then its randomization (see Appendix
A for more details).

In short, the diffusion process presented is a stochastic model
associated with the generalized von Bertalanffy curve (2), or
its rewriting as (4), which accounts for both individual and
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environmental variability. Its main advantages are:

e Unlike other existing stochastic models, related to the von
Bertalanffy curve (1) and useful to study the length of some
animal species, the model under discussion allows to study
both length and weight.

e Its mean function is a generalized von Bertalanffy curve, which
justifies it use for the fitting and prediction of real data with
such a behavior pattern.

In addition, one of the advantages of using this sort of model for
the study of dynamic phenomena is that it allows to consider
some questions about their evolution through time variables.
For instance, the study of time variables as the time an animal
takes to reach the minimum size at which it can be sold for
consumption, or the time a population takes to reach a certain
size, can be of great interest. Problems like these may be solved by
obtaining the density function of the first-passage-time through a
constant boundary. The application developed in Section 6 deals
with a problem of this type, illustrating the model’s usage for this
end.

3. Probability distribution and some characteristics of the
process

The probability distribution of the process, determined
by the finite-dimensional distributions, can be obtained from
the theory of stochastic differential equations, as solution of (9),
or employing the theory of partial differential equations from
the forward equation, (5), and the Kolmogorov or backward
equation

of o2

o, bk f P
aty ' eko—c"%axg " 20 ox2

=0, x90>0, t>tp.

In Gutiérrez et al. (2006) both approaches have been developed in
the context of the lognormal diffusion process with exogenous
factors, of which the von Bertalanffy process is a particular case. In
this case, the transition probability density function of the process
is

1
X ty,s) = ————
Jxty.s) X\/2mo2(t—s)
in(*) _pin (1= 2 ) ’
xex _1 y 1-ce™s 7( t>s
Pl =3 (=s)02 ’ ’
(12)
which corresponds to a lognormal distribution, that is,
p— 2
xOX©=y1~ 4 iny+bin( ;= ) - G e-sie-nie?|.a3)

Because of the Markovian property of the process, from (13) and
the initial distribution, we can calculate the finite-dimensional
distributions. In this case, we consider two initial distributions: a
degenerate distribution, that is, P[X(tp) =Xo] = 1, and a lognormal
distribution, X(to) ~ A1y, 03), these choices ensuring that the
finite-dimensional distributions are lognormal. We must remark
that the former choice can be seen as a particular case of
the second considering 0o=0 and u,=In(xo). Moreover,
the degenerate initial distribution is the real situation when
only a sample path is available, whereas the lognormal case
requires several trajectories. In any case, the random vector
X(ty),...,X(ty)) follows an n—dimensional lognormal distribution

An(ut, %), where

2

1—ce*ti\ ¢ .
L :,uo+b1n<m>—7 (ti—tg), i=1,....,n

and

Z,‘j=0'(2)+62(MiH{t,‘,tj}7t0), i,j=1,...,n.

We now describe the main characteristics of the process,
focussing particularly on the three most commonly employed in
practice, especially for forecasting purposes. These characteristics
are the mean function (which by the structure of the model is a
type (2) curve, and thus particularly appropriate for fitting and
predicting), the mode function (that provides, for each time, the
most probable value of the growth variable) and the quantile
functions (which allow to make predictions through intervals that
contain the growth variable for each time, with a specific
probability). Its expressions can be formulated jointly for the
two initial distributions under consideration:

e Mean function:

b

1— —kt
m(t) = EIX(0)] = E[X(to)] <%> , t=1o

e Mode function:

T—ce k"
Mo(t) = Mode[X(t)] = Mode[X(tg)] <m>

xexp (—%az(t—t0)>, t>to.

e Quantile function:

b

) ) 1—ce X
C,(t) = a-quantile[X(t)] = a-quantile[X(ty)] (m>

2
xexp <— > (t—to)+21_y {\/Gz(t—to)—i- Var[In(X(tp))]

— Var[ln(X(tO))]] ) ,t>to,

where z,_, is the o—th quantile of a standard normal
distribution.

