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Influence of gene copy number on self-regulated gene expression

Jakub Jedrak and Anna Ochab-Marcinek*

Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland

(Dated: August 11, 2016)

Using an analytically solvable stochastic model, we study the properties of a simple genetic circuit
consisting of multiple copies of an self-regulating gene. We analyse how the variation in gene copy
number and the mutations changing the auto-regulation strength affect the steady-state distribution
of protein concentration.

We predict that one-reporter assay, an experimental method where the extrinsic noise level is
inferred from the comparison of expression variance of a single and duplicated reporter gene, may
give an incorrect estimation of the extrinsic noise contribution when applied to self-regulating genes.

We also show that an imperfect duplication of an auto-activated gene, changing the regulation
strength of one of the copies, may lead to a hybrid, binary+graded response of these genes to
external signal.

The analysis of relative changes in mean gene expression before and after duplication suggests that
evolutionary accumulation of gene duplications may non-trivially depend on the inherent noisiness
of a given gene, quantified by maximal mean frequency of bursts.

Moreover, we find that the dependence of gene expression noise on gene copy number and auto-
regulation strength may qualitatively differ, e.g. in monotonicity, depending on whether the noise is
measured by Fano factor or coefficient of variation. Thus, experimentally-based hypotheses linking
gene expression noise and evolutionary optimisation may be ambiguous as they are dependent on
the particular function chosen to quantify noise.

I. INTRODUCTION

Gene copy number variation is an ubiquitous phe-
nomenon that manifests itself in multiplication of gene
fragments, single genes, groups of genes up to whole
genome. Duplicated genes contribute to gene evolution;
subsequent mutations may turn one of gene copies into
an inactive pseudo-gene, which may accumulate further
mutations without affecting the phenotype [1-3]. Gene
copies may be parts of either chromosomal or extra-
chromosomal DNA. In bacterial cells, low-copy plasmids
appear in the numbers of copies characteristic to plasmid
type, and the numbers are conserved during cell division
[1]. Bacterial plasmids, as well as the circular molecules
of DNA found in mitochondria and chloroplasts may also
appear in high numbers of copies (e.g., 20-40 for chloro-
plasts of higher plants [1]).

Variation in the number of copies of a particular gene
in a living cell may strongly affect the concentration of
protein encoded for by that gene. This in turn may have
a profound impact on the phenotype, and hence on the
fitness of the organism. The relationship between copy
number variation and phenotype is of great interest in
higher eukaryotes such as mammals, including humans,
where gene copy number variation is known to be re-
lated not only to differences in concentrations of some
enzymes (e.g., starch amylase, [4]) but also to several ge-
netic diseases [5, 6] as well as cancer [7]. However, it
is usually easier to study experimentally the effects of
copy number variation in model unicellular organisms,
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such as E. coli or S. cerevisiae; strains of such organisms
differing by gene copy number may be relatively easily
constructed [8, 9]. Yet, within the existing mathematical
models of gene expression [10-17], usually a single gene
copy is considered, and the influence of gene copy num-
ber on gene expression is neglected. To the best of our
knowledge, there are only few papers providing a theoret-
ical description of the influence of copy number variation
on gene expression [9, 18-23]

In particular, in Ref. [18], the influence of copy num-
ber variation on the gene expression level was studied in
the case of four different network motifs, from a simple
auto-activated gene (positive feedback) to more compli-
cated, two- and three-gene circuits. This analysis, al-
though thorough and throwing much light on the sub-
ject, was nonetheless based on deterministic approach so
it neglected the molecular noise, inherent to as small bio-
chemical systems as living cells. In the present paper, we
will focus on how the noise produced by self-regulating
gene depends on the copy number of that gene.

The dependence of gene expression noise on the
strength of negative self-regulation of two gene copies was
analysed in Refs. [20, 21]. It was concluded that gene ex-
pression noise, measured there by Fano factor, may pre-
vent the evolution of strong negative auto-regulation in
diploid cells, and this was proposed as a possible explana-
tion of the observed difference in abundance of negative
auto-regulation between E. coli (where negative auto-
regulation is a frequently appearing network motif) and
S. cerevisiae and other eukaryotic species (where it is
much less frequent). The authors pointed out that it
may also account for the fact that duplicated copies of
negatively self-regulating genes are relatively rare in E.
coli, despite the fact that roughly half of all known tran-
scription factors of E. coli take part in negative auto-



regulation [21]. We will show, howevery. that the widely
used quantitative measures of noise, Fano factor and co-
efficient of variation, may behave in a different way as
the gene copy number is varied, so any conclusions about
evolutionary selection based on gene expression noise are
highly speculative as long as it is not known how the nat-
ural evolution measures the noise to select for its most
advantageous amount.

Volfson et al. studied gene expression variability as
depending on the gene copy number [9] in five strains of
S. cerevisiae differing by the number of gene-promoter
inserts of the GAL system. They used a simple scal-
ing argument to determine whether the fluctuations in
protein concentration were of intrinsic or extrinsic ori-
gin. According to the standard distinction between the
two types of noise, intrinsic noise is defined as a side
effect of the specific reactions that result in gene expres-
sion, when a small number of molecules takes part in
these reactions. On the other hand, extrinsic noise, also
affecting these reactions, is that produced by some un-
specified external processes, e.g., fluctuations in the ac-
cessibility of transcriptional machinery or fluctuations of
the environment. However, it should be noted that in
[9] a tacit assumption was made that in order for the
simple scaling to hold, the gene of interest should not be
self-regulating, i.e., if there are any fluctuations of TF
concentration affecting the state of the promoter, they
are of extrinsic origin. In such a case, the mean protein
concentration scales linearly with the gene copy number
G, whereas the coefficient of variation (standard devi-
ation divided by the mean) scales as G~/ for purely
intrinsic fluctuations and is independent on G for purely
extrinsic fluctuations. In the present paper we will show,
however, that this scaling cannot be assumed in the case
of self-regulating genes because intrinsic noise in their
products affect, at the same time, their promoters as the
fluctuations in TF concentration.

We study how the expression of positively or nega-
tively self-regulating gene (cf. Fig. 1) depends on gene
copy number. We assume that this number does not
change during the cell’s life time and that the gene copies
are coupled only by their protein products, being their
own transcription factors (TFs). Another assumption is
fast on/off switching of the promoter state that allows to
describe its regulation by TFs in terms of Hill kinetics;
recent experimental observations seem to support this
assumption [24, 25]. We use the analytical framework
proposed in Ref. [11]: The protein is assumed to be
produced in exponentially distributed stochastic bursts
[26, 27], whereas mRNA, whose dynamics is much faster
than that of the protein, is not explicitly present in the
model. Analytical expressions for the steady-state dis-
tribution of protein concentration can be derived for an
arbitrary number of gene copies, not necessarily identi-
cal in terms of their affinity for TF, provided all copies
are coding for the same protein. We analyse the influ-
ence of the mutations changing gene copy number and
auto-regulation strength on the shape of the steady-state

proteinsprobability distribution.

