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a b s t r a c t

Group selection theory has a history of controversy. After a period of being in disrepute, models of group

selection have regained some ground, but not without a renewed debate over their importance as a

theoretical tool. In this paper I offer a simple framework for models of the evolution of altruism and

cooperation that allows us to see how and to what extent both a classification with and one without

group selection terminology are insightful ways of looking at the same models. Apart from this dualistic

view, this paper contains a result that states that inclusive fitness correctly predicts the direction of

selection for one class of models, represented by linear public goods games. Equally important is that

this result has a flip side: there is a more general, but still very realistic class of models, including

models with synergies, for which it is not possible to summarize their predictions on the basis of an

evaluation of inclusive fitness.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It is safe to say that there is no consensus concerning the value
of group selection models for the explanation of the evolution of
altruism and cooperation. A history of disagreement has made the
question evolve from whether group selection is probable or even
possible (Allee, 1951; Wynne-Edwards, 1962; Williams, 1966) to
whether group selection models help us understand things one
would not understand without them (Sober and Wilson, 1998;
Wilson and Wilson, 2007; Traulsen and Nowak, 2006; Lehmann
et al., 2007; Killingback et al., 2006; Grafen, 2007; West et al.
2007a, b, 2008). In order to show that different views need not be
incompatible, I will begin with a simple but very general
framework for models of the evolution of altruism and coopera-
tion. This general framework allows us to see how and to what
extent both an approach with and an approach without group
selection terminology are insightful ways of looking at the same
models. It also allows for a formal proof of a theorem that states
that the sign of the inclusive fitness determines the direction of
selection, if the model translates to a linear public goods game.
The requirement of linearity turns out to a necessity; a simple
example is given of a non-linear public goods game for which
inclusive fitness points in the wrong direction. While a two-player
situation still allows for (adjusted) formula’s that do use related-
ness, a slightly less simple example shows that with groups larger
ll rights reserved.
than two, relatedness can be the wrong population characteristic
to look at. This implies that the prediction of the model cannot be
given in a formula with costs, benefits and relatedness only.

There are at least three reasons why this formalism is useful.
First of all it gives a formal framework for a dualistic view. This
can help avoid unnecessary disagreements and helps bring out the
value of both views. Second, although the first counterexample for
Hamilton’s rule failing is not new (see for similar counter-
examples Wenseleers, 2006; Gardner et al., 2007, which in turn
relate to work by Grafen, 1979; Day and Taylor, 1998), we should
realize that the results in the literature concern 2-player games.
When we think of group selection, we tend to think of groups of
any size, not just size 2. Also when we for instance think of the
transition from single-celled to multicellular life, we tend to think
of multicellular life as organisms typically consisting of more than
two cells. An extension from groups of 2 to groups of n—or from
2-player to n-player games—and a formal proof for when
Hamilton’s rule does and when it does not work therefore are
quite useful here. Because this goes against the intuition provided
in Hamilton (1975) for why inclusive fitness should work, this
paper also provides an intuition for why it only does so for models
that translate to linear public goods games, and not for models
that translate to non-linear ones. The proof of the theorem also
provides a general recipe for determining the direction of
selection if Hamilton’s rule fails due to non-linearity in the public
goods game.

The third reason why this formalism is useful is at first perhaps
a bit more difficult to see. In the literature, relatedness is regularly
defined as a statistical property. In modelling, this would in
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Fig. 1. Fitness effects are represented by net costs c to the acting individual on the horizontal axis and aggregate benefits to the other group members b on the vertical axis.

