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HIGHLIGHTS

e We introduce a branching process to model the dynamics of antigenic variation.

e We completely characterize the different phases in the space of parameters in a rather general setting.

e Parameters as random variables allow to capture relevant features observed in nature.

e The model is simple and allows generalizations to more complicated situations.

e The interplay between immune evasion and immune response alone does not lead to persistent oscillatory behavior (parasitemia waves).
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We present a novel model that describes the within-host evolutionary dynamics of parasites undergoing
antigenic variation. The approach uses a multi-type branching process with two types of entities defined
according to their relationship with the immune system: clans of resistant parasitic cells (i.e. groups of
cells sharing the same antigen not yet recognized by the immune system) that may become sensitive,
and individual sensitive cells that can acquire a new resistance thus giving rise to the emergence of a
new clan. The simplicity of the model allows analytical treatment to determine the subcritical and
supercritical regimes in the space of parameters. By incorporating a density-dependent mechanism the
model is able to capture additional relevant features observed in experimental data, such as the
characteristic parasitemia waves. In summary our approach provides a new general framework to
address the dynamics of antigenic variation which can be easily adapted to cope with broader and more

complex situations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Parasites have evolved a diversity of sophisticated strategies to
evade the host's immune response, among which antigenic varia-
tion is perhaps one of the most striking ones. This strategy consists
of periodically changing a protective coat composed of an abundant
and immunogenic protein. In this mechanism the parasites express
only one variant antigenic protein copy from a large repertoire of
silent genes. The mechanism allows transient immune evasion,
since after changing the variable protein that is being expressed, an
entirely new parasite population arises that is not recognized by the
host's immune system, which has only developed an antibody
response directed against the previous antigen. By repeating this
cycle during the course of an infection, parasites are able to remain
in the host for long periods of time.
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Perhaps the most paradigmatic example is that of African tryp-
anosomes (responsible for producing sleeping sickness in humans),
but antigenic variation is also observed in Giardia llambia and the
malaria agents belonging to the Plasmodium genus. Some viruses are
also able to evade the immune response in a strategy similar to that
just described. However in the latter systems, antigenic diversity is
generated by the introduction of point mutations in the gene
encoding the antigen, rather than by switching the expressed gene.
This implies some substantial differences in the dynamics since the
new antigen is most likely somewhat similar to the previous one
(parental) and perhaps is recognized (yet with lower affinity) by the
same antibodies.

Several models have been developed to study and predict the
population dynamics of parasites and viruses during the course of an
infection within a single host. Most of them are based on a system of
coupled differential equations inspired on variations of predator-prey
models (see Kosinski, 1980; Barry and Turner, 1991; Agur et al., 1989;
Agur, 1992; Antia et al., 1996; Frank, 1999; Nowak and May, 2000.). In
short, this approach consists of a set of differential equations
describing the dynamical interaction between antigens and the host's
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immune system, in such a way that the outcome of one equation is a
modulating parameter of the others, and including in some cases
cross-reactive immune responses as well as other possible interac-
tions (Antia et al., 1996). Stochasticity is incorporated ad hoc into the
models by the emergence of new variants (which are not recognized
by immune system) at random times, usually driven by a Poisson
process (see Nowak and May, 2000 and references therein).

Very recently Gurarie et al. (2012) implemented a discrete time
computer model for the case of malaria. This modeling approach,
termed agent-based, consists of a set of coupled difference equa-
tions that describe the transition between successive iterations of
the parasite population (i.e. parasite generations) and its interaction
with the immune system. According to the authors the advantage of
this approach is that, owing to its discrete nature, stochastic
components are incorporated more easily by adding random factors
to the variables that represent the efficiency of immune system.

In spite of the existence of these models of antigenic variation, in
our opinion it is worth re-addressing the problem from a different
perspective. Here we present a model that tackles this topic from a
microscopic point of view that consists of following the pathway
and behavior of its individual elements through a multi-type
branching process. Iwasa et al. (2004) already used this methodol-
ogy to study problems related to the ones presented here; however
these authors focused on the evolutionary dynamics of viruses to
escape antiviral therapy.

The model presented here has the following advantages: the
role of each one of its parameters has a straightforward biological
interpretation; its versatility easily permits the incorporation of
increasing complexity and realism; the process can be studied
backwards in time, as in population genetics’ coalescent theory.
Finally, its simplicity allowed us to obtain analytical expressions
for the critical surface separating subcritical from supercritical
regimes in the parameter space, both in the simplest version of the
model as well as for its generalizations.

Fig. 1. Green cells are sensitive. Red and blue cells represent clans of antigen
variants not recognized by the immune system. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version
of this paper.)