Furthermore, and from (13), the conditioned versions of these
functions can be also obtained (see Gutiérrez et al., 2006 in the
general case).

e Conditional mean function:

b

1—ce*t
m(t|s) = E[X(t)|X(S) = Xs] = Xs <m> , t>s.

e Conditional mode function:
1—cekr\” 3,
Mo(t|s) = Mode[X(t)|X(S) = Xs] = Xs <m> exp (—ia (t—s)), t>s.
e Conditional quantile function:

b

. 1 _Ce—kt
Cy(t|s) = a-quantile[X(t)|X(S) = Xs] = X <m>

2
X eXp (—%(t—$)+217a\/m>, t>s.

4. Inference on the model

As we have noted above, the mean function of the process is a
von Bertalanffy curve of the type (4). Therefore the mean function,
as well as its conditional version, E[X(t)|X(s)=xs], t>s, can be
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useful for making predictions with this model. For this reason, let
us examine in this section its maximum likelihood (ML)
estimation. First, we obtain the ML estimators of the parameters
of the model and then that of the mean function, as well as the
other parametric functions above-mentioned.

Let us consider a discrete sampling of the process, based on d
sample paths, for times t;, (i=1,...,d,j=1,...,n;) with t; =t
i=1,...,d. That is, we observe variables X(t;;), the values of which,
{Xij}i=1...dj=1,..n,» Make up the sample for the inferential study.

The likelihood function depends on the choice of the initial
distribution. When P[X(t;) = x1] = 1, this function is Ly, (b, ¢, k, 02)=
e, H}”:zf(x,-j, tilXij_1,tij_1), where b, ¢, k and ¢ are the
parameters to be estimated. If X(t;) ~ A(y;,03) the likelihood is
Ly (1,03, b, .k, 02) = TTT_ ¢ fxcen i) T o f (i 151 Eij1)-

In the second case there are two additional parameters that
must be included in the estimation procedure. Nevertheless, the
estimations of x; and o2 depend only on the initial values and do
not influence the estimation of the other parameters. Hence, the
ML estimators of b, ¢, k and 62 are the same in both cases.

Henceforth, we will consider the case when the initial
distribution is lognormal, because this situation gives full mean-
ing to the model in relation to the comments made above.

In this case (see Appendix B for a more detailed development)
by maximizing the likelihood function it can be derived that the
ML estimates of x; and o7 are

d d
Q= %Z Inx; and 62 = %Z(lnxn—ﬁl)z,
i=1 i=1

while the ML estimates for D=1/c and A=e ¥ result of the
solution of the system of Eq. (B.11) for the particular case of
equally spaced data, that is t;—t;;_y=h, i=1,...,d; j=2,...,n;.
This system has no explicit solution and must be dealt with by
numerical methods. Once these estimates are obtained, the
corresponding for b and ¢2 are b = b*P and 6% = ¢2 . from (B.9).
Finally, the ML estimate of any parametric function expressed in
terms of b, ¢, k and o2, as for example the mean function, is
calculated by applying Zehna'’s theorem.

4.1. Numerical aspects

The system of Eq. (B.11) is quite complex, which makes its
resolution difficult, especially when the sample is large. For this
reason, it is necessary to make use of numerical procedures, most
of which need an initial solution to be applied.

In order to obtain a good initial solution, we propose some
alternatives based on the sample information provided by the
observed trajectories of the process. In this line, we will
distinguish several cases depending on the parameter b and will
use some expressions derived from the curve.

Firstly, and taking into account that A=e* and D =1/c, from
(4) we have

Xo 1 Al b
2-(-)
from where

D=—" (14)

On the other hand, the inflection occurs at

b Intbc) _ In(D/b)
"7k T A

SO

1/b 1/(to—t)
A=<b<1(§0> )) : (15)

Now, we will distinguish the cases in which b is known and
unknown. In each case we will consider two situations according
to the inflection time being visualized or not.

e b known.

o Firstly, let us suppose that t; >ty (i.e. b > ek%/c). In such a
case, and since (lfl/b)b is the quotient between the value
of the curve at t; and the upper bound, we can approximate
t;, for each trajectory, taking the first time instant at which
the sample path exceeds x;,,(1-1 /b)b, where x;,, is the
upper bound for the i-th trajectory (i=1,...,d), and, finally,
consider the mean of these values. Obviously, this proce-
dure can be applied if the limit value is known, at least in a
approximate form. In this sense, usually the last value x;,,
of each trajectory is taken as X; .

Once t; is approached, the initial values for A and D are
obtained from (14) and (15), respectively. To this end, the
value X /B~ is approached by considering the mean of the
values x;; /X, i=1,....d.

