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Abstract

By investigating metapopulation fitness, we present analytical expressions
for the selection gradient and conditions for convergence stability and evo-
lutionary stability in Wright’s island model in terms of fecundity function.
Coefficients of each derivative of fecundity function appearing in these con-
ditions have fixed signs. This illustrates which kind of interaction promotes
or inhibits evolutionary branching in spatial models. We observe that Tay-
lor’s cancellation result holds for any fecundity function: Not only singular
strategies but also their convergence stability is identical to that in the cor-
responding well-mixed model. We show that evolutionary branching never
occurs when the dispersal rate is close to zero. Furthermore, for a wide class
of fecundity functions (including those determined by any pairwise game),
evolutionary branching is impossible for any dispersal rate if branching does
not occur in the corresponding well-mixed model. Spatial structure thus
often inhibits evolutionary branching, although we can construct a fecun-
dity function for which evolutionary branching only occurs for intermediate
dispersal rates.
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Highlights:

• We study trait evolution in Wright’s island model through metapopu-
lation fitness.

• First- and second-order conditions are derived in terms of fecundity
derivatives.

• In most cases, an introduction of spatial structure hinders evolutionary
branching.

• Space never favors branching when the fecundity function is based on
pairwise games.

• Though rare, we can construct an example where space promotes evo-
lutionary branching.

1. Introduction

Evolutionary branching is a process in which the trait of an evolving2

monomorphic population first approaches a so-called singular trait, but then
disruptive selection causes the population to become dimorphic, i.e., to con-4

tain two different resident traits, and these two traits evolve away from each
other (Metz et al., 1992, 1996; Geritz et al., 1997, 1998). When mutations6

are so frequent that there is no clear separation between ecological and evo-
lutionary time-scales, evolutionary branching means that a unimodal trait8

distribution first concentrates around the singular strategy, and then the
distribution becomes bimodal.10

Invasion fitness (Metz et al., 1992) is the long-term exponential growth
rate of a rare mutant in an environment set by the resident. At singular12

strategies the first-order derivative of the invasion fitness vanishes. The con-
dition for evolutionary branching is usually given by calculating the second-14

order derivatives of invasion fitness at a singular strategy. There is, however,
another approach to study the branching condition. Instead of considering16

a mutant–resident system, we can study the dynamics of a continuous trait
distribution and identify evolutionary branching as the increase of the vari-18

ance of the distribution (Sasaki and Dieckmann, 2011; Wakano and Iwasa,
2012). In a case of a well-mixed population, the branching condition derived20

by calculating invasion fitness and that by calculating variance dynamics
have been shown to be identical when the trait distribution is approximated22
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by the Gaussian distribution. In case of a spatially structured population,
comparing these approaches requires more detailed calculations.24

The metapopulation reproduction ratio (metapopulation fitness) is a fit-
ness proxy that measures the growth of a mutant population between dis-26

persal generations in an environment set by resident. (Metz and Gyllenberg,
2001; Ajar, 2003; Parvinen and Metz, 2008). By investigating the metapopu-28

lation fitness, the branching conditions have been studied for several different
metapopulation models (Parvinen, 2002, 2006; Nurmi and Parvinen, 2008,30

2011). On the other hand, the trait distribution approach can also be ex-
tended to spatially structured populations and an analytic expression for the32

branching condition has been derived by Wakano and Lehmann (2014) for
a specific model. In structured populations, the trait distribution cannot be34

described by a single Gaussian distribution (as in a well-mixed case) because
different demes (local patches) can have different trait distributions and be-36

cause individuals in the same deme tend to have similar trait values. In other
words, the individual trait value is no longer an independent random vari-38

able sampled from the same distribution and we need to take into account
the positive correlation of trait values within a deme. This correlation can40

be expressed in terms of relatedness and as a result the branching condition
is given by a combination of fitness derivatives and relatedness coefficients.42

The analytically derived condition by Wakano and Lehmann (2014) agreed
with their simulations.44

In this article we investigate Wright’s island model, which is a discrete-
time metapopulation model in which the number of adults in each deme46

is fixed through generations. The relative fecundity of each adult depends
on its own inheritable trait and the traits of other adults in the same deme.48

The individuals to become adults in the next generation are randomly chosen
among philopatric and dispersed offspring.50

Assuming locally a fixed number of adults is not very realistic, and also
not strictly speaking even necessary, because evolution in metapopulation52

models with more realistic local population dynamics has been successfully
analysed using the metapopulation fitness (see references above). However,54

this simplifying assumption allows one to obtain general analytic expressions
for the selection gradient and conditions for convergence stability and evo-56

lutionary stability. Ajar (2003) obtained such expressions by calculating the
metapopulation fitness, while Wakano and Lehmann (2014) used the trait58

distribution approach. Both studies express their main results in such terms
of relatedness coefficients, which might discourage researchers to apply these60
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results to practical questions if they are not very familiar with inclusive fit-
ness theory.62

The first goal of this study is to explicitly show the selection gradient
and conditions for convergence stability and evolutionary stability in terms64

of derivatives of the fecundity function and original spatial parameters (deme
size, dispersal rate and the probability to survive dispersal). The use of our66

expressions is straightforward, and they are valid for any fecundity function.
In this form it will be clearly observed that singular strategies in the spatial68

model are the same as in the well-mixed case (Taylor, 1992a; Taylor and
Irwin, 2000), also called a cancellation result. Also the condition for conver-70

gence stability remains unchanged, whereas the condition for evolutionary
stability is affected by the spatial structure.72

The second goal is to study whether spatial structure promotes or inhibits
evolutionary branching. For the direction of evolution in spatial models (e.g.,74

evolution of cooperation), tremendous amount of papers have been published.
Compared to them, the effect of spatial structure on evolutionary branch-76

ing has been far less studied. Wakano and Lehmann (2014) have shown
that when fecundity is determined by repeated snowdrift games (Doebeli78

et al., 2004) between individuals within the deme, a smaller dispersal rate
inhibits branching. This was confirmed by their individual-based simulations80

but their analysis is only a numerical calculation of the general formula of
the condition for evolutionary stability. Thus, it is not clear whether spa-82

tial structure always inhibits branching for any kind of local interactions or
there exist some kind of interactions that trigger branching only when spatial84

structure is introduced. We aim to answer this question by investigating the
explicit expression determining evolutionary stability.86

This paper is organized as follows. In section 2 we describe the model and
formulate the metapopulation reproduction number. The general explicit88

expression for the selection gradient and the second order derivatives are
presented in section 3. Especially, in the condition of evolutionary stability90

the coefficients of each fecundity derivative (= derivative of the fecundity
function) have fixed signs. In section 4 we prove general results suggesting92

that the spatial structure of Wright’s island model often, but not always,
inhibits evolutionary branching. As a counterexample we present an artificial94

fecundity function for which branching occurs only for intermediate values
of the dispersal rate. In section 5 we apply our results to situations in which96

fecundity is determined by any pairwise game (not just the snowdrift game),
or by a public-goods game.98
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2. Model description and metapopulation fitness

2.1. Island model and fecundity function100

We consider an extended version of Wright’s island model (Wright, 1931).
We assume that there are infinitely many habitat patches (demes). In the102

beginning of the season each patch contains n(> 2) adult individuals. These
adults may differ in their strategies s, which affect their fecundity γF that104

represents the number of juveniles that they produce. Throughout the manuscript,
γ is considered to be very large (actually γ →∞). More precisely, the rela-106

tive fecundity for an adult with strategy s1, when the strategies of the other
individuals are sn−1 = (s2, . . . , sn) is108

F (s1; sn−1) = F (s1; (s2, . . . , sn)) (2.1)

Naturally, the order of strategies in the vector sn−1 does not affect fecundity,
which we assume from now on. A proportion 0 < m 6 1 of the juveniles110

will disperse. The proportion 0 < p 6 1 will survive dispersal and land in
a random patch, but the rest die out during dispersal. The present adults112

are assumed not to survive until the next season. The local adult population
size is assumed to be fixed, so that the n individuals to become adults in114

the next season are randomly chosen among the juveniles in each patch after
immigration. Throughout the paper, we assume that m and p are constant116

parameters in the model; they are independent of the strategy s.
In the following we investigate the invasion potential of a mutant with118

strategy smut in an environment set by a resident with strategy sres. For this
purpose, we denote the relative fecundity of a mutant and that of a resident120

by Fmut and Fres, respectively. More specifically, the relative fecundity of a
resident, when there are i mutants and n − i residents (including the focal122

resident) in its patch is denoted by

F i
res = F i

res(sres, smut) = F (sres; (smut, . . . , smut︸ ︷︷ ︸
#=i

, sres, . . . , sres︸ ︷︷ ︸
#=n−i−1

)). (2.2)