2. The model

Our model, a discrete-time non-independent multi-type branch-
ing process, assumes the existence of two types of cells/infective
particles (viral particles, parasites, etc.) which are defined according
to the host's immune system ability to recognize them; namely,
sensitive (type-1) and resistant (type-2) cells.

The model in its simplest version involves three parameters,
8,1, p €[0,1], that are defined as follows:

The population of cells proliferates by binary division and the
offspring of sensitive cells die, independently, with probability 6
(and consequently survive with probability 1—§). Surviving cells
may become resistant (i.e. start producing a new antigen variant)
with probability .

A newly arisen resistant cell creates a clan (or lineage) of
resistant cells in the following, recursive, way: at a given time the
whole progeny of resistant cells divides into resistant cells, which
remain as such with probability equal to p. In other words, 1-p is
the probability that the immune system acquires the ability to
recognize this particular clan, i.e. the clan bearing this specific
variant antigen.

This means that for a given resistant cell appearing at genera-
tion n we take a geometric random variable, N, of parameter 1-p,
and consider the whole dividing resistant clan until generation n
+ N, where resistant cells become sensitive.

Summarizing: parameter 6 measures the efficiency of immune
response against sensitive cells; parameter y represents the rate at
which new resistant variants appear; and parameter p is related to
the delay times spent by the immune systems to recognize a new
variant.

Fig. 1 illustrates a realization of the process: a sensitive (green)
cell originates a resistant descendant clan (red) which in turn
becomes sensitive (green) after three generations. At the bottom of
the figure, the emergence of a new resistant variant (blue) is
represented. Different clans of resistant cells, and sensitive cells,
evolve independently.

We remark that this is not a standard multi-type branching
process as for example those considered in Kimmel and Axelrod
(2002), in the sense that resistant cells in a given clan do not
evolve independently: instead, their destiny is determined by
immune system capacity, which does or does not recognize the
whole population of cells carrying a specific variant antigen. The
model could also be envisaged as a percolation process on the
complete binary tree in presence of a random environment (the
clans of resistant cells of random sizes).

3. Extinction probability

To compute the extinction/survival probabilities of the process —
and thus obtain the critical surface as a function of the parameters -
we introduce an additional multi-type branching process which has
the same extinction/survival probabilities as the antigenic variation
model introduced before. This independent multi-type branching
process with two types of cells is obtained from the antigenic
variation model by collapsing to one generation each clan of
resistant cells.

3.1. Independent multi-type branching process

Let us consider two types of cells that evolve independently.
The progeny of each cell is as follows: type-1 (sensitive) cells give
birth to

® two type-1 cells with probability (1—z)%(1—8)?,
® two type-2 cells with probability 42(1—35)?,
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® one type-1 cell and one type-2 cell with probability
2u(1—p)(1-6)%,

one type-1 cell with probability 2(1—)d(1—9),
one type-2 cell with probability 246(1—96),

® no cell with probability %;

type-2 (resistant) cells give birth to

® 2N type-1 cells with probability pN—1(1—p), N=1,2,3, ...

3.2. Extinction probability

We get the equation for the extinction probability of this
independent multi-type branching process - starting with one
type-1 cell, one type-2 cell, or eventually any given initial configura-
tion of cells — following standard procedures that use probability
generating functions (pgf) as given, for example, in Kimmel and
Axelrod (2002), Jagers (1975), Haccou et al. (2005).

Foreachn=0,1,2, ... we denote Z;(n) (resp. Z,(n)) the number
of type-1 (resp. type-2) cells present at generation n in the
collapsed model. In the particular case n=1 we put Z; =Z;(1)
(resp. Zy =Z»(1)) to simplify the notation.

As it is well known, the distribution of Z;(n) and Z,(n) as well
as the probability of extinction of the process could be computed
from the pgf's of Z; and Z,, which are

fl(s,t):[E[sZ' t221Z,(0)=1, 72(0):0]
25,0 =E[s" 21 Z,(0)=0, Z(0) =1],
s,te[0,1]

We have
15,0 = {5+ (1=9)ut+(1-p)s]} Fo(s.0) = (1—p)k§] SPL

Let g, (resp. q») denote the extinction probability for the
process starting with a single type-1 (resp. type-2) cell. The
following result is adapted from Kimmel and Axelrod (2002),
Jagers (1975); Haccou et al. (2005):

Proposition 3.1. The probability of extinction of the process,
q=(q;,q>), is the solution of equation

(f1(5,0).f2(s,0) = (5, 1) 2
that is closest to the origin in [0, 1]°.

Note that f;(1,1)=f,(1,1)=1, so that (1, 1) is a solution of (2).
Depending on the values of parameters d, y and p, it can happen:
(i) (1,1) is the only solution of (2) and hence the extinction
probability is one; (ii) there exists another solution of (2) in
(0,1)? and the non-extinction probability is positive.