Ifb=1orIn(c)/k <t; <ty (i.e., 1 <b <ekb/c), the inflection
time cannot be guessed from the observation of the sample
paths. Nevertheless, expression (14) provides a relationship
between A and D, or equivalently between k and c,
concretely c=oe* where o=1—(xg/B)"/?. From this
expression the curve remains

B(t) = Boo(1—cekt=t))b

and presents only an unknown parameter, k. We propose,
for each sample path, to calculate k from a least square fit to
the previous curve. For this, the value xq/B, is approached
in the same way described in the previous case, whereas B,
is approached by means of the values x;,, i=1,...,d.
Finally, the initial value for A is the exponential of the mean
of these estimations.
e b unknown.

o If for each sample path the inflection time can be visualized,
or guessed, we propose to find an initial value for b as
follows: firstly, we calculate an approximate value for the
time at which the inflection occurs, for example by
examining the sample paths, and taking the mean of the
values x;;, /X;., namely X;, where t;, and x;., are, respec-
tively, the inflection time and the upper bound for the i-th
sample path (approached by the last value of the trajec-
tory). Once this value is obtained, the initial one for b is the
solution of the equation

= 1\°
X = (1_B> .

After calculating the initial value for b, the corresponding
for A and D are obtained from (14) and (15), respectively,
taking into account the same remarks made before.

If the inflection point cannot be visualized from the sample
paths, that is In(c)/k < t; < to, we propose a slight modifica-
tion of the previous procedure which is based on the
increasing behavior of the von Bertalanffy curve. In fact, in
such a case, and for b > 1, the following relation holds:

1-— 1 ’ — '@ < xio .
b Bw ~ B
Thus, and in an approximate form, we can consider that
(1-1/b)" < x,, where x;, = Mean, _ 1,..d Xi1/Xin,. Furthermore,

o

o
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(1-1/b)* is a strictly increasing function verifying
(1-=1/b)’ <e~1, vb>1, from which we can establish the
following strategy in order to take an initial value for b in this
situation:

e If x,<e”!, then the solution of the equation
X, =(1—1/b)’ provides an upper bound for b, namely
b1. In such a case, we propose to consider an initial value
for b randomly chosen from an uniform distribution in
the interval (1, by).

e Ifx, > e, then the previous equation has no solution, so
we propose to consider b=1 as initial value.

Once the value of b is obtained, we proceed as in the case
when b is known.

5. Simulation study

In this section we present several examples in order to validate
the estimation procedure previously developed, together with the
strategy showed for establishing the initial solution of the system
of equations that must be solved. To this end, we have simulated
sample paths from the von Bertalanffy diffusion process followi-
ng the algorithm derived from the numerical solution of the
stochastic differential equation associated with the process (see

Table 1
Parameters chosen for the simulation of the sample paths.

Kloeden et al., 1994). In our case, the algorithm is

o —x|1n( bek g\ (k) (be—ett) o?bck ot
e ektn—c 2 2 (ektn—C)z ektn—c = 4
hbck  ho? I o3 p
+O'<1 + ekt”—C_T> (l+ §Z1n)z1n+ EZ?n—l- ﬂziln}’

forn=0,...,N—1, where N is the number of simulated values, h is
the integration step, x,;, = X(t,) and Z;,, is a normal variable of zero
mean and variance h.

We have considered four cases in which d = 100 sample paths
have been simulated. Each trajectory has been simulated with 301
data starting at to =0, taking h = 0.1 as the integration step and an
initial lognormal distribution A4(3,0.2). Table 1 shows the values
of the others parameters of the process, together with the
theoretical inflection time instant. Note that in only in the first
example the inflection time instant can be guessed.

In order to make the subsequent inference we have considered,
in each case, 31 data with t;—t;; 1 =1,i=1,...,100,j=1,...,31.
The graphics in Fig. 1 show the mean of the simulated sample
paths for each case.