The model analysed here is one of few analytically
tractable stochastic models of multiple gene copies that
can be constructed from the single-gene models currently
known in the literature. Although the system we study is
one of the simplest genetic circuits, we will show further
on that it can still produce some behaviours that are un-
intuitive or have not been associated with this type of a
gene system, and that the interpretation of its behaviours
still gives rise to some confusion when experimental data
are analysed in terms of the amount of noise present in
the circuit.

In Section IITA we model n identical copies of a self-
regulating gene. We note that the two measures of noise
in the system, Fano factor and coefficient of variation,
may behave in a qualitatively different manner as func-
tions of gene copy number. We also point out that exper-
imental data acquired from the one-colour assay [28], per-
formed on two gene copies, may be interpreted incorrectly
in the case of self-regulating genes. In Section IIIB we
study two non-identical copies of a self-regulating gene,
which differ in their auto-regulation strength. We show
that such a gene pair can show a mixed, binary-graded
response to external signal, an effect that has not been,
to date, associated with gene duplication. We show that
mean expression of two gene copies can scale in a rather
unintuitive way as compared to the mean expression of a
single gene copy, depending on how much the two copies
differ in their auto-regulation strength and depending on
the maximal mean frequency of protein bursts, which
may have an impact on evolutionary accumulation or ex-
tinction of gene duplications. We also point at possible
qualitative differences in behaviour of Fano factor and
coefficient of variation in the case of non-equivalent gene
copies.

II. THEORY
A. Model

We model G copies of a gene in a cell, G being a fixed
parameter. The copies may not be identical, due to mu-
tations in the operator or promoter region of each copy.
Still, we assume that the gene product (protein) is iden-
tical for all of them. We start from the following scheme:

(DNA), 1),
(DNA), 22,
... mRNA 2 Protein
(DNA)g <, (1)
mRNA 2% ), Protein 2 (. (2)

mRNA production takes place on each of G gene copies.
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FIG. 1: Schematic representation of the system consisting
of two self-regulating and mutually regulating gene copies.
The copies can differ in their operator-TF affinity. The
strangth of TF binding to operators can be modified by sig-
nal molecules. Here, positive auto-regulation is shown (as
depicted by large arrows), but we also consider the case of
negative auto-regulation. More than two gene copies are also
considered.

Transcription and translation adds mRNA and protein
molecules to the common pool because they are assumed
to be identical (1). Similarly, degradation processes of
both mRNA and protein are common for the products of
all gene copies (2).

Both translation as well as mRNA and protein degra-
dation processes (2) are treated here as simple first-order
reactions, with the rate constants ko, 1 and -2, respec-
tively (see Table I in Appendix A). However, due to
auto-regulation (Fig. 1), transcription rates depend on
the protein concentration x; the effective rate constants
are given by kij(z) = ki;h;(z), where ki; is the bare
rate constant and h;(z) is the transfer function of the
J-th gene copy

hj(x)=(1—¢;)Hj(x)+¢;, j=1,2,....,G. (3)
€; = kijc/k1j is the measure of transcriptional leakage,
and thus €; < hj(z) < 1; k1; has an interpretation of the
transcription rate constant for a fully active operator of
j-th copy, whereas k1. is the corresponding quantity for
inactive operator (basal transcription), ¢f. Appendix A
and Ref. [17].

The present model assumes that TF binding to the
operator is governed by Hill kinetics, i.e. the bind-
ing/unbinding rates of a TF molecule to the operator
are fast compared to the time scales of other reactions
[13, 29]. In the case of cooperative TF binding, the reg-
ulatory function Hj(x) in Eq. (3) is given by

@]

Cooperative TF binding means that the TFs effectively
activate/repress the gene only when n; of them are bound
to the operator, e.g. when the TF occurs as multimer or
when there are n; TF binding sites on the operator and
each of them, when occupied, makes it more probable

Hj(z) =

for the.TF to bind to other binding sites. Cooperativ-
ity m; thus governs the steepness of H,(x), whereas K;
measures the regulation strength of the j-th gene copy.
n; > 0 denotes negative auto-regulation and for n; < 0
the feedback is positive. Note that the Hill function H (x)
in Eq. (3) is multiplied by the (1 — €) factor. This is in
contrast with the formulation of Ref. [11], where nonzero
leakage introduced only the additive term (e). According
to the rules of chemical kinetics, the present formulation
is universal (its derivation being explained in detail in
[17]) whereas that of Ref. [11] is only valid for small
leakage.

Because usually both the mRNA production and
degradation reactions are much faster than the corre-
sponding processes for the protein, mRNA concentration
is assumed to be a fast degree of freedom and is elimi-
nated from the model [11, 12] (see also [14, 30-33] for de-
tailed studies of time scale reduction from the full kinetic
scheme in related models). In effect, protein production
takes the form of stochastic bursts of a random size [11].
In the case of G gene copies, the probability p(x,t) that
at the time t the protein concentration is equal to = sat-
isfies the Master equation

Op(a,t) < %
pat, = v Zaj/o w(z — 2" )p(a', t)dz’
j=1

g (e, 1) o)

In the above, the protein concentration z > 0 is a con-
tinuous variable, u is the burst size, w(u) = v(u) — §(u),
where v(u) = (1/b) exp(—u/b) is the burst size probabil-
ity distribution (note that the burst sizes are identically
distributed for each gene copy), whereas a; and b are
defined by

a; = =%, b= @, (6)

whereas §(u) is Dirac delta distribution [11].
The stationary solution of Eq. (5), with the normali-
sation constant A, follows from Eq. (8) of Ref. [11]:

o) = Aa:_le_”/bﬁexp {aj / hjix)dx} (7

j=1

In the case of cooperative TF binding, H;(x) is given by
Eq. (4) and from Eq. (7) we obtain

G a;j(l—e;)
p(z) = Axilefm/bHa:‘”Hj(x) K (8)

Jj=1

(The functional form of p(x) (7) for non-cooperative TF
binding is given in Appendix B.)

It should be noted that, in the present model, the
bursting of each gene copy is a Poisson process, inde-
pendent from the bursting of all other copies. Thus, their
protein production rates are coupled only by the common
pool of proteins that regulate the genes as their TFs.



B. Terminology

In this subsection we briefly explain the meaning of the
terms that will be used further on in the paper.