Similarly, the relative fecundity of a mutant, when there are i mutants (in-124

cluding the focal mutant) and n− i residents in its patch is denoted by

F i
mut = F i

mut(sres, smut) = F (smut; (smut, . . . , smut︸ ︷︷ ︸
#=i−1

, sres, . . . , sres︸ ︷︷ ︸
#=n−i

)). (2.3)

In particular, the relative fecundity of a resident, when all individuals in126

the same patch are residents is denoted by

F 0
res = F (sres, (sres, . . . , sres)). (2.4)
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2.2. The metapopulation fitness Rm128

Suppose that all residents have the same strategy sres. Consider a dispers-
ing mutant juvenile with strategy smut. With some probability it survives130

dispersal and settles in a patch and becomes an adult there. In that case it
will next produce juveniles, and a part of those juveniles remain in the focal132

patch, and may be chosen to be adults in the next generation. These mutant
adults again produce juveniles. The initial mutant and its descendants in the134

focal patch form a mutant colony. The metapopulation reproduction number
(metapopulation fitness) Rm is the expected number of mutant juveniles that136

are sent from this mutant colony during its lifetime (taking the initial survival
and settlement probability into account) (Gyllenberg and Metz, 2001; Metz138

and Gyllenberg, 2001). Obviously it is a function of sres and smut. Given the
fecundity function F , an expression of Rm is derived in Appendix A.140

Invasion fitness is the long-term exponential growth rate of a mutant in an
environment set by the resident (Metz et al., 1992). A mutant may invade the142

resident, if it has positive invasion fitness. However, positive invasion fitness
does not guarantee invasion success, because the initial stage of a poten-144

tial invasion involves demographic stochasticity. For many metapopulation
models, the metapopulation fitness is easier to calculate than the invasion146

fitness. In general, invasion fitness is positive if and only if Rm > 1, and
therefore metapopulation fitness can be used as a fitness proxy and it plays148

a central role in metapopulation theory. In Appendix B we provide a for-
mal proof about their relation in this particular model. Intuitively speaking,150

metapopulation fitness being greater than one means that a single mutant
colony produces more than one descendant mutant colonies.152

The basic reproduction number (ratio) is a widely used concept in the
field of epidemics, in which it is used to describe the expected number of154

infections caused by a single infected individual. The same concept can
also be used to describe population growth, in which context it is the ex-156

pected number of offspring that an individual will get during its lifetime. It
thus measures population growth between real generations in an analogous158

way that the metapopulation reproduction number measures growth between
dispersal generations. In contrast, the invasion fitness measures population160

growth in real time. The invasion criterion can also be formulated using the
basic reproduction ratio, and therefore it acts as another fitness proxy. For162

a further discussion about fitness (proxies) and variants of the basic repro-
duction number see Lehmann et al. (2016)164
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When the effect of mutation is small enough (i.e. smut is close to sres), we
can use the Taylor expansion with respect to smut around sres to study the166

potential for invasion. Because the metapopulation fitness is equal to one
when smut = sres, we have168

Rm ≈ 1 + (smut − sres)D1(sres) +
1

2
(smut − sres)

2D2(sres), (2.5)

where D1(sres) and D2(sres) are the first- and second- order derivatives of Rm,
calculated as170

D1(sres) =
∂

∂smut

Rm

∣∣∣∣∣
smut=sres

,

D2(sres) =
∂2

∂s2
mut

Rm

∣∣∣∣∣
smut=sres

.

(2.6)

In particular, the first-order derivative, D1(sres), is usually called selection
gradient or fitness gradient.172

2.3. Ajar’s (2003) general formulae

Ajar (2003) gave a general formula of the first-order derivative, D1(sres),174

(i.e. equation (5) in Ajar (2003)) in terms of relatedness coefficients via a
metapopulation fitness calculation. To use Ajar’s result, we need to inves-176

tigate the expected number of surviving offspring of a mutant in a patch
where there are j mutants (including the focal mutant). Let us use the same178

symbol as Ajar (2003) and denote it by wj. It is given as

wj = wP
j + wA

j

=
n(1−m)F j

mut

(1−m){jF j
mut + (n− j)F j

res}+ pmnF 0
res︸ ︷︷ ︸

wP
j

+
pmF j

mut

(1−m+ pm)F 0
res︸ ︷︷ ︸

wA
j

, (2.7)

where wP
j and wA

j respectively represent the philopatric and allopatric com-180

ponents of surviving offspring; namely, the expected number of offspring that
settle down in the local patch and the expected number of offspring that settle182

down in other patches. Since the mutant is (at least initially) rare, the de-
nominator of the allopatric component does not contain mutant immigrants.184

7



Ajar (2003) also gave a formula of the second-order derivative, D2(sres), (i.e.
equation (9) in Ajar (2003)) in terms of relatedness coefficients that is valid186

at the strategy sres where D1(sres) vanishes. To use the formula, we need to
further derive the quantity called πj in Ajar (2003), but it is equivalent to188

our (j/n)wP
j in equation (2.7).

In the next section we present explicit expressions of the selection gradient190

and conditions for convergence stability and evolutionary stability in terms
of derivatives of the fecundity function (2.1) and original spatial parameters192

(deme size n, dispersal probability m and the probability to survive dispersal
p). We believe that the benefit of deriving these results are twofold. First,194

Ajar’s results are expressed in terms of w, but not in terms of fecundity, F . In
practical application, it is useful to understand the effect of functional forms196

of fecundity on evolutionary consequences. Second, Ajar’s formulae are very
general but therefore somewhat tedious to use. In contrast, the numbering198

of other strategies s2, . . . , sn in our fecundity function F (s1; (s2, . . . , sn)) is
arbitrary, and therefore by using this symmetry we are able to obtain much200

simpler expressions of the first and second order derivatives, which give us
insightful intuitions. A large part of the results in the next section can be202

derived by applying Ajar (2003) formulae to the expression wj (2.7), although
we present the derivation of the expressions starting from the metapopulation204

fitness (in the Appendix).

3. Evolution of strategy s206

3.1. First-order results

Because of the symmetry property of F (s1; (s2, . . . , sn)), there are essen-208

tially only two different first-order derivatives of F . One is the first-order
derivative with respect to the strategy of self, which is defined as210

FS =
∂

∂s1

F (s1; (s2, . . . , sn))

∣∣∣∣
s1=···=sn=sres

. (3.1)

The other is the first-order derivative with respect to the strategy of anybody
else in the patch, defined as212

FD =
∂

∂sk
F (s1; (s2, . . . , sn))

∣∣∣∣
s1=···=sn=sres

, where k ∈ {2, . . . , n}, (3.2)
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because the right-hand side of that equality is independent of the choice of
k. Note that the subscripts “S” and “D” respectively represent “Self” and214

“Different”.
Especially, by differentiating (2.2) and (2.3) we obtain216

∂

∂smut

F i
res(sres, smut)

∣∣
smut=sres

= iFD

∂

∂smut

F i
mut(sres, smut)

∣∣
smut=sres

= FS + (i− 1)FD.

(3.3)

Theorem 1. By using (3.3), the first-order derivative of the metapopulation
fitness (the selection gradient) can be written as218

D1(sres) =
n(2− d)

n− (n− 1)(1− d)2
·
(
FS

F 0
res

)
(3.4)

where
d =

pm

(1−m) + pm
(3.5)

is the backward migration probability, i.e., the proportion of adults that are220

immigrant in a monomorphic population (everybody has the same strategy),
0 < d 6 1.222

Proof. The result is obtained by applying the implicit function theorem on
the expression of metapopulation fitness. See the Appendix C.224

We note that such first order effects have been derived for a wider class of
models by Ajar (2003) (by using metapopulation fitness, in terms of fitness226

derivatives; see eq. (5) therein), by Wakano and Lehmann (2014) (by using
trait distribution approach, in terms of fitness derivatives; see their eq. (12),228

also see Appendix F of this paper), and by Mullon et al. (2016) (by using
lineage fitness; their eq. (12) is written in terms of fitness derivatives, and230

their eq. (18) is written in terms of ”payoff” derivatives). In particular, our
Theorem 1 is a direct consequence of eq. (18) in Mullon et al. (2016) when232

we calculate the κ-parameter there according to our Wright-Fisher life-cycle
assumption.234

A strategy s∗ is called a singular strategy (Geritz et al., 1997, 1998) if the
selection gradient vanishes when that strategy is resident, D1(s∗) = 0.236

Corollary 2. Because the factor in front of (FS/F
0
res) in (3.4) is always

positive, the sign of the selection gradient is determined by FS alone, and238

singular strategies are such strategies for which FS = 0.
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A good reference point for understanding (3.4) is when everybody dis-240

perses (i.e. m = 1 and hence d = 1). In this case, the population is es-
sentially well-mixed and the selection gradient is simply given by (FS/Fres).242