Please note that net costs to the acting individual are positive to the left and negative to the right, so that the first quadrant consists of traits that have a positive fitness

effect both on the acting individual itself and on the other group members.
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principle be inappropriate; in a theoretical model, relatedness
should be a probabilistic property, while statistics is only involved
in testing of models or estimation of parameters using actual data.
In the formal setup here, relatedness is a proper difference in
conditional probabilities that is to follow from model assump-
tions. It fortunately does match with what we think relatedness
should be in most models, and therefore one could see it as a
formal justification for those cases. The formal setup on the other
hand also helps understand why in some models with groups
larger than 2 relatedness is the wrong population characteristic to
look at. It thereby helps us formalize and sharpen our interpreta-
tion of relatedness.
2. Public goods games

Public goods games can be seen as the mother of all
cooperation models.1 Therefore it is useful to first properly define
and picture how different situations in which selection takes place
translate to different public goods games. In a selection process
concerning a trait that has an effect on the carrier itself as well as
on other members of the group it is in, we can write these effects
1 In an e-mail discussion group on the topic of multilevel selection theory,

Michael Doebeli described public goods games as the mother of all cooperation

models. I thought that was a nice description, so I borrowed it here.
as payoffs in a game. If the effects of different group members
having the trait simply add up, then this results in a linear public
goods game, in which the payoffs, or (expected) numbers of
offspring, can be described as follows. In a group that consists of n

individuals, i of which have the trait, payoffs for bearers (T) and
for non-bearers (N) of the trait are, respectively,

pðT; i; f Þ ¼ 1þ bðf Þ � i� cðf Þ

pðN; i; f Þ ¼ 1þ bðf Þ � i

(
(1)

Here, f 2 ½0;1� represents the frequency of the trait in the entire
population. This description matches models in for instance
Hamilton (1975), Nunney (1985) and Wilson and Dugatkin
(1997) and is only a little more general in that it allows for bðf Þ

and cðf Þ to depend on the frequency of the trait in the entire
population. One could also make them depend on other overall
population characteristics without changing the analysis. The
restriction that (1) imposes on the payoff function p can also be
seen as a natural generalization of ‘‘equal gains from switching’’ as
used in Traulsen et al. (2008), Wild and Traulsen (2007) and
defined in Nowak and Sigmund (1990); see also Section 5 for a
discussion.

Fig. 1 graphically describes behaviours for this class of models.
This figure is perhaps not that easy to read at first, but I firmly
believe it is very much worth the effort, as it embraces a wide
variety of models.
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Any choice for bðf Þ and cðf Þ can be associated with a point in
Fig. 1, which represents the fitness effects of the behaviour. The
horizontal axis represents the net effect on the fitness of the
individual itself, while the vertical axis represents the aggregate
effect on all other group members. From Eq. (1) it therefore
follows that c ¼ cðf Þ � bðf Þ and b ¼ ðn� 1Þ � bðf Þ, which makes c
the net cost of the behaviour to the acting individual, and b the
aggregated benefits to the others. Behaviour in individual
interactions is subsumed in this setting, because groups of any
size are allowed, including groups of size 2. The origin in Fig. 1 is
naturally associated with not displaying the behaviour—which
can be seen as a status quo.

The setting does not restrict the behaviour to whole-group or
others-only traits; all one has to do in order to translate a whole
group trait to an others-only setting is shift the benefits that
accrue to the actor as a benefiting member of the group from the
aggregate group benefit to the actor itself, as we did above (see
also Pepper, 2000). The figure also allows for frequency depen-
dence; if fitness effects on the actor and on the rest of the group
change with the frequency of the trait, then the point that depicts
the difference between having the trait and not having it—or
performing the behaviour and not performing it—simply shifts
during selection as illustrated in Fig. 1.

In this figure we can discern a few characteristic situations. The
horizontal axis represents traits that only have an effect on
the acting individual itself, and not on other group members. The
vertical axis represents traits that only have an effect on other
group members, and not on the acting individual itself. The
diagonal that runs from the top-left to the bottom-right corner
separates the traits that increase the aggregated fitnesses of all
group members (right-up from the diagonal) from the traits that
decrease the aggregated fitnesses of the group (left-down). A
setting in which the reproductive success of all group members
coincides makes all possible behaviours map onto the diagonal
that runs from bottom-left to top-right. In Fig. 1, which pictures a
situation with groups of size 2, and hence represents interactions
between individuals, this diagonal makes a 45� angle (or p=4)
with the horizontal axis. Groups of larger size result in larger
angles; because the vertical axis represents the aggregate fitness
effect on the other group members, a group of size n would
require a line through the origin that makes an angle of
arctan ðn� 1Þ with the horizontal axis in order to represent a
situation in which the interests of all group members are perfectly
aligned. (The other diagonal is the same for all group sizes.)

