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Abstract

Methods for predicting the probability and timing of a species’ extinction are typically based on single species population
dynamics. Assessments of extinction risk often lack effects of interspecific interactions. We study a birth and death
process in which the death rate includes an effect of predation. Predation is included via a general nonlinear expression
for the functional response of predation to prey density. We investigate the effects of the foraging parameters (e.g. attack
rate and handling time) on the mean time to extinction. Mean time to extinction varies by orders of magnitude when we
alter the foraging parameters, even when we exclude the effects of these parameters on the equilibrium population size.
Conclusions are robust to assumptions about initial conditions and variable predator abundance. These findings clearly
show that accounting for the nature of interspecific interactions is likely to be critically important when estimating
extinction risk.
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1. Introduction

Population ecologists have long sought to understand
how exogenous factors (such as environmental variability)
interact with endogenous factors (such as body size, life
history, trophic position) to determine the probability that
a population will go extinct (Lande and Steinar, 2004).
Such insights promise improvements in our understanding
of species population dynamics in time and space (Bas-
compte et al., 1995), in the determinants of ecosystem
stability and complexity (McCann, 2000; Allesina et al.,
2012), and practical advances in our ability to conserve
or eradicate populations (Witting et al., 2000; Liebhold et
al., 2003).

Populations can take different routes to extinction. Ex-
tinction can occur either through progressive declines in
population size, such as due to habitat deterioration, or
through sudden crashes in abundance, such as through
random catastrophes (Lande et al., 1993). Demographic
stochasticity is caused by random variation among individ-
uals in survival and reproduction. Environmental stochas-
ticity is, on the other hand, random variation in the en-
vironment, which can lead to changes in the rates of pro-
cesses influencing population dynamics (such as survival
and reproduction rates; Lande and Steinar (2004)). While
environmental stochasticity can be important for popula-
tions of any size, demographic stochasticity becomes par-
ticularly important at low population sizes.

Classical population theory shows that if demographic

stochasticity is the only stochastic process influencing the
dynamics of a population then the mean time to extinction
increases exponentially with equilibrium population size.
In contrast, environmental stochasticity alone can lead to
a power law relationship between the mean time to extinc-
tion and equilibrium population size (Lande et al., 1993;
Foley, 1994). A major body of research to date has sought
to understand how the characteristics of individual species
influence their probability of extinction. For example, slow
life histories and small geographical range sizes are associ-
ated with a high extinction risk (Purvis et al., 2000). One
outcome of this large body of research is population via-
bility analysis (PVA; Brook et al. (2000)). PVA combines
the effects of these different factors to estimate the overall
probability that a population will go extinct (Beissinger,
2002; Mace et al., 2008). However the single species mod-
els used for assessing population viability often lack the
explicit incorporation of direct trophic interactions (Sabo,
2007; Sabo et al., 2008).

Interspecific trophic interactions have been widely stud-
ied, theoretically and experimentally, in the fields of pop-
ulation and community ecology. In his pioneering work
Holling (Holling, 1959) proposed a simple non-linear rela-
tionship between prey density and predator feeding rate,
known as the predator functional response, that is still
widely used today. Since then, various modifications to
Holling’s original formulation have been made to repre-
sent different foraging mechanisms (Real, 1977; Abrams
et al., 2000; Jeschke et al., 2002). A general expression for
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these is

f(n) =
αnq

1 + hαnq+1
, (1)

where αnq is the attack rate (a measure of the encounter
rate and capture success of the predator foraging on the
prey), h is the handling time (a measure of the time needed
to attack, eat and digest the prey). The attack rate term
(αnq) allows for the different scalings of attack rate with
prey density that, in combination with the handling time,
define the three standard types of functional response:

• Setting q = 0 and h = 0 in expression (1) we obtain
the type I functional response. In this case predation
rate increases linearly with prey abundance and the
predator has a negligible handling time or is able to
search and capture prey while handling other prey
(Holling, 1965; Jeschke et al., 2004). Type I func-
tional responses are classically associated with filter
feeders (Jeschke et al., 2004).

• Setting q = 0 in expression (1) we obtain the type II
functional response (Holling, 1959; Real, 1977). The
type II functional response is the simplest expression
that takes into account the time taken for predators
to locate and consume (“handle”) their prey. The
type II functional response is classically associated
with specialist predators (Turchin, 2003).