3.3. Critical surface

In order to know which is the set of parameter values that
makes the multi-type branching process (and hence the antigenic
variation model) becomes extinct with probability one, or survives
forever with a positive probability, we look for the values
(S0, to) € [0, 117 that satisfy

{6+ =8)[uto+(1—psol}* =so
1-p > s3p =t 3)

k=1
Note that so # 1 (resp. sp # 0) if and only if ty # 1 (resp. tog # 0).
From these equations we get that the probability of non-extinction

is positive if and only if there exists sg € (0, 1) such that

0o 2
<5+(1 -6) {ﬂ(l -» > s+ —u)s(;] ) = $o.

k=1

Let us introduce the function

~ 2
g = (5+(1 -9 {ﬂ(l -p Y Pl —ﬂ)SD ,

k=1
s e [0, 1]. Note that, for &, u,p € (0, 1), g(.) is a strictly increasing and
convex function with g(0) = 5% and g(1) = 1. Therefore, there exists
sg € (0, 1) satisfying g(so) = sg if and only if g’(1) > 1. It holds

g =2(1-96) {2/1(1 -p) Z ept+a M)} .
k=0
Case 1: p>1/2. g(1) =00, and so there exists so e (0,1) such
that g(sg) = So. The probability of non-extinction is positive; we say
the process lies in the supercritical region.
Case 2: p<1/2. We have

2(1-6
L T

Critical p: For each pair (6,p) we introduce the critical value,
1.(8,p), defined by

2(1-9)
1-2p

{1+u—2p].

[1 +”c(6>p)_2p] = 1:

0<u(6,p)<1.
It is clear that the probability of extinction is one - or strictly
smaller than one - depending on y < u.(5,p) — or pt > u.(5,p).
We summarize the analysis in the following result:

Proposition 3.2. Let

B.p)— min{l,max{O,—(zl(ffg;(Zé—l)}} ifp<l
T o itz

It holds, for each (8, p, p):

(i) The process is subcritical (i.e. the extinction probability is one) if
M < pc(S, p).

(ii) The process is supercritical (i.e. the probability of non-extinction
is strictly positive) if u > u (0, p).

Remark 1. The critical surface does not depend on the initial
condition of the process, since it starts with a finite number of
type-1 and type-2 cells. On the other hand, what it does depend
on the initial condition is the extinction probability in the super-
critical region.

Fig. 2 shows the critical surface in the non-trivial region:
60>1/2,p<1/2.

Numerically solving Eq. (3) in the supercritical region we obtain
the extinction probability q; =so (resp. g, =to) for the process
starting with one type-1 cell (resp. one type-2 cell). In Fig. 3 we
show these extinction probabilities computed for p=0.65.

4. Generalization of the model

Although in previous sections we introduced the model in a
simple version, it can be generalized to include more realistic
situations, allowing natural death of resistant cells (an effect driven
by a set of parameters A) and more efficient mechanisms of
immune response to recognize resistant clans (driven by a set of
parameters p).
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subcritical region

4.01e®
o 0.999

Fig. 2. Critical surface: . as a function of parameters p and &. u. stands for the
critical 4 as given in Proposition 3.2.

Fig. 3. Extinction probabilities, as functions of 4 and s, for the process starting with
one type-1 cell (yellow) and one type-2 cell (red). The parameter p is fixed and
equal to 0.65. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

Let us denote ©(A, p) the expectation of N, the number of cells
that comprise a given resistant clan right in the moment when it
becomes sensitive (i.e. recognized by immune system), and Pap
the probability distribution of variable A. The case of interest is
O(A, p) > 1. Progenies of type-1 (sensitive) cells are as in Sections 2
and 3. As before, to compute extinction/survival probabilities, each
resistant clan can be collapsed to one generation. The pgf's
appearing in (1) must be replaced by

Fi(s.6)= {8+ —S)ut+(1—ps]}>

fr5.0= " sk PapV =k).

k=0

The same calculations of Section 3 allow us to compute
extinction/survival probabilities. The process becomes extinct with
probability one if and only if

2(1-6)[uO(A, p)+(1-p)]<1.

We get the following general result:

Proposition 4.1. Let u.(5,A,p) =0, if ©(A,p) = o and

o 26-1)
”C(‘S’A"’)‘m‘“{l’ ma"{o’ 2(1—6>[@(A,p)—11}}’

if O(A, p) < 0. It holds, for each (5, u, A, p):

i) The process is subcritical (i.e. the extinction probability is one) if
H<pc(S, A, P).

ii) The process is supercritical (i.e. the probability of non-extinction is
strictly positive) if u > u.(5, A, p).