Equation (3.4) states that the (sign of the) selection gradient is preserved
even when the island structure is introduced. From (3.3) we could naively244

expect that the other derivative, FD, should also be relevant in the selection
gradient, but (3.4) says that it is not the case.246

To facilitate our understanding, imagine social interaction in a patch
of n individuals. Each individual can independently choose the amount of248

cooperation s. Cooperation is costly to the individual performing the act, but
beneficial to the others: The benefit of cooperation will be equally distributed250

to the other n− 1 individuals excluding self. The described situation is one
instance of public-goods games, and a natural choice of fecundity function of252

this game model would be

F (s1; (s2, . . . , sn)) = Fbaseline − cs1 + b
s2 + · · ·+ sn

n− 1
, (3.6)

where b > 0, c > 0 and Fbaseline > 0 is a baseline fecundity. We have FS = −c254

and FD = b/(n− 1) in this example. Equation (3.4) therefore suggests that
a smaller amount of cooperation is favored as long as c > 0 and that the256

value of b does not affect the sign of the selection gradient at all. Indeed,
Taylor (1992a) studied the evolution of cooperation in Wright’s island model,258

and showed that cooperation can evolve if the act of cooperation provides a
net benefit to the actor herself (his equation 5). In other words, altruism,260

which is defined as an act that does not provide a net benefit to the actor
but does yield benefit to others, never evolves in the island model. In viscous262

populations, altruists tend to cluster in locality, which favors its evolution.
At the same time, however, limited dispersal causes competition among kin,264

which disfavors altruism. Here these two opposing effects precisely cancel
each other. This result is called Taylor’s cancellation result, and has been266

shown shown to hold when one adopts the same life-cycle assumptions (non-
overlapping generations and so on) as ours (Taylor, 1992a,b; Queller, 1992;268

Wilson et al., 1992; Rousset, 2004; Gardner and West, 2006; Lehmann et al.,
2007; Lehmann and Rousset, 2010; Taylor et al., 2011; Ohtsuki, 2012). In270

this sense, our result (Corollary 2) confirms the results of Taylor (1992a) and
Taylor et al. (2011). Under different life-cycle assumptions, spatial structure272

has been shown to affect the evolution of cooperation (e.g., Taylor and Ir-
win, 2000; Lehmann and Rousset, 2010; Parvinen, 2010, 2011; Seppänen and274
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Parvinen, 2014).

3.2. Second-order results276

Similarly to before, by using the property of the fecundity function,
F (s1; (s2, . . . , sn)), that the order of the other strategies than s1 can be freely278

permutated, we see that there are only four kinds of second-order derivatives
of F :280

FSS =
∂2

∂s2
1

F (s1; (s2, . . . , sn))

∣∣∣∣
s1=···=sn=sres

FDD =
∂2

∂s2
k

F (s1; (s2, . . . , sn))

∣∣∣∣
s1=···=sn=sres

, where k ∈ {2, . . . , n}

FSD =
∂2

∂s1∂sk
F (s1; (s2, . . . , sn))

∣∣∣∣
s1=···=sn=sres

, where k ∈ {2, . . . , n}

FDD′ =
∂2

∂sj∂sk
F (s1; (s2, . . . , sn))

∣∣∣∣
s1=···=sn=sres

,where j, k ∈ {2, . . . , n}, j 6= k.

(3.7)

Especially, by differentiating (2.2) and (2.3) we obtain

∂2

∂s2
mut

F i
res(sres, smut)

∣∣
smut=sres

= iFDD + i(i− 1)FDD′ ,

∂2

∂s2
mut

F i
mut(sres, smut)

∣∣
smut=sres

= FSS + (i− 1)FDD + 2(i− 1)FSD

+ (i− 1)(i− 2)FDD′ .

(3.8)

3.2.1. Convergence stability282

A (singular) strategy s∗ is an evolutionary attractor (convergence stable)
if the repeated invasion of nearby mutant strategies into resident strategies284

will lead to the convergence of resident strategies towards s∗ (Christiansen,
1991). For one-dimensional strategies this occurs when the sign of the deriva-286

tive of D1(sres) with respect to sres is negative.

Theorem 3. The condition D′1(s) < 0 for a singular strategy s to be an288

evolutionary attractor (convergence stable) is expressed in terms of F as

FSS + (n− 1)FSD < 0. (3.9)
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Proof. At a singular strategy we have FS(s) = 0. Therefore the derivative of290

D1(s) is, up to some positive constant, equal to

d

ds

(
FS(s)

F 0
res(s)

)
=
F ′S(s)F 0

res(s)− F S(s)(F 0
res)
′(s)

(F 0
res(s))

2 =
F ′S(s)

F 0
res(s)

.

We also know that292

F ′S(s) =
d

ds
FS(s; (s, . . . , s)) = FSS + (n− 1)FSD.

Hence the result holds. Note that the condition of convergence stability is
the same as that in the well-mixed model (Wakano and Lehmann, 2014).294

3.2.2. Evolutionary stability

The second-order derivative of metapopulation fitness is given by the296

following formula.

Theorem 4. Using the properties (3.3) and (3.8) the second-order derivative298

of metapopulation fitness can be written as

D2(sres) = C

[
φSS

(
FSS

F 0
res

)
+ φSD

(
FSD

F 0
res

)
+ φDD′

(
FDD′

F 0
res

)

+ ψS×S

(
FS

F 0
res

)2

+ ψS×D

(
FS

F 0
res

)(
FD

F 0
res

)
+ ψD×D

(
FD

F 0
res

)2
]
,

(3.10)

where300

φSS = (2− d)
{
n− (n− 1)(1− d)2

}{
n2 − (n− 1)(n− 2)(1− d)3

}
> 0,

φSD = 2(n− 1)(1− d)2
{
n− (n− 1)(1− d)2

}{
n+ n(1− d) + (n− 2)(1− d)2

}
> q0,

φDD′ = (n− 1)(n− 2)d(1− d)3
{
n− (n− 1)(1− d)2

}
> q0,

ψS×S = 2(1− d)
{
n3 + 2n2(n− 1)(1− d) + n(n− 1)2(1− d)2 − n2(n− 1)(1− d)3

− (2n3 − 6n2 + 5n− 1)(1− d)4 − (n− 1)3(1− d)5
}
> q0,

ψS×D = −2(n− 1)(1− d)4
{
n+ 2(n− 1)(1− d)2

}
6 q0,

ψD×D = −2(n− 1)2d(1− d)3
{
n− (n− 1)(1− d)2

}
6 q0,

C =
n

{n− (n− 1)(1− d)2} 2 {n2 − (n− 1)(n− 2)(1− d)3}
> 0.
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Proof. The result is again obtained by applying the implicit function theorem
on the expression of metapopulation fitness. See the Appendix D.302

Note that such second-order results (not necessarily at singular points)
have been obtained by Mullon et al. (2016) for a wider class of models (by304

using lineage fitness; their eq. (13) is written in terms of fitness derivatives,
and their eq. (19) is written in terms of “payoff” derivatives under the as-306

sumption that traits have no effect on pairwise relatedness). Also note that
this result is not derived from Ajar (2003), because Ajar (2003) provided a308

formula of the second-order derivative only at a singular strategy.
Comparison with the result of Mullon et al. (2016) elucidates that the310

first three terms in the square brackets of (3.10) correspond to the effect
of joint deviation of two players’ strategies on one’s fitness, whereas the last312

three terms correspond to the effect of deviation of strategies on demography
(relatedness). For more intuition, we cite Mullon et al. (2016).314

Setting FS = 0 reproduces the following result.

Corollary 5. At a singular strategy, the second derivative D2(sres) has the316

same sign as

D̃2(sres) = φ̃SS

(
FSS

F 0
res

)
+ φ̃SD

(
FSD

F 0
res

)
+ φ̃DD′

(
FDD′

F 0
res

)
+ ψ̃D×D

(
FD

F 0
res

)2

,

(3.11)
where318

φ̃SS = (2− d)
{
n2 − (n− 1)(n− 2)(1− d)3

}
> 0,

φ̃SD = 2(n− 1)(1− d)2
{
n+ n(1− d) + (n− 2)(1− d)2

}
> q0,

φ̃DD′ = (n− 1)(n− 2)d(1− d)3 > q0,

ψ̃D×D = −2(n− 1)2d(1− d)3 6 q0.

