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H I G H L I G H T S
� We introduce a mathematical model for interactions among tumour and M1&M2 macrophages.

� We investigate the dynamics of the model via simulations and sensitivity analysis.
� We show how the macrophage re-polarisation rates in uence the ratio of M2/M1 cells.
� We discuss conditions under which the ratio M2/M1 can be used to predict tumour size.
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a b s t r a c t

The anti-tumour and pro-tumour roles of Th1/Th2 immune cells and M1/M2 macrophages have been
documented by numerous experimental studies. However, it is still unknown how these immune cells
interact with each other to control tumour dynamics. Here, we use a mathematical model for the
interactions between mouse melanoma cells, Th2/Th1 cells and M2/M1 macrophages, to investigate the
unknown role of the re-polarisation between M1 and M2 macrophages on tumour growth. The results
show that tumour growth is associated with a type-II immune response described by large numbers of
Th2 and M2 cells. Moreover, we show that (i) the ratio k of the transition rates k12 (for the re-polarisation
M1-M2) and k21 (for the re-polarisation M2-M1) is important in reducing tumour population, and (ii)
the particular values of these transition rates control the delay in tumour growth and the final tumour
size. We also perform a sensitivity analysis to investigate the effect of various model parameters on
changes in the tumour cell population, and confirm that the ratio k alone and the ratio of M2 and M1
macrophage populations at earlier times (e.g., day 7) cannot always predict the final tumour size.

& 2015 Published by Elsevier Ltd.
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1. Introduction

The anti-tumour role of the immune system has been docu-
mented for more than a century (McCarthy, 2006). Despite recent
success with some types of immunotherapies (e.g., involving
antibodies or cancer vaccines), many anti-tumour therapies are
still not leading to the expected outcomes (Rosenberg et al., 2004).
One reason is that there are still numerous questions regarding the
biological mechanisms behind the interactions between the
immune cells and tumour cells. The complexity of these interac-
tions is acknowledged by the immunoediting hypothesis, which
emphasises the dual role of the immune response: tumour-
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promoting and tumour-suppressing (Schreiber et al., 2011; Dunn
et al., 2004). One of the mechanisms thought to be involved in the
persistence and growth of tumours is the transition from a Th1- to
a Th2-dominated environment, which appears to happen when
the cancer microenvironment is dominated by cytokines such as
IL-4 (synthesised by CD4þT cells) and growth factors like CSF1 and
GM-CSF (Noy and Pollard, 2014). However, other studies have
shown that both Th1- and Th2-dominated environments can
successfully eliminate tumours independent of CD8þT cells
(Nishimura et al., 1999; Hung et al., 1998; Perez-Diez et al., 2007),
and in some cases the Th2-dominated environments are better at
eliminating tumours compared to the Th1-dominated environ-
ments (Mattes et al., 2003). Overall, the mechanisms controlling
the ratio of Th1/Th2 cells and its role on tumour elimination are
still not completely understood.

A second ratio that seems to have predictive outcome on
tumour growth and patient prognosis involves the M1 and M2
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macrophages (Ohri et al., 2009; Heusinkveld and van der Burg,
2011; Chen et al., 2011; Zhang et al., 2014). These macrophages
were named after the Th1–Th2 cell nomenclature, despite the fact
that there is actually a full spectrum of phenotypes between these
two types of macrophage polarisation (Mantovani et al., 2004).

While many studies focused on the total numbers of tumour-
infiltrating macrophages and their role on tumour growth and
patient prognosis (Mattes et al., 2003; Zeni et al., 2007; Hammes
et al., 2007; Bingle et al., 2002; Clear et al., 2010; Steidl et al.,
2010), some of the results in these studies were contradictory
(Heusinkveld and van der Burg, 2011). For example, several studies
have shown that increased macrophage numbers correlate with
poor patient prognosis (Bingle et al., 2002; Clear et al., 2010; Leek
et al., 1996; Steidl et al., 2010; Zeni et al., 2007; Hammes et al.,
2007; Zijlmans et al., 2006). Other studies have shown that
increased macrophage numbers correlate with better patient sur-
vival (Welsh et al., 2005). Note that many of these contradictory
results were for the same type of cancer: e.g., non-small cell lung
cancer in Zeni et al. (2007) and Welsh et al. (2005). A possible
explanation for these results is the type of macrophages that
infiltrate the tumours: M1 versus M2 cells (Heusinkveld and van
der Burg, 2011). However, detailed investigation of the phenotype
of these tumour-infiltrating macrophages sometimes generated
even more contradictory results. For example, Ohri et al. (2009)
revealed that improved survival in patients with non-small cell
lung cancer was associated with a higher density of M1 macro-
phages compared to M2 macrophages inside tumour islets (see
Fig. 2(a) in Ohri et al., 2009). Moreover, the overall number of M1
and M2 macrophages was increased in patients with long survival
times compared to patients with short survival times. In a differ-
ent study, Ma et al. (2010) also showed an increase in the number
of M1 macrophages inside islets of non-small lung cancers, for
patients with improved survival. However, in contrast to the
results in Ohri et al. (2009) and Ma et al. (2010) observed a slight
decrease in the number of M2 macrophages in patients with long
survival times compared to patients with short survival times (see
Table 2 in Ma et al., 2010). Moreover, in Ma et al. (2010), improved
survival was associated with similar M1 and M2 densities in
tumour islets. One last difference between the studies in Ohri et al.
(2009) and Ma et al. (2010), which was not emphasised by the
authors themselves but can be deduced by comparing the data for
macrophage densities inside tumour islets, is the ratio of M2/M1
in long-term survival patients (with M2=M1� 1 in Ma et al., 2010
and M2=M1o1 in Ohri et al., 2009) and short-term survival
patients (with M2=M141 in Ma et al., 2010 and M2=M1� 1 in
Ohri et al., 2009). Note that none of these studies did associate the
number of macrophages with tumour size, but only with the
percentage of patient survival.

To propose hypotheses regarding the biological mechanisms
behind the observed discrepancies in experimental and clinical
data, we need to have a better understanding of the interactions
between the M1 and M2 macrophages and other cells in the
microenvironment, such as the Th1 and Th2 cells with which the
macrophages interact via type-I (e.g., IFN-γ, IL-12) and type-II (e.g.,
IL-4, IL-10) cytokines (Biswas and Mantovani, 2010).

While there are mathematical models that focus on the Th2/
Th1 balance (Kogan et al., 2013; Kim et al., 2013; Gross et al., 2011;
Eftimie et al., 2010) and models that focus on the M2/M1 balance
(Wang et al., 2012; Louzoun et al., 2014) in various immunological
contexts, including cancer immunotherapies, there are no math-
ematical models that combine these two aspects.

The goal of this study is to investigate whether the variation in
the M2/M1 ratio and the re-polarisation of macrophages accounts
for the difference in tumour growth or tumour decay. To this end,
we derive a new non-spatial mathematical model that describes
the interactions between the tumour cells (which can be
Please cite this article as: den Breems, N.Y., Eftimie, R., The re-polarisa
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recognised or not by the immune cells) and two types of immune
cells, namely macrophages (M1 and M2) and T helper (Th1 and
Th2) cells. For the macrophages dynamics, we explicitly model the
plasticity of these cells that can re-polarise into a M1 or M2
phenotype depending on the cytokine environment (i.e., type I
cytokines such as IFN-γ can lead to M1 macrophages, while type-II
cytokines such as IL-10 can lead to M2 macrophages). While this
model cannot address any questions regarding the spatial aspects
of tumour–immune interactions, it offers a much simpler frame-
work within which we can investigate these interactions. We then
use this mathematical model to investigate the effect of the ratio
M2/M1 on tumour growth for early and advanced tumours. We
first investigate all possible steady states, and study the role of the
ratio k¼ k12=k21 of the re-polarisation rates between the M1 and
M2 macrophages on these states and their stability. Next we
investigate numerically the role of model parameters on the long-
term dynamics of the tumour growth. Since the numerical results
depend on various parameters, we also conduct a sensitivity
analysis to decide which parameters are most likely to influence
the tumour growth. Our analysis reveals that a ratio M2=M141
can explain the growth in tumour size. However, for M2=M1o1,
the variation in tumour growth cannot be explained by this ratio
alone (see the discussion in Section 5.4).

We emphasise from the beginning that the results of this study
depend on the mice experimental data we used to parametrise the
model. In particular, we use mice melanoma data from Chen et al.
(2011) since it shows multiple time points and thus allows for
better model parametrisation (as opposed to the data in Ohri et al.,
2009; Ma et al., 2010 for small-cell lung cancers, that shows only
one time point). While it will be interesting to investigate how the
results change if we use human data, such an investigation is
beyond the scope of current study.