In the next subsections we consider two particular cases of
interest. Progenies of type-1 cells are as in Section 2.

4.1. Death of resistant cells

Let us assume that, at each generation, type-2 cells of a given
clan remain resistant with probability p or become sensitive with
probability (1 —p). Each resistant cell inside the clan proliferates by
binary division and the offspring die, independently, with prob-
ability A (the case A < 1/2 gives exponential growth of the mean
size of the resistant clan; note that the model introduced in
Section 2 corresponds to A=0).

Let us denote M the random variable that accounts for the
number of generations until a given resistant clan, originated by a
type-2 cell, becomes sensitive. Clearly, M is a geometrical random
variable of parameter 1—p. We have

o0
O@4,p)= Y P(M=m)ENIM=m).
m=1

Note that, until generation M, the clan of descendants of a given
type-2 cell behaves as an usual Galton-Watson process in which
the mean number of descendants of each cell is 2(1 —A). Then, as it
is well known from the theory of independent branching pro-
cesses:

Ol.p= > PM=m)[2(1-4)"

m=1
= > (A-pp" ' 20-4)]" “)
m=1
Then

2(1-4)(1- .
| oo, if 2p(1-4)=1.

Finally, the critical surface in the space of parameters (6, 4,4, p)
separating subcritical from supercritical regimes is given by

26—1D[1-=2p(1-A4)]
2(1-8)(1-24) }}

if 2p(1-4) <1; u(6,A,p)=0if 2p(1-4) > 1.

H(8,A,p)= min{ 1, max{O,

4.2. Growth of immune response probability

Here we introduce a mechanism in which probability of immune
response grows with the size of resistant clans. This extension does
not affect the intensity of immune response (which is regulated by
6) but the waiting time until response appears. In a general
Markovian setting, the number of generations M until the immune
system recognizes a new resistant clan is a random variable with
P(M=1)=(1-p,) and

PM=m)=ppy...Pm_1(1—pn) m=2,3,...

where p; is the probability that immune system does not recognize
the resistant clan at generation i (given that the clan was not
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previously recognized). In the (homogeneous) case analyzed in
Sections 2 and 3 p;=p for all i=1,2,.... In this setting, growing
of immune response can be explicitly modeled by choosing a non
increasing sequence: i.e. p;,; <p; for alli=1,2,.... Closed expres-
sions for the critical surface in the space of parameters are difficult
to obtain except in particular cases.

Example 1. Uniformly bounded size of resistant clans. Suppose
that there are not natural death of type-2 cells. For fixed N, > 1
and p € (0, 1/2) consider

p ifi<N,
pi: 0

if i>N,.
That is to say, each clan of resistant cells is recognized, with
probability one, before generation N, -+ 1. After some algebra we
get

2 -p-p™*!
(1-2p) '
which gives the critical surface

) (26-1)(1-2p)
5 No = 1> O> °
Hc(0,p,No) mm{ max{ 2051 _(2p)No+1]}}

It is clear that u.(, p, No) > u.(6, p), the right hand side of inequal-
ity being the critical surface of the homogeneous case. Therefore,
the effect of this modification is an increase of the subcritical
region of case studied in Sections 2 and 3.

O@p,N,) = EQM) =

Example 2. Exponential growth of immune response probability.
Suppose that there are not natural death of type-2 cells. Fix
p,ae(0,1). Put p; =p and p; . = ap;, for i=1,2,.... That situation
corresponds to an exponential decay of the probability that
immune system does not recognize a given clan, as a function of
number of generations. We have

P(M=m)=p""lam=2M=D2(1—pa™1), 5)

m=1,2,3,..., and after some rearrangements

Om, ) =FE2") =1+ i (Lp>m(«/&)mz

’ m=0 \/a ,
which is finite for all values of parameters p and a. From this
expression we get the critical surface p.(9,p,«). One remarkable
fact is that the process can be in the subcritical regime even for
values of p arbitrarily close to 1. Note that the size of a resistant
clan at generation n is V,=2" and that the probability that
immune system does not recognize the resistant clan at genera-
tion n is p, = a"~p. We get

Vv -Y
pn=p<7”> .

where y =log(1/a)/log 2> 0. This situation represents a size-
dependent increasing probability of the immune system to recog-
nize a given resistant clan.