• When h > 0 and q > 0 we obtain the type III func-
tional response. The type III has been associated
with learning effects of the predator in catching and
handling its prey (Real, 1977), with generalist preda-
tors switching among alternate prey (Smout et al.,
2010) or with spatial effects enabling prey to hide
from predators (Vucic-Pestic et al., 2010). Both the
type II and III functional responses are characterized
by a maximum intake rate (1/h) at which predation
rate saturates (Holling, 1959)

The effect of the predator functional response on popu-
lation stability has been widely studied (May, 2001; Drossel
et al., 2004). However, such studies have predominantly
been conducted using deterministic models (they have also
addressed various stability concepts). Nevertheless inter-
specific interactions are stochastic events. Therefore char-
acteristics of their stochasticity are also likely to influence
extinction time. For example, predation pressure could
reduce population size and thereby increase the chance of
extinction via demographic stochasticity. We should also
expect that different predator foraging behaviors will have
different effects on a population’s risk of extinction. Most
PVAs incorporate the effects of interspecific interactions
in population level parameters (Sabo, 2007), for exam-
ple, predation is included as a constant (density indepen-
dent) source of mortality rather than a coupled, density
dependent population process (Sabo et al., 2008). Sin-
gle species models used in PVA typically fail to incorpo-
rate dynamic interactions between populations and their

predators, which can bias population viability estimates
(Sabo, 2007; Sabo et al., 2008).

The stochastic effects of interspecific interactions have
also been investigated in multispecies models. Stochastic
models of population dynamics range from predator-prey
models (McKane et al., 2004) to stochastic food web mod-
els (Ebenman e al., 2004; Powell et al., 2009). These mod-
els represent trophic-interactions as individual-based reac-
tion probabilities. In cases with large numbers of individu-
als these models produce macroscopic properties that can
be predicted by their deterministic counterparts (McKane
et al., 2004; Black et al., 2012). However, the stochas-
tic models can also exhibit properties that cannot be pre-
dicted by the deterministic models, for example stochastic
resonance (McKane et al., 2005). Extinction rates have
also been investigated in predator prey models with linear
interaction rates (Parker & Kamenev, 2009). The effects
of non linear birth rates on extinction rates have also been
studied (Liebhold et al., 2003; Kramer & Drake, 2010).
However, to our knowledge, little is known about the ef-
fects of the foraging parameters of the functional response
on extinction rates.

In this paper we investigate how predation influences
the population dynamics of small populations experienc-
ing demographic stochasticity. We aim to clarify the ef-
fects of predation on the extinction process. We analyze a
single species birth-death process in which the death rate
includes density dependent predation by a predator whose
abundance is not affected by the abundance of its prey
(we explain this assumption below). We then investigate
the importance of the predation functional response pa-
rameters on the mean time to extinction, and examine the
robustness of our results to temporal variation in preda-
tor abundance. This investigation is novel in itself, and
represents an initial step towards a more complete appre-
ciation of the effects of interspecific interactions on time
to extinction.

2. Stochastic and deterministic models

We define a single species population as having n indi-
viduals at time t. We next define functions for the birth
rate b(n) and death rate d(n) of individuals in the popu-
lation as

b(n) = λ
(

1− n

k

)
,

d(n) = µ+ f(n)z, (2)

where z is the abundance of predators. The logistic form
of the birth rate function represents density dependent ef-
fects such as intraspecific competition for resources. The
parameter λ is the per capita birth rate of the prey species
in the absence of density dependence and k is the maxi-
mum possible population size (Nisbet and Gurney, 1982;
N̊asell, 2001). The death rate includes a constant term
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µ, the predator-free per capita death rate, and the term
f(n)z, the per capita functional response of predation rate
to prey abundance (expression (1)). The expected maxi-
mum per capita growth rate of the population is then the
difference between per capita birth and death rates i.e.,
r = λ − µ. We will keep the per capita birth rate and
the predator-free per capita death rate fixed and change
the parameters of the functional response in an interval
constrained by biological arguments:

• Handling time h takes values between 0.001d and
0.1d1. We assume that h cannot be larger than the
average lifetime of the prey species (assumed to be
1/λ).

• Attack rate (αnq) takes values between 0.001d−1 and
10d−1. This choice is justified by empirical observa-
tions of foraging behavior of insects and other organ-
isms (Vucic-Pestic et al., 2010; Hammill et al., 2010;
Hanski et al., 1991).

• The exponent q takes values between 0 and 2 again
due to empirical observations (Vucic-Pestic et al.,
2010) and theoretical work (Williams et al., 2004).

• Predator abundance z is kept independent from the
prey as we aim to study the effect of a generalist
predator. In most of our analyses below we fix z
to be constant, the simplest manifestation of the as-
sumption that predator abundance is independent
of prey abundance, as has been assumed for general-
ist predators in previous studies (e.g. Hanski et al.
(1991)). In this case, when the growth parmeters λ,
µ and k are fixed, the relevant parameters for the
dynamics are αz and h/z (see appendix A). Later,
we relax the assumption that z is constant and allow
it to fluctuate (details below). We choose z to take
values between 1 and k.

We combine expressions (1) and (2) to obtain expres-
sions for the population birth and death rates, B(n) and
D(n), respectively as

B(n) = nb(n) = nλ
(

1− n

k

)
,

D(n) = nd(n) = nµ+
αznq+1

1 + αhnq+1
. (3)

The state of the system can be characterized by the prob-
ability p(n, t) of having n individuals at time t, where n
takes integer values in the range {0, . . . , k}. The master
equation describing the time evolution of the probability
distribution is

dp(n, t)

dt
=D(n+ 1)p(n+ 1, t) +B(n− 1)p(n− 1, t)

− (B(n) +D(n))p(n, t).
(4)

1The unit of measure of time is arbitrarily set to days (d).