Influence of external signal on gene regulation. TF
can bind one or more signalling (effector) molecules (Fig.
1) or undergo phosphorylation, which changes the TF
affinity to operator [17, 29]. In our model, the presence of
signalling molecules is taken into account only implicitly,
by assuming that the value of K; in Eq. (4) depends not
only on the TF-operator affinity but also on the fraction
of active TFs that are able to bind the operator. This
fraction depends on the concentration of the signalling
molecules (see Appendix A in this paper and Ref. [17],
Appendix A therein, for details). In other words, Kj;
which quantifies the steepness of the Hill function, can be
used as a measure of the intensity of an external signal
that activates or deactivates the TFs.

Unimodal vs. bimodal distributions. A distribution of
concentrations of a protein in cell population is unimodal
when it has a single maximum and it is bimodal when it
has two maxima.

Graded response vs. binary response.  This concept
concerns the changes of the distribution’s shape due to
variation of the signal intensity that defines the fraction
of active TFs able to control the promoter. As the signal
level is varied, gene expression varies between its mini-
mal and maximal values. When the protein distribution
is unimodal for all signal intensities, such that the signal
level only defines the position of the single peak of the
distribution, then the response of the gene is graded. On
the other hand, the response is binary when the protein
distribution changes its shape from unimodal at minimal
expression to bimodal at intermediate expression level,
and then it settles down again to a fixed unimodal dis-
tribution at maximal expression [17]. Further on, we will
show that a mixed response is also possible, if, after the
unimodal-bimodal-unimodal transition, the distribution
does not become fixed but it shifts, now in a graded man-
ner, towards some higher maximum of gene expression.

III. RESULTS

In this Section we present the results obtained by nu-
merical evaluation of the probability distributions (8) or
their moments.

A. Identical gene copies

The assumption of equivalent gene copies is legiti-
mate when the differences between local genetic context
(neighbourhood of each gene copy) are negligible, and in
the case of some engineered genetic circuits [8].
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FIG. 2: Average protein number may depend on gene copy
number in a nonlinear manner in self-regulating genes. A:
Negative auto-regulation (n = 4). B: Positive auto-regulation
(n = —4). The abrupt increase for K = 700 and G = 8 is due
to the transition of the protein number distribution through
bimodality, cf. Fig. 10 in Appendix C. Feedback strength
parameter K = 0 (empty circles), K = 7 (triangles), K = 70
(squares), K = 700 (pentagons), and K = oo (full circles).
Maximum mean burst frequency a = 10. Mean burst size
b = 20. Leakage ¢ = 0.05. Lines provide guide for the eye
only.

1. The mazimum burst frequency scales linearly with gene
copy number

From Eq. (7) it follows that if the regulatory func-
tions of each gene are identical, h;(z) = h(z), then their
burst frequencies simply add up. In particular, if the
whole gene (i.e. its protein-coding and regulatory parts)
is present in G copies such that the maximum burst fre-
quency a; = a, then the system is equivalent to a single
copy of a gene, with the parameter re-scaling:

a — Ga. (9)

For self-regulating genes, the probability density function
for the protein number reads therefore

Ga(l—¢)
X

pal@) = AsCele b [i (2)] 7L (10)
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FIG. 3: In self-regulating genes, Fano factor and by coefficient of variation may depend on gene copy number in a qualitatively
different manner. A, B: Negative auto-regulation, n = 4. A: Depending on the feedback strength parameter K, Fano factor
F = ¢%/(x) may both decrease, increase or vary in a non-monotonous manner as gene copy number G is varied. B: Coefficient
of variation 7 = o/(x) is a monotonically decreasing function of gene copy number G. C, D: Positive auto-regulation, n = —4.
Here, for K = 700, Fano factor F'(G) has just one maximum (C), whereas the coefficient of variation 7(G) has two clear
maxima (D). The sharp maximum for K = 700 and G = 8 is due to the transition of the protein number distribution through
bimodality, c¢f. Fig. 10 in Appendix C. In absence of gene regulation (K = 0 and K = o), FF = b and n ~ G~'/2. For
negatively self-regulating genes, F'(G) < b and for positive auto-regulation, F(G) > b. Parameters and the corresponding

symbols are same as in Fig. 2.

2. Non-linear scaling of the average protein number, Fano
factor and coefficient of variation with gene copy number

Cell fitness may depend not only on protein concen-
tration, but also on the level of gene expression noise.
Two standard quantitative measures of gene expression
noise, Fano factor F' = ¢%/u; and coefficient of varia-
tion n = o/u1, are used interchangeably in the litera-
ture [9, 11, 26, 27]. F' is a natural quantity to measure
deviation of a given probability distribution from Pois-
son distribution, for which F = 1. Under the assump-
tion of no extrinsic noise, for unregulated gene expression
h(x) = const. and pg(x) is then a gamma distribution
[11]. The mean protein number and the measures of gene
expression noise have then a simple dependence on G:
(@) ~ G~ G5, F ~GO[9).

Self-regulation leads to deviations from the above scal-
ing. The dependence of the average protein number (z)
on gene copy number G is in general non-linear (Fig.

2). Fano factor F is no longer independent on G (Figs.
3A,C); coefficient of variation n no longer scales like
G~1/2? (Figs. 3B,D).

What is striking, the influence of gene copy number G
on gene expression noise depends on the particular mea-
sure of noise (Fig. 3). In some of the considered cases F’
and 7 exhibit different qualitative dependences on G: For
example, in negatively self-regulating genes, n may de-
crease while at the same time F' is an increasing, decreas-
ing or even non-monotonous function of G (Fig. 3A).
For positive auto-regulation, 7(G) may have two maxima
whereas F(G) has just one clear maximum (Fig. 3C,D,
K =700). In the case of positive auto-regulation, it is in
accordance with intuition that the abrupt changes shared
by both measures of noise, F(G) and 7(G), are associ-
ated with transition of the protein number distribution
through bimodality (cf. Fig. 10 in Appendix C). How-
ever, other cases of non-monotonic behaviours of F(G)
and n(Q@), including those for negative auto-regulation,



are non-intuitive. Since the behaviours of the-two-mea;
sures of noise may differ quite significantly, statements
like 'gene duplication increases noise of protein distribu-
tion’ are meaningless until a particular measure of noise
is chosen.

3. Interpretation of one-reporter assay.

In a large-scale experiment, Stewart-Ornstein et al.
[28] measured the contribution of extrinsic noise in the
expression of S. cerevisiae genes using the one-reporter
assay. The classical two-reporter assay [34] consists in
measurement, of expression of two reporter genes that
produce fluorescent proteins of different colours and the
correlation between their fluorescence levels provides the
information about the intensity of extrinsic noise that
affects globally both promoters. The concept of the one-
reporter assay, instead, consists in a comparison of statis-
tics of the expression level x; of a single reporter gene
with the statistics of the expression level 1 + x5 of two
copies of that same reporter gene, both producing iden-
tical fluorescent proteins. Extrinsic noise was defined in
[28] as [cov(zy,x2)/({x1){x2))]/?, where the covariance
is defined by the variances of expression of a single gene
copy and two identical gene copies [9]:

cov(xy, xa) = [var(zy + x2) — 2var(z1)]/2, (11)

assuming that (z1) = (x2) and var(z;) = var(zs), be-
cause the products of the two gene copies, and the copies
themselves, are identical. However, this definition of
extrinsic noise becomes problematic if applied to self-
requlating genes. Here, var(xz; + x3) # 2var(zy) even
in absence of any extrinsic factors affecting globally both
gene copies. Moreover, it is possible that cov(z1,22) <0,
which would yield the square root of a negative number
as the value of extrinsic noise, as defined according to
[28]. In Fig. 11, Appendix D, we show examples of neg-
ative covariance produced by negatively and positively
self-regulating genes.