Example 3. Death of resistant cells and exponential growth of
immune response probability. One can add to the previous
example the effect of death of resistant cells through a parameter
A as in Section 4.1. All we have to do is place expression (5) for
P(M =m) in (4). We get for the expectation of the number of cells
that comprise a given resistant clan when it becomes sensitive:

_ ad 2p(17A) m m?
@(A,p,a)_1+(1—2A)m¥0 (T) Vo)™

Remark 2. The generalizations of the model presented above lead
to changes in the structure of critical, subcritical and supercritical
regions in the space of parameters. As it happens also in the simpler

version of the model described in Section 2, the branching process
shows instability in the asymptotic limit, meaning that the process
explodes exponentially fast (see for example Kimmel and Axelrod,
2002) or it becomes extinct supposedly at an exponential or sub-
exponential rate - as suggested by the bounds obtained for
percolation and spatial birth-and-death processes in random envir-
onment at subcritical regime (see Fernandez et al., 2005 and
references therein). All states are transient, excepting when the
population becomes extinct, and consequently any kind of stable
oscillatory regime are extremely unlikely. Persistent, or at least
prolonged, regime of parasitemia waves are frequently observed
in antigenic variation, which often shows a tendency to chronicity
and the infections may last for months or years (see Ross and
Thomson, 1910; Barry et al., 2012 and MacGregor and Matthews,
2008). Computer simulations (presented in Supp. file 1) show that
even a transient oscillatory regime (of a few hundreds generations)
is a very rare phenomenon in this context. It follows that it is
necessary to explore other aspects in the models presented above in
order to determine the conditions that favor population oscillation.
This is the subject of the next section.

5. Self-control and parasitemia waves

In this section we show that by introducing some modifications
in the model, the oscillatory behavior arises with high probability
for a reasonable number of generations (say, n of the order of
hundreds or thousands). For concreteness we focus on the sim-
plest version of the model introduced in Section 2 with the
addition of death of resistant cells as in Section 4.1.

5.1. Random parameters

Several parasites can control their population density by mechan-
isms similar to quorum sensing. Such mechanisms favor sustaining a
long term infection, thus increasing the chances of transmission. In
the case of African trypanosomes it has been proposed that the self-
regulation mechanism that prevents fast population explosions is
accomplished by inducing cell transformation from dividing to non-
dividing forms in a density-dependent manner (Seed and Black,
1997; Vassella et al.,, 1997; Tyler et al., 2001; Savill and Seed, 2004).
This density-dependent cell-cycle arrest (which is very similar to
quorum sensing in bacteria) is well characterized from the biochem-
ical and genetic point of view in Trypanosoma brucei (Mony et al.,
2014). Other parasites that undergo antigenic variation and para-
sitemia waves, such as Plasmodium falciparum, also appear to exhibit
a similar mechanism of population growth control (Mutai and
Waitumbi, 2010; Pollitt et al., 2010). This population behavior has
been modeled before by Savill and Seed (see Savill and Seed, 2004)
using a set of deterministic differential equations. These authors built
their model to fit experimental results obtained using immunosup-
pressed mice, where the parasite population reached an upper limit
in spite of not having any external control. In the next subsection and
in the Appendix we show that the mechanism observed in mice can
be also modeled by a logistic-type Galton-Watson process.

This prompted us to incorporate self-regulation mechanisms. For
this purpose we consider parameters A and 6 as random variables
(the distribution of which depends on the state of the process - i.e.
the sizes of sensitive and resistant cell populations - at every n).
These parameters are updated during the evolution of the (micro-
scopic) process. Furthermore, the parameter y that governs switch-
ing rates is also allowed to vary in a population density manner in
such a way that, when the population is small the switching rate is
as high as that reported experimentally (which makes the extinc-
tion less probable), whereas the hyper-use of silent repertoire
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which might lead to immune exhaustion during the peaks of
parasitemia is prevented.

5.2. Varying A and

Here we consider parameters regulating the death of resistant
and sensitive cells, respectively A and &, as random variables
updated with n.

Updating A: Fix a number ry >0and 0 <A <1/2 < Apax < 1.
We denote Q(n) the number of cells not recognized by the immune
system (that is, resistant or type-2 cells) at generation n. Let X, (n)
be a random variable with Beta distribution of parameters
a=Q(n)/ra, p=1.

We put
A(n) = Amin + (Amax _Amin)XA(n),

and interpret A, as the background probability of natural death
of resistant cells; Asc(n) = (Amax —Amin)X (1) takes into account the
mechanism of self-control of resistant parasite population at
generation n: this mechanism regulates the rate of conversion of
dividing cells into non-dividing forms.

Fig. 4 shows the effect of As.: the simulations correspond to
realizations of Galton-Watson type branching processes (in this
context, cells are resistant during the entire process) where cells at
generation n give birth to

n=12,3,...

® two cells with probability (1 —A(n))?,
® one cell with probability 2A(n)(1—A(n)),
® no cell with probability A(n)?.