The article is structured as follows. In Section 2 we describe in
detail the new mathematical model for tumour–immune interac-
tions. In Section 3 we investigate the steady states of this model,
and their stability. In Section 4 we study the dynamics of the
model using numerical simulations. In Section 5 we perform a
sensitivity analysis for the parameters and initial conditions of the
model. We conclude in Section 6 with a summary and discussion
of the results.
2. Model description

Throughout this paper, we model and investigate the interac-
tions of tumour cells (xT) with macrophages (xM) and Th cells (xTh).
For the immune response, we model separately the dynamics of
Th1 (xTh1) and Th2 (xTh2) cells, as well as the dynamics of M1 (xM1)
and M2 (xM2) macrophages. For the tumour cells, we model the
dynamics of immunogenic tumour cells (xTs) that can be recog-
nised (i.e., “seen”) by the immune cells and non-immunogenic
tumour cells (xTn) that escape the surveillance by the immune
system. To keep our mathematical model relatively simple, we will
not model explicitly the type-I and type-II cytokines that mediate
the interactions between M1 and Th1 cells, and between M2 and
Th2 cells. These cytokine-mediated interactions will be modelled
implicitly, by assuming that the cytokines are produced by the
macrophages and the Th cells. Thus, the time-evolution of all these
cell densities is given by:

dxTn
dt

¼ rxTn 1�xTnþxTs
βT

� �
þksnxTs�δmnxM1xTnþrmnxTnxM2; ð1aÞ

dxTs
dt

¼ rxTs 1�xTnþxTs
βT

� �
�ksnxTs�δmsxM1xTs�δtsxTsxTh1; ð1bÞ
tion of M2 and M1 macrophages and its role on cancer outcomes.
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dxM1

dt
¼ ðasxTsþam1xTh1ÞxM1 1�xM1þxM2

βM

� �
�δm1xM1�k12xM1xM2

þk21xM1xM2; ð1cÞ

dxM2

dt
¼ ðanxTnþam2xTh2ÞxM2 1�xM1þxM2

βM

� �
�δm2xM2þk12xM1xM2

�k21xM1xM2; ð1dÞ

dxTh1
dt

¼ ah1xM1þrh1xM1xTh1 1�xTh1þxTh2
βTh

� �
�δh1xTh1; ð1eÞ

dxTh2
dt

¼ ah2xM2þrh2xM2xTh2 1�xTh1þxTh2
βTh

� �
�δh2xTh2: ð1fÞ

These equations incorporate the following biological assumptions:

� Both tumour cell populations proliferate logistically at a rate r,
to account for the slow-down in tumour growth due to lack of
nutrients, as observed experimentally (Diefenbach et al., 2001;
Laird, 1964). The xTs cells can mutate at a rate ksn and become xTn
cells. Also, the xTs cells can be eliminated at a rate δts by the
adaptive immune response represented by the Th1 cells (Hung
et al., 1998). Moreover, experimental studies have shown that
the nonspecific macrophage reaction following the inoculation
of tumour cells leads to the production of nitric oxide (cytotoxic
for tumours; Xu et al., 2002) in both immunogenic and non-
immunogenic tumours (Kisseleva et al., 2001). Thus, we make
the assumption that the M1 macrophages could eliminate the
xTn cells at a rate δmn and xTs cells at a rate δms, where we choose
δmn ¼ δms; see Table A2. Moreover, we assume that the xTn cells
can proliferate in the presence of M2 cells (Mills, 2012) at a rate
rmn. Even if the extracellular signals released by M2 cells could
contribute also to the growth of xTs cells, the large mutation rate
of mouse melanoma (Cillo et al., 1987) will lead to a fast
transition from xTs to xTn cells. Thus, for this study, we decided
to ignore the potential contribution of xM2 macrophages to the
growth of xTs cancer cells. Finally, we assume that the tumour
cells die at rate much lower compared to the immune cells, and
thus we ignore the natural death rate of xTn and xTs cells.

� The M1 macrophages proliferate at rate as in the presence of xTs
tumour-specific antigens, and at rate am1 in the presence of type
I cytokines (which can be produced by Th1 cells, once these
cells become activated) (Mantovani et al., 2004). Moreover the
M1 macrophages have a half-life of 1=δm1. In addition, the
cross-talk between the M1 and M2 macrophage-polarising
signalling pathways can lead to a re-polarisation, at rate k12,
of M1 cells into M2 cells (Sica and Bronte, 2007).

� The M2 macrophages proliferate at rate an in the presence of
cytokines and growth factors produced by xTn cells, and at rate
am2 in the presence of type II cytokines (e.g., IL-4, which can be
produced by Th2 cells, once these cells become activated)
(Mantovani et al., 2004; Gordon and Martinez, 2010). The half-
life of M2 macrophages is 1=δm2. For simplicity, throughout this
study we will assume that δm2 ¼ δm1. Finally, the cross-talk
between the M1 and M2 cells can lead to a re-polarisation, at
rate k21, of M2 macrophages into M1 macrophages (Sica and
Bronte, 2007).

� The Th1 cells are activated, at rate ah1, by type-I cytokines (e.g.,
IFN-γ) that can be produced by the M1 macrophages (Romag-
nani, 1999; Sica and Mantovani, 2012). Also, they proliferate at
rate rh1 in the presence of type-I cytokines produced by M1
cells, and have a half-life of 1=δh1.� The Th2 cells are activated, at rate ah2, by type-II cytokines that
can be produced by the M2 macrophages (Romagnani, 1999;
Sica and Mantovani, 2012). These Th cells proliferate at rate rh2
Please cite this article as: den Breems, N.Y., Eftimie, R., The re-polarisa
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in the presence of type-II cytokines produced by the M2 cells,
and have a half-life of 1=δh2.

Note that the terms that appear in model (1) are one of the
multiple possible ways of describing the dynamics of tumour and
immune cells. There are various models in the mathematical lit-
erature, where the growth and interaction rates of cells are
assumed linear (not depending on direct or indirect interactions
with other cells); see, for example, Louzoun et al. (2014). Never-
theless, the goal of our study is not to investigate all these possible
modelling approaches; rather is to choose one way of describing
the interactions, and use it to investigate the anti-tumour type-I
and type-II immune responses.
3. Steady states and their stability

To investigate the dynamics of system (1), we first focus on its
long-term behaviour as described by the number and stability of
the steady states. By calculating these states, we aim to emphasise
the complex dynamics of Eqs. (1), and the difficulty of fully
understanding this dynamics.

3.1. Tumour-free steady states

We first study the case when xTn ¼ xTs ¼ 0. For the baseline
parameter values used here and listed in Table A2, these tumour-
free states are generally unstable (see the discussion in Appendix
C). We therefore expect the dynamics of system (1) to move away
from these states – as it will be confirmed in Sections 4 and 5 by
the numerical simulations:

� Tumour-Free Immune-Free (TFIF) state:

ðxnTn; xnTs; xnM1; x
n

M2; x
n

Th1; x
n

Th2Þ ¼ ð0;0;0;0;0;0Þ:

� Tumour-Free Type-I Immune response Present (TF1IP) state:

ðxnTn; xnTs; xnM1; x
n

M2; x
n

Th1; x
n

Th2Þ ¼ ð0;0; xnM1;0; x
n

Th1;0Þ;
with xnM1 and xnTh1 given implicitly by the following equations:

xnM1 ¼
δh1xnTh1

ah1þrh1xnTh1 1�xnTh1
βTh

� � and xnTh1 ¼
δm1

am1 1�xnM1

βM

� �: ð2Þ

For the parameter values used throughout this paper and given
in Table A2, there is a unique TF1IP steady state (see Appendix
B).