It should be noted that the occurrence of negative co-
variance is, in itself, nothing unusual. What is problem-
atic, is the definition of extrinsic noise as measured by
the covariance, because it implies that zero covariance
should indicate zero extrinsic noise. We therefore argue
that interpretation of the experimental results from one-
reporter assay in terms of intrinsic and extrinsic noise
must be done with caution: A distinction is needed be-
tween (i) extrinsic noise as a factor external to the pro-
moter only, which affects the state of the promoter, e.g.
by the concentration of TFs [13], even if these TFs are
produced by the gene they regulate, and (ii) extrinsic
noise as a global factor affecting both gene copies in-
dependently of their expression (e.g., the variability in
concentration of RNA polymerases or ribosomes).

One can, for example, imagine that two gene copies
are self-regulating, which causes negative covariance of
their expression, but simultaneously they are affected by

a global noise source that increases the covariance, in
sucha way that the covariance sums out to zero. The in-
terpretation of this result using the definition of extrinsic
noise as measured by covariance, which was proposed by
Stewart-Ornstein et al. [28], would lead to an erroneous
conclusion that these genes are not affected by extrinsic
noise whatsoever.

We show an example of such a situation in Fig. 4,
where one and two copies of a positively self-regulating
gene are additionally affected by global fluctuations in
the mean size of a protein burst b, e.g. due to varying
ribosome concentration in cells. We assume that b is
gamma distributed,

ph—1,—b/0

= — 12
o) = (12)
with (b) = k@ and var(b) = k6?. Then, the distribution
of proteins in cell population [35]

go(@) = / "~ pelagb)g(b)db. (13)

At certain width of the distribution of b, the covari-
ance cov(x1,x2) between the expression of one and two
gene copies is zero, because the global fluctuations in
ribosome concentration compensate the negative covari-
ance that was the result of self-regulation. The fact that
cov(x1,z2) = 0 does not imply here that extrinsic noise
is absent.

B. Two non-equivalent gene copies

We now turn to the situation when the promoters or
operators of different gene copies are not identical. This
may happen due to mutational changes in one of the ini-
tially identical copies or due to mutations leading to du-
plication of an incomplete gene, with missing fragments
of the regulatory parts. Gene duplication may also re-
sult in two copies which are nonequivalent due to their
different neighbourhood (different genetic context).

For simplicity, we confine our attention to two gene
copies (G = 2). We are interested in the effects of muta-
tions affecting TF affinity to the operator region of one of
the two copies, such that Ky # Ks. For cooperative TF
binding, assuming identical b for both copies, the steady-
state distribution of protein concentration is given by Eq.
(8) for G =2:

ple) = Ae=/baer e [H ()] S Hy(a))

(14)
In contrast to the case of equivalent gene copies, p(x)
(14) cannot be obtained from the single gene copy case
p1(x) (10) just by the simple scaling (9), even for n; =
ng =n, ap = a2 = a, and €1 = ey (these equalities will
hold further on). In the following considerations, we have
chosen example values of parameters, n = +4 and b = 20.
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mean protein burst size, b, e.g. due to a variable concentration of ribosomes. The distribution g(b) (Eq. (12)) has parameters
at which the covariance (11) is approximately equal to 0: (b) = 20, k = 5.5, 8 = (b)/k, (var(b))/?> = 6k'/?. B: Protein
distributions with the contribution of the extrinsic noise g(b) for a single and duplicated self-regulating gene (¢1(z) and g2(x),
Eq. (13), solid lines). The clear bimodality of g2(z) is the effect of strongly bimodal contributions for some values of b < 20.
For comparison, protein distributions for zero extrinsic noise are shown (p1(z) and p2(z) with non-fluctuating b = 20, dashed
lines). Parameters: a = 10, K = 70, ¢ = 0.05, n = —4. C: Covariance between the expression of one and two gene copies (Eq.
(11), re-scaled by the mean protein number squared), as a function of varying parameters k and 6 in g(b), such that the mean
value of b is fixed: (b) = k6 = 20. The arrow indicates the level of extrinsic noise shown in Fig. A and by solid lines in Fig. B,
where the fluctuations of b compensate the transcription-factor noise, so that the covariance is very close to zero. This example
shows that zero covariance does not imply that the extrinsic noise is zero.
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1. Non-equivalent copies of a self-regulating gene may have
a mized binary+graded response to a signal.

A well-known fact is that the distribution of protein
concentrations produced by a positively self-regulating
gene can be bimodal [11, 17, 36, 37]. And thus, the con-
ditions for bimodality also hold for G identical copies of
such a gene, with the re-scaling (9). For easier visuali-
sation of the parameter regions where the bimodality is
present, one can use a geometric construction that indi-
cates the number and positions of the extrema of pg(x)
[17]:

1 1
h(z) = —— g+ .
(@) =Za* " ag

The positions of the intersections of the transfer function
h(x) and the straight line corresponds to the positions of
the extrema of the distribution. If the construction shows
two intersections of h(z) and the straight line, then there
is one additional maximum in 2 = 0. It should be noted,
however, that if the geometric construction predicts the
mathematical fact of existence of multiple extrema, they
may still not always be clearly visible on the plot of dis-
tributions: One maximum may be much smaller than
the other even if the points of the intersection seem to
be well separated on the plot of the geometric construc-
tion. A particular example illustrating such a situation
of apparent unimodality is presented in Fig. 10, Ap-
pendix C. Yet, the geometric construction is a convenient
tool to gain a qualitative understanding of the system’s
behaviour (see also [37] for a more detailed analysis of
distribution properties based on the construction). The
construction turns out to be especially instructive for the
case of two non-equivalent gene copies: Now, it contains
two regulatory functions of both genes,

1

3% 2 = hi(z) + ha(z), (16)