Amin = 0.20, Apax = 0.55 and r, = 10%,10%,10°. As it can be seen, as
n increases the total number of cells, Z(n), grows exponentially at
first and then fluctuates around a value of the order of ry,.
Realizations start with Z(0) = 100. In the Appendix we show that
the expectation of Z(n) grows as a logistic-type process with an
upper bound for the carrying capacity given by the expression

(1 _ZAmin)

K=—"T"/’r
QAmx—1) 2

> 0.

log [Z(n)]
IN
|

T T T T T
0 50 100 150 200

n

Fig. 4. Self-control: simulations of three Galton-Watson processes. A, = 0.20;
Amax =055, 1, =10 (green); ry =10* (blue); r, =10 (red); Z(0)=100. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

K is an approximate value for the asymptotic limit of
lim,,_, o E(Z(n)). For the values used in the simulations K = 674.

Whenever we want to restrict ourselves to the case of no death
of resistant cells we put A(n)=0 for all n.

Updating o: Fix a number 15 >0 and 1/2 < Spin < Omax < 1. We
denote R(n) the number of cells recognized by the immune system
(that is, sensitive or type-1 cells) at generation n. Let X5(n) be a random
variable with Beta distribution of parameters o = R(n)/rs, = 1.

As before we put

6(1) = Ormin + (Omax — Omin)X5(1),

We interpret dmin as the background probability of natural
deaths and deaths of sensitive cells by the action of the immune
system; Osc(1) = (Omax — Omin)X5(1) takes into account the mechan-
ism of self-control of sensitive parasite population at generation n.

There is a crucial difference between the variation of A(n) and
o(n): 6(n)>1/2 for all n, something that always leads to a
reduction in the number of sensitive cells throughout the entire
process; A(n) instead, ranges from values below 1/2 (which slow
down but do not stop population growth), to values above 1/2 that
impose an upper bound and prevent population explosion of the
resistant clans as already explained.

n=1,2,3,..

5.3. Varying u

Rates of antigenic variation were measured experimentally in
Trypanosoma brucei (see Barry and Turner, 1991; Turner, 1997 and
references therein). Values of parameter y range from 10~2 to
103 switches/cell/generation in nature (fly-transmitted); or they
can be as low as 107> —10~7 switches/cell/generation in syringe-
passaged parasites. The former values of y are comparable to the
switching rates observed in other species undergoing antigenic
variation, while the latter are in the range of point mutations. This
variation in switching rates has been reported only between the
different conditions mentioned before, but not during the course
of an individual infection. We postulate, however, that such intra-
infection variation is feasible and may be adaptive for the parasite
since it contributes to chronicity of the infection. Indeed, lowering
switching rates when parasite populations are large might prevent
unconstrained hyper-use of the silent repertoire (which may
produce immune exhaustion). The biological mechanisms govern-
ing this variation would be partially overlapping with those that
control the division rate (see next section).

In our approach, we consider ¢ as a random variable updated
with n:

p(n) = Hmin + (ﬂmax _/’lmin)xﬂ(n)v

where 0 < i, < ftmex < 1 and for fixed r, >0 X,(n) is a random
variable with Beta distribution of parameters a =r,/R(n), f=1. As
in the A and § cases, parameter «a is updated with n. The effect of
variable u(n) is to prevent producing a huge number of switching
events during the peak of infection while having, on average, a
high switching rate close to that reported experimentally when
the population is small (which makes the extinction less prob-
able). Such extreme parasite diversity during the peaks would lead
to immune system exhaustion and consequently to render the
infection uncontrollable.

1’121,2,3,...

5.4. Simulations of parasitemia waves

To visualize the dynamics of the process and particularly the
conditions that lead to the emergence of parasitemia waves, we
implement simulations in populations of cells using the version of
the model presented in Sections 2 and 4.1, with random variables
A(n), 6(n) and p(n) updated with n as described before. It is worth
mentioning that the search in the space of parameters is greatly
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reduced thanks to the analytical results presented in Sections 3 and
4. As mentioned, the undulant behavior can most probably (or
uniquely) arise in the supercritical region in the neighborhood of
the critical surface, and the latter can be explicitly computed using
Proposition IV.1.

We denote R(n) (resp. Q(n)) the number of sensitive type-1
(resp. resistant type-2) cells at generation n. For all simulations we
compute the total population of cells, Z(n) = R(n)+Q(n). In all cases
initial condition is R(0)=5 x 10%, Q(0) = 1.

In order to study the sensitivity of the process with the
parameters and choose them properly, we start with the simple
case of no death of resistant cells (i.e. A(n) =0 for all n).