In order to express equation (4) in a compact way we de-
fined p(k + 1, t) = p(−1, t) = 0. Given an initial probabil-
ity distribution p(n, 0), equation (4) uniquely determines
the probability distribution at later times. The process
represented in this master equation always ends up with
population extinction, represented as the stationary dis-
tribution p = (1, 0, . . . , 0), which the distribution p(n, t)
approaches as time t approaches infinity. This is because,
given sufficient time (which may be extremely large when
populations are large) stochastic fluctuations in the popu-
lation size will eventually, at some time, cause the popula-
tion size to be zero. Since there is no immigration in this
model the population cannot recover from that state. In
section 2.2 we will show how to compute the probability
of having a population of size n at time t conditioned on
the fact that it has not yet gone extinct.

2.1. Deterministic rate equation

A deterministic rate equation, describing the time evo-
lution of the mean population size, can be associated to
every stochastic birth and death process (Gardinier, 2009).
The deterministic equation is given by

dn

dt
= B(n)−D(n). (5)

In our case, substituting the rates (3) into equation (5),
we obtain

dn

dt
= λn

(
1− n

k

)
− µn− αznq+1

1 + αhnq+1
. (6)

In order to understand the roles of deterministic versus
stochastic effects in prey extinction we compute the fixed
points of equation (6) and their stability. We use as mea-
sure of stability the real part of the leading eigenvalue of
the Jacobian matrix evaluated at each fixed point (here-
after termed the stability coefficient, detailed in appendix
A). Mean population numbers close to the value of an un-
stable fixed point evolve away from the fixed point value
while those close to a stable fixed point value evolve to-
wards that value.

2.2. Deterministic and stochastic effects on extinction

In equation (6) the extinction state n = 0 is always a
fixed point, while the other fixed points are given by the
intercepts between the per capita growth term (r− λn/k)
and the per capita functional response zf(n) (see figure 2).
Two different extinction scenarios are revealed by the anal-
ysis of the deterministic equation, associated with changes
in the stability of the extinction state (Assaf et al., 2010).

When q = 0 and h > 0 (type II functional response)
the extinction state can be stable or unstable. A stable
extinction state indicates that when the population size is
sufficiently close to zero the birth-death process (3) causes
the mean population size to tend towards zero because
the mean population death rate exceeds the mean birth
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rate. In contrast, an unstable extinction state indicates
that when the mean population size is sufficiency close to
zero the population size tends away from zero, and demo-
graphic stochasticity is necessary for the population to go
extinct. If αp = zα > r, the extinction state is stable.
In this case there are two positive fixed points, one stable
and one unstable, or no positive fixed points (see figure
1). At αp = r there is a transcritical bifurcation, at which
the unstable fixed point goes to 0 (see figure 1) and the
extinction state becomes unstable. When the extinction
state is unstable (αp < r) there is only one other fixed
point and this is stable (see figure 1).

When q > 0 and h > 0 (type III functional response)
the model has at most three non zero fixed points and the
extinction state will always be unstable. In contrast to the
type II functional response, for q > 0 there are combina-
tions of foraging parameters for which there can be up to
three non zero fixed points (see appendix A). In this case
two of the three non-zero fixed points are stable and one
is unstable (see figure 1).

Given the birth and death process (3), extinction is
caused by demographic stochasticity and typically occurs
in two different ways depending on whether the extinction
state is a stable or unstable fixed point of the determinis-
tic rate equation (6). For the type II functional response,
below the transcritical bifurcation, extinction is caused by
a large fluctuation which brings the system from the sta-
ble to below the unstable fixed point. From there a fast
deterministic evolution takes the population quickly to the
stable extinction state. For the type II functional response
after the bifurcation, and for the type III functional re-
sponse, extinction is caused by a large fluctuation in den-
sity which brings the system from the stable fixed point to
the unstable, absorbing extinction state. For the type III
functional response when there are two stable fixed points
and the population is near the larger stable fixed point, ex-
tinction needs two large fluctuations to occur, one fluctu-
ation which brings the system from the larger to the lower
stable fixed point and another fluctuation which brings the
system from the lower stable fixed point to the unstable
extinction state.