(15)

and it allows us to visualise an example of a nontrivial
response of the two-gene system to a varying signal
that modifies the TF binding strength [17]. In Fig. 5,
the sensitivities of both gene copies to TF differ by the
factor of 16, which is reflected by the corresponding
ratio of K7 to Ks. An external signal of a certain
intensity, e.g. the presence of certain concentration of
ligand that binds to TF, or phosphorylation of a certain
fraction of TFs, changes proportionally both coefficients
K; and Ks, which causes the change of the steepness
of the regulatory functions, hi(z) + ha(z). For positive
self-regulation, the geometric construction predicts that
when both gene copies have different sensitivities to TF,
a mixed response to the signal is possible, which is a
combination of binary and graded responses. First, the
more sensitive copy responds in a binary manner to the
signal: The probability mass is transferred between two
peaks of p(z). But when the binary response is over,
i.e., p(x) becomes again unimodal, then gene expression
does not saturate at the fixed level. Instead, the single

peak-moves-towards an even higher expression level,
now reflecting the (graded) response of the second, less
sensitive, gene copy. One might naively expect that
this hybrid behaviour occurs because one of the genes
has graded response and the other has binary response.
However, this is not the case: In our example, each gene
has a binary response when present in the cell in just one
copy (Fig. 6). The mixed type of cellular response was
experimentally found in different contexts [38, 39], but,
to date, it has not been associated with gene duplication.

2. Ewolutionary accumulation of gene duplications may
non-trivially depend on the inherent frequency of bursting of
a given gene

Since both copies of the self-regulating gene also reg-
ulate each other, the mean expression (x; + x2) of the
two copies is, in general, not equal to the double mean
expression (z1) in cells where just a single gene copy is
present. The ratio (z1 + x2)/{x1) depends on the reg-
ulation strengths K7, K5 of both genes but also on the
parameter a that describes the maximum mean burst fre-
quency and can be considered, alongside Fano factor and
coefficient of variation, as another measure of the noise
present in the system — the larger a, the closer is the
behaviour of the system to the deterministic model [17].
Fig. 7 shows the behaviour of (z1 + z2)/(z1) as a func-
tion of K5/K; for an example set of parameters. For a
given a, the function increases (for auto-repression) or
decreases (for auto-activation), but the magnitude and
threshold of this changes for each value of a in a rather
unintuitive way. One can, on the other hand, see that
(x1 + w2)/{z1) depends non-monotonically on the nois-
iness the system, measured by 1/a. In Fig. 8 we plot
cross-sections of Fig. 7 as functions of a. Based on Fig.
7, we can discuss two scenarios of gene duplication:

1. The gene copies are identical (green lines in Fig. 8).
In general, gene duplication increases total gene expres-
sion, but by a different factor, depending on regulation
type and a. Duplication of a negatively self-regulating
gene (Fig. 8A, green line) causes a smaller change in its
expression than duplication of a positively self-regulating
gene (Fig. 8B, green line). This effect is easy to explain
intuitively: in the former case, additional repressors are
produced, in contrast to additional activators in the lat-
ter case. In the case of auto-activation, there is a value
of a at which the increase of expression is maximal. This
corresponds to activation of the previously inactive gene
due to duplication. The effect can be intuitively visu-
alised using the geometric construction, even though it
shows extrema of the protein number distributions and
not their means: Since the slope of z/(ab) + 1/a in Eq.
(16) depends on a, this parameter changes the relative
distance between the points of intersection of the straight
line with hi(x) and with hq(z) + ha(x) (see Appendix E,
Fig. 13).



If there exists a threshold of natural.selection -above
which gene expression is too high and the cell is elimi-
nated, then only those duplications will remain, for which
the expression is increased the least. Thus, duplications
of those auto-repressed genes, whose noisiness measured
in 1/a is low, have a greater chance to survive (Fig. 8;
see also the geometric construction in Appendix E, Fig.
14). On the other hand, for auto-activation, the duplica-
tions of genes with a small or large, but not intermediate,
a have a greater chance to survive; this corresponds to
situations when either the duplication does not suffice
to induce the genes, or when the gene has already been
induced before duplication.

2. The gene copies differ in their operator-TF affin-
ity parameters K;, which can occur when the new copy
is placed in a different genetic context than the original
(e.g. where the exposition of the operator to TFs is bet-
ter/worse) or when the promoter is not fully copied. The
changes lowering the operator-TF affinity (Ko > K;) are
more probable. Intuitively, one can predict that the gene
copy with such a defective operator will increase the to-
tal expression in the case of auto-repression, or decrease
it in the case of auto-activation, as compared to the per-
fect duplication. However, interestingly, when the copies
of a negatively self-regulating gene differ in their affini-
ties to TF in a sufficiently large extent, then an optimal
value of a occurs at which their expression increases the
least as compared to the expression of a single gene copy
(Fig. 8A, blue and magenta lines; see also the geometric
construction in Appendix E, Fig. 15). This means that
survival of a defective duplication is more probable for
a rather small a (around its optimal value), differently
than in the case of a perfect duplication, where large a
increased the probability of survival.

On the other hand, in the case of auto-repressed genes,
evolution may lead to accumulation of those rare cases
of duplications in which the operator-TF affinity is in-
creased (i.e., Ky decreased). For auto-activated genes,
such increase would not be evolutionarily preferred.

Accumulation of gene duplications may thus depend
not only on the type of regulation (negative/positive) but
also on the amount of noise in the system, measured by
the maximum mean burst frequency a. This dependence
is, however, non-trivial because it may be different for
perfect and imperfect duplications.

3. Fano factor and coefficient of variation behave
differently as the function of TF-operator affinity

According to earlier findings, two identical copies of
negatively self-regulating genes are characterised by a
smaller gene expression noise than heterozygotes (Ko #
K,) [20]. However, a careful analysis of the behaviour
of our model at some exemplary values of parameters
(Figs. 9) shows that this rule is not universal. We ob-
serve that Fano factor F' and coefficient of variation n
may behave in a different way as the functions of the
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FIG. 7: Relative change in the average protein concentration
before and after gene duplication, as a function relative affin-
ity of both genes for TF, K/K,. A: Negative auto-regulation,
n = 4. B: Positive auto-regulation, n = —4. Parameters:
b =20, n =4, Ki = 70, and ¢ = e2 = 0.05. Horizon-
tal dashed lines mark the level of 1 (green) and 2 (blue) for
comparison.

relative promoter sensitivities K;/K2 and depending on
the maximal burst frequency a. In the case of two copies
of a negatively self-regulating gene (Fig. 9A,B), for large
a, Fano factor has minima in the vicinity of the homozy-
gous case, Ko = Kj. For small a, the minimum of F
occurs when there is a two-fold difference in sensitivity
between the promoters (for a« = 1, Ky = 70, Ko =~ 35).
On the other hand, coefficient of variation shows shal-
lower minima and their positions are different than those
for Fano factor. For small noise, the minimum of 7 occurs
when there is a two-fold difference in sensitivity between
the promoters but at different values than in the case
of F: (for a = 10, K1 = 70, Ky ~ 140). If gene pairs
with Ky < K7 and Ky > K, are compared, large differ-
ences in Fano factor occur for large a, but, at the same
time, large differences in coefficient of variation occur
for small a. In the case of two copies of a positively self-
regulating gene (Fig. 9C,D), both measures of noise have
maxima (roughly corresponding to the transition through
bimodal distributions, see Fig. 16 in Appendix F) but
again their positions differ for ' and 7. In the case of co-
efficient of variation, the maxima are less pronounced and
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they disappear above some value of a, which is however
different than for the maxima of F. We also note that, for
both negatively and positively self-regulating genes, coef-
ficient of variation varies monotonically with a, whereas
the behaviour of Fano factor is non-monotonic.