� Tumour-Free Type-II Immune response Present (TF2IP) state:

ðxnTn; xnTs; xnM1; x
n

M2; x
n

Th1; x
n

Th2Þ ¼ ð0;0;0; xnM2;0; x
n

Th2Þ;
with

xnM2 ¼
δh2xnTh2

ah2þrh2xnTh2 1�xnTh2
βTh

� � and xnTh2 ¼
δm2

am2 1�xnM2

βM

� �: ð3Þ

This state is also unique (see Appendix B).
� Tumour-Free Type-I and Type-II Immune-Present (TFIP) states:

ðxTn; xTs; xM1; xM2; xTh1; xTh2Þ ¼ ð0;0; xnM1; x
n

M2; x
n

Th1; x
n

Th2Þ;
with xnM1, x

n

M2, x
n

Th1, x
n

Th2 given implicitly by the following rela-
tions:

xnM1 ¼
δh1xnTh1

ah1þrh1xnTh1 1�xnTh1þxnTh2
βTh

� �;
tion of M2 and M1 macrophages and its role on cancer outcomes.
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inhibition/eliminationactivation transition

(not recognised)

M1 M2

Th2

(recognised)

type−I cytokines

type−II cytokines

Anti−tumour Pro−tumour

Tumour Tumour
M1

Th1

M2

Fig. 1. Schematic description of possible tumour–immune interactions, as sug-
gested by various experimental results (Mattes et al., 2003; Mantovani et al., 2008;
Baba et al., 2008; Biswas and Mantovani, 2010).
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xnM2 ¼
δh2xnTh2

ah2þrh2xnTh2 1�xnTh1þxnTh2
βTh

� �; ð4aÞ

xnTh1 ¼
δm1þk12xnM2�k21xnM2

am1 1�xnM1þxnM2

βM

� � ; xnTh2 ¼
δm2�k12xnM1þk21xnM1

am2 1�xnM1þxnM2

βM

� � :

ð4bÞ
In contrast to the TF1IP and TF2IP states that are unique, there is
an infinite number of TFIP states – see Fig. B1(A) in Appendix B.
This emphasises the complexity of system (1), and the difficulty
to predict its dynamics.

3.2. Tumour-present steady states

Next, we discuss the states where xTn40. Note that if xTn ¼ 0,
then we have also xTs ¼ 0. The stability of the steady states with
xTs ¼ 0 is discussed in Appendix C. The case xTsa0 is more com-
plicated and it is very difficult to investigate analytically:

� Tumour-only (TO) states:

ðxnTn; xnTs; xnM1; x
n

M2; x
n

Th1; x
n

Th2Þ ¼ ðxnTn;βT �xnTn;0;0;0;0Þ;
where for xnTs ¼ 0 we have xnTn ¼ βT . For the baseline parameter
values used in this paper and described in Table A2, these states
are always unstable (see Appendix C). Thus the dynamics of
system (1) will never approach the TO states.

� Tumour-Present Type-I Immune Response Present (TP1IP) states:

ðxnTn; xnTs; xnM1; x
n

M2; x
n

Th1; x
n

Th2Þ ¼ ðxnTn;0; xnM1;0; x
n

Th1;0Þ;
with

xnTn ¼
βT

r
ðr�δmnxnM1Þ; ð5aÞ

xnM1 ¼
δh1xnTh1

ah1þrh1xnTh1 1�xnTh1
βTh

� �; xnTh1 ¼
δm1

am1 1�xnM1

βM

� �: ð5bÞ

For the baseline parameter values used in this paper, the TP1IP
state is unique (see Appendix B). Moreover this state is unstable
and the dynamics of system (1) will not evolve towards it (see
Appendix C).

� Tumour-Present Type-II Immune Response Present (TP2IP) states:

ðxnTn; xnTs; xnM1; x
n

M2; x
n

Th1; x
n

Th2Þ ¼ ðxnTn;0;0; xnM2;0; x
n

Th2Þ;
with

xnTn ¼
βT

r
ðrþrmnxnM2Þ; ð6aÞ

xnM2 ¼
δh2xnTh2

ah2þrh2xnTh2 1�xnTh2
βTh

� �; xnTh2 ¼
δm2�anxnTn 1�xnM2

βM

� �

am2 1�xnM2

βM

� � :

ð6bÞ
Also this state is unique and stable for the parameter values
used in this paper – as confirmed by the numerical simulations
in Fig. 3.

� Tumour-Present Immune-Present (TPIP) states:

ðxnTn; xnTs; xnM1; x
n

M2; x
n

Th1; x
n

Th2Þ;
with xnTs ¼ 0 or xnTs40. As we will see throughout the next
sections, for the parameter values used in this paper, system (1)
usually approaches a TPIP state with xnTs ¼ 0. We emphasise here
that the TPIP states are not unique, as shown in Fig. B1(B). The
existence of these multiple states makes it difficult to
Please cite this article as: den Breems, N.Y., Eftimie, R., The re-polarisa
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investigate analytically their stability. However, the numerical
results in the next sections suggest that the stability of these
states depends also on the ratio k¼ k12=k21.
4. Numerical results

Next, we study the dynamics of model (Fig. 1) through

numerical simulations using ODE23tb in
Á

MATLAB 2013b. Since we
want to understand the mechanisms behind the change in the M2/
M1 ratio, we fit several model parameters to experimental data
from Chen et al. (2011), who focused on melanoma studies in mice
(see Fig. 2). In particular we study numerically the effect of
injecting on day zero 106 xTs tumour cells and 103 xTn tumour cells.
We also assume that xTh1ð0Þ ¼ 0, xTh2ð0Þ ¼ 0 (i.e., no activated
immune cells at the time of the injection). However, a small
number of tissue macrophages can be present at the injection site:
xM1ð0Þ ¼ 100 and xM2ð0Þ ¼ 100. For an extended overview of the
model variables and parameters, and a description of the experi-
mental setup see Appendix A.1 and Tables A1 and A2. Fig. 2
(A) compares the dynamics of xTnþxTs cells with tumour data from
Chen et al. (2011), to identify the parameter values for tumour
growth. Fig. 2(B) compares the numbers of xM1 and xM2 cells on
days 7 and 14 with macrophages data from Chen et al. (2011) (to
identify parameter values that govern the macrophage dynamics;
see also Appendix A).

Fig. 3 shows the dynamics of tumour and immune cells, for the
parameter values identified through comparison with the data
(see Tables A1 and A2). We first notice that the xTn cells grow to
the carrying capacity while the xTs cells are eliminated (Fig. 3(A)).
Moreover, as seen in the experimental results (Fig. 2(B)), there is a
shift in the macrophage profile: from a xM1 profile for to10 days
to a xM2 profile for t410 days (Fig. 3(B)). This shift is accompanied
by a shift in the Th profile: from a Th1-dominated dynamics
during the first � 15 days (Fig. 3(C)) to a Th2-dominated dynamics
at a later time (Fig. 3(D)). Finally, we emphasise that for these
particular parameter values, the long-term dynamics of model (1)
approaches the TP2IP steady state; see Eqs. (6).
5. Sensitivity analysis

Even if we estimated some parameter values using tumour and
macrophages data from Chen et al. (2011), other parameters values
were guessed. To ensure that the general conclusions of the model
are still valid if we change slightly the model parameters and the
initial conditions of the simulations, we perform a local sensitivity
tion of M2 and M1 macrophages and its role on cancer outcomes.
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Fig. 2. (A) Numerical simulation of tumour growth in model Fig. 1 compared to data from Chen et al. (2011) for the melanoma growth in mice, and (B) the change in
percentage of M1 and M2 macrophages at day 7 and day 14 for our numerical simulations and the experimental values shown in Chen et al. (2011).
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analysis (where we change one value while keeping all other
values fixed). This analysis also helps us identify the parameter
space where we could see an improvement in cancer outcomes.

For the sensitivity analysis, we vary the initial conditions
within the range shown in Table A4, the model parameters within
the range shown in Table A6, and the ratio k¼ k12=k21 within the
range shown in Table A3.

For each baseline value q of model parameters and initial
conditions (that generated the simulations in Fig. 3 and which will
be referred to as the baseline model), we consider the effect of
changing q to qþΔq, where Δq is either positive or negative. In
particular, if q is a parameter value, then q is changed with
7 incremental steps Δq¼ 30%q within the range ð�80%q; þ190
%qÞ (see Table A6). If q is an initial condition value, then q is
changed with 6 incremental steps within the ranges shown in
Table A4. Finally, if q¼ k¼ k12=k21, then we change k12 and k21
simultaneously from 4� 10�7 to 4� 10�3 in 100 steps creating
10.000 simulations. However, to keep the results tractable, in Table
A3 we present the most informative 7-step changes in the ratio k,
with k12Að5� 10�5;2� 10�5Þ and k21Að4� 10�5;1:6� 10�5Þ.