(3.12)

If D̃2(sres) is negative, the singular strategy is evolutionarily stable (ES). If
positive, on the other hand, it is not evolutionarily stable. The expression320

D̃2(sres) can also be written as

D̃2(sres) = ξ̃SS

(
FSS

F 0
res

)
+
φ̃SD

n− 1

(
FSS + (n− 1)FSD

F 0
res

)
+φ̃DD′

(
FDD′

F 0
res

)
+ψ̃D×D

(
FD

F 0
res

)2

,

(3.13)
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where322

ξ̃SS = φ̃SS −
φ̃SD

n− 1

= d
[
n2 + 2(1− d)n2 + 2(1− d)2n(n− 1) + (1− d)3(n− 2)(n+ 1)

]
> 0.

(3.14)

The form (3.13) is especially helpful, because FSS + (n− 1)FSD < 0 holds
for a convergence stable singular strategy. Especially, for low d the term with324

φ̃SD dominates, and for d close to 1 the term with ξ̃SS dominates (See Fig. 1
for illustration). We will use these properties in the next section.326

Note that such second-order results at singular points as our (3.11) have
been derived by Ajar (2003) (by using metapopulation fitness, in terms of328

fitness derivatives; see eq. (9) therein) and by Wakano and Lehmann (2014)
(by using trait distribution approach, in terms of fitness derivatives; see their330

eqs. (26–28), also see Appendix F of this paper).
It is notable that one of the four second-order derivatives of fecundity332

function, FDD, does not appear in D2(sres) or D̃2(sres). It can be deemed as
another “cancellation result” that holds under the present assumptions about334

the life cycle. This was observed also by Wakano and Lehmann (2014) in case
of pairwise games: in their equation (37) their parameter κ = 0 for Wright-336

Fisher update rule. Theorem 4, from which Corollary 5 follows, was obtained
by applying the implicit function theorem on the expression of metapopula-338

tion fitness. Note also that exactly the same result as in Corollary 5 can be
derived by the trait distribution approach (see Appendix F).340

4. Does spatial structure inhibit branching?

4.1. Spatial structure inhibits branching in a wide class of fecundity functions342

Using a continuous snowdrift game (Doebeli et al., 2004) as an example,
Wakano and Lehmann (2014) have shown that a branching point (evolution-344

arily attracting singular strategy, which is not uninvadable) in a well-mixed
model changes to be evolutionarily stable (uninvadable) as the migration rate346

decreases below a threshold value. We can generalize this result in the form
of the following theorem.348

Theorem 6. Evolutionary branching is not possible for a sufficiently small
value of d (that is, small m or small p).350
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Figure 1: Effect of the fecundity derivatives on evolutionary stability. Coefficients of
D̃2(sres) given (a,b) by equation (3.12) and (c,d) by equation (3.13) as a function of d
when (a,c) n = 3 and (b,d) n = 8.

Proof. In the limit of d → 0 (m → 0 or p → 0), we have ξ̃SS = φ̃DD′ =
ψ̃D×D = 0 (See Fig. 1c,d), and D̃2(sres) (equation 3.13) becomes352

D̃2(sres)
∣∣∣
d=0

= 2(3n− 2)
FSS + (n− 1)FSD

F 0
res

. (4.1)

According to Theorem 3 (Equation 3.9), if a singular strategy s is conver-
gence stable we have FSS+(n−1)FSD < 0, which means that (4.1) is negative.354

This means that any convergence stable singular strategy is (locally) unin-
vadable (evolutionary stable). Based on continuity arguments, evolutionary356

branching is not possible when d is close to 0.

Theorem 6 shows that a branching point never exists for a sufficiently358

small d. However, there is still a possibility that a singular strategy which is
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evolutionarily stable and convergence stable in a well-mixed model becomes360

a branching point in structured models with intermediate d values. The
following theorem shows that this will not happen for a wide class of fecundity362

functions.

Theorem 7. Suppose a singular strategy s is evolutionarily stable and con-364

vergence stable in a well-mixed model, that is

FS = 0, FSS + (n− 1)FSD < 0, and FSS < 0. (4.2)

If366

FDD′ 6 0 (4.3)

or

FDD′ 6 FSD (4.4)

then s is also evolutionarily stable and convergence stable in the corresponding368

structured models, that is
D̃2(s) < 0 (4.5)

holds for 0 < d < 1.370

Proof. According to (3.13)

D̃2(sres) = ξ̃SS︸︷︷︸
>0

(
FSS

F 0
res

)
︸ ︷︷ ︸

<0

+
φ̃SD

n− 1︸ ︷︷ ︸
>0

(
FSS + (n− 1)FSD

F 0
res

)
︸ ︷︷ ︸

<0

+ φ̃DD′︸︷︷︸
>0

(
FDD′

F 0
res

)
︸ ︷︷ ︸

60

+ ψ̃D×D︸ ︷︷ ︸
60

(
FD

F 0
res

)2

︸ ︷︷ ︸
>0

< 0

(4.6)

where the inequalities follow from the assumptions (4.2) and (4.3) together372

with properties ξ̃SS > 0, φ̃SD > 0, φ̃DD′ > 0 and ψ̃D×D 6 0, which proves
the first part of the theorem. Using the assumptions (4.2) and (4.4) and the374
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properties φ̃SD > 0, φ̃DD′ > 0 and ψ̃D×D 6 0, we have

D̃2(s) 6 φ̃SS

(
FSS

F 0
res

)
+ φ̃SD

(
FSD

F 0
res

)
+ φ̃DD′

(
FDD′
F 0
res

)
= φ̃SS

(
FSS

F 0
res

)
+ (φ̃SD + φ̃DD′)

(
FSD

F 0
res

)
+ φ̃DD′

(
FDD′−FSD

F 0
res

)
6 φ̃SS

(
FSS

F 0
res

)
+ (φ̃SD + φ̃DD′)

(
FSD

F 0
res

)
= (φ̃SS − φ̃SD+φ̃DD′

n−1
)
(
FSS

F 0
res

)
+ (φ̃SD + φ̃DD′)

(
FSS+(n−1)FSD

(n−1)F 0
res

)
6 (φ̃SS − φ̃SD+φ̃DD′

n−1
)
(
FSS

F 0
res

)
= d(2− d)n{(1− d)2(n− 2) + (2− d)n}

(
FSS

F 0
res

)
< 0.

(4.7)

376

4.2. Spatial structure can promote evolutionary branching with some fecun-
dity functions378

The convergence stability of a singular strategy is determined by the sign
of FSS + (n− 1)FSD, and evolutionary stability by the sign of equation (3.11)380

involving the derivatives FSS, FSD, FDD′ and FD. The two latter derivatives
thus only affect evolutionary stability, and not convergence stability. The382

corresponding coefficients of D̃2(sres), φ̃DD′ > 0 and ψ̃D×D 6 0 (3.12) are zero
for d = 0 and d = 1, so they affect evolutionary stability for intermediate384

values of d. Therefore, when
FDD′
F 0
res

is positive and large compared to
(
FD

F 0
res

)2

,

D2(s) can be positive for intermediate values of d, even though branching386

does not occur for d = 1, FSS < 0.
Now consider the following fecundity function, for which strategies s ∈388

[0, 2].

F (s1; (s2, s3, . . . , sn)) = 1− (s1− 1)2 + b

(
s2 + s3 + . . .+ sn

n− 1
− 1

)2

, b > 0.

(4.8)
This fecundity function is to some extent artificial. It can be thought to390

describe some kind of public-goods situation in which deviation from s = 1 is
costly to the actor, and benefits are obtained according to how much others on392

average deviate from s = 1. Although (4.8) is of form (5.9), results presented
in Section 5.2 do not apply here, because functions f(s) = 1 + b(s− 1)2 and394
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g(s) = (s− 1)2 (notation of equation 5.9) are not increasing for all s ∈ [0, 2].
For this model FS = −2(s−1) and FSS +(n−1)FSD = −2, which means that396

s = 1 is a singular strategy, and convergence stable for all d. Furthermore,
FSS = −2, so that the singular strategy is evolutionarily stable in the well-398

mixed model. Since for s = 1 we have FD = 0 and
FDD′
F 0
res

= 2b
(n−1)2

is positive,
the conditions listed in the previous paragraph hold when b is large enough.400

Figure 2 indeed shows, that when b is large, the strategy s = 1 is a branching
point for intermediate values of d. The threshold value for b, above which402

branching is possible, is, however, unrealistically large, and increases with n.
Finding such cases in reality would be unlikely. Nevertheless, this example404

shows that spatial structure can promote branching with some fecundity
functions, and thus it is not possible to prove that spatial structure would406

always inhibit evolutionary branching.
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Figure 2: Spatial structure can promote evolutionary branching with some fecundity func-
tions. The expression D̃2(sres) determining evolutionarily stability given by equation (3.11)
of the singular strategy sres = 1 as a function of d for the fecundity function (4.8) with a)
n = 3 and b) n = 8 for different values of the parameter b.