We can also identify different regions in this figure with
different qualifications of behaviour. The entire top-right quadrant
can be qualified as mutualistic behaviour, because fitness effects
on both actor and recipients are positive. Such a behaviour is also
regularly referred to as a by-product mutualism. Mutualistic
behaviour from which every recipient gains more than the actor
does is called weakly altruistic in Wilson (1979, 1990); the fitness
of the actor increases in absolute terms, but decreases relative to
the other individuals in the group. The top-left quadrant
represents strongly altruistic behaviour (see again Wilson 1979,
1990), where behaviour for which the others gain less than the
actor loses, could be qualified as overly altruistic. Spiteful
behaviours map onto the bottom-left quadrant, where behaviour
with which the actor even reduces its own fitness relative to the
recipients could be called spiteful beyond reason. The selfish
behaviour in the bottom-right quadrant can be divided in selfish
behaviour that is efficient and selfish behaviour that is not,
depending on whether or not the total aggregated fitness
effects—that is, the effect on the actor plus the effects on the
recipients—are positive or negative.

Whether or not we should expect a particular behaviour to be
selected in a model depends on the assumptions that are made
concerning the composition of the groups. If groups are formed
randomly, then the vertical axis separates the behaviours that we
predict will be selected (right of the vertical axis) from the
behaviours that we predict will not be selected (left from it, see
also Fig. 3a). If groups are not formed randomly, but assortatively,
then the line that separates behaviours that will be selected from
behaviours that will not, will be tilted counterclockwise (see also
Fig. 3b. The idea of such a line being tilted by assortative matching
is also present in Wilson, 1975 and, in a different setting, in
Rousset, 2004). If groups are formed anti-assortatively, the line
will be tilted clockwise. How far it will be tilted depends on what
the assumptions of the model imply for a population character-
istic that we can write as a difference in probabilities in a
hypothetical chance experiment: PðTjTÞ �PðTjNÞ. If we randomly
draw a member of the population, with all individuals having
equal probability, and then randomly draw another member of the
same group, with all other group members having equal
probability, then PðTjTÞ is the probability that this individual
has the trait, if the first has it too, and PðTjNÞ is the probability
that this individual has the trait, if the first does not. For games
that fit Eq. (1), this difference in probabilities times the benefits on
the vertical axis is the difference between the expected benefits
of a carrier and the expected benefits of a non-carriers (see
Theorem 1 below, which implies that this holds). The expression
PðTjTÞ �PðTjNÞ can be seen as a generalized measure of
relatedness, but it is helpful to first of all see it as a reflection
of the assumptions of the model concerning the population or
interaction structure. It is important to stress that this expression
is not specific to any model; it embraces whatever it is that is
assumed to cause the distribution of carriers and non-carriers
over the groups. Section 6 contains a precise interpretation,
including a reason why it is appropriate to call it a generalized
measure of relatedness.