The change from q to qþΔq leads to a change in the total
tumour size xT ¼ xTsþxTn (see Fig. 4). Denoting by X ¼ xT ð20Þ the
tumour size on day 20, as obtained with the baseline parameter
values and initial conditions (see Fig. 3(A)), then the change in q
leads to a change from X to XþΔX, where ΔX is the percentage
change on day 20. We chose to focus on tumour size on day 20
since the experimental studies in Chen et al. (2011) show that the
carrying capacity βT ¼ 2� 109 cells (corresponding to a tumour
volume of � 3 cm3) is reached after 20 days. However, to ensure
that the tumour is indeed at the carrying capacity and to
Please cite this article as: den Breems, N.Y., Eftimie, R., The re-polarisa
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investigate long term prognosis, we also investigate the percen-
tage change in tumour population on day 50.

Moreover, many experimental studies investigate the effect of
the ratio M2/M1 on tumour size, to test whether this ratio can be
used as a biomarker for tumour development (Herwig et al., 2013).
Therefore, we will use sensitivity analysis to quantify the rela-
tionship between the ratio M2/M1 at day 7 (for comparison with
the data; see Fig. 2) and the changes in the tumour population at
days 20 and 50, as a result of varying k in the simulations.

While a decrease in the tumour might be the most desirable
outcome, an increase in the number of days to reach a certain
tumour size can extend the life expectancy. Therefore, we intro-
duce a second value, Z, to represent the time the tumour grows to
half the carrying capacity, i.e., to half the size obtained on day 20
with the baseline model (see Fig. 4). Thus, a change from q to qþ
Δq will lead to a change from Z to ZþΔZ, which might not cor-
relate with the change X to XþΔX (as shown in Fig. 4). Note here
that we refer to the growth until the tumour reaches half the
carrying capacity as early tumour growth.

In the following subsections we show the change in the tumour
size at days 20 and 50, and in the number of days to reach half the
tumour size on day 20, when we vary the initial conditions (Sec-
tion 5.1), the parameter values (Section 5.2), the ratio k (Section
5.3) and the ratio M2/M1 (Section 5.4).

5.1. Sensitivity to initial conditions

Fig. 5 shows that changing xTsð0Þ (within the interval shown in
Table A4) has the greatest effect on the final tumour population
(panel A), and on the number of days to reach half of tumour size
tion of M2 and M1 macrophages and its role on cancer outcomes.
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on day 20 (panel B). A change in xTnð0Þ (within the interval shown
in Table A4) does not have a significant effect, which is not sur-
prising since these cells can grow uncontrolled by the immune
response. In regard to the change in the initial conditions for the
immune cells, only a change in xM2ð0Þ has some effect: (i) it can
decrease the total tumour size by �3% or increase it by þ4% (Table
A4), or (ii) it can decrease/increase by 82 the number of days
until the tumour reaches half the size obtained on day 20 with the
baseline model (Table A5).

5.2. Sensitivity to parameters

Fig. 6 shows the effect that varying model parameters has on
the percentage change in the tumour size (panel A; see also Table
A6) and on the number of days to reach half the tumour size
obtained on day 20 with the baseline model (panel B; see also
Table A7). As expected, the proliferation rate r and the carrying
capacity βT have the largest influence on the tumour population.
However, it is unexpected that the re-polarisation rates k12 and k21
for the M2 and M1 macrophages also have a large impact on
tumour. These parameters appear in the steady states for xM1 and
xM2, and are involved in the ratio of M2/M1 macrophages. We will
return to these rates in Section 5.3, when we will investigate in
more detail the role of k¼ k12=k21 on tumour growth.

Other parameters that influence tumour dynamics are ksn, the
rate at which the xTs cells become xTn cells; δmn, the rate at which
132

tion of M2 and M1 macrophages and its role on cancer outcomes.

http://dx.doi.org/10.1016/j.jtbi.2015.10.034
http://dx.doi.org/10.1016/j.jtbi.2015.10.034
http://dx.doi.org/10.1016/j.jtbi.2015.10.034


1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

XTn XTs XM1 XM2 XTh1 XTh2
−80

−60

−40

−20

0

20

40

60

80

ch
an

ge
 in

 p
er

ce
nt

ag
e 

of
 tu

m
ou

r p
op

ul
at

io
n

changed initial values

increased init values
decreased init values

XTn XTs XM1 XM2 XTh1 XTh2
−15

−10

−5

0

5

10

15

ch
an

ge
 in

 d
ay

s 
to

 h
al

f t
um

ou
r p

op
ul

at
io

n

changed initial values

increased init values
decreased init values
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xTn cells are eliminated by M1 macrophages; δms, the elimination
rate of xTs tumour cells by the M1 macrophages; δm2, the death
rate of M2 cells. These results support the theory that both M1 and
M2 cells influence tumour dynamics.

5.3. Sensitivity to the ratio k¼ k12=k21

In Fig. 7(A) we show the percentage change from the baseline
model, in tumour size on day 20 versus the ratio k¼ k12=k21. For
ko1 the tumour is reduced by 40%, while for k41 the changes in
tumour at day 20 can vary from �40% to þ5%, depending on the
exact values of the rates k12 and k21. In Fig. 7(B) we show the
percentage change in tumour size on day 50 versus k. In this case,
for kZ1 the tumours stay at their carrying capacity (i.e., no change
from the value obtained with the baseline parameters). However,
for ko1, the tumour size on day 50 is reduced between 0 and 35%,
again depending on the specific values of the macrophage re-
polarisation rates k12 and k21. We deduce from here that the ratio
k¼ k12=k21 is not a clear indicator of tumour dynamics; the par-
ticular values of k12 and k21 that lead to the same ratio k influence
whether the tumour decreases or increases.

In Fig. 8 we plot the time-dynamics of tumour population xTn
þxTs for different values of k12 and k21 with the same ratio k
(k¼3.3 top panel; k¼1.2 middle panel; k¼0.6 bottom panel). The
results clearly show that changing k12 and k21 while keeping k¼
k12=k21 constant leads to different medium-term (0oto25) and
long-term (t435) tumour dynamics.
Please cite this article as: den Breems, N.Y., Eftimie, R., The re-polarisa
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To understand better the role of k12 and k21 rates on tumour
dynamics, in Fig. 9 we graph the changes in tumour size and
tumour growth versus the difference k12�k21. When
k12�k21A ð0;1� 10�5Þ, there is an abrupt shift for the percentage
change in tumour size at day 20 (see Fig. 9(A)), leading to a
reduction in tumour up to 42%. A similar shift, occurring for
k12�k21A ð�2� 10�5;0Þ, can be observed also in the percentage
change in tumour size at day 50 (see Fig. 9(B)), although this is
accompanied by a smaller reduction in tumour.

5.4. Sensitivity to M2/M1 ratio

Changing the ratio k¼ k12=k21 also leads to a change in the ratio
of M2 and M1 macrophages: xM2=xM1. In Fig. 10 we graph the time-
dynamics of these macrophages for three different ratios of k
(k¼3.3 in top panel, k¼1.2 in middle panel, k¼0.6 in bottom
panel). The dashed curves show the baseline dynamics of M1
macrophages and the crosses show the baseline dynamics of M2
macrophages (for the baseline k12 and k21 values; as in Fig. 3). The
dashed-dotted and continuum curves show the dynamics of M1
and M2 macrophages, respectively, for various k12 and k21 values
that lead to specific k ratios. In none of these cases is the tumour
completely eliminated; however the final tumour sizes approach
different steady-state values (as shown in Fig. 8). This analysis
indicates that the same ratio k can produce different M2/M1
profiles, with the shift between type-I and type-II immune
responses occurring at different days. The change in the tumour
tion of M2 and M1 macrophages and its role on cancer outcomes.
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dynamics is related to the day when the M2 cells outnumber the
M1 cells.

In Fig. 11 we show the ratio M2:M1 at days 7 and 14 (i.e., xM2

ð7Þ=xM1ð7Þ and xM2ð14Þ=xM1ð14Þ) for different k values. For ko1:2
the dynamics on days 7 and 14 is dominated by the M1 macro-
phages. For k41:2, the dynamics on days 7 and 14 is dominated
by the M2 macrophages. For k¼1.2 (see the plots on the main
diagonal), there are different percentages of M2 and M1 macro-
phages on day 7 and day 14, depending on the particular values of
k12 and k21 used.