5. Examples408

5.1. Pairwise games

Assume that individuals in the deme play pairwise games among each410

other and that the total payoff from these games determines the fecundity
of each individual. We can either assume that a certain number of games is412

played, and the game participants are randomly chosen, or that all possible
combinations of games take place. In some games the role of individuals414
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matters. In such a situation, let Gi(sself, sopponent) denote the payoff of the
individual using strategy sself in role i matched with the player using strategy416

sopponent. Assume that the player has a list of strategies, represented by a
vector s = (s(1), s(2)) for playing strategy s(1) in role 1 and playing s(2) in418

role 2. When player 1 with the list s1 = (s
(1)
1 , s

(2)
1 ) is matched with player 2

with the list s2 = (s
(1)
2 , s

(2)
2 ) and if their roles are determined randomly, the420

expected payoff of player 1 will be G(s1, s2) = G1(s
(1)
1 , s

(2)
2 ) +G2(s

(2)
1 , s

(1)
2 ) up

to a factor of 1/2. Some games are symmetric, so that roles do not matter,422

in which case it is rather easy to write the function G(s1, s2) directly as
the payoff of an individual playing s1 playing against an s2 opponent. An424

example of a symmetric game is the nonlinear snowdrift game studied by
Doebeli et al. (2004).426

G(s1, s2) = 1 + b1(s1 + s2) + b2(s1 + s2)2︸ ︷︷ ︸
common benefit

−c2(s1)2 − c1s1︸ ︷︷ ︸
individual cost

, (5.1)

where s denotes the cooperation strategy of individuals. The common benefit
of the game is a function of the sum of the two investments, but the cost428

of investment is paid by the investor only. For example, when b1 = 6, b2 =
−1.4, c1 = 4.56, c2 = −1.6, evolutionary branching occurs in the well-mixed430

situation (Figure 1A by Doebeli et al. (2004)).
In general, we assume that the fecundity of a focal individual in the deme432

is given by

F (s1; (s2, . . . , sn)) = Fbaseline +
n∑
j=2

G(s1, sj) (5.2)

Here, Fbaseline represents the baseline fecundity that is common to all individ-434

uals, and G is a payoff function of an ‘elementary’ pairwise (i.e. two-player)
game played in the population.436

We are interested in how the introduction of spatial structure affects con-
ditions of evolutionary branching. The first-order and second-order deriva-438

tives of F are written in terms of G as follows;

FS = (n− 1)G1, FSD = G12,

FD = (n− 1)G2, FDD = G22,

FSS = (n− 1)G11, FDD′ = 0,

(5.3)

where440
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G1 =
∂

∂s1

G(s1, s2)

∣∣∣∣
s1=s2=sres

, G2 =
∂

∂s2

G(s1, s2)

∣∣∣∣
s1=s2=sres

, (5.4)

G11 =
∂2

∂(s1)2
G(s1, s2)

∣∣∣∣
s1=s2=sres

, G12 =
∂2

∂s1∂s2

G(s1, s2)

∣∣∣∣
s1=s2=sres

G22 =
∂2

∂(s2)2
G(s1, s2)

∣∣∣∣
s1=s2=sres

.

, (5.5)

A notable feature of pairwise games is that evolutionary branching is never442

favored by spatial structure. This is because FDD′ = 0 and Theorem 7 ap-
plies. Intuitively speaking, a non-zero FDD′ suggests that there is a synergetic444

interaction between two others’ strategies. However, the fecundity function
of the form (5.2) does not allow such synergy because a focal individual plays446

the pairwise game separately with every other. In contrast, the result in the
previous section implies that we can construct a certain ‘elementary’ three-448

person game G(s1, s2, s3) that generates a fecundity function with which
spatial structure promotes evolutionary branching. In other words, we need450

an elementary game that involves at least three players simultaneously to
find a positive effect of spatiality of evolutionary branching.452

5.2. Public-goods game

Another important class of games other than pairwise game is multi-454

person public goods games. Suppose that all n players in the same patch are
engaged in a single n-person public-goods game with non-linear benefit and456

cost functions. In this game, one’s strategy is often an amount of investment
to a public-good (and hence non-negative). In most cases cost is given as a458

function of the investment level by self. However, there are two major ways
of formulating the benefit function (Sigmund, 2010). One way is to assume460

that one’s benefit is a function of the average investment level of all n players
in the same patch including self. In this case, the fecundity function is given462

by

F (s1; (s2, . . . , sn)) = f

(
s1 + s2 + · · ·+ sn

n

)
− g(s1), (5.6)

where f and g are benefit and cost functions, respectively. Both are assumed464

to be increasing functions. The first order derivatives are given by

FS =
f ′(sres)

n
− g′(sres), FD =

f ′(sres)

n
. (5.7)
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The boundary strategy s = 0 is evolutionarily repelling, if FS = f ′(0)
n
−g′(0) >466

0, in which case positive investment levels can evolve in an initially non-
investing population. Singular strategies s are positive strategies for which468

FS = 0. The second order derivatives are given by

FSS =
f ′′(sres)

n2
− g′′(sres),

FSD = FDD = FDD′ =
f ′′(sres)

n2
.

(5.8)

Because FSD = FDD holds, from Theorem 7 we conclude that spatial structure470

in our model never favors evolutionary branching in this type of public goods
game.472

Another common way to think about benefit in a public-goods game is
that one’s benefit is a function of the average investment level of all the other474

n−1 players in the same patch excluding self, in which case eq. (5.6) receives
a minor change as476

F (s1; (s2, . . . , sn)) = f

(
s2 + · · ·+ sn

n− 1

)
− g(s1). (5.9)

The first order derivatives are given by

FS = −g′(sres), FD =
f ′(sres)

n− 1
, (5.10)

but given usual monotonicity of the cost function g, g′(s) > 0, the investment478

level s will evolve to zero both in a well-mixed population and in Wright’s
island model studied here.480

6. Discussion

We have studied evolution by natural selection in Wright’s island model482

in which there is an infinite number of patches (demes) of constant, finite
size. In each season adults produce offspring, and the fecundity of each adult484

depends on its own strategy as well as the strategies of other individuals in
the focal patch. A proportion of juveniles disperses to other patches. Since486

adults do not survive until the next season, the fixed number offspring to be-
come adults are randomly chosen among the offspring present in each patch488

after dispersal. We have derived explicit conditions for evolutionary singu-
larity, evolutionary stability, and convergence stability in terms of various490
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derivatives of the fecundity function. A notable difference from the pre-
vious work by Ajar (2003) is that his expressions are formulated in terms492

of a series expansion of the fitness component (wj) of individuals, which is
the expected number of surviving offspring of a mutant in a patch where494

there are j mutants (including the focal mutant), our equation (2.7). This
expression includes successful offspring both in the focal patch, and those496

who dispersed to other patches. Such difference might seem trivial but it is
actually profound. In evolutionary game theory with genetic inheritance, a498

payoff through game interactions is sometimes directly translated into one’s
fecundity. In contrast, one’s fitness involves not only the contribution from500

one’s fecundity (called primary effect (West and Gardner, 2010)) but that of
fecundity others (called secondary effect) who are in reproductive competi-502

tion with the focal individual. Therefore, fitness is a complex aggregate of
information including structure of the game itself, structure of interaction504

partners, and structure of offspring dispersal. In contrast, fecundity has a
very simple interpretation; a result of games. We hence think it worthwhile506

to derive several conditions in terms of derivatives of the fecundity function
in order to obtain a more intuitive understanding of evolutionary branching.508

We have used the metapopulation fitness to obtain the branching condition,
but note that it can also be derived using the trait-distribution approach (for510

details, see Appendix F).
We have firstly confirmed in Theorem 1 that an evolutionary singular512

strategy in the corresponding well-mixed model is not affected by the presence
of spatial structure (Taylor, 1992a). More technically, the sign of the selection514

gradient (3.4) is given by the sign of the derivative FS, and the derivative
FD does not appear in the singularity condition. As for second-order results,516

we have also confirmed that the condition of convergence stability is not
affected by the spatial structure, either. A technical observation is that one518

of the second order derivatives, FDD does not at all appear in the condition
of evolutionary stability (see Theorem 4).520

Our paper has not only reproduced those previously known results but
given several novel findings. We found that spatial structure inhibits branch-522

ing for a wide class of fecundity functions. This statement is based on the
following results: First, evolutionary branching never occurs when the ef-524

fective migration rate d is close to zero (Theorem 6). Moreover we have
also found two sufficient conditions (Theorem 7) under which evolutionary526

branching never occurs in spatial models when the corresponding well-mixed
model does not allow branching. Roughly speaking, Theorem 7 holds un-528
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less the derivative FDD′ is positive and large. However, spatial structure can
occasionally promote evolutionary branching with some fecundity functions.530