As concerns the estimation procedure, each of the examples
has been treated considering the case b known and unknown.

e For example 1 (in which the inflection occurs inside the
considered time interval), if b is known, the procedure
aforementioned leads to 2.5 as approximate value or the
inflection time (the true value is 2.35). We must note that the

Example b ¢ k ¢ b time instants considered are discrete; for this reason, when a
1 2 0.8 0.2 0.01 235 time instant is found in which the value x,;oo(l—l/b)b is
2 0.6 0.5 0.01 —1.02 exceeded, we have considered as the inflection time the mean
3 1.3 0.7 04 0.01 -0.23 between this time and the previous. Finally, from (14) and (15)
4 e 2 oS Ul =17 we have obtained the initial values for A and D and, therefore,
a b
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Fig. 1. Mean of the simulated sample paths.
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those for ¢ and k. In addition, the value xo/B., has been
approximated by 0.04042, whereas the true value is 0.04.

In the case b unknown, we have considered t;=3 as the
inflection time. From this value, and following the procedure
described above, we have obtained by = 1.22789, and then the
others initial values as we have previously remarked. Table 2
summarizes the results obtained for this example. In the last
case, the choice of t; is arbitrary and it is based on the
visualization of the sample paths. For this reason we have
considered other possible values for t; and compared the
results with the previous one. Specifically, the values t; =2,4
have been also considered without changes in the estimated
values (see Table 3).

For example 2 we must remark that the inflection cannot be
guessed (in fact, there is not inflection in the model since
b=1). In this example, the initial solution coincides in both
cases, that is, when b is known and unknown because of the
value obtained for X, is 0.40121 > e~!. Therefore, when b is
unknown, the procedure described leads to consider b=1,
from which follows that the initial solution for k (and then for
A) and D is the same. Obviously, the final estimation of the
parameters does not coincide in both cases since the likelihood
equations differ. Table 4 contain the results for this example.
As example 3 concerns, we have another situation in which the
inflection exists but cannot be seen. In this case we must
remark that when b is unknown, its initial value is calculated
by solving the equation Xx,= (1—1/b)b since X, is now
0.20807 <e~1. Thus, this equation has only one solution,
b; =1.59925, which is an upper bound for b. Later, we have
taken a random value in the interval (1, b;) as the initial value
for b (Table 5 includes the results). Finally, the procedure for
taking the initial value for b leads to consider a sensibility

Table 2
Initial and estimated values for example 1.

Parameter True b known b unknown
value

Initial Estimated Initial Estimated

solution value solution value
b 2 1.22789 1.97997
c 0.8 0.79894 0.79994 0.92668 0.80339
k 0.2 0.18747 0.20024 0.04305 0.19847
a 0.01 0.00991 0.00991

Table 3

Sensibility analysis for example 1 (b unknown).

tr  bo Co ko b c k 4

2 1.09777 0.94621 0.01899 1.97997 0.80339 0.19847 0.00991

4 149086 0.88375 0.06894 1.97997 0.80339 0.19847 0.00991
Table 4

Initial and estimated values for example 2.

Parameter True b known b unknown
value

Initial Estimated Initial Estimated

solution value solution value
b 1 1 1.00201
c 0.6 0.59878 0.60125 0.59878 0.60428
k 0.5 0.50850 0.49515 0.50850 0.49354
o 0.01 0.00996 0.01011

Table 5
Initial and estimated values for example 3.

Parameter True b known b unknown
value

Initial Estimated Initial Estimated

solution value solution value
b 1.3 1.37891 1.30028
c 0.7 0.70107 0.70075 0.67968 0.70067
k 0.4 0.39513 0.39842 0.40180 0.39847
g 0.01 0.01017 0.01017

Table 6

Sensibility analysis for example 3 (b unknown).

bo co ko b c k o

1.11985 0.75385 0.85843  1.30028 0.70067 0.39847 0.01017
1.17977 0.73568  0.73702  1.30028 0.70067 0.39847 0.01017
1.2397 0.71813  0.62710 1.30028 0.70067 0.39847 0.01017
1.29962 0.70118 0.52597 1.30028 0.70067 0.39847 0.01017
135955 0.68484 0.43135 1.30028 0.70067 0.39847 0.01017
1.41947 0.66909 034097 1.30028 0.70067 0.39847 0.01017
1.4794 0.65393  0.25291 1.30028 0.70067 0.39847 0.01017
1.53932 0.63934 0.17442 1.30028 0.70067  0.39847 0.01017

Table 7
Initial and estimated values for example 4.