Case 1: No death of resistant cells: We put A(n)=0 and update
variables &(n) and u(n) as explained in Sections 5.2 and 5.3.
Figs. 5 and 6 show typical realizations of the process for different
values of parameters. The dependence on p is presented in Fig. 5. The
simulations show how the behavior changes from extinction to
explosion in the narrow range 0.60—0.70. Intermediate values of p
(around p=0.65 for the parameters we have chosen in this context)
show the oscillatory regime with high probability.

Because p > 1/2 the process is always in the supercritical region
(whenever Z(n) > 0). Note that in this context (0.60 < p < 0.70) the
vast majority of new variants, which are in order of thousands, do not
produce parasitemia peaks but small resistant clans (they are rapidly
recognized). These clans however play a decisive role in maintaining
the infection.

495

Fig. 6 shows typical realizations of the process for fixed p
(p=0.65) changing the different values of the parameters asso-
ciated with & (Smin, Omax) and # (Umin, Hmax)-

The examples show that our model is able to capture some aspects
of the dynamics of antigenic variation. However, the probability of
explosion (say, Z(n) > 107) is still rather high when the number of
new variants that appear along the process is in the order of
thousands. It is worth wondering whether there exists any mechan-
istic way to exert such control in switching rates. Although such
mechanisms were never characterized experimentally, it is feasible
that the same or similar mechanisms that work to control cellular
division rate may also play a role in controlling variation rate. Note that
many of the enzymatic pathways that participate in recombination
overlap with those that make part of the DNA duplication machinery.

Case 2: Death of resistant cells We proceed as in Case 1, but also
update variable A(n) as explained in Section 5.2. The simulations
presented in Fig. 7 show that when there is self-control of resistant cells,
since there is no risk of explosions, the behavior of infection is reasonable
even when the times of reaction of immune system are long (using values
of p=0.90-0.95). As a result the infection can survive even when the
switching rates y are low or very low. In these examples we have chosen
very small values for pimin and pimax; but it is also possible to keep u
constant (and small) without significantly affecting the overall behavior
(Fig. 7 panels c-d). Furthermore, it is worth remarking that the number of
variants that appear is low (in the order of tens) and consequently there
is not much risk of immune exhaustion.
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Fig. 5. Numerical simulations of parasitemia waves for different values of p. Black lines represent the total population of cells whereas red lines correspond to resistant cells.
The different values of p are indicated in each panel. The minimum and maximum of the other relevant parameters are: &, = 0.60, Smax = 0.95, ppip, = 0.004, piyq, = 0.01.
rs=10* and T, = 10, Last panel (p=0.70) shows an example of what we consider a population explosion: Z(n)> 10’ before generation 200. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 7. Numerical simulations of parasitemia waves including self-control of resistant cells. Parameters: A, = 0.05, Amg = 0.55, Sipin = 0.60, Smax =0.95, 14 =5 x 10%,
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Hmin = Hmax = 0.0001, p=0.95. Black and red lines as in Fig 5. (For interpretation of the references to color in this figure caption, the reader is referred to the web version

of this paper.)
6. Discussion

In this paper we introduce a new approach to model the dynamics
of antigenic variation using a multi-type branching process. The
model considers the following aspects: efficiency of immune response
against sensitive cells; rate at which new resistant variants appear;
natural death of resistant cells and a random modeling for the delay
times spent by the immune system to recognize a new variant.

For the simplest case where the parameters of the model are fixed
we characterize analytically the critical, subcritical and supercritical
regions on the corresponding spaces. This allows us to draw an
interesting conclusion: the undulating behavior typically observed in
antigenic variation (parasitemia waves) cannot be explained only as
the interplay between new antigens being produced and the immune
response removing them. This is because the system is very unstable
and goes to extinction or to explosion fast or very fast. Instead, it is

necessary to invoke mechanisms of population self-control that can be
either similar to quorum sensing (which have been well described in
African trypanosomes and they are probably also present in malaria
parasites) or simpler ones like those that rely on the limited availability
of nutrients and other resources. By appropriately updating the set of
parameters we introduce a density-dependent mechanism that
accounts for qualitative behavior observed in vivo experiments such
as the characteristics peaks of parasitemia along an infection.

The model can be extended to include situations of higher
complexity and more realism, as for instance: the delay times to
recognize new antigen variants can be modulated by modifying
values of parameters p with the size of resistant clan as explained
in Section 4.2 (Example 2). In addition, the intensity of immune
response can also be controlled with the size of sensitive clan (as
explained in Section 5.2, updating J). Such kind of clan size
dependency of immune response efficiency has been discussed
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Fig. 8. Simulations of three realizations of the logistic-type Galton-Watson process
(blue, green and brown lines) and upper bound for the expectation of the process
(red line). Apip =0.20; Apex =0.55. 1, =10% Initial condition: Z(0)=100. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

in the literature as a key element to produce predator-prey-like
cyclical population dynamics (Nowak and May, 2000; Seger, 1988).