If there is random group formation, then PðTjTÞ �PðTjNÞ ¼ 0,
and the line will just coincide with the vertical axis. A probability
exercise in the appendix shows that how much it can vary
depends on group size; complete assortment always leads to
PðTjTÞ �PðTjNÞ ¼ 1, but anti-assortment cannot make this differ-
ence go below PðTjTÞ �PðTjNÞ ¼ �1=ðn� 1Þ, where n is the group
size. The angle that the line then makes with the vertical axis is
arctan½PðTjTÞ �PðTjNÞ�. The two diagonals in Fig. 1 therefore not
only represent models with, respectively, complete alignment and
complete conflict of interests, but they also give the boundaries
between which this assortment-line can be tilted. This also
implies that being overly altruistic or spiteful beyond reason will
never be favoured by selection.
3. A dualistic view on group selection models

Group selection of altruistic traits is described, for instance in
Sober and Wilson (1998), as a process where selective forces work
at different levels and in opposite directions. Within groups,
individuals that have the trait typically have a lower fitness than
individuals that do not, so that within groups, selection is said to
work against the trait. Groups with a larger share of individuals
that have the trait, however, typically grow larger (or faster) than
groups with a smaller share of individuals that have the trait.
Selection between groups therefore is said to work in favour of the
trait. Or, in the words of Wilson and Wilson (2007): ‘‘Selfishness
beats altruism within groups. Altruistic groups beat selfish groups.
Everything else is commentary.’’

In Fig. 2 these two opposing forces are visualized. The first
characteristic—within groups, carriers of the trait do worse—implies
that the fitness effects lie up-left from the ‘‘complete alignment of
interests’’ line. The second characteristic—groups with many carriers
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Fig. 2. (a) Selfishness beats altruism within groups. (b) Altruistic groups beat selfish groups. (c) Group selection models map onto points in this area.
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of the trait do better—implies that the fitness effects lay up-right
from the line that separates efficient from inefficient behaviours.
This implies that such models lie in the area north of the V-shaped
boundary that consists of the two diagonals.

It is important to see that if a trait in this area is selected, there
are two ways of understanding why it is. Both are correct, and
both contain a part of the insight that the other does not capture.
The classic group selection view is that if such a trait is selected,
then between group selection is stronger than within group
selection; see, again, Sober and Wilson (1998) and Wilson and
Wilson (2007). Whether or not it indeed is, of course has to follow,
one way or another, from the assumptions of the model, but it is
undeniably true that on the border between traits that do and
traits that do not get selected within a certain model, these two
forces must cancel each other out. These two opposing selection
pressures are a characteristic of the whole region north of the
V-shaped boundary.

We can, on the other hand, also make a very relevant
distinction between two parts of this region. If a weakly altruistic
trait is selected, as in Fig. 3a, then the reason that it is selected is
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that the fitness effect on the actor itself is positive. If a strongly
altruistic trait is selected, as in Fig. 3b, then the explanation can
only be that the assumptions of the model imply that groups, in
expectation, are composed assortatively enough, tilting the dotted
line counter-clockwise.

A few useful insights already follow directly from this dualistic
view on group selection models. The first is that not all group
selection models are the same. Group selection models with
random group formation, in which weakly altruistic traits are
selected, are fundamentally different from group selection models
in which strongly altruistic traits are selected. Also, some group
selection models can be understood as kin selection models, but
not all: only those in which strongly altruistic traits are selected.
They do, however, all fit within an inclusive fitness setting; for
weakly altruistic traits, by definition co0 and b40 and hence,
trivially, rb� c40.
4. Not all group selection models can be reformulated in terms
of inclusive fitness

While Eq. (1) implies that costs and benefits of individual
behaviour do not depend on the composition of the remainder of
the group, there are examples of realistic models, both with
random and with assortative or non-random matching that do not
share this characteristic. Examples are Avilés (1999, 2002), Avilés
et al. (2002, 2004), Bowles et al. (2003)—see also Van Veelen and
Hopfensitz (2007)—and Hauert et al. (2006). In fact, one could
argue that (1) defines only a small subset of all public goods
games, excluding for instance all models that contain synergies. In
order to capture all group selection models, we will therefore have
to let go of the linearity in the public goods game that (1) imposes,
and allow for all possible functions pðT; i; f Þ and pðN; i; f Þ.