2.3. Quasistationary distribution (QSD) and mean time
to extinction (MTE)

When the deterministic rate equation has at least one
stable fixed point, the system approaches a quasi station-
ary state with a time independent distribution π(n); this
is called the Quasistationary Distribution (Bartlett, 1960;
Nisbet and Gurney, 1982). The quasistationary distribu-
tion π(n) is obtained from the probability pc(n, t), that
of finding n individuals at time t, conditioned on the fact
extinction has not occurred yet:

pc(n, t) =
p(n, t)

1− p(0, t)
. (7)

We derive a master equation for the conditioned probabil-
ity pc(n, t) and look for its stationary solution π(n) (see
appendix B). When the initial condition (the probability
p0(n) of finding n individuals at time 0) of equation (4) is
set to the quasistationary distribution, then the probabil-
ity of finding n individuals at time t becomes

p(n, t) ' π(n) exp(−t/MTE). (8)

The time to extinction is then an exponentially dis-
tributed random variable with mean equal to the MTE
and,

MTE =
1

D(1)π(1)
. (9)

There are more complicated expressions for the mean time
to extinction when the initial condition is not the quasi
stationary distribution π(n) (see appendix B). We found
the time for the system to reach the quasistationary dis-
tribution is negligibly small compared to the MTE. We
compute the MTE of the birth and death process (3) for
different functional responses and for different values of
the foraging parameters within the functional responses.
All other parameters remain fixed.

2.4. Numerical calculations

It is not possible to obtain closed expressions for the
quasistationary distribution π(n) of the birth and death
process (3). Instead we obtain the quasistationary dis-
tribution in a realistic range of foraging parameters by an
iterative numerical scheme described in appendix B. In or-
der to perform numerical calculations we fix the growth pa-
rameters of equation (6) in the following way: λ = 1.5 d−1;
µ = 0.5 d−1; k = 150. With that choice the intrinsic
growth rate of the prey population is fixed to 1 d−1. In
the absence of predators i.e., setting z = 0 in equation (6),
the model has a non zero fixed point at n0 = kr/λ = 100.

We compute the logarithm of the MTE of the birth
and death process (3) obtained using the quasi stationary
distribution as initial condition (see appendix B) for dif-
ferent combinations of foraging parameters. The foraging
parameters of the functional response affect the MTE in
direct and indirect ways. The foraging parameters affect
the MTE indirectly by influencing the equilibrium popula-
tion size of the prey. They influence it directly by changing
the MTE even for a fixed equilibrium prey population size.
In order to isolate the effect of the shape of the functional
response (direct effect) from the effect of the fixed point
population number n0 (indirect effect), we keep n0 un-
changed. This imposes the following relation between the
attack rate parameter α and the handling time parameter
h:

αq =
α(h, n0)

nq0
=

rk − λn0
nq0[zk − hn0(rk − λn0)]

. (10)

In order to avoid fixing an unstable equilibrium with re-
lation (10), we limit our investigation to those values of
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handling time which give rise to a stable fixed point (see
appendix A) i.e.,

h < h1 =
λzk[(1− q)λn0 + qrk]

n0(1 + q)(rk − λn0)2
. (11)

As the handling time approaches the value

h0 =
zk

n0(rk − λn0)
, (12)

the required attack rate approaches infinity, so we limit
ourselves to h < min(h0, h1). In the case of q > 0 we also
keep h small enough so that we do not enter the bistable
region. Matlab code to reproduce our calculations can be
found at http://purl.org/net/extinction_code.

2.5. Temporal variation in predator abundance

Finally, we explored the effects of variation in predator
abundance on the MTE. Here we do not have a closed ex-
pression for the MTE of the prey but we can simulate
many replicates of the birth and death process (3) us-
ing the Gillespie algorithm (Gillespie, 1977) and compute
the MTE numerically. The assumption of constant preda-
tor abundance was relaxed by allowing z (predator abun-
dance) to vary randomly through time, with values drawn
from a uniform distribution [z − z/2, z + z/2], where sep-
arate investigations were performed for z = 2, 10, 50. We
then explored the effects of seasonal variation in predator
abundance on the MTE of the prey. Periodic forcing was
introduced by setting

z = z0(1− sin(ωt)), (13)

where z0 is the amplitude and ω is the frequency of the
forcing. We performed separate investigations for z0 =
2, 10, 50 and with ω = 0.1, 0.02, 0.01.

3. Results

The MTE of the model without predation is extremely
large (1025d), meaning that extinction will almost cer-
tainly never occur. When there are predators, changes
in the attack rate (α), the handling time (h) and the scal-
ing of attack rate (q) strongly influences the MTE through
changes in equilibrium population size. These indirect ef-
fects on the MTE can be seen in figure 3. As expected,
the MTE is relatively low when the functional response
parameters lead to deterministic extinction (region labeled
n0 = 0 in figure 3). When the foraging parameters are such
that there is a stable positive equilibrium, the MTE (fig-
ure 3 B) is, unsurprisingly, positively related to the equi-
librium population size (figure 3 A). In the region of the
parameter space where there are 3 non-zero fixed points
(type III functional response, figure 1 right panel) we found
extinction occurring at evolutionary time scales e.g. MTE
> 1015. Therefore we did not perform a detailed investi-
gation of the model in this region of the parameter space.