It is worth noting that immune memory can also be incorporated
in this model in a relatively straightforward way. This aspect can be
interpreted in a broad sense as if some of the new antigenic variants
that appear in the course of an infection are not always completely
new, something that can result from different situations. One possi-
bility is that the host was already exposed to the same antigen during
the current infection and this occurs when the parasite starts re-using
antigens. The second alternative occurs when the new variant
presents shared epitopes to previously exposed variants, due to
sequence or structural similarity. Hence the immune system is able
to recognize it, yet with lower affinity. Both situations can be
incorporated in the model. The probability of re-using antigenic
variants depends on the size of antigenic repertoire and the time
elapsed since the infection started. It is evident that it becomes
progressively more probable as the infection is more prolonged and
also when there are fewer antigenic variants in the repertoire. There-
fore this phenomenon is equivalent to decreasing the effective
switching rate p and is a typical urn problem. On the other hand,
the case of new variants that present similarity to previously exposed
antigens can be modeled by increasing the value of A by a fixed
number ¢ (representing partial response of immune system) for all the
cells that belong to the clan originated by the new variant. An
approach similar to this one is used in Antia et al. (1996).

In our opinion multi-type branching processes have a great
potential to model evolution of host-parasite interactions like the
particular case of antigenic variation. The approach presented here
opens a variety of possibilities for future work.
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Appendix A

Here we show that the density-dependent mechanism of the
Galton-Watson process introduced at Section 5.2 gives a logistic-
type upper bound for the mean of total number of cells (a situation
that represents a self-controlled viral population in the absence of
immune response). In our opinion this gives support to the
election of a Beta distribution for the variable driven changes of
A and 6 with n.

Let us consider a Galton-Watson branching process in which
population of cells at generation n proliferates by binary division
and the descendants die, independently, with probability A(n),
where

A(Tl) :Amin +(Amax _Amin)X(n)7 n=12.3,..

Here X(n) is a random variable with Beta distribution of para-
meters a =Z(n)/r,, =1, and Z(n) is the total number of cells at
generation n. We fix r, > 0, A, < 1/2 (a parameter's value in the
supercritical region of the corresponding homogeneous Galton-
Watson process) and Apg > 1/2 (a parameter's value in the
subcritical region of the corresponding homogeneous Galton-
Watson process).

We obtain a recursive formula for the expectation of Z(n+1) by
conditioning on random variables at generation n. Note that
Z(n+1) conditioned to Z(n) and X(n) is a Binomial random variable
with parameters 2Z(n) and 1-A(n), so that E(Z(n+1)) can be
computed as

00 1
EZn+1)= > / dt EZ(n+1)|Z(n) =1, X(n)=t)
—0”/0
xpx(OP(Z(n) =1
00 1
= P(Zn)=1 dtp,(t
3 eam=b /O Px()

x2l[(1 = Apmin) — (Amax — Amin)t],

where py(t) is the probability density of a random variable, X, Beta
distributed with parameters a=1/r, and f#=1. Using the well-
known fact that E(X) = a/a+f we obtain

EZn+1)= > PZMn) =12l —Anyin)
i=o
3 Z A A 28
_,;]P( () = D(Amax = Apin )y
Finally, denoting a = (1—-2A4,;,) and b =2(Anax —Amin) (note that
a,b > 0), we obtain the following equation for the increment of
expectations:

EZ(n+1))—EZ(n) =a EZn)—b E Zm®

B Z(n)+r1o
n=1,2,3,... This is a logistic-type difference equation; to make
this point more evident we make use of Jensen inequality (see
Rudin, 1987) applied to the convex function f(x) = x2 /(X +T,), x> 0,
to get

4 W (74 L)
Z(n)+r1, | T EZM)+10
which gives an upper bound for the increments of expectations:
E*(Z(n))
EZm)+ro
In Fig. 8 we show the solution of the logistic-type difference
equations

E(Z(n+1))— EZn)) < a EZ(n))—b

ZZ
Zn+1*2n:azn*b 1

, n=1,2,...
Zn+To
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with initial condition z,=100. There exists a stationary point at
aro/(b—a)=(1 — 24in ) To/(2Amax—1) > 0, which provides an upper
bound for lim,_ . E(Z(n)). Values of parameters are A, =0.20,
Amax = 0.55 (which give: a=0.60 and b=0.70) and r, = 10*. In the
same plot we present three realizations of the Galton-Watson
process. These were numerically obtained using the same values
of parameters and initial condition. It is evident that the logistic
upper bound fits very well to the observed behavior of the process.

Appendix B. Supplementary data

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2015.06.025.
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