Without restrictions on the payoff functions, it is natural to ask
ourselves whether or not we can still arrive at a description of
costs, benefits and relatedness that makes all group selection
models map onto Fig. 1. More precisely, we would like to find out
if the direction of selection in a group selection model can always
be determined by computing inclusive fitness, which is also a
question that emerges from the recent literature; see for instance
Traulsen and Nowak (2006) and the kin-selection reinterpretation
of that model by Lehmann et al. (2007) as well as Killingback et al.
(2006) and a similar reinterpretation by Grafen (2007). The
following theorem provides a positive answer for linear public
goods games.

Theorem 1. If the payoff function satisfies Eq. (1), then the direction

of selection follows from Hamilton’s rule, with c ¼ cðf Þ � bðf Þ, b ¼
ðn� 1Þ � bðf Þ and r ¼ PðTjTÞ �PðTjNÞ.

Proof. The division of the population in groups is given by values
for f i; i ¼ 1; . . . ;n. Here f i is the frequency of groups that have i

carriers of the trait, and naturally we assume that
Pn

i¼0f i ¼ 1 and
we define p ¼

Pn
i¼0i � f i=n, or

Pn
i¼0i � f i ¼ np. The frequency of the

trait goes up if

Pn
i¼1i � f i � pðT; i; f Þ

np
4
Pn�1

i¼0 ðn� iÞ � f i � pðN; i; f Þ
nð1� pÞ

If we fill in the fitness/payoff function from (1), this is

Pn
i¼0i � f i � f1þ bðf Þ � i� cðf Þg

np

4
Pn

i¼0ðn� iÞ � f i � f1þ bðf Þ � ig

nð1� pÞ
3

ð1� cðf ÞÞ
Pn

i¼0i � f i þ bðf Þ
Pn

i¼0i2 � f i

np

4
n�

Pn
i¼0i � f i þ bðf Þ

Pn
i¼0ðn� iÞ � f i � i

nð1� pÞ
3

1� cðf Þ þ bðf Þ

Pn
i¼0i2 � f i

np

41þ bðf Þ

Pn
i¼0ðn� iÞ � f i � i

nð1� pÞ
3

� cðf Þ þ bðf Þ þ bðf Þ

Pn
i¼0i � f i � ði� 1Þ

np

4bðf Þ

Pn
i¼0ðn� iÞ � f i � i

nð1� pÞ
3

� cðf Þ þ bðf Þ þ ðn� 1Þbðf Þ

Pn
i¼0i � f i �

i� 1

n� 1
np
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np
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If we randomly draw a carrier of the trait from the whole
population, with all carriers of the trait having equal probability,
and PðTjTÞ is the probability that a randomly chosen other group
member, with all other group members having equal probability,
is a carrier, then it follows that PðTjTÞ ¼

Pn
i¼0ði � f i � ði� 1Þ=ðn� 1ÞÞ=

np and that PðTjNÞ ¼
Pn

i¼0ððn� iÞ � f i � i=ðn� 1ÞÞ=nð1� pÞ. Hence, we
can rewrite the inequality as follows: the frequency of carriers of
the trait increases if

ðn� 1Þbðf ÞðPðTjTÞ �PðTjNÞÞ � cðf Þ þ bðf Þ403

r � bðf Þ � cðf Þ40 (2)

which is Hamilton’s rule, if we define the net costs as c ¼ cðf Þ � bðf Þ,
the total benefit conferred to the other group members as b ¼
ðn� 1Þbðf Þ and relatedness as PðTjTÞ �PðTjNÞ. &