Figures 4 and 5 show the direct effect of the foraging
parameters on the MTE and stability coefficient (i.e., the
effect when the equilibrium density is kept fixed). These
show that, when the extinction state is unstable, the MTE
decreases less than exponentially with handling time (fig-
ure 4), or, in the case of type III functional response, more
than exponentially (figure 5). Also when the extinction
state is stable, the MTE decreases less than exponentially
(figure 4). We fitted exponential curves to the MTE for
three different values of n0, with type II functional re-
sponse, before the transcritical bifurcation i.e. when the
extinction state is unstable. We observe an increase in
both the slope and the intercept with increasing carrying
capacity2.

The stability of the fixed point (for details see appendix
A) also has an effect on the MTE. From the lower panels
of figures 4 and 5 we see that type II functional response
gives raise to less stable fixed points than type III i.e., to
a less negative stability coefficient. Consequently, at the
same value of the stable fixed point, the MTE associated
with the type II functional response is lower than the MTE
associated with the type III. Moreover, while keeping the
stable equilibrium fixed, the variation in MTE with han-
dling time spans a larger interval of stability coefficient
for the type III than for the type II functional response.
These differences in the range of stability produce the dif-
ferent declines in MTE with handling time for the different
functional responses (steeper for the type II figure 4 upper
panel).

Overall, when we keep the stable equilibrium fixed we
observe variation in the MTE by up to 5 orders of mag-
nitude for a type II functional response and by up to 10
orders of magnitude when we have a type III functional
response. This variation in MTE is shown as a function
of handling time and predator abundance in figures 4 and
5 when the growth parameters are fixed and attack rate
varies with handling time according to equation (10).

In figure 6 we show the effects of handling time on the
QSD while keeping the stable equilibrium fixed. The width
of the QSD increases with increasing handling time. Since
equilibrium population size is kept constant, this increas-
ing handling time corresponds to an increasing attack rate
(expression (10)), and these both make extinction more
likely (reducing the MTE). It is possible to see the in-
fluence of the unstable fixed point in the left tail of the
QSD for the type II functional response (figure 6 left pan-
els). Below the transcritical bifurcation (figure 6 A) the
extinction state is unstable. After the bifurcation (figure
6 B and C) the extinction state becomes stable due to the
emergence of a positive unstable fixed point, making the

2The values of the slope are fitted using a least square method
and are, for different values of the fixed point: n0 = 50, slope -133.7;
n0 = 60, slope -168.3; n0 = 70 slope -173.
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left tail of the QSD increase as population size decreases
towards zero. For this reason, in the parameter region af-
ter the transcritical bifurcation, the MTE of the model (4)
becomes dependent on the initial population distribution.
In figure 7 we show how the effect of using a delta function
instead of the QSD as initial distribution can decrease the
MTE by up to 2 orders of magnitude, if the initial con-
dition is close to the (stable) extinction state (Detailed
methods used to compute the MTE with different initial
distributions can be found in appendix B).

Lastly, we show how allowing predator abundance to
vary interacts with the effects of the foraging parame-
ters on the MTE for both type II and type III functional
responses. When predator abundance z fluctuates ran-
domly through time the average MTE is unchanged. Con-
sequently, the effect of foraging parameters (h/z) on the
MTE remains unchanged. Periodic variation in predator
abundance can, on average, reduce or increase the MTE
depending on the value of the foraging parameters (fig-
ure 8). The nature of this effect is such that the MTE
decreases at low handling time and increases at high han-
dling times. This tends to cause a shallower negative re-
lationship between the MTE and the foraging parameters.
Moreover we note that, for the type II functional response,
an increase in the frequency of the periodic variation in
predator abundance (ω) causes a larger decrease in the
MTE (figure 8 A); while, for the type III functional re-
sponse, ω has no effect on the variation in MTE (figure 8
B).

4. Discussion

We have shown how different choices of the foraging
parameters vary the mean time to extinction by up to
10 orders of magnitude even when equilibrium population
size is kept constant. Therefore, our results imply that
estimates of extinction risk could be extremely inaccurate
without explicitly accounting for interspecific interactions.

There is a wide literature describing experimental mea-
sures of foraging parameters (attack rate, handling time
and scaling exponent) (Rall et al., 2012). These studies
include predator-prey interactions among terrestrial and
aquatic organisms such as protists (Hammill et al., 2010)
and arthropods (Spitze, 1985; Smout et al., 2010). How-
ever similar measurements of the nature of predator-prey
interactions are absent in most of the studies related to
the extinction risk of individual species (Sabo et al., 2008).
We found that accounting for different foraging strategies
(i.e. different functional responses and different foraging
parameters) can become critical when evaluating the ex-
tinction risk of a target prey species (Prowse et al., 2013).

The effects of the foraging parameters can be intu-
itively explained by examining the strength of population
regulation at the equilibrium density i.e., the slope of the

functional response at the fixed point (Figure 2). Keeping
the stable equilibrium fixed requires positive covariation
between handling time and attack rate. Low handling
times (equivalent to large maximum consumption rates)
and low attack rates create strong regulation (line A in
top left panel of Figure 2). Large handling times and at-
tack rates result in weaker regulation (line C in top left
panel of Figure 2). Strong regulation causes the population
to return to the fixed point rapidly, and reduces the fre-
quency of large fluctuations caused by demographic effects
of predation. These demographic effects are independent
of environmental stochasticity and become relevant for ex-
tinction risk only for small populations sizes (Lande et al.,
1993; Lande and Steinar, 2004).