Parameter True b known b unknown
value

Initial Estimated Initial Estimated

solution value solution value
b 3 1 3.10916
c 0.2 0.19995 0.19998 0.40073 0.19361
k 0.3 0.29958 0.30198 0.26639 0.30305
g 0.01 0.00980 0.00980

analysis of the results. To this end, we have considered other
random values in the interval in order to validate the
procedure followed (see Table 6). However, no differences
have been found, so the estimation of the parameters is robust
to the choice of b.

e The last example shows another situation in which the
inflection exists but occurs before ty, so it cannot be seen.
The difference between this example and the previous is that,
in this case, when b is considered unknown X, = 0.51208 > e~!
and then we take by =1 as the initial value for b. Observe that,
unlike in example 2, the initial values are different according
to b being known or unknown. The results are included in
Table 7.

6. Application to real data

The following application is based on the studies developed by
Chong and Aguayo (2009) on some aspects related to the
swordfish age and growth in the Southeastern Pacific. Specifically,
we have considered data about the mean weight to age in both
sexes, as shown in Fig. 2.

Table 8 shows the estimated values of the parameters of the
model, together with the initial solution obtained by means of the
strategy proposed before.

Since the model considered verifies that E[X(t)|X(tg) = Xo] is a
generalized von Bertalanffy curve, it is obvious that a good fit to
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Fig. 2. Mean weight to age for swordfish in both sexes.
Table 8

Estimation of the parameters of the model using all swordfish data.

Parameter Initial solution Estimated value
b 4.2379 3.0631
c 0.5901 0.7305
k 0.1833 0.1451
a 0.0003
400 r
300 e
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Fig. 3. Observed values and estimations of the trend function and the
E[X(t)IX(ti_1) =x;_1] values, i=1,...,17.

the data will be provided by the function E[X(t)|X(t;) = x1], where
t; is the first observation time instant and x; is the initial value of
the sample path. Nevertheless, and with the aim of obtaining a
best fit to the observed data, in practice it is usual to consider the
values E[X(t)|X(ti_1)=x;_1], i=1,...,17, where x;_; is the ob-
served value at t;_;.

Fig. 3 shows the observed values, the estimation of the
E[X(t)|X(t;) =x1] function and the estimation of the E[X(t;)|
X(ti_1)=x;_1] values (joined by a solid line for better
visualization), i=1,...,17.

To illustrate the predictive capability of the model, maximum
likelihood estimates for the parameters using data for the age
1-16 were calculated, and we predicted the value for 17.
The estimates of the parameters, and the initial solution, are
summarized in Table 9, whereas Table 10 shows the observed
values at age 17, point prediction given by the estimation of the
mean and mode of X(17)|X(16)=x16, as well as an interval
prediction provided by the estimation of 0.025 and 0.975
quantiles of the variable above.

One advantage of using growth stochastic models, like the one
shown here, is the possibility of studying some questions related

Table 9
Estimation of the parameters of the model without the last data.

Parameter Initial solution Estimated value
5.2573 3.0589
c 0.5067 0.7310
k 0.1959 0.1450
a 0.0003
Table 10

Observed and predicted values for the mean weight of swordfish at 17-th year.

Estimated conditional
quantiles

Estimated
conditional mode

Observed Estimated
value conditional mean

333.2 333.331 333.445 (333.092,333.571)
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Fig. 4. First-passage probability densities for the weight of the swordfish through
a constant boundary: (a) S=300; (b) S=350.

to their evolution, such as the achievement of a certain value or a
change in a behavior pattern. For example, the time an animal
takes to reach the minimum size at which it can be sold for
consumption, or the time a population takes to reach a certain
size, can be of great interest and can be formulated as a problem
of first-passage-time through a constant boundary S, that is the
time variable

Tsx, = tlgg{t 1 X(0) > SIX(t1) = x1}

for which its probability density function must be calculated. In
order to illustrate this question, we have considered two
boundaries, S=300 and 350. For the first case the value S is
achieved inside the time interval considered, whereas the second
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will be attained later (the estimated upper bound for the model is
405.755).

As regards the obtaining of the probability density function, it
is the solution of a Volterra integral equation of the second kind
that must be solved by numerical procedures since a closed-form
solution is not available in this case (see Gutiérrez et al., 1997). To
this end we have employed the methodology developed in Roméan
et al. (2008). Fig. 4 shows the probability density functions for
the two cases considered for which, moreover, we can point out
that the means of the variables first-passage-time through the
constant S are 14.138 and 18.903, respectively.