In fact, in the example in Section 4.2, evolutionary branching can occur only
for intermediate values of d. In other words, although evolutionary branch-532

ing is not possible in a well-mixed setting, it does occur in a spatial setting.
The parameter values for which this scenario happens are, however, not very534

realistic.
Applications of our general theory have revealed that when the fecundity536

of individuals is determined only by pairwise interactions between individu-
als (pairwise games), spatial structure never favors evolutionary branching.538

The same observation applies to a wide class of public goods games. It may
suggest that in many biologically reasonable situations, evolutionary branch-540

ing is suppressed in spatial models compared to well-mixed models. Strictly
speaking, our results are valid for Wright’s island model with several specific542

life-history assumptions, such as non-overlapping generations, local regula-
tion among adults after dispersal but before reproduction (in contrast with544

population regulation among juveniles after reproduction but before disper-
sal), when a fecundity-affecting trait is under natural selection. Actually, it is546

known that already a slight modification to those life-cycle assumptions made
here may change evolutionary outcomes (Taylor and Irwin, 2000; Lehmann548

and Rousset, 2010). It is better, therefore, to take our result as one reference
point, not as one that applies to all life-history assumptions. For example,550

an iteroparous species with a survival-affecting trait under natural selection
may respond differently to spatial structure.552

Structured metapopulation models (Metz and Gyllenberg, 2001; Gyllen-
berg and Metz, 2001) typically also have an island structure (global disper-554

sal), but incorporate more realistic local population dynamics than Wright’s
island model. In such models, Taylor’s cancellation result typically does not556

hold, as spatial structure has been shown to affect the numerical value of
singular strategies (e.g., Alizon and Taylor, 2008; Nurmi and Parvinen, 2008,558

2011; Parvinen, 2011; Seppänen and Parvinen, 2014). In some cases spatial
structure still inhibits evolutionary branching. For example, see Figure 4 of560

Parvinen (2011), in which evolutionary branching of cooperation does not
occur for low dispersal rates. For a counterexample in the context of re-562

source specialization, see Figure 8b of Nurmi and Parvinen (2008), according
to which a branching point can become evolutionarily stable when the em-564

igration probability is increased. Note, however, that in that model not all
patches are ecologically equal, as the resource distribution is different among566
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patches. Evolutionary branching under high environmental heterogeneity
and low emigration has been observed also by Heinz et al. (2009) and Payne568

et al. (2011). Spatial structure might thus promote evolutionary branching
in Wright’s island model with ecologically different patches.570

In summary, by deriving conditions for convergence stability and evo-
lutionary stability (and thus also for evolutionary branching) in terms of572

derivatives of the fecundity function, we have derived much simpler expres-
sions than before. We believe that those expressions provide accessible tools574

for researchers interested in evolution in Wright’s island model. Finally, these
expressions help us to understand when and how evolutionary branching is576

favored or disfavored by the spatial structure of the population.
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Appendix A. The metapopulation fitness, Rm682

The metapopulation reproduction number (metapopulation fitness) is the
expected number of dispersing mutant juveniles that are produced by the mu-684

tant colony of one dispersing mutant juvenile (Gyllenberg and Metz, 2001;
Metz and Gyllenberg, 2001). Consider a mutant juvenile that has just em-686

igrated from a patch. It will survive dispersal with probability p. Next we
need to calculate the probability that it settles in a patch and becomes an688

adult there. For this purpose, consider one dispersing mutant juvenile, who
arrives in a random patch. Its proportion of the whole amount of juveniles690

in this patch is approximately

q =
1

nγFres(1−m) + nγFrespm+ 1
(A.1)

The probability that the mutant will be among the n juveniles chosen to692

be adults in the patch is

P (settlement) = q+ (1− q)q+ . . .+ (1− q)n−1q = 1− (1− q)n ≈ nq. (A.2)

The probability to survive dispersal and become an adult in a patch is thus694

pP (settlement). The initial mutant and its descendants in the focal patch
form a mutant colony. Next we consider the dynamics of such a colony.696

Assume that there are currently i adult mutants in the patch, which also
means that there are n − i residents. The proportion of mutant juveniles698

competing in this patch in the next generation is

pi =
(1−m)iγF i

mut

(1−m)iγF i
mut + (1−m)(n− i)γF i

res +mnpγF 0
res

=
(1−m)iF i

mut

(1−m)iF i
mut + (1−m)(n− i)F i

res +mnpF 0
res

.

(A.3)

The probability that there will be j adult mutants in this patch in the next700

generation is

tji =

(
n
j

)
pji (1− pi)n−j. (A.4)

We collect these values into the transition matrix T = (tji) where i, j =702

1, . . . , n. We leave on purpose the absorbing state i = 0 away. The probabil-
ity distribution at time t satisfies the recursion704

α(t) = Ttα0, where α0 = {1, 0, . . . , 0}T (A.5)
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The amount of juveniles that a mutant colony of size i will send is
imγFmut(i). We multiply these values with pP (settlement), which is the706

probability that the initial dispersing mutant juvenile survived dispersal and
settled as an adult, and collect them into a column vector708

E = pP (settlement){mγFmut(1), 2mγFmut(2), . . . , nmγFmut(n)}T

= pmγP (settlement){Fmut(1), 2Fmut(2), . . . , nFmut(n)}T

=
pm

(1−m+ pm)Fres

{Fmut(1), 2Fmut(2), . . . , nFmut(n)}T ,
(A.6)

where the last equality holds because γ is large:

lim
γ→∞

γP (settlement) = lim
γ→∞

γnq

= lim
γ→∞

γn

nγ(1−m+ pm)Fres + 1
=

1

(1−m+ pm)Fres

.
(A.7)

Next we want to calculate the expected number of times that a mutant710

colony will have size i during its lifetime. It is obtained from

ω =
∞∑
t=0

α(t) =
∞∑
t=0

Ttα0 = α0 + T
∞∑
t=0

Ttα0 = α0 + Tω. (A.8)

From ω = α0 + Tω we obtain712

(I −T)ω = α0 ⇒ ω = (I −T)−1α0. (A.9)

It can be numerically calculated as the limit of the recurrence ωt+1 = Tω+α0,
for any initial condition. Finally, the metapopulation reproduction ratio714

(Gyllenberg and Metz, 2001; Metz and Gyllenberg, 2001) is

Rm = ETω. (A.10)

See also Ajar (2003).716

Appendix B. Consistency between metapopulation fitness and in-
vasion fitness718

The metapopulation reproduction ratio measures growth of the mutant
population between dispersal generations. We can also consider dynamics720
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in real time. The transition matrix T gives the transition probabilities for
the focal patch. In addition, emigrants may be able to settle into resident-722

dominated patches. Such successful event results in a patch with one mutant
only. Altogether we get the next generation matrix724

Γ = T +


ET

0
...
0

 (B.1)

Invasion fitness, defined as the long-term exponential growth rate of a mu-
tant in an environment set by the resident, is the logarithm of the dominant726

eigenvalue of the matrix Γ:

r = ln (λd(Γ)) (B.2)

Theorem 8. The invasion fitness and the metapopulation reproduction ratio728

are consistent: r = 0 if Rm = 1

Proof. From the definitions of Γ and Rm (equations B.1 and A.10) we have730

Γω = Tω +


ETω

0
...
0

 = Tω +


Rm

0
...
0

 (B.3)

If Rm = 1, equation (B.3) becomes

Γω = Tω + α0 = ω, (B.4)

where the last equality follows from (A.8). This means that ω is an eigen-732

vector of the matrix Γ corresponding to the eigenvalue 1, so that r = 0.

According to Caswell (2000), the derivative of an eigenvalue of a matrix734

can be written using the left and right eigenvectors of the matrix. Above we
already observed that when smut = sres, the vector ωres is a right eigenvector736

of Γ corresponding to the eigenvalue 1. Based on (A.6) and (E.2) we have

LT1 Γres = LT1 Tres + ET
res = (1− d)LT1 + dLT1 = LT1 , (B.5)

30



so that the vector LT1 = {1, 2, 3, . . . , n} is a left eigenvector of Γres corre-738

sponding to the eigenvalue 1. Therefore, we obtain (with the help of (E.7)
and (C.3))740

∂

∂smut

λ(Γ)

∣∣∣∣
smut=sres

=
LT1

(
∂

∂smut
Γ
)
ωres

LT1 ωres

= d

(
LT1

∂

∂smut

T + E ′T
)
ωres

= dD(sres).

(B.6)

The metapopulation fitness gradient D(sres) is thus sign-equivalent with the
fitness gradient calculated using the next-generation operator Γ. For rela-742

tions between different fitness proxies, see also Lehmann et al. (2016).