In (N̊asell, 2001) and (Assaf et al., 2010) an approx-
imate expression of the quasistationary distribution and
the mean time to extinction is derived for the stochas-
tic logistic model and the SIS model of epidemics, both
of these are slight simplifications of our model. Our re-
sult could be investigated more analytically using refined
approximation techniques (Ovaskainen et al., 2010). The
bistability emerging for high values of handling time in
our study, for type III functional response, could also be
investigated using approximation techniques.

Our results and main conclusion are robust to both
random and periodic fluctuations of predator abundance
through time. That is, the qualitative result remains;
changes in the foraging parameters of the predator af-
fect the MTE of the prey, with increases in handling time
causing a decrease in MTE. Note that these results were
obtained by numerical simulations, therefore they are lim-
ited to the range of parameters explored and are, thus, less
general than the other analytical results presented in the
paper. Understanding more generally, and in more detail,
how and why variability in predator and prey growth rate
affect the MTE would be a natural avenue for future re-
search.

Another opportunity for future research is to inves-
tigate the consequences of feedbacks between prey and
predator abundance by, for example, investigating a bivari-
ate stochastic predator-prey model model. Such a model
could allow investigation of how the MTE depends on
the strength of this feedback, which itself could result
from the extent of specialism / generalism of the predator
(specialist predators are likely to have stronger feedbacks
Turchin (2003)). Extinction dynamics have been studied
for a stochastic predator-prey model with linear interac-
tion rates (Parker & Kamenev, 2009). It would be inter-
esting to extend this work to include non-linear functional
responses.

Further investigations could constrain analyses to re-
gions of parameter space and combinations of foraging pa-
rameters that occur in reality. Introducing allometric rela-
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tionships between foraging parameters and relating them
to the growth parameters would be one way to constrain
such analysis. We have shown this dependence as a func-
tion of the stable equilibrium density in equation (10).
This relation can be generalized using allometric scaling
relations between attack rate and handling time (Brose
et al., 2006). Such an allometric scaling would require a
more general formulation of the model, including predator
biomass and prey biomass as other parameters.

This work has application both to studies on extinction
risk and to studies on foraging theory. Most of the existing
theoretical studies about complex communities do not in-
corporate the effects of demographic stochasticity and use
deterministic measures of persistence to assess the extinc-
tion risk (Brose et al., 2004; Hofbauer et al., 2008; Dunne
et al., 2009; Sahasrabudhe et al., 2011). We focused on
the strong dependence of extinction times on foraging pa-
rameters in order to stress the relevance of interspecific
interactions. Our approach may lead to new insights into
the determinants of extinctions and can be used to increase
the predictive understanding of extinction processes.

A. Analysis of deterministic equation

We derive an adimensional formulation of (6) to sim-
plify our subsequent analyses. We scale the number of
individuals with the maximum population size m = n/k,
and the characteristic time with the intrinsic birth rate
τ = λt. With these rescalings, the adimensional form of
equation (6) is

dm(τ)

dτ
= m(I −m)− mq+1

a+ bmq+1
. (14)

We next study the fixed points of (6) and analyze their
local stability. Putting dm/dτ = 0 in equation (14), the
fixed points of the system are the extinction state m = 0
and the solutions of

bmq+2 − bImq+1 +mq + am− Ia = 0, (15)

where I = 1− 1/R0, and R0 = λ/µ is the basic reproduc-
tive ratio, and where we introduced the following adimen-
sional parameters:

a =
λ

αkqz
, b = λh

k

z
. (16)

From the right lower panel of figure 2 we see that equation
(15) has at most three real and positive solutions. Note
that there will be positive solutions only when 0 < R0 < 1
i.e. when λ < µ.

When q = 0 (type II functional response) equation (15)
simplies to

bm2 + (a− bI)m+ (1− aI) = 0, (17)

which has real solutions when (a+ bI)2 > 4b. If this con-
dition is satisfied then the two real solutions of (17) are

m1,2 =

(
(bI − a)±

√
(a+ bI)2 − 4b

2(1− aI)

)
. (18)

We now proceed to linear stability analysis of the fixed
points of equation (14). The Jacobian of equation (14) is

J(m) =
d

dm

(
dm

dt

)
= I − 2m− (q + 1)amq

(a+ bmq+1)2
, (19)

and putting m = 0 in (19) implies that

• if q = 0 then J(0) = r − αz where r = λ− µ so

1. if r < αz the extinction state is stable

2. if r > αz the extinction state is unstable

• and if q > 0 the extinction state is always unstable

This stability analysis of the extinction state leads to the
the two extinction scenarios described in the Methods sec-
tion.