And therefore, if we attempted to draw any conclu-
sions from these examples about evolutionary optimisa-
tion of promoter sensitivity with respect to noise, then
these conclusions would differ depending on whether they
are based on the behaviour of Fano factor or the coeffi-
cient of variation. If one of two initially identical genes
undergoes mutation, these two measures of noise would
give different predictions as to what type of mutation is
more beneficial, the one increasing or the one decreasing
the sensitivity of the promoter.

IV. DISCUSSION

A. Conclusions

In the present paper, we have studied the influence of
gene copy number, auto-regulation strength, and tran-
scriptional leakage on the properties of the simplest ge-
netic circuit, a self-regulating gene.

Although this genetic circuit is extremely simple, the
analysis of how it behaves depending on the number of
gene copies may be crucial for correct interpretation of
experimental results. In a large-scale experiment (456
genes), Stewart-Ornstein et al. [28] used the one-reporter
assay to measure covariance between the expression of
single genes and two identical copies of those genes in
Saccharomyces cerevisiae. Adopting the ideas of Volfson
et al. [9] who studied non-auto-regulated genes, the au-
thors of [28] interpreted the covariance as a measure of
extrinsic noise affecting the genes. However, if the stud-
ied genes were self-regulating, this interpretation would
break down because, as we have shown in the present pa-
per, the transcription-factor noise may cause negative co-
variance, whereas global extrinsic noise, e.g. due to cell-
to-cell differences in ribosome concentration, may com-
pensate it, such that the total covariance is zero. In that
case, the interpretation proposed in [28] would lead to an
erroneous conclusion that the genes are not affected by
extrinsic noise.

An obvious observation is that, within the studied
model, a system of multiple identical gene copies can be
equally well interpreted as a single “super-gene”;, whose
transfer function h(x) is the same as in a single gene copy
whose transcription rate is accordingly multiplied. On
the other hand, when the gene copies are non-identical
due to promoter mutation affecting the TF binding, the
effective transfer function has a nontrivial shape (a case
that is rather difficult to interpret in terms of some molec-
ular mechanisms affecting a single “super-gene”). We
have shown that this may lead to a mixed, binary+graded
response of the gene system to external signal modulat-
ing the TF activity: In a certain range of the signal, the
histogram of gene expression is bimodal with the height
of the peaks varying as the signal is varied, but when that
range is exceeded, the gene expression does not saturate.
Instead, a single peak gradually changes its position as
the signal intensity is further increased. This behaviour
is the result of mutual regulation of both genes: It may
occur even if each of the genes alone has a binary re-
sponse when present in the cell in a single copy. The
hybrid response was observed in different cellular con-
texts (nuclear phosphorylated ERK as well as Egrl and
its mRNA, induced by gonadotropin-releasing hormone
in LAT2 mouse cells [38], phosphorylated Stat5 induced
by erythropoietin in foetal erythroblasts [39]). However,
to date, this type of response has not been associated
with gene duplication.

Our analysis of the relative change in gene expression
before and after gene duplication suggests that the evo-
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FIG. 9: Two non-equivalent copies of a negatively (A,B) and positively (C,D) self-regulating gene: Different measures of noise,
Fano factor F' and coefficient of variation 7, may show differences in their behaviour as functions of the relative sensitivity
K> /K of both promoters to auto-regulation. For negative auto-regulation, n = 4 (A,B), the positions and depth of minima are
different for F’ and 7. For positive auto-regulation, n = —4 (C,D), the maxima of both measures of noise roughly correspond to
the transition through bimodal distributions, see Fig. 16. The exact positions and height of the maxima are, however, different
for F' and 7. Additionally, for both positive and negative auto-regulation, F' varies non-monotonically with a, whereas the
dependence of 7 on a is monotonic. Parameters: b = 20, K1 = 70, 1 = €2 = 0.05.

lutionary survival of additional gene copies may not only
depend on whether the auto-regulation is negative or pos-
itive, but also on the amount of noise in the system, mea-
sured by the inherent maximal mean burst frequency a
of a given gene. The dependence for perfect duplications
(identical gene copies) may be different than for defec-
tive duplications (the operator of the new copy having
a lower affinity for TF): In the case of perfect duplica-
tions of auto-repressed genes, there may be a preference
for accumulation of such duplications when the genes are
characterised by high burst frequency a. On the other
hand, some cases of defective duplications may survive
when the genes have an optimal, low burst frequency a.
In the case of auto-activated genes, evolution may avoid
accumulation of duplications of those gene for which a
is in an intermediate regime because such duplications
of an uninduced gene may lead to exceeding of the in-
duction threshold. Finally, there may also be a (more
obvious) preference for those rare cases of duplications of
auto-repressed genes, in which the operator-TF affinity
is increased, whereas such an increase would not be pre-

ferred in the case auto-activated genes. The above pre-
dictions can be tested experimentally by checking which
types of gene duplications (perfect or imperfect) and in
what types of genes (the ones with frequent or infrequent
protein bursts) tend to accumulate in the course of evo-
lution.

In order to investigate gene expression noise, we have
computed two standard measures of noise (Fano factor
F and the coefficient of variation 7). It turns out that F’
and 7 behave differently as functions of gene copy num-
ber, and, in the case of two non-identical gene copies,
as functions of the relative auto-regulation strengths of
the two genes. Consequently, in any analysis of gene ex-
pression noise, the outcome depends on which measure
of noise is used. This makes any statements on the in-
fluence of gene expression noise on cell fitness ambigu-
ous. On one hand, it seems that coefficient of variation,
as a dimensionless quantity, may be a more reasonable
choice. On the other hand, even if the qualitative be-
haviour of F(G) and n(G) is similar, it is not guaranteed
that a definite conclusion regarding the selective role of



gene expression noise can be drawn. For.example, in-the
case of bet-hedging strategy, cell fitness depends on the
shape of the protein concentration distribution (bimodal
vs. unimodal) in a way that not always can be captured
by simple measures of noise like n or F' (e.g., it is possible
that a bimodal distribution with strongly defined peaks
can have the same 1 as a wide unimodal distribution).
We do not know which measure of gene expression (if
any) is used by Nature to quantify the influence of noise
on cell fitness, and it is likely that such measure is to be
found individually for each system of interest.