In Fig. 12 we show the change in tumour size on day 20 (panel
A) and day 50 (panel B), as we vary k12 and k21 within the range
shown in Table A3, which then leads to a change in xM2=xM1 at day
7. The results show that the tumour sizes on day 20 corresponding
to xM2ð7Þ=xM1ð7Þr1 are completely different from the tumour
sizes corresponding to xM2ð7Þ=xM1ð7Þ41. Note here the lower
median value for tumour size when xM2=xM1r1 compared to the
case xM2=xM141. These results persist also for the tumour sizes
calculated at day 50, however, in this case the median value for
tumour size when xM2=xM1r1 is slightly higher. This is consistent
with the experimental results by Herwig et al. (2013), who clas-
sified melanoma in 2 different classes of tumour gene expression
profiles based on the M2/M1 ratio (for a group of 20 patients).
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6. Summary and discussion

The role of M1 and M2 macrophages on tumour growth, and
the use of M2/M1 ratio as an early-time marker for tumour
prognosis, has attracted lots of interest over the last few years.
Despite numerous experimental studies on the topic, we still lack
a deeper understanding of the dynamics between the M1 and M2
macrophages and the tumour environment.

In this paper, we introduced a mathematical model that
investigated the dynamics between the M1 and M2 macrophages,
Th1 and Th2 immune cells, immunogenic and non-immunogenic
Please cite this article as: den Breems, N.Y., Eftimie, R., The re-polarisa
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tumour cells. We first focused on the steady states exhibited by
this model and their stability. The results indicated that, when the
tumour and immune cells were present, the steady states were not
unique (see also Fig. B1(B)). The existence of multiple states
emphasised the complexity of the model dynamics, and the dif-
ficulty to understand analytically the role of the M2:M1 ratio on
tumour persistence/elimination. Then, we performed an in-depth
local sensitivity analysis to investigate the role of model para-
meters and of initial conditions on tumour outcome. Particular
attention was paid to the role of k¼ k12=k21 on the shift from a
type-I immune response to a type-II immune response.

The sensitivity analysis allowed us to identify the parameter
values that can lead to a slow-down in tumour growth or to
smaller tumour sizes. In addition to the expected importance of
tumour growth rate r and tumour carrying capacity βT on overall
tumour dynamics, two other parameters, k12 and k21, showed
unexpected impact on tumour growth and decay (see Figs. 6 and
10). Moreover, we showed that while the ratio k¼ k12=k21 is
important in predicting long-term tumour control or growth to the
carrying capacity, the exact tumour sizes are given by the parti-
cular values of the re-polarisation rates k12 and k21 (Figs. 7–10). In
addition, the rates k12 and k21 influenced the day of the shift from
a type-I to a type-II immune response (and subsequent tumour
growth); see Fig. 10.

The results in Figs. 9 and 12 also suggested that an early-time
ratio of M2 : M1o1 cannot predict the long-term tumour pro-
gression (see Fig. 12). Unfortunately, there are not many experi-
mental studies that track the time-changes of M2:M1 ratio, which
can be used for comparison with our numerical results. Among the
very few existent studies, the one in Chen et al. (2011) showed a
change from an early-time ratio of M2 : M1o1 to a long-term
ratio of M2 : M14 1 that was associated with tumour growth (see
also Fig. 2). Therefore, more experimental studies are necessary to
validate the hypotheses proposed by this theoretical model.

We emphasise that the results of our study were based on
available data from mice experiments. However, even if mouse
tion of M2 and M1 macrophages and its role on cancer outcomes.
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Fig. 7. Percentage change from the baseline model (see the open circle for k¼1.2) in: (A) tumour cells on day 20, and (B) tumour cells on day 50, for different values of the
ratio k¼ k12=k21 (as given by Table A3). (A) For k41, tumour size on day 20 can increase or decrease depending on the actual values of k12 and k21. For ko1, tumour size on
day 20 always decreases. (B) For k41, the tumours always reach the carrying capacity on day 50. For ko1 the tumours can be reduced in size by varying degrees, depending
on the actual values of k12 and k21.
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models have been used widely to study the interactions between
the immune system and cancer to propose hypotheses in regard to
human cancers, it is possible that data from human clinical trials
(still scarce at this moment) would lead to different results.
Nevertheless, it was not the goal of our study to compare the
results for mouse and human data sets. Rather, our study focused
on investigating the role of ratio of M1 and M2 macrophages as a
marker for tumour prognosis in mouse models. As mentioned
before, we showed that the ratio of mouse macrophage popula-
tions can be a suitable predictor of tumour outcome if xM2=xM141
in early tumour stages, i.e., before the tumour reaches half the
carrying capacity (in Fig. 12 we focused on the value of this ratio at
day 7). If these results can be confirmed also for human data, then
they can have implications to human treatment protocols, since
clinicians could use the ratio xM2=xM141 as a biomarker for
decisions regarding various long-term patient treatments. More-
over, the possibility of re-programming the environment towards
a M1 phenotype (as suggested, for example, by Heusinkveld and
van der Burg, 2011; Tang et al., 2013) could also impact positively
the outcome of cancer treatments, by creating the possibility of a
reduced long-term tumour burden that can be further reduced
with other types of treatment (e.g., combinations of immune
therapies, viral therapies and/or chemotherapies).

To understand better the molecular-level mechanisms that
control the dynamics of M1 and M2 cells, and their interactions
with the tumour cells (with the purpose of designing treatments
that would re-program the M2 macrophages to a M1-phenotype)
Please cite this article as: den Breems, N.Y., Eftimie, R., The re-polarisa
J. Theor. Biol. (2015), http://dx.doi.org/10.1016/j.jtbi.2015.10.034i
it is necessary to add more detail to the model (1). Further
investigation should focus on the role of molecular-level dynamics
(i.e., the pro- and anti-tumour cytokines produced by both Th cells
and macrophages) on the pro-tumour and anti-tumour immune
responses.

Finally, we stress that the model introduced in this paper has a
number of limitations. First, as mentioned before, the results of the
model are valid only for mouse data. While it would be interesting
to parametrise the model also for human data (to test the validity
of these results in the context of human clinical trials), such an
investigation is beyond the scope of the current study. Second, we
focused only on the non-spatial dynamics of tumour and immune
cells. However, tumours are highly heterogeneous and the
immune cells might be localised in particular regions of the
tumour. For example, the tumour-associated macrophages are
usually found in the perivascular and cortical regions of the
tumour, where they contribute to tumour growth and invasion
(Carmona-Fontaine et al., 2013). In general, the mechanisms of
immune cells localisations in particular areas of the tumours are
still quite poorly understood, and future studies are necessary to
understand the potential for new therapeutic avenues based on
influencing this spatial localisation of immune cells. Last but not
the least, the complex interactions between the tumour and
immune cells give rise to highly nonlinear dynamics, which cannot
be fully understood only via steady-state analysis, numerical
simulations and sensitivity analysis. Nonlinear analysis and
tion of M2 and M1 macrophages and its role on cancer outcomes.
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Fig. 11. The percentage of M2 and M1 macrophages on days 7 and 14, for different ratios of k¼ k12=k21. The ratio is shown above each small figure. Simulations are
performed by changing k21 from 4� 10�5 to 1:6� 10�5 (see vertical axis) and k12 from 5� 10�5 to 2� 10�5 (see horizontal axis) in 7 steps.
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Table A1
Summary of variables used in the model, the baseline initial conditions (IC) and the
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bifurcation theory should be used in the future to shed light on the
observed dynamics.
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range of IC used for the local sensitivity analysis.

States Description Baseline IC Range IC

xTn Density of non-immunogenic tumour cells 103 (1,107 )
xTs Density of immunogenic tumour cells 106 (1,107 )
xM1 Density of M1 macrophages 100 (10, 104)
xM2 Density of M2 macrophages 100 (10, 104)
xTh1 Density of Th1 helper cells 0 (0, 105)
xTh2 Density of Th2 helper cells 0 (0, 105)
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Appendix A. Summary of model parameters and variables

Table A1 summarises the variables used in model (1), together
with their initial values (i.e., the initial conditions for the simula-
tions) and the ranges within which we varied these initial values
for the local sensitivity analysis. Table A2 summarises the para-
meters used throughout this paper, along with their values and
units. Next, we describe how we estimated some of the para-
meters in Table A2.

A.1. Parameter estimation

� To approximate the tumour growth rate r, we fit Eq. (1a) with
no immune response to the melanoma growth data from Chen
Please cite this article as: den Breems, N.Y., Eftimie, R., The re-polarisa
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et al. (2011). We thus obtain r¼0.565 cells/day, in line with the
values reported by Eikenberry et al. (2009) (see Fig. 2(A)).

� Most experimental studies euthanise the mice when the
tumour reaches 2–3 cm3. In Chen et al. (2011), the tumour
reached a volume of � 3 cm3 on day 14. Therefore, we choose
the carrying capacity for the tumour to be βT ¼ 2� 109 (on the
same order of magnitude as other theoretical studies; see Efti-
mie et al., 2010).