B. Mean time to Extinction

Here we present the mathematical and numerical tools
needed to obtain the quasi-stationary distribution and the
mean time to extinction of a general birth and death pro-
cess when ultimate extinction is certain (given sufficient
time). In (Nisbet and Gurney, 1982) there is a broader
presentation of the methods presented hereafter. We de-
fine the process as the time evolution of a random variable
{X(t), t ≥ 0} in a finite state space {0, 1, · · · , k} where the
origin is an absorbing barrier (Nisbet and Gurney, 1982).
A convenient notation for the master equation (4) is

dp(t)

dt
= p(t)A, (20)

where p(t) = (p(0, t), p(1, t), · · · , p(k, t)) is the row vector
containing the state probabilities and the matrix A con-
tains the transition rates as follows:

A =


−G(0) B(0) 0 · · · 0
D(1) −G(1) B(1) · · · 0

0 D(2) −G(2) · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · −G(k)

 , (21)

with G(n) = B(n) + D(n). A is a tridiagonal matrix in
which all row sums equal 0. Note also that the first row is
a row of zeros when using the rates (3). The solution of the
master equation (4) will give the probability of having n in-
dividuals at time t; in other words p(n, t) = Prob{X(t) =
n}.
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We now define T (n) and R(n) as

T (n) =
B(1)B(2) · · ·B(n− 1)

D(2)D(3) · · ·D(n)
,

R(n) =
B(1)B(2) · · ·B(n− 1)

D(1)D(2) · · ·D(n− 1)
.

(22)

Note that T (n) = R(n) D(1)
D(n) . Next we partition the state

space of the original process into two subsets, {0} and Q =
{1, 2, · · · , k}. Q is the set of transients for {X(t)} while
{0} is the absorbing state for {X(t)}. Correspondingly
we can partition the state vector p(t) and the transition
matrix A, and obtain from equation (20)[

dp(0, t)

dt
;
dpQ(t)

dt

]
= [p(0, t);pQ(t)]

(
0 0
a AQ

)
. (23)

Here pQ(t) is the vector of probabilities in the transient
states and a = (D(1), 0, · · · , 0)T . With this separation we
can split the master equation (20) into:

dp(0, t)/dt = pQ(t)a = D(1)p(1, t),

dpQ(t)/dt = pQ(t)AQ.
(24)

Before absorption (extinction) the process takes values in
the set of the transients. As in equation (7) we define
the conditional probability pc(n, t) = P{X(t) = n|X(t) >
0} of having n individuals at time t knowing absorption
(extinction) has not occurred and, using equations (24),
this can be expressed as

pc(t) =
p(t)

1− p(0, t)
=

pQ(t)

1− p(0, t)
. (25)

Differentiating equation (25) and using the master equa-
tion (4) and equations (24) we obtain an equation for pc(t):

dpc(t)

dt
=
dpQ

dt

(
1

1− p(0, t)

)
+

pQ(t)

(1− p(0, t))2
dp(0, t)

dt

= pc(t)AQ +D(1)pc(1, t)pc(t).

(26)

Setting the the right-hand side of expression (26) equal to
zero we obtain an equation for the quasi-stationary distri-
bution π = (π(1), π(2), · · · , π(k)), defined as the distribu-
tion of the transient states conditioned on the fact that
there has not yet been extinction:

πAQ = −D(1)π(1)π. (27)

In other words the quasistationary distribution π is the
left eigenvector of AQ with eigenvalue −D(1)π(1).

It can be shown that π(n) satisfies the recursive for-
mula:

π(n) = T (n)

n∑
i=1

(1−
∑i−1

j=1 π(j))

R(i)
π(1). (28)

Once π(1) is known then π(2), π(3), . . . , π(n) can be deter-
mined iteratively. But π(1) can only be obtained by know-
ing all other elements to

∑
n π(n) = 1. For this reason the

analytic determination of π is limited to birth death pro-
cesses with linear transition rates and this is not our case.
However there is an iterative method that can be used to
derive numerical approximations for the quasistationary
distribution of our process:

• Start with an initial guess for π(1).

• Obtain all the π(n) using the (28) and compute S =∑
n π(n).

• Start the iteration again with πI(1) = π(1)/S and
obtain πI(n).

• Repeat the process until ‖πK+1(n) − πK(n)‖ < δ.
The value δ gives the precision of the algorithm.

Figure 9 shows example results from implementing this
procedure to derive the QSD of the birth-death process
(4) with a type II functional response.

The time to extinction τ3 is a random variable that
depends on the initial distribution of the process (N̊asell,
2001). We call τQ the time to extinction of the birth-death
process when the quasi stationary distribution π is set as
an initial condition, and τn is the time to extinction when
the initial condition is X(0) = n i.e., when p(n, 0) = 1. If
absorption has occurred at time t then the events {τ < t}
and {X(t) = 0} are identical:

P{τ < t} = P{X(t) = 0} = p(0, t). (29)

Once the quasistationary distribution is known then the
MTE4 is given by expression (9).