B. Limitations of the model

The main limitation of the present approach is that it
allows to treat only the case of gene copies coding for
identical gene product. Since the gene copies are as-
sumed to be coupled only by the total protein concen-
tration, the model does not take into account other cou-
pling mechanisms affecting the burst rates of all genes,
e.g. general DNA remodelling. Also, the present formal-
ism cannot be used to investigate more complicated ge-
netic circuits (e.g., toggle switch). Moreover, it is likely
that in real systems, the same point mutation may af-
fect both the transcription rate (hence, burst frequency),
auto-regulation strength, and basal transcription level.
In such a case, the model here considered is only a first
approximation; within a more involved description, some
model parameters (a, ¢, and K) should not be treated
as independent. Another simplification is that the model
is one-dimensional. This may cause neglection of some
effects that are possible only in higher dimensions, e.g.
oscillations. We have also assumed here that the gene
copy number G is identical for all cells in the population.
However, this may be not the case and we may deal with
a distribution of G values, e.g. when high-copy plasmids
are used to construct a multi-copy strains. In such a situ-
ation our model may be easily generalised by introducing
a probability distribution p(G) for different values of G, a
conditional probability for finding x protein in a cell con-
taining G gene copies, p(z|G), and finally the joint proba-
bility p(x, G) = p(x|G)p(G), G € N.. The marginal prob-
ability distribution p(x) =3 ,p(z,G) should be then
used as a correct protein number probability distribution
in the population. Since nuclear transport is neglected
within the present model, our results seem to be more
relevant to prokaryotes than to eukaryotes. However, in
most papers devoted to copy number variation in eukary-
otes, the division of the cell into nucleus and cytoplasm
is not taken into account, and exactly the same models
are used to describe gene expression in both groups of or-
ganisms. Most of proteins in E. coli appear in relatively
high concentrations [40, 41] and therefore the discreteness
of the protein number is not taken into account within
the present approach. Our model with a continuous x
variable may thus incorrectly describe systems contain-
ing small numbers of proteins. Note that this may also

include-the cases where the total number of TFs is large
but the number of active TFs (not taken explicitly into
account in our model) is very small. The presence of dis-
crete states of the promoter is here taken into account
only in an effective manner by making use of the Hill
function. On the other hand, the discrete counterpart of
the analytical framework proposed in Ref. [11] is known
[15], and it seems adaptable to study the system of mul-
tiple copies of a self-regulating gene. Finally, it should
be noted that the present model does not allow to study
the changes of gene copy number G in time. We only
compare stationary expression of gene systems contain-
ing different fixed numbers of gene copies. However, in
some cases, the number of gene copies may change on the
time scales as short as a fraction of a cell cycle (103-10*
s), the most obvious example being chromosome repli-
cation during the replication cycle. In rapidly growing
and dividing bacteria, DNA replication leads to a more
than two-fold increase of the copy number of some genes
(multi-forked chromosomes) [1] . Another example of
a rapid copy number variation is the change of a viral
genome copy number during multiple bacteriophage in-
fections of bacteria [42, 43]. Modelling of time-dependent
gene expression in such cases would require a different
theoretical approach.
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Transcription factor binding:
KA
mRNA synthesis/degradation:
Repressor Activator
kq; kije
0~ Y+,0 0 —%Y+,0
Ek1ie ks
OX, =5 Y +,0X, 0X, —% Y+ ;0X,
Y o
Transcription factor synthesis/degradation:
Y 2 X 4y
X225

TABLE I: Kinetic scheme that can be used to derive the ef-
fective kinetic description of (1) and (2). Y: mRNA, ky;: rate
of mRNA synthesis from the operator of the j-th gene copy
in the active state, kije: rate of mRNA synthesis from the
operator of the j-th gene copy in the inactive state (leakage),
~1: rate of mRNA degradation, k2: rate of protein synthesis,
~2: rate of protein degradation.



APPENDIX A: DETAILED SCHEME OF THE
REACTIONS

In this Appendix and in Table I we present the detailed
list of biochemical reactions used to derive effective ki-
netic description of transcription, translation and degra-
dation or dilution of mRNA and protein as given by (1)
and (2), making use of Hill kinetics.

For |n| > 1 cooperative TF binding corresponds to the
situation where, for each gene copy, the probability of
finding the j-th operator ;O in any of the intermediate
states, ;O0X1, ..., ;OX,_1, is negligible. This assump-
tion leads to the Hill function of the form (4), with terms
proportional to 2%, i = 1,...,n — 1 in denominator being
absent. Alternatively, H;(x) (4) may be obtained if we
assume that TFs rapidly form a n-molecule complex.

For simplicity, reactions such as binding of a signalling
molecule to TF, phosphorylation, multimerisation are
not explicitly taken into account here. Generalisations of
the present model with the signalling molecules explic-
itly included would be too complicated to be analytically
solvable.

Yet, we can bypass this difficulty by allowing for the
dependence of the parameters K of the present model on
the concentration of the signalling molecules. Examples
of such dependence can be found in Refs. [17, 29]. We
make a general assumption that, when the cooperativity
of TF binding is strong and binding of inactive TFs is
negligible, then the parameter K; in the Hill function for
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FIG. 10: Probability distributions pg(z) for G = 7, G = 8,
and G =9 in Fig. 3C,D, where the sharp maxima of F' and
n correspond to the transition through a strongly bimodal
distribution. Parameters are same as in Fig. 3C,D. Inset:
The corresponding geometric construction, revealing that all
probability distributions are, strictly speaking, bimodal, but
for both G = 7 and G = 9 the height of one of the maxima
is orders of magnitude smaller than in the other. This shows
that the geometric construction provides the necessary, but
not sufficient criterion for visually distinguishable bimodality.
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FIG. 11: Example normalised covariances (Eq. 11) of the
expression of two identical copies of a negatively (n = 4, A)
and positively (n = —4, B) self-regulating genes, depending
on the parameter K that measures TF binding strength. A:
For negative auto-regulation, the covariance is negative, and
it tends to zero in the limit of “saturated” regulation, where
both genes behave as independent copies that do not regulate
each other. B: For positive self-regulation, the covariance can
be negative or positive, which corresponds to the transition
through bimodality of the distribution produced by a single
gene copy or by two gene copies, see Fig. 12. Parameters:
a=10,b=20, ¢=005 Ky =170, K =2°Kp, £ = —13..10
(Ko and & being auxiliary variables that scale the value of K).

the j—th gene copy can be approximated as

@ () \ M
oo = [ Fiorsfiosr Kiopr | L (A1)
J D @) fa’
j.onVj,0n j,on
where f, is the active fraction of TFs, xY is the rate