� To calculate the death rate δx of various cells, we use the formula
t1=2 ¼ lnð2Þ=δx, where t1=2 is their half-life. The half-life of mouse
circulating blood monocytes, the precursor of macrophages, varies
from about 17.4 h (Van Furth, 1989; Kuroda, 2010) to 5 days (Gin-
houx and Jung, 2014). For macrophages, we assume an average
half-life of 3 days and calculate δm1;m2 ¼ lnð2Þ=3� 0:23 (similar to
tion of M2 and M1 macrophages and its role on cancer outcomes.
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Table A2
Summary and description of parameters that appear in model (1). Parameters are estimated by fitting model (1) to the experimental data from Chen et al. (2011) and data
from other experimental papers – as described in the Parameter estimation section in Appendix A.1, or they are sourced directly from the existent mathematical literature –

indicated by a “n”.

Param. Value Units Description Reference

r 0.565 day�1 Proliferation rate of tumour cells Chen et al., 2011
βT 2�109 cells Carrying capacity of tumour cells Chen et al. (2011)
ksn 0.1 day�1 Rate at which xTs become xTn Guess
δmn 2�10�6 (day cells)�1 Killing rate of xTn by xM1 Baba et al. (2008)
δms 2�10�6 (day cells)�1 Killing rate of xTs by xM1 Baba et al. (2008)
rmn 1�10�7 (day cells)�1 Proliferation rate of xTn cells in the presence of xM2 cells Guess
δts 5.3�10�8 (day cells)�1 Killing rate of xTs by xTh1 Hung et al. (1998)
as 1�10�6 (day cells)�1 Activation rate of xM1 triggered by xTs antigens Guess
an 5�10�8 (day cells)�1 Activation rate of xM2 mediated by cytokines and growth factors produced by xTn Guess
am1 5�10�8 (day cells)�1 Activation rate of xM1 by type-I cytokines produced by xTh1 Guess
am2 5�10�8 (day cells)�1 Activation rate of xM2 by type-II cytokines produced by xTh2 Guess
βM 1�105 cells Carrying capacity of M1,M2 cells Guess
δm1 0.2 day�1 Death rate of xM1 cells Wang et al. (2012)n

δm2 0.2 day�1 Death rate of xM2 cells Wang et al. (2012)n

k12 5�10�5 (day cells)�1 Rate at which xM1 become xM2 Chen et al. (2011)
k21 4�10�5 (day cells)�1 Rate at which xM2 become xM1 Chen et al. (2011)
ah1 8�10�3 day�1 Activation rate of xTh1 by type-I cytokines produced by xM1 Ribeiro et al. (2002)n

ah2 8�10�3 day�1 Activation rate of xTh2 by type-II cytokines produced by xM2 Ribeiro et al. (2002)n

rh1 9�10�6 (day cells)�1 Proliferation rate of xTh1 in the presence of type-I cytokines produced by xM1 cells Guess
rh2 9�10�6 (day cells)�1 Proliferation rate of xTh2 in the presence of type-II cytokines produced by xM2 cells Guess
δh1 0.05 day�1 Natural death rate of xTh1 cells Pepper and Jenkins (2011)
δh2 0.05 day�1 Natural death rate of xTh2 cells Pepper and Jenkins (2011)
βTh 1�108 cells Carrying capacity of Th cells Guess
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the value in Wang et al., 2012). In regard to the effector CD4þ T
cells, about 90% of cells dies within the 7–14 days of the contraction
phase (Pepper and Jenkins, 2011). Therefore we calculate
δh1;h2Aðlnð2Þ=14; lnð2Þ=7Þ � ð0:049;0:099Þ. Throughout this paper,
we choose δh1;h2 ¼ 0:05.

� Experimental results in Chen et al. (2011) have shown that on
day 7 there were only 15% M2 macrophages, while on day 14
this percentage increased to 85% M2 macrophages. We use
these values to fit k12, the rate at which M1 macrophages
become M2, and k21, the rate at which M2 macrophages become
M1 (see Fig. 2C), rmn the proliferation rate of xTn cells in the
presence of M2 macrophages, and βM the carrying capacity of
macrophages.

� The metastatic mouse melanoma tumour cells have a very high
mutation rate compared to other tumour lines (Cillo et al.,
1987). For example, the B16F10 melanoma cells have a rate of
generation of drug-resistant clones of at least 10�5/cell/genera-
tion (Cillo et al., 1987; Hill et al., 1984), while lower metastatic
tumours can have a mutation rate of � 10�7=cell=generation
(Mareel et al., 1991). To model these high melanoma mutation
rates, we assume an average growing cell population of
� 104 cells=generation, a 1-day generation of cells (since the
doubling time is about 1.2 days), and take the mutation rate
ksn ¼ 10�5=cell=day� 104 cells¼ 0:1=day.

� To approximate the maximum rate at which the effector cells
kill the tumour cells (at an effector:target ratio of 1:1), we use
the following formula (where we ignore the proliferation of
tumour cells, since we assume that cells do not proliferate
anymore in vitro):

dT
dt

¼ �δkillTE; ðA:1Þ

with T describing the target cells (T ¼ xTn or T ¼ xTs) and E
describing the effector cells (E¼ xM1 or E¼ xTh1). To approx-
imate δkill for macrophages (i.e., δkill ¼ δms ¼ δmn), we note that
Baba et al. (2008) incubated for 18 h CD4þCD8þ macrophages
of M1 phenotype with four different tumour cell lines. The
killing of tumour cells reached maximum rate at an effector:
target ratio of 30:1 (i.e., 1:2� 106 effector cells and 4� 104

target cells). Moreover, the percent specific lysis varied between
Please cite this article as: den Breems, N.Y., Eftimie, R., The re-polarisa
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10% and 97%. Integrating Eq. (A.1) with respect to time from t¼0
hrs to ti ¼ 18 h, replacing E with E¼30 T (for an effector:target
ratio of 30), and assuming that the total number of target cells
at the end of the incubation time ti is TðtiÞ ¼ 100�%Lysis, we
obtain

δkill ¼
%Lysis

Tð0Þð100�%LysisÞ30ti
: ðA:2Þ

Therefore, for ti ¼ 18 h¼ 0:75 days and Tð0Þ ¼ 4� 104 cells, we
obtain

δkill ¼ 3:6� 10�5; for %Lysis¼ 97%; ðA:3Þ

δkill ¼ 1:2� 10�7; for %Lysis¼ 10%: ðA:4Þ

For the purpose of this paper, we will consider
δmn ¼ δms ¼ 2� 10�6, corresponding to an average tumour
%Lysis¼ 65%.
Finally, to approximate δkill for Th1 cells (i.e., δkill ¼ δts), we note
that (Hung et al., 1998) incubated 106 B16 tumour cells with
CD4 T cells. The maximum %Lysis was 30%, and was obtained at
an effector:target ratio of about 32:1. Using again (A.1), and the
assumption that cells were incubated for about 6 h
(¼0.25 days), we obtain a killing rate

δkill ¼ δts ¼ 5:3� 10�8: ðA:5Þ

Next, we introduce Tables A3–A7 that contain the values of
parameters and initial conditions used for the sensitivity analysis
in Section 5.
Appendix B. Number of steady states

To investigate the number of TF1IP states, we substitute xnTh1
given by (2) into the expression for xnM1 (given by the same
equation), which leads to

A1ðxnTh1Þ3þB1ðxnTh1Þ2þC1ðxnTh1ÞþD1 ¼ 0; ðB:1Þ
tion of M2 and M1 macrophages and its role on cancer outcomes.
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Table A3
Changes in the ratio k¼ k12=k21 for the sensitivity analysis. k12 is changed from 5�10�5 to 2�10�5, and k21 is changed from 4�10�5 to 1.6�10�5 in 7 steps.

k21 k k k k k k k

4�10�5 1.2 1.1 1 0.88 0.75 0.63 0.51
3.6�10�5 1.4 1.2 1.1 0.98 0.84 0.7 0.56
3.2�10�5 1.6 1.4 1.2 1.1 0.94 0.79 0.63
2.8�10�5 1.8 1.6 1.4 1.2 1.1 0.9 0.72
2.4�10�5 2.1 1.9 1.7 1.5 1.2 1 0.84
2�10�5 2.5 2.2 2 1.7 1.5 1.2 1
1.6�10�5 3.1 2.8 2.5 2.2 1.9 1.6 1.2
k12 5�10�5 4.5�10�5 4�10�5 3.5�10�5 3�10�5 2.5�10�5 2�10�5

Table A4
Percentage change in tumour size on day 20 (columns 4 and 6), for simulations
with different initial conditions (IC). Columns 1 and 2 show, respectively, the
baseline values for the IC and the range within which they are varied. Columns
3 and 5 show the initial conditions that lead to a maximum decrease/increase in
tumour size on day 20.