This theorem therefore implies that the (tilted) dotted line in Fig.
1 indeed separates traits that are selected from traits that are not, if
the public goods game is linear. Or, in other words, if the fitness
function satisfies (1), then the direction of selection is given by (2).
This linearity, however, is crucial. Below I will provide a simple non-
linear counterexample with n ¼ 2—which turns public goods
games into prisoners dilemma’s—for which Hamilton’s rule does
not give the correct prediction. In order to see why this counter-
example is not some constructed rarity, but a general problem for
non-linear public goods games, it is useful to first read the proof of
Theorem 1 in reverse too. Therefore we need to realize again that
what inclusive fitness does is separate the population or interaction
structure from the fitness effects, or (the payoffs of) the game. The
first implies an r, the second is reflected by b and c. This means that
we can do two things. We can keep the fitness effects (the game)
constant, and vary the population or interaction structure. This
changes the r and separates population or interaction structures in
those for which the r is high enough, and the behaviour is selected,
and those for which the r is not high enough, and the behaviour is
not selected. On the other hand, Theorem 1 also shows that within
the set of games that satisfy (1), we can also keep the population or
interaction structure constant, and distinguish between games for
which the cooperative behaviour is selected (b=c is high enough)
and games for which the cooperative behaviour is not selected (b=c
is not high enough). Therefore, if we want to extend Theorem 1 from
linear public goods games to all public goods games, this would
imply that the r should still only reflect the population or
interaction structure, and should not change between games. This
implies that when we generalize, Theorem 1 restricts the choice for
r to this difference in probabilities that works for linear public goods
games. Reading the proof in reverse, we see that if we indeed stick
to r ¼ PðTjTÞ �PðTjNÞ, we can follow every step on the way back
up again, apart from the last one (or the first one on the way down),
in which 1þ bðf Þ � i� cðf Þ is replaced by pðT; i; f Þ and 1þ bðf Þ � i is
replaced by pðN; i; f Þ. This means that it really is the linearity of the
payoff function that ties the direction of selection to Hamilton’s
rule. In other words, one could say that linearity is the only real
ingredient of the proof; the rest is just rewriting of the inequality.
Any divergence from linearity therefore means that a wedge is
driven between the direction of selection and Hamilton’s rule.
Therefore it is generally the case that as soon as a group
selection model implies a public goods game that is not linear,
inclusive fitness can give the wrong prediction. If costs and
benefits of the trait do indeed depend on how many other bearers
of the trait the group contains, and hence the functions pðT; i; f Þ
and pðN; i; f Þ no longer fit in the structure of Eq. (1), then one can
also no longer distill measures of (expected) costs and bene-
fits—neither marginal nor aggregated or averaged—that combine
with some measure of relatedness or assortativity to a concise
prediction of the form: the trait will be selected if and only if
rb� c40, where b and c characterize a fitness transfer, and r

characterizes the composition of the groups. This is an important
conclusion, because it shows that not all group selection models
can be translated to a prediction in the form of an expression of
inclusive fitness, as is sometimes suggested.

4.1. Counterexample I

The first, simple counterexample is similar to examples given
in Wenseleers (2006) and Gardner et al. (2007) and is related to
examples given in Day and Taylor (1998). Here, the example is
given in a way that directly fits Theorem 1. Section 7 discusses
how Theorem 1 and the counterexample relate to existing results.

With groups of size 2, we can represent the fitnesses as payoffs
in a 2� 2 game. We will also assume that T4R4P4S, which
makes it a prisoners’ dilemma

N T

N P;P T; S

T S;T R;R

Here we can easily see that this fits within Eq. (1) if and only if
bðf Þ ¼ R � S ¼ T� P and cðf Þ ¼ T� S. (Nowak and Sigmund, 1990
introduced the term ‘‘equal gains from switching’’ to indicate a
situation where R � S ¼ T� P.)