,on

of binding of an active TF to the i—th binding site on
the operator, and /ﬁngf is the corresponding unbinding
rate (see Ref. [17], Appendix therein, for detailed deriva-
tion). Therefore, K; contain both the information about
TF binding affinity (which can change due to mutations)
as well as the information about the active TF fraction
(which can change due to varying signal level). If there
is more than one gene gene copy and each of them has
different TF-operator affinity, an external signal changes
globally the active fraction of TF f,, which means that
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FIG. 12: Plots of pi(x) (dashed lines) and p2(z) (solid lines)
for K/Ko = 1 (red) and for K/Ko = 2 (blue), i.e., corre-
sponding to minimum and maximum of normalised covari-
ance shown in Fig. 11B. pi(z) for K/Ko = 2, denoted by
blue dashed line, is unimodal, with maximum in 0.

the signal varies the parameters K; in the same propor-
tion for each gene.
Transcriptional leakage is modelled by

klje
k‘lj '

€ =

(A2)

APPENDIX B: NON-COOPERATIVE
TRANSCRIPTION FACTOR BINDING

We present here an analytical form of the steady-state
distribution of protein concentration for the case of a
non-cooperative TF binding. This case was not analysed
in [11]. However, in some situations the assumption that
TFs bind to operator independently may be more realistic
than the limit of strongly cooperative TF binding. In the
present case, the Hill function of a j-th gene copy reads

(@

In order to find an explicit form of (7) for hj(x) given
by (3) and (B1), we need the following result

[ 55 S e +5)

Hj(z) = (B1)

x
+ In(z) - (1- ¢l (1 + E)' (B2)
Eq. (B2) follows from the identity
1 1 1
- N B
(s—1)sm (s—1) ;sl’ (B3)
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FIG. 13: Duplication of the non-induced positively self-

regulating gene increases the number of TFs, which leads to
induction of both genes in a subpopulation of cells (Fig. 8B,
green line therein, Ko = K1), which is depicted by the bi-
modal distribution of protein number. A: Distributions of
protein numbers before (red) and after duplication (green).
B: Corresponding geometric construction, Eqs. 15 and 16.
Redline: hi(z). Green line: hi(z)+ha(z). Blue line: ~az+21.
Parameters are same as in Fig. 8B.
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FIG. 14: Relative change in expression after duplication of
a negatively self-regulating gene is the smaller, the greater is
the maximal burst frequency a (Fig. 8A, green line therein,
K> = K1). Red and green lines denote quantities before and
after duplication, correspondingly. A: Distributions of pro-
tein numbers, a = 2. B: Corresponding geometric construc-
tion. C: Distributions of protein numbers, a = 10. D: Cor-
responding geometric construction. Colors in the geometric
constructions are same as in Fig. 13. Parameters are same as
in Fig. 8A.
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FIG. 15: Relative change in expression after a defective du-
plication of a negatively self-regulating gene, K> = 8K, (Fig.
8A, magenta line therein). Differently than for the perfect
duplication shown in Fig. 14, here the relative change in ex-
pression is smaller for small ¢ = 3 than for large a = 10.

with s =z + 1 and z = /K. From (7) and (B2) we get

G
p(x) = Axfle*w/be‘”}'j(m), (B4)
j=1

where A is the normalisation constant, and F;(z) reads

HT'Lj exp <aj(lej) (1 4 L)l_ij>
i;=2 ij—1 K

(1 p Kij)aj(lfej)

In the case of identical gene copies (h;j(z) = h(x), a; =
a), Eq. (B4) can be rewritten as

Fi(x) =

.(B5)

pa(z) = Aa:_le_”/ba:ac[}"(a:)]G, (B6)

where

" exp (2=9 (14 z)
Fla) = ITie p( i1 ((1_"") K) ) (B7)
1+%)""

Note that for pg(z) given by (B6), identity (9) still holds.
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FIG. 16: Probability distribution p(x) for the case of two
gene copies and for various values of Ko/K1: Ko/K1 = 1/2
(green), K»/K1 =1 (dark yellow) and for K»/K1 = 2 (grey);
the latter case corresponds to maximum of the Fano factor F'
as a function of K»/K; for a =5, b = 20, n = —4, K1 = 70,
and €; = €2 = 0.05, cf. Fig. 9

APPENDIX C: MAXIMA OF F' AND 5 IN FIG.
3C,D DUE TO BIMODALITY OF THE PROTEIN
NUMBER DISTRIBUTION

The sharp maxima of both the Fano factor F' (Fig. 3
C) and coefficient of variation n (Fig. 3 D) as a function
of gene copy number for K = 700 correspond to a change
in the character of ps(x) from an apparently unimodal
(G =17), through bimodal (G = 8), to again apparently
unimodal G = 9, cf. Fig. 10. Geometric construction
(see inset in Fig. 10) reveals that actually all probability
distributions shown here are bimodal. However, except
for ps(z), one of their peaks turns out to be much smaller
than the other.

APPENDIX D: EXAMPLE PLOTS OF
COVARIANCE BETWEEN THE EXPRESSION
OF TWO COPIES OF A SELF-REGULATING
GENE

In Fig. 11 we show example plots of covariance
(Eq. 11) between the expression of two identical gene
copies of a negatively self-regulating gene (Fig. 11A)
and positively self-regulating gene (Fig. 11B). In some
cases the covariance is negative. In the case of positive
auto-regulation, abrupt changes in the covariance, from
negative to positive, are due to the transition through
bimodality regime: If one gene copy produces bimodal
distributions of protein numbers and two gene copies
have unimodal expression (Fig. 12, red), then the co-
variance is negative. If one gene copy produces unimodal
distributions of protein numbers and the expression of
two gene copies is bimodal (Fig. 12, blue), then the
covariance is positive.



APPENDIX E: VISUALISATION OF THE

CHANGES IN MEAN GENE EXPRESSION

AFTER DUPLICATION BY GEOMETRIC
CONSTRUCTION

In this Appendix, we show additional figures (Figs.
13-15) for the Subsection IIIB2. The geometric con-
struction intuitively visualises the changes in mean gene
expression after duplication.

APPENDIX F: MAXIMA OF F AND 7 IN FIG.
9C,D

The maxima of F' and 7 in Fig. 9C,D roughly cor-
respond to the transition through bimodal distributions.

As an example, in Fig. 16 we show probability distri-
butions corresponding to maxima of F* and 7 as a func-
tion of relative sensitivity K2/K; of both promoters to
auto-regulation as shown in Fig 9 (A) for the case of two
non-equivalent copies of a positively self-regulating gene,
for a = 5. The remaining parameters: n = —4, b = 20,
K, =70, ¢, = €2 = 0.05. Interestingly, the maximum
at Ky/K1 = 2 corresponds to unimodal distribution; bi-
modality is present for K3/K; =1 and Ky/K; = 1/2.
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