The explicit expression of the time to extinction with
an arbitrary initial condition is more difficult to obtain.
It is a standard result for birth death processes theory
(Nisbet and Gurney, 1982) that the expectation of τn can
be determined explicitly when X(0) = n:

E(τn) =
1

D(1)

n∑
i=1

1

R(i)

k∑
j=i

T (j). (30)

Moreover the expected time to extinction for an arbitrary
initial distribution {p(n, 0)} can be derived from (30):

E(τ) =
1

D(1)

k∑
j=1

T (j)

j∑
i=1

1

R(i)

k∑
n=i

p(n, 0), (31)

with the assumption that the initial distribution is sup-
ported on the set of the transient states.

3this τ is different from the adimensional time used in appendix
A

4note that with our notation MTE = E(τQ).
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fig1.png

Figure 1: Regions in parameter space where the model (6) has 0, 1, 2 and 3 non-zero fixed points and their associated stability. The axes are
handling time divided by predator abundance h/z and attack rate multiplied by predator abundance αp = zα. The growth parameters are
fixed as λ = 1.5 d−1; µ = 0.5 d−1 and k = 150.
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fig2.pdf

Figure 2: Prey population mortality due to predation (left panels) and per capita mortality due to predation (right panels) following a type II
(upper panels) and a type III (lower panels) functional response. On the left plots solid lines are the population functional responses. On the
right plots solid lines are the per capita functional responses while the dashed line is the per capita growth curve (λ = 1.5 d−1; µ = 0.5 d−1

and k = 150). The foraging parameters are for the type II functional response A: h/z = 0.001 d; αz = 0.5 d−1. B: h/z = 0.02 d; αz = 1 d−1

at the transcritical bifurcation. C: h/z = 0.03 d; αz = 2.05 d−1. And for the type III functional response D: h/z = 0.001 d; αz = 0.01 d−1. E:
h/z = 0.02 d; αz = 0.02 d−1. F: h/z = 0.18 d; αz = 0.037 d−1. Note that with this particular choice of foraging parameters the value of the
fixed point is fixed at n0 = 50.
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fig3.png

Figure 3: Abundance n0 at the stable fixed point predicted by equation (6) (A) and the log of the mean time to extinction (MTE) (B) of the
birth and death process (3) using the quasistationary distribution as initial condition as a function of handling time and attack rate for type
II functional response. The growth parameters are as specified in the legend of figure 1.
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fig4.pdf

Figure 4: Logarithm of the mean time to extinction (MTE) (when the quasistationary distribution is set as initial condition of equation (4))
as a function of handling time (A) and of the stability coefficient (B), for different values of the stable fixed point n0, for a type II functional
response. The dashed line divides the parameter space into two regions. A region associated with an unstable extinction state (above and
left) and a region associated with a stable extinction state (below and right). The curves are drawn for all values of handling time which keep
the stable equilibrium density n0 fixed and the corresponding attack rate (10) finite i.e., for h < min(h1, h0). The values of h1 and h0 are
obtained from expressions (11) and (12). We used expression (9) to obtain the MTE. The stability coefficient is the real part of the Jacobian
computed in n0 (see appendix A). The growth parameters are as specified in the legend of figure 1.
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fig5.pdf

Figure 5: Logarithm of the mean time to extinction (MTE) as a function of handling time (C) and of the stability coefficient (D), for different
values of the stable fixed point n0, for type III functional response (q = 1). We used expression (9) to obtain the MTE. The growth parameters
are as specified in the legend of figure 1.
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fig6.pdf

Figure 6: Quasistationary distribution of the model (4) when keeping the stable equilibrium fixed at n0 = 70 (A, D), n0 = 60 (B, E), n0 = 50
(C, F) for type II (left panels) and type III (right panels) functional response. The gray scale represents increasing handling time over fixed
predator abundance.
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fig7.pdf

Figure 7: Relative difference between the logarithm of the MTE obtained when the QSD is set as initial distribution (τQ) and the logarithm
of the MTE when δ(n) is choosen as initial distribution (τn), as a function of handling time over predator abundance, for type II functional
response when the equilibrium density is kept fixed at n0 = 50.
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fig8.pdf

Figure 8: Relative difference between the logarithm of the MTE obtained numerically with a predator seasonality given by expression (13)
(τz) and the logarithm of the MTE when the predator abundance is fixed (τQ), as a function of handling time over predator abundance.
Simulations are done for type II (A) and type III (B) functional response with the foraging parameters of the model with fixed predator
abundance when the equilibrium prey population size is kept fixed at n0 = 50 and the QSD is set as intial condition (100 replicates).
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fig9.png

Figure 9: Quasistationary distribution (QSD) of the model (4) as a function of handling time over predator abundance for type II functional
response at fixed attack rate per predator abundance αz = 1.5d−1. The continuous line represents the stable fixed point while the dashed
line represents the unstable fixed point of the model. The other parameters are as specified in the legend of figure 1
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