7. Conclusions

A new stochastic diffusion model has been presented for the
modeling of animal growth with a behavior that fits a von
Bertalanffy growth pattern. The main innovation from other
existing models (see Gudmundsson, 2005; Lv and Pitchford, 2007;
Russo et al., 2009) is that it allows for modeling both length and
weight for some animal species in isometric and allometric
situations. This is done by considering a generalized von
Bertalanffy growth curve including a parameter b > 1, and whose
particular case with b=1 is the one considered in previous
stochastic models.

The new model is a diffusion process determined by the
solution of a differential stochastic equation, which can be
obtained by including a noise term in the ordinary differential
equation associated with the respective deterministic model.
Thus, and in the absence of noise, the growth variable increases
according to (2) and the sample paths of the process show such
behavior patterns (according to a generalized von Bertalanffy
curve), save for the presence of random disturbances (whose
magnitude depends on that of the noise). In addition, the fact that
the mean function of the process is also a type (2) curve, makes
the model particularly interesting for real data applications with
fitting and forecasting purposes.

In addition to the mean function, other parametric functions
prove useful for fitting and forecasting aims. In the case of point
fitting and prediction, the mode function provides, for each time,
the most probable value for the growth variable. For interval
predictions, through consideration of the percentile function,
intervals containing the growth variable for each time (with a
specific probability), can be obtained.

Once the diffusion process has been defined, the maximum
likelihood estimation of its parameters is done (and, conse-
quently, that of the parametrical functions of interest). However,
the likelihood equations obtained do not have an explicit solution
and classical numerical procedures are required. The convergence
of such procedures may depend on the choice of good initial
solutions. For this reason, one of the contributions of the present
paper is a proposal for a strategy for the search of such initial
solutions in several potential situations. The cases of b known and
unknown have been considered and also, in order to use the
information on the characteristics of the model provided by the
sample data, we have distinguished two possibilities regarding
the visualization of the inflection point in the sample paths. Such
strategy is validated by means of simulated examples that
consider all the situations described.

Finally, one of the main advantages of the use of stochastic
models is, in addition to its fitting and forecasting capabilities, the
chance to study time variables that affect the growth process. In
an application to real data of mean weight of swordfish, the
capability of the model for fitting and predicting is shown, as well
as for studying time variables of interest like the first-passage-
time through constant boundaries.
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Appendix A

Another way to develop the diffusion process proposed in this
paper is in the line shown by Albano and Giorno (2006). The
procedure is based on the discrete version of (8),

bck

eknt_¢ TXnt,

X(n+1yr—Xnt = n=0,1,... (A1)
that approaches (8) when n—co and 71— 0, with nt =t.
Now we introduce random environment as follows: the relative

intrinsic change bckt/(e"*—c) in the interval [nt,(n+1)7),

n=0,1,... can bee seen as the mean value of a sequence of
independent (not identically distributed) Bernoulli variables, Z,,
n=0,1,..., verifying

1 bck/T

P(Zy. =0/7T) = 5 +2(€"’”7C)0’

1 bck/T

P(Zy, = —Uﬁ) = 3 _2(6’""7—6)0' s

where ¢ >0 is a constant that evaluates the width of the
environmental fluctuations. Furthermore, the moments of Z,; are

bck

ElZi] = T E[Z21=0%t, E[Z2FP1=0(t), peN.

In this way, we randomize the model by replacing the term
bckt /(€¥"* —c) by Z,. in (A.1), thus obtaining

X(n+1)r_xnr :anxnr, n= 09 1, ceee

The increments X, 1):—Xn; conditional upon X,; =x are

bck
eknr_c

>

1
;E[X(nJr 1)t —Xne| Xne = X]=

1
;E[(X(nJrl)r *an)z [Xne =X] = O-ZXZ,

2

1 X
;E[(X(nJrl)r_an)Zer\an =X]= ?O(T), vpeN, (A2)

in such a way that when t approaches zero and n— oo, when the
condition nt =t, then X;; converges to the diffusion process with
infinitesimal moments provided by (6).