IC baseline
value

Range
for IC

IC for max
tumour
decrease

Max %
decrease in
tumour

IC for max
tumour
increase

Max %
increase in
tumour

xTnð0Þ ¼ 103 (1,107) 1 0 107 4

xTsð0Þ ¼ 106 (1,107) 1 �98 107 0

xM1ð0Þ ¼ 102 (10, 104) 10 0 104 0

xM2ð0Þ ¼ 102 (10, 104) 10 �3 104 4

xTh1ð0Þ ¼ 0 (0, 105) 0 0 3�104 1
xTh2ð0Þ ¼ 0 (0, 105) 0 0 105 0

Table A5
Maximum increase/decrease in the number of days to reach half the tumour
population obtained on day 20 with the baseline model (see also Fig. 4), as we vary
the initial conditions (IC). Columns 1 and 2 show, respectively, the baseline values
for the IC and the range within which they are varied. Columns 3 and 5 show the
initial conditions that lead to a maximum decrease/increase in the number of days
to reach half the tumour population on day 20.

Baseline IC
value

Range
for IC

IC for max
time
decrease

Max
decrease in
nbr. days

IC for max
time
increase

Max
increase in
nbr. days

xTn ¼ 103 (1,107) 5�106 �1 1 0

xTs ¼ 106 (1,107) 107 0 1 7

xM1 ¼ 100 (10, 104) 10 0 10 0
xM2 ¼ 100 (10, 104) 5010 �2 10 2
xTh1 ¼ 0 (0, 105) 0 0 104 0
xTh2 ¼ 0 (0, 105) 0 0 0 0
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where

A1 ¼ �am1rh1βM

βTh
; B1 ¼ am1βMrh1�am1δh1þ

δm1βMrh1
βTh

; ðB:2aÞ

C1 ¼ am1βMah1�δm1βMrh1; D1 ¼ �δm1βMah1: ðB:2bÞ

This equation has a unique real solution (for the parameter values
given in Table A2), and hence there is a unique TF1IP steady state.

Similarly, we can investigate the number of TF2IP states by
substituting xnTh2 given by (3) into the expression for xnM2 (also
given by (3)), which leads to a cubic equation similar to (B.1). Since
this cubic equation has a unique solution, we deduce that also the
TF2IP state is unique.

Due to the complexity of the TFIP states, we can investigate
their uniqueness only numerically. In Fig. B1(A) we show that the
solution curves of (4) intersect for an infinite number of values,
and thus system (1) can have an infinite number of steady states.

To investigate the number of TP1IP states, note that in (5)
neither xnM1 nor xnTh are affected by xnTn (xnM1 is influenced only by
xnTs ¼ 0). Thus the states xnM1 and xnTh1 in (5) are also solutions of Eq.
Please cite this article as: den Breems, N.Y., Eftimie, R., The re-polarisa
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(B.1), and they are unique. Similarly, the TP2IP state is unique
(which can be checked easily by substituting (6b) into (6a)). As
discussed in Appendix C, this state is stable.

Finally, the number of TPIP states is investigated graphically in
Fig. B1(B). Note that the surface curves given by the right-hand
side of Eqs. (1a), (1c) and (1d) (obtained after we substitute into
these equations the values of xnM1 and xnM2 calculated from (1e) and
(1f)) intersect for an infinite number of xnTn values. Therefore, there
is an infinite number of TPIP states.
Appendix C. Jacobian matrix

The Jacobian matrix associated with system (1) is given by:

J ¼

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56
a61 a62 a63 a64 a65 a66

0
BBBBBBBBB@

1
CCCCCCCCCA
;

with

a11 ¼ r 1�xTnþxTs
βT

� �
�r

xTn
βT

�δmnxM1þrmnxM2; a12 ¼ �r
xTn
βT

þksn;

a13 ¼ �δmnxTn; a14 ¼ rmnxTn; a15 ¼ 0; a16 ¼ 0;

a21 ¼ �r
xTs
βT

; a22 ¼ r 1�xTnþxTs
βT

� �
�r

xTs
βT

�ksn�δmsxM1�δtsxTh1;

a23 ¼ �δmsxts; a24 ¼ 0; a25 ¼ �δtsxTs; a26 ¼ 0;

a31 ¼ 0; a32 ¼ asxM1 1�xM1þxM2

βM

� �
; a36 ¼ 0;

a33 ¼ ðam1xTh1þasxTsÞð1�
2xM1þxM2

βM
Þ�δm1�ðk12�k21ÞxM2;

a34 ¼ �xM1
am1xTh1þasxTs

βM
þk12�k21

� �
;

a35 ¼ am1xM1ð1�
xM1þxM2

βM
Þ;

a41 ¼ anxM2 1�xM1þxM2

βM

� �
; a42 ¼ 0;

a43 ¼ �ðam2xTh2þanxTnÞxM2

βM
þðk12�k21ÞxM2;

a44 ¼ ðam2xTh2þanxTnÞ 1�xM1�2xM2

βM

� �
�δm2þðk12�k21ÞxM1;

a45 ¼ 0; a46 ¼ am2xM2 1�xM1þxM2

βM

� �
;

a51 ¼ 0; a52 ¼ 0; a53 ¼ ah1þrh1xTh1 1�xTh1þxTh2
βTh

� �
; a54 ¼ 0;

a55 ¼ rh1xM1 1�2xTh1þxTh2
βTh

� �
�δh1; a56 ¼ �rh1xM1xTh1

βTh
;

a61 ¼ 0; a62 ¼ 0; a63 ¼ 0; a64 ¼ ah2þrh2xTh1 1�xTh1þxTh2
βTh

� �
tion of M2 and M1 macrophages and its role on cancer outcomes.
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Table A6
Percentage of change in tumour size on day 20 (columns 4 ND 6), for simulations with different parameter values. Columns 1 and 2 show, respectively, the baseline values of
parameters that appear in model (1) and the range within which they are varied. Columns 3 and 5 show the parameter values that lead to the max decrease/increase in
tumour population on day 20.

Baseline param. values Simulation range Param. for max % decrease Max % decrease tumour size Param. for max % increase Max % increase tumour size

r¼0.565 (0.113,1.6385) 0.113 �99 1.638 4

βT ¼ 2� 109 (4�108,5.8�109) 4�108 �80 5.8�109 175

ksn ¼ 0:1 (0.02,0.29) 0.02 �21 0.29 4

δmn ¼ 2� 10�6 (4�10�7, 5.8�10�6) 5.8�10�6 �21 4�10�7 4

δms ¼ 2� 10�6 (4�10�7, 5.8�10�6) 5.8�10�6 �2 2.2�10�6 0

rmn ¼ 1� 10�7 (2�10�8, 2.9�10�7) 2�10�8 �2 2.9�10�7 4

δts ¼ 5:3� 10�8 (1.06�10�8, 1.53�10�7) 9.01�10�8 0 1.06�10�8 1

as ¼ 1� 10�6 (2�10�7, 2.9�10�6) 2.90�10�6 �3 2�10�7 2

an ¼ 5� 10�8 (1�10�8, 1.45�10�8) 1�10�8 �5 1.45�10�7 1

am1 ¼ 5� 10�8 (1�10�8, 1.45�10�8) 1.45�10�7 0 1�10�8 0

am2 ¼ 5� 10�8 (1�10�8, 1.45�10�8) 1�10�8 0 1.45�10�7 0

βM ¼ 1� 105 (2�104, 2.9�105) 5�104 �12 2.9�105 6

δm1 ¼ 0:2 (0.04 , 0.58) 0.04 �1 5.8�10�1 1
δm2 ¼ 0:2 (0.04 , 0.58) 0.58 �12 4�10�2 3

k12 ¼ 5� 10�5 (1�10�5, 1.5�10�4) 2.5�10�5 �42 1.45�10�5 5

k21 ¼ 4� 10�5 (8�10�6, 1.16�10�5) 6.8�10�5 �42 8�10�6 5

ah1 ¼ 8� 10�3 (1.6�10�3, 2.32�10�3) 1.36�10�2 0 1.6�10�3 1

ah2 ¼ 8� 10�3 (1.6�10�3, 2.32�10�3) 1.6�10�3 0 2.32�10�2 0

rh1 ¼ 9� 10�6 (1.8�10�7, 2.61�10�5) 9.9�10�6 0 1.53�10�5 1

rh2 ¼ 9� 10�6 (1.8�10�7, 2.61�10�5) 1.8�10�6 0 2.61�10�5 0

δh1 ¼ 0:05 (0.01 , 0.145) 0.01 0 0.145 1
δh2 ¼ 0:05 (0.01 , 0.145) 0.07 0 0.115 0

βTh ¼ 1� 108 (2�107, 2.9�108) 2.9�108 0 2�107 0

Table A7
Maximum decrease/increase in number of days (columns 4 and 6) to reach half the tumour size obtained on day 20 with the baseline model. Columns 1 and 2 show,
respectively, the baseline values of parameters that appear in model (1) and the range within which they are varied. Columns 3 and 5 show the parameter values that lead to
the max decrease/increase in the number of days to reach half the tumour population obtained on day 20 with the baseline parameter values.