Appendix C. Proof of the first-order results (Theorem 1)744

In this part of the Appendix, our aim is to provide a proof for Theo-
rem 1, which gives an explicit expression for the selection gradient in terms746

of derivatives of the fecundity function. This proof consists of two parts. As
explained in Appendix A, the vector ω needed in the calculation of metapop-748

ulation fitness is obtained by solving a system of linear equations. Therefore,
we first use the implicit function theorem to obtain an explicit expression for750

the first derivative of metapopulation fitness. Second, by taking advantage
of symmetry properties of the fecundity function, we obtain the equation752

presented in Theorem 1. Throughout the appendix we will use the notations

L1 = {1, 2, 3, . . . , n}T , and in more general, Lj = {1j, 2j, 3j, . . . , nj}T .
(C.1)

Equations involving vectors Lj, the vector ω, and the matrix T needed in754

the proof are derived in Appendix E.
Since Rm = ETω, the metapopulation fitness gradient is756

Dm(sres) =
∂

∂smut

Rm

∣∣∣∣
smut=sres

= ET
resω

′ + E ′Tωres. (C.2)

Vectors E and ω have an intuitive meaning. The elements Ei describe the
expected number of successful emigrants from a deme with i mutants, and ωi758

is the average time that a mutant colony spends in state with i mutants (the
sojourn time). The metapopulation fitness (reproduction number) Rm =760

ETω is the average number of successful emigrants of a mutant colony. The
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first component of the fitness gradient (ET
resω

′) describes how a (first-order)762

change in the sojourn time affects the total number of emigrants of the colony,
provided that the emigrant production in each deme remains fixed. The764

second term (E ′Tωres) describes the effect of changed emigrant production
(first-order) in each deme, provided that the sojourn times remain fixed.766

These two first-order components together form the fitness gradient.

Proposition 9. The metapopulation fitness gradient can be written as768

Dm(sres) =

(
∂

∂smut

LT1 T

)
ωres + E ′Tωres (C.3)

Proof. According to equation (A.9), the sojourn times ω are implicitly de-
fined by (I −T)ω = α0. From the implicit function theorem we have770

ω′ =
∂

∂smut

ω
∣∣
smut=sres

= (I −Tres)
−1

(
− ∂

∂smut

(I −T)ωres

)
= (I −Tres)

−1

(
∂

∂smut

T

)
ωres

(C.4)

According to (E.2) LT1 (I −Tres) = dLT1 = ET
res, so that

ET
res(I −Tres)

−1 = LT1 . (C.5)

From (C.4) and (C.2) it follows that ET
resω

′ = LT1

(
∂

∂smut
T
)
ωres =

(
∂

∂smut
LT1 T

)
ωres,772

and thus (C.2) becomes (C.3).

Let us investigate the first term of (C.3). According to (E.1) we have774

(LT1 T)i = npi. By differentiating pi (Equation A.3) we obtain

∂
∂smut

npi

∣∣∣
smut=sres

= (1−m)i
[n(1−m+pm)−(1−m)i]F ′

mut(i)−(1−m)(n−i)F ′
res(i)

n(1−m+pm)2Fres(0)

= 1
Fres(0)

[iK1 + i2K2] ,

(C.6)
where the second equality follows from (3.3) and (3.5), where776

K1 = (1− d)(FS − FD)

K2 =
1− d
n

[dnFD − (1− d)(FS − FD)] .
(C.7)
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Therefore
∂

∂smut

LT1 T =
1

Fres(0)
[K1L1 +K2L2] . (C.8)

Then consider the second term of (C.3). By differentiating (A.6) we778

obtain E ′i = mp
(1−m+pm)Fres(0)

iF ′mut(i). By using (3.3) and (3.5) we obtain

E ′ =
d

Fres(0)
[(FS − FD)L1 + FDL2] (C.9)

By applying expressions (E.7) for LT1 ωres and (E.9) for LT2 ωres, we obtain780

(3.4).

Appendix D. Proof of second-order results (Theorem 4)782

In this part of the appendix, we prove Theorem 4, which gives an explicit
expression for the second derivative of the metapopulation fitness (with re-784

spect to the strategy of the mutant) in terms of derivatives of the fecundity
function. Analogously to Appendix C, we first use the implicit function786

theorem, and then use symmetry properties of the fecundity function.
Differentiating Rm = ETω (Equation A.10) two times we obtain788

∂2

∂s2
mut

Rm

∣∣∣∣
smut=sres

= ETω′′ + 2E ′Tω′ + E ′′Tω, (D.1)

where E ′′ = ∂2

∂s2mut
E
∣∣
smut=sres

. The second-order effects of a mutation on

metapopulation fitness thus contain second order effects on sojourn time ω,790

provided that emigrant production E remains fixed (first term), and second-
order effects on emigrant production, provided that the sojourn time remains792

fixed (third term), and finally first-order effects on both (second term).

Proposition 10. The second derivative (D.1) can be written as794

∂2

∂s2
mut

Rm

∣∣∣∣
smut=sres

=
∂2

∂s2
mut

(
LT1 T

)
ωres + 2

[
∂

∂smut

(
LT1 T

)
+ E ′T

]
ω′ + E ′′Tω

(D.2)
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Proof. Consider the terms of (D.1). We can use the implicit function theorem
to obtain796

ω′′ =
∂2

∂s2
mut

ω
∣∣
smut=sres

= (I −Tres)
−1

[
−
(

∂2

∂s2
mut

(I −T)ωres + 2
∂

∂smut

(I −T)ω′
)]

= (I −Tres)
−1

(
∂2

∂s2
mut

Tωres + 2
∂

∂smut

Tω′
)

(D.3)

Based on (D.3) and (C.5) we have

ET
resω

′′ = LT1

(
∂2

∂s2
mut

Tωres + 2
∂

∂smut

Tω′
)
. (D.4)

798

We investigate the three terms of the expression (D.2) for the second
derivative in turns. First look at the component ∂2

∂s2mut

(
LT1 T

)
. According to800

(E.1) we have (LT1 T)i = npi. By differentiating pi (Equation A.3) and using
(3.8) we obtain802

∂2

∂s2
mut

npi

∣∣∣∣
smut=sres

= A1i+ A2i
2 + A3i

3, (D.5)

where

A1 =
(1− d)(−FDD + 2FDD′ − 2FSD + FSS)

Fres(0)
. (D.6)

Also the expressions for A2 and A3 depend on d and the derivatives of the804

fecundity function, but they are quite lengthy. For details, see the electronic
supplement. We obtain ∂2

∂s2mut

(
LT1 T

)
ωres = (A1L

T
1 + A2L

T
2 + A3L

T
3 )ωres, and806

by using (E.7), (E.9) and (E.10) we get the first part ready. It is not shown
separately, since we only need the sum in (D.2).808

Concerning the second term, ∂
∂smut

(
LT1 T

)
is given by (C.8) and E ′T is

given by (C.9). We need to calculate their product with ω′, obtained from810

(C.4). For this purpose we first need expressions (E.11) and (E.12) for Lj(I−
Tres)

−1, thereafter (C.8) and (E.13) for ∂
∂smut

(LjT), and finally (E.7), (E.9)812

and (E.10) for LTi ωres to obtain an explicit expression (not shown separately).
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The third term is obtained by differentiating E:814

E ′′ωres =
d

Fres(0)
(C1L1 + C2L2 + C3L3)ωres, (D.7)

where C1 = −FDD + 2FDD′ − 2FSD + FSS, C2 = FDD − 3FDD′ + 2FSD and
C3 = FDD′ . By applying (E.7), (E.9) and (E.10) for LTi ωres we obtain an816

explicit expression for E ′′ωres (not shown separately).
The final result (Equation 3.10 of Theorem 4) is obtained by adding818

together the three expressions mentioned above.

Appendix E. Vectors L1, L2 and L3820

Appendix E.1. The vectors LTi T

According to the definition of (A.4), we have822

(LT1 T)i =
n∑
j=1

jtji =
n∑
j=1

j

(
n
j

)
pji (1− pi)n−j = E(Xi) = npi, (E.1)

where Xi is a binomially distributed random variable with parameters n and
pi. According to (A.3) and (3.5) , pi = (1−m)i

n(1−m+mp)
= (1−d)i

n
for the resident,824

and thus
LT1 Tres = (1− d)LT1 . (E.2)

Analogously, we have826

(LT2 T)i =
n∑
j=1

j2tji =
n∑
j=1

j2

(
n
j

)
pji (1− pi)n−j = E(Xi

2)

= npi + n(n− 1)p2
i .

(E.3)

Again, by using (A.3) and (3.5) we obtain

(LT2 Tres)i = (1− d)i+
(n− 1)(1− d)2

n
i2. (E.4)

In a similar way, we have828

(LT3 T)i =
n∑
j=1

j3tji =
n∑
j=1

j3

(
n
j

)
pji (1− pi)n−j = E(Xi

3)

= npi + 3n(n− 1)p2
i + n(n− 1)(n− 2)p3

i

= (1− d)i+ 3
(n− 1)(1− d)2

n
i2 +

(n− 1)(n− 2)(1− d)3

n2
i3.