Appendix B

The transition p.d.f. (12) can be rewritten as
1

Xij\/ 202 (ti—tij_1)

X\ pin (DAY
1 [ln<xu—1> bln<D—A‘uf' +o Gt

xexp| —=
2 (t—tij_1)0?

f&q, tilxij_1, tijoq) =

2

where D=1/c and A=e*. Denoting n= Zle n;, the log-like-
lihood function of the sample is

InLy (1ty,0%,A,D,b 0'2)—fﬂln(Zn)fglnozfn—_dlnazfzd:lnx-
%1, 01,4, 1, D, 07) = =5 5 MoT—— 2 il
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d
—ZZ[lnxn—ul]z—ZZlnxU ZZZln(tu tij 1)
li=1

i=1j= i=1j=
Xij D—Afﬁ a2
255 (tj—tij-1)0> ’

from which the ML estimates of u; and o7 are

ﬂ = Zlnxl] and 6’ :dz(lnxll_,u])

1—1 i=1

whereas the corresponding to A, b, D and ¢2 follow from the
solution of the system of equations:

Xj \ D—Ali 62
Z i " (Xij—l) bin (DfAfij—l 7 =t
t..

i=1j=2 U_ti\i_1
tij 1A% Y (D—Al)—t; ;A1 (DA 1)

(D—A"s)(D—A%) ’ B
Xij D—Al ot
i > I"<x—i,,-4>""“<m 7t
—1/=2 tij—tij1
D-Ati
<In(30) =0 (B2)
Xij D—A% o2
i n; 1n<m>_bln(m +5 (= tij-1)
iz1j=2 tij—tij1
Lij __ Atij—
o (B.3)

X D—AD—AT) — %

()
4ZZ(t,]—t,J D +40%(n—d)— 422 g1/

1j=2 i=1j=2 tj—tij1
D—Ati X D—Ati
o In° < D—Atr- ) e '“(an]>m<D—Afm> B

a3y DA

i=1j=2

tij—tij1 Gij—tij1

(B84

This system of equations does not have an explicit solution,
so numerical procedures are required to find it. In the

particular case tj—t;;_;=h, i=1,...,d; j=2,...,n; Egs. (B.1) to
(B.4) remain
D(1-A"2X4P—2bX5P + 02 hX{P)

+hA" QWAL 2bWEP 4o hWAD) 0, (B.5)
a?hy{P—2bY4P 4 2YAP — 0, (B.6)
a?hXP —2bX5P +2x4P =0, (B.7)
o*h?(n—d)+40*h(n—d)—4b>Y{P 4 8bY4P -4z =0, (B.8)

where, and denoting S"‘D—(D Ali)(D—Alii-1)
In((D—-A'")/(D—-At-1)),

ij-1
XAD ZZ SAJD’

i=1j=2

and T;]‘?’D =

Atija Xii
Z Z SAJD (%)’

i=1j=2 ij—1

ij—1
X3P = ZZ SA}D TP vt =

i=1j=2

Z ZTAD,

i=1j=2

YAP = ZZT”Hn( X'Jl), vA0 = ZZ(T"D,

i=1j=2 i=1j=2
t; A‘J‘ t: AuI Xii
AD 1,1 1 A,D u 1 ij
X ZZ SAD ’ X2* ZZ SAD Xi: ’
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tij 1 Al A2t
X5y = ZZ . SlAD TP, Wil = ZZ SA,JD ’
i=1j=2 i=1j=2 7j
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i=1j=2

A2t,1 1 Xii
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i=1j=2 Xij-1

and Z= Y31 S, In(x/xij 1)
After some algebra, from Eqgs. (B.6) and (B.7), we obtain

ADyAD _yADvyAD AD
XUy =Xy
where
ADyAD _yADyAD
A,D_XZ Y3 _X3 YZ (B]O)

= VADyAD yADyAD "
X3 Y =XV

Replacing these expressions in (B.5) and (B.8
system of equations appears:

) the following

D(1-AMX5 P —bAPXL + CAPXEL) + hAMH(WAP —pAPWAD 4 CAPWAD)

=0, (n—d)(C*P)? 4+ 2(n—d)CHP —(b*P)2Y4P 4 2pAPYAP _7 — 0.
(B.11)

As we pointed out in the introduction, in some cases the
parameter b is known. For example, in the study of the length of
fish b is equal to one, whereas in the case of weight in isometric
growth b = 3. In such a case, that is, when b is known, the Eq. (B.6)
disappears, (B.10) turns into

AD .
CA,D — bX3 A_DX?D
X7

>

whereas in the system of Egs. (B.11) the expression b*P must be
changed to b.
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