Baseline param. values Simulation range Param. value for max decrease Decrease in nbr. days Param. value for max increase Increase in nbr. days

r¼0.565 (0.113 , 1.6385) 1.63 �9 0.113 7

βT ¼ 2� 109 (4�108, 5.8�109) 4�109 �1 4�108 7

ksn ¼ 0:1 (0.02, 0.29) 0.08 0 0.02 1

δmn ¼ 2� 10�6 (4�10�7, 5.8�10�6) 4�10�7 �1 5.8�10�6 3

δms ¼ 2� 10�6 (4�10�7, 5.8�10�6) 4�10�7 �2 4�10�6 2

rmn ¼ 1� 10�7 (2�10�8, 2.9�10�7) 2�10�8 0 2�10�8 0

δts ¼ 5:3� 10�8 (1.06�10�8, 1.53�10�7) 1.06�10�8 0 1.06�10�7 1

as ¼ 1� 10�6 (2�10�7, 2.9�10�6) 2�10�7 0 2�10�7 0

an ¼ 5� 10�8 (1�10�8, 1.45�10�8) 1�10�8 0 1�10�8 0

am1 ¼ 5� 10�8 (1�10�8, 1.45�10�8) 1�10�8 0 1�10�8 0

am2 ¼ 5� 10�8 (1�10�8, 1.45�10�8) 1�10�8 0 1�10�8 0

βM ¼ 1� 105 (2�104, 2.9�105) 2�104 �2 8�104 0

δm1 ¼ 0:2 (0.04, 0.58) 0.04 0 0.04 0
δm2 ¼ 0:2 (0.04, 0.58) 0.04 �1 0.46 3

k12 ¼ 5� 10�5 (1�10�5, 1.5�10�4) 8.5�10�5 �3 1�10�5 5

k21 ¼ 4� 10�5 (8�10�6, 1.16�10�5) 8�10�6 �3 5.6�10�5 5

ah1 ¼ 8� 10�3 (1.6�10�3, 2.32�10�3) 1.6�10�3 0 1.6�10�2 1

ah2 ¼ 8� 10�3 (1.6�10�3, 2.32�10�3) 1.6�10�3 0 1.6�10�3 0

vrh1 ¼ 9� 10�6 (1.8�10�7, 2.61�10�5) 1.8�10�6 0 9.9�10�6 1

rh2 ¼ 9� 10�6 (1.8�10�7, 2.61�10�5) 1.8�10�6 0 1.8�10�6 0

δh1 ¼ 0:05 (0.01, 0.145) 0.01 0 0.01 0
δh2 ¼ 0:05 (0.01, 0.145) 0.01 0 0.01 0

βTh ¼ 1� 108 (2�107, 2.9�108) 2�107 0 2�107 0
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a65 ¼ �rh2xm2xTh2
βTh

; a66 ¼ rh2xM2 1�xTh1þ2xTh2
βTh

� �
�δh2 ðC:1Þ

At the TF1IP steady state, in addition to the zero components
already listed in Eq. (C.1)), the following components of the Jaco-
bian matrix are also zero: a13 ¼ a14 ¼ a21 ¼ a23 ¼ a25 ¼ 0,
a41 ¼ a43 ¼ a46 ¼ 0, and a65 ¼ 0. For the baseline parameter values
Please cite this article as: den Breems, N.Y., Eftimie, R., The re-polarisa
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used throughout this paper, eigenvalues λ1 ¼ a1140 and λ2 ¼ a22
40 (since xnM1 � 5805 and xnTh1 � 4333217), and thus this state is
always unstable. However, it could be possible that for different
parameter values (e.g., much higher values of δmn, δms, δts), λ1;2o0.
Then the stability could be influenced by the sign of
λ3 ¼ a44 ¼ xM1ðk12�k21Þ�δm2: λ340 if k¼ k12=k2141, and λ3o0
otherwise.
tion of M2 and M1 macrophages and its role on cancer outcomes.
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Fig. B1. Multiple TFIP and TPIP steady states. (A) The states xnTh1 and xnTh2 of the TFIP
steady states (see Eq. (4), for k¼ k12=k21 ¼ 1:2. The inset shows a detailed picture of
these states for xnTh1 ; x

n

Th2Að107 ;108Þ. The overlap of the continuous and dotted
curves, for all xnTh1 & xnTh2 values within this interval, suggest the possibility of
having an infinite number of steady states. (B) The TPIP states with xnTs ¼ 0 are given
by the intersection of the surfaces described by the right-hand sides (RHS) of Eqs.
(1a) and (1c) (cyan curves; grey in black/white print) and RHS of Eqs. (1a) and (1d)
(black curves). Here, we consider k¼ k12=k21 ¼ 5 (although different k generate
similar curves). Note that there seems to be an infinite number of intersection
points between the cyan and black curves. The inset shows the intersection points
for xnTnAf1;2;3g.
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At the TF2IP steady state, in addition to the zero components
listed in Eq. (C.1), the following components of the Jacobian matrix
are also zero: a13 ¼ a14 ¼ 0, a21 ¼ a23 ¼ a25 ¼ 0, a32 ¼ a34 ¼ a35 ¼ 0,
and a56 ¼ 0. Since eigenvalue λ1 ¼ xnM2rmnþr40, the TF2IP state is
always unstable.

The stability of the multiple TFIP steady states is difficult to
investigate: e.g., one of the eigenvalues of the Jacobian matrix is
λ1 ¼ a11 ¼ �xM1δmnþxM2rmnþr. As shown in Fig. B1(A), some
states have xM1⪢xM2 and hence λ1o0, while other states have xM1

⪡xM2 and hence λ140.
The TO steady state is always unstable for the parameter values

used in this paper (since one eigenvalue is λ1 ¼ xTnan�δm240).
For the TP1IP state, in addition to the zero components in Eq.

(C.1), the following components of the Jacobian matrix are also zero:
a21 ¼ a23 ¼ a25 ¼ 0, a41 ¼ a43 ¼ a46 ¼ 0, and a65 ¼ 0. The stability of
this state is governed by the following eigenvalues: λ1 ¼ a11o0,
λ2 ¼ a22o0, λ3 ¼ a44 ¼ 90:213þ5805:95ðk12�k21Þ, λ4 ¼ a66o0 and

λ5;6 ¼ 0:5ða33þa55Þ70:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða33þa55Þ2�4ða33a55�a35a53Þ

q
. For the

baseline parameter values used throughout this paper, k¼ k12=k21 ¼
1:241 which implies that λ340 and this state is unstable.

For the TP2IP state, in addition to the zero components in Eq.
(C.1), the following components of the Jacobian matrix are also
zero: a21 ¼ a23 ¼ a25 ¼ 0, a32 ¼ a34 ¼ a35 ¼ 0, and a56 ¼ 0. The sta-
bility of this state is governed by the sign of the following eigen-
values: λ1 ¼ a22o0, λ2 ¼ a33 ¼ �0:2�99808:35ðk12�k21Þ, λ3 ¼ a55
o0 and λ4;5;6o0 given by the three real roots of a cubic equation.
If k¼ k12=k2141 then λ2o0 and the TP2IP state is stable (as is the
Please cite this article as: den Breems, N.Y., Eftimie, R., The re-polarisa
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case for the baseline model). On the other hand, if ko1 then λ2
40 and the TP2IP state is unstable.

The stability of the TPIP states is difficult to investigate since, as
shown in Fig. B1(B), there are multiple tumour states xnTn. However,
the stability of these states also depends on the ratio k¼ k12=k21.
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