(E.5)
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Appendix E.2. The scalars LTi ωres

When the mutant and resident have the same strategy, by definition (A.6)830

we have Eres = mp
1−m+mp

L1 = dL1, and thus

1 = Rm = ETωres = dLT1 ωres, (E.6)

from which we get832

LT1 ωres =
1

d
. (E.7)

According to (A.8) we have Tω = ω − α0, so that

LTi Tω = LTi (ω − α0) = LTi ω − 1. (E.8)

By using (E.4) and (E.7), the equation (E.8) with i = 2 gets a form from834

which LT2 ωres can be solved:

LT2 ωres =
n

d (1 + (n− 1)d(2− d))
. (E.9)

In a similar way, by using (E.5) and (E.8) with i = 3 together with results836

above, we can solve

LT3 ωres =
(n+ 2(n− 1)(1− d)2)n2

d(1 + (n− 1)d(2− d)) (n2 − (n− 1)(n− 2)(1− d)3)
. (E.10)

Appendix E.3. Vectors LTi (I −Tres)
−1

838

From (E.2) we get LT1 (I −Tres) = dLT1 so that

LT1 (I −Tres)
−1 =

1

d
LT1 . (E.11)

Furthermore, from (E.4) we have LT2 (I−Tres) = (d−1)LT1 +
(

1− (1−d)2(n−1)
n

)
LT2 .840

By multiplying with (I − Tres)
−1from the right we get an expression from

which we can solve842

LT2 (I −Tres)
−1 =

n

n− (n− 1)(1− d)2

(
1− d
d

LT1 + LT2

)
. (E.12)
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Appendix E.4. Vectors LTi T′

The expression for LT1 T′ was already obtained in (C.8). By differentiating844

(E.3) and using (A.3) and (3.5) we obtain

LT2 T′ =
1

Fres(0)

(
(1− d) (FS − FD)LT1

+
(1− d)

n
((1− d)(2n− 3)FS + (3(1− d) + n(3d− 2))FD)LT2

+2
(1− d)2(n− 1)

n2
((1 + d(n− 1))FD − (1− d)FS)LT3

)
.

(E.13)

Appendix F. Connection to results based on trait distribution ap-846

proach

Appendix F.1. Previous result848

Wakano and Lehmann (2014) obtained the following results in terms of
fitness derivatives, where fitness w was defined as the expected number of850

successful offspring of a focal individual in the next generation. Note that
w only measures direct individual reproductive success, and is not the same852

concept as invasion fitness or metapopulation fitness. Under the Gaussian
approximation and under Wright’s island model spatial structure,they have854

shown that the dynamics of the mean trait s̄ is given by

∆s̄ = V (wS +R2wD) (F.1)

and the dynamics of the variance V is given by856

∆V = QESV
2 (F.2)

where
QES = ∆w + ∆r (F.3)

858

∆w = wSS + (2wSD + wDD)R2 + wDD′R3 (F.4)

∆r = 4R2
(2R2 + (n− 2)R3)wpD + (1 + (n− 1)R2)wPS

1−m
wD (F.5)
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where R2 and R3 are the solutions of

R2 = (1−m)2

(
1

n
+
n− 1

n
R2

)
. (F.6)

860

R3 = (1−m)3

{
1

n2
+ 3

n− 1

n2
R2 + (

n− 1

n
)(
n− 2

n
)R3

}
(F.7)

The definitions of wS, wD,wSS, wSD, wDD, wDD′ , wPS , w
P
D are explained shortly.

Note that eq. (28) in Wakano and Lehmann (2014) contains a typo and it862

should be replaced by eq. (F.5) shown above.

Appendix F.2. Rewriting in terms of fecundity derivatives864

First, the previous results are derived for a case without dispersal mor-
tality, i.e., they assumed p = 1. If we closely follow their derivations, we can866

confirm that their calculations are all correct when we replace their m by our
d. Second, they are written in terms of (individual) fitness derivatives. To868

show the connection to our results, we need to rewrite them by derivatives
of the fecundity function. Below we show how we obtain our results based870

on trait distribution approach by following Wakano and Lehmann (2014).
In their notation, fitness w is a function of trait values of all individuals872

wki = wki(s11, s12, ..., s1n, s21, ...) where ski is the trait value of individual i in
deme k. Fitness wki is given by the sum of the expected number of successful874

offspring in a focal deme and those in other demes

wki = wPki + wAki (F.8)

They are called philopatric and allopatric components of fitness, respectively.876

They are explicitly given by

wPki =
(1− d)Fki

dF̄ + (1− d)Fk
(F.9)

878

wAki =
dFki
F̄

(F.10)

where F̄ is the average fecundity of the total population and Fk is the average
fecundity of n individuals in the focal deme k. Subscripts S and D have880

similar meanings as ours, but the effects of individuals in the same class are
collected. For example,882

wD = (n− 1)
∂wki
∂skj

∣∣∣∣
s11=s12=...=s̄

, (i 6= j) (F.11)
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represents the fitness effect when all the n− 1 deme-mates change the trait
value by the same amount. Similarly, they defined884

wS =
∂wki
∂ski

∣∣∣∣
s11=s12=...=s̄

(F.12)

wSS =
∂2wki
∂s2

ki

∣∣∣∣
s11=s12=...=s̄

(F.13)

886

wSD = (n− 1)
∂2wki
∂ski∂skj

∣∣∣∣
s11=s12=...=s̄

, (i 6= j) (F.14)

wDD = (n− 1)
∂2wki
∂s2

kj

∣∣∣∣∣
s11=s12=...=s̄

, (i 6= j) (F.15)

888

wDD′ = (n− 1)(n− 2)
∂2wki
∂skj∂skl

∣∣∣∣
s11=s12=...=s̄

, (i 6= j, j 6= l, l 6= i) (F.16)

wPS =
∂wPki
∂ski

∣∣∣∣
s11=s12=...=s̄

(F.17)

890

wPD = (n− 1)
∂wPki
∂skj

∣∣∣∣
s11=s12=...=s̄

, (i 6= j) (F.18)

They do not define mutant nor resident, but the average trait value at a
given snapshot s̄ plays a similar role as sres. To rewrite wS and wD appearing892

in Eq. (F.1) as functions of FS and FD, we differentiate Eqs. (F.8) with
respect to ski for wS and with respect to skj for wD and use the following894

rules
∂Fki
∂ski

∣∣∣∣
s11=s12=...=s̄

= FS (F.19)

896

∂Fki
∂skj

∣∣∣∣
s11=s12=...=s̄

= FD, (i 6= j) (F.20)

F̄ = F 0
res (F.21)

898

∂F̄

∂ski

∣∣∣∣
s11=s12=...=s̄

= 0 (F.22)

∂Fk
∂ski

∣∣∣∣
s11=s12=...=s̄

=
FS + (n− 1)FD

n
(F.23)
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Then a straightforward calculation shows the selection gradient satisfies

wS +R2wD

d
= D1(sres) (F.24)

where the explicit form of D1(sres) is identical to ours shown in Theorem 1.900

To rewrite QES , fitness derivatives wSS, wSD, wDD, wDD′ , wPS , and wPD
appearing in ∆w and ∆r should be rewritten in terms of FS, FD, FSS, FSD,902

FDD, and FDD′ . Using the singular condition FS = 0 and using the similar
rules as above, we obtain these six functions. Note that wDD′ 6= 0 even if904

FDD′ = 0. Then a very lengthy but straightforward calculation shows

QES

d
= D2(sres) (F.25)

where the explicit form of D2(sres) is identical to ours shown in Theorem 4906

when FS = 0. Wakano and Lehmann (2014)’s Appendix D only provided how
to obtain D2(sres) in case of pairwise games and they wrote “The result is not908

shown here since it is very lengthy.” We did further calculations to confirm
that it is identical to our Theorem 4 when FS = 0. On the other hand, when910

game payoff only slightly changes fecundity, QES ' ∆w holds and a simple
expression in terms of derivatives of the fecundity function and relatedness912

coefficients that approximately holds for a broader class of updating rules
can be derived (their eq.37-39).914

Conceptually speaking, the trait distribution approach considers the mean
and variance of a distribution (s11, s12, ..., s1n, s21, ...) in the next generation,916

while the metapopulation fitness approach calculates the accumulated al-
lopatric components of fitness wA until mutants get extinct in a focal deme.918

Calculations leading to the the final result look very different, but both ap-
proaches produce exactly the same conditions which are given by very compli-920

cated equations. This fact strongly suggest that both approaches are correct.
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