The division of the population in groups is given by values for
f NN ; f NT and f TT , which are the frequencies of groups with 0, 1 and
2 carriers of the trait in them, respectively. Naturally, we assume
that f NN þ f NT þ f TT ¼ 1. Selection favours the trait if the average
payoff of the carriers of the trait is larger than the average payoff
of individuals that do not carry the trait:

f TT � R � 2þ f NT � S � 1

2p
4

f NT � T � 1þ f NN � P � 2

2ð1� pÞ
(3)

where the groups are weighted by the number of T-players resp. N-
players in them, and p is the frequency of the trait in the overall
population; p ¼ ð2f TT þ f NT Þ=2. Natural definitions of the probabil-
ities for being matched to the different types are PðTjTÞ ¼ f TT=p and
PðTjNÞ ¼ f NT=ð2ð1� pÞÞ, with the implication that PðNjTÞ ¼ 1�
PðTjTÞ ¼ 1� ðf TT=pÞ ¼ f NT=2p and PðNjNÞ ¼ 1�PðTjNÞ ¼ 1� f NT=

ð2ð1� pÞÞ ¼ f NN=ð1� pÞ. Then we can rewrite (3) as

PðTjTÞ � R þPðNjTÞ � S4PðTjNÞ � TþPðNjNÞ � P3

PðTjTÞ � R þ ð1�PðTjTÞÞ � S4PðTjNÞ � Tþ ð1�PðNjNÞÞ � P3

PðTjTÞ � ðR � SÞ þ S4PðTjNÞ � ðT� PÞ þ P3

PðTjTÞ � ðR � SÞ �PðTjNÞ � ðT� PÞ þ ðS� PÞ40 (4)

If ðR � SÞ ¼ ðT� PÞ, then one can replace ðR � SÞ and ðT� PÞ with
b, replace ðP� SÞwith c, and PðTjTÞ �PðTjNÞwith r, which leads to
a well-known expression with inclusive fitness:

r � b� c40

If, however, ðR � SÞaðT� PÞ, then it is not possible to rewrite (4)
in a way that separates PðTjTÞ � ðR � SÞ �PðTjNÞ � ðT� PÞ in a
product of a term that only depends on the composition of the
population and something that only depends on the fitness
function.
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Fig. 4. Dynamics for different values of assortment parameter a. The frequency in
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a ¼ 0 (blue), a ¼ 1
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referred to the web version of this article.)
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Fig. 5. In the counterexample, costs and benefits depend on the phenotype of the

receiver. Here we identify player 1 as the donor, or the acting individual, and player

2 as the receiver. The grey circle at ð2:5;2:5Þ represents the payoffs when both

individuals are carriers of the trait, and the grey circle at ð3;0Þ represents the

payoffs when player 2 has the trait and player 1 does not. The line between them

therefore represents the fitness transfer by player 1 if player 2 is a carrier.

Similarly, the other line, to the left, represents the fitness transfer if player 2 is not

a carrier. Costs and benefits of the fitness transfer by player 1 now depend on the

phenotype of player 2.
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For the counterexample, we choose values such that
ðR � SÞaðT� PÞ, which implies the game does not satisfy the
condition for Theorem 1 to apply; T ¼ 3;R ¼ 2:5;P ¼ 1 and S ¼ 0.
Figs. 5 and 6 in Section 5 depict these payoffs and can be helpful to
visualize the game.

With groups of size 2, the composition of the population is
uniquely determined by the frequency p of the trait, and a
parameter of assortment a, which we will see below, equals
relatedness

f TT ¼ ð1� aÞp2 þ ap

f NT ¼ ð1� aÞ2pð1� pÞ

f NN ¼ ð1� aÞð1� pÞ2 þ að1� pÞ (5)

This makes p ¼ ð2f TT þ f NT Þ=2 the frequency of the trait in the
population and 0 � a � 1 equal relatedness; PðTjTÞ �PðTjNÞ ¼

f TT=p� f NT=ð2ð1� pÞÞ ¼ a. From (4) we know that the trait is
selected if

PðTjTÞ � ðR � SÞ �PðTjNÞ � ðT� PÞ þ ðS� PÞ403

f TT

p
� 2:5�

f NT

2ð1� pÞ
� 2� 1403

2:5ðð1� aÞpþ aÞ � 2ð1� aÞp� 1403

0:5ð1� aÞpþ 2:5a� 140 (6)

If p ¼ 0, then that implies that the trait can invade if a4 2
5. If on

the other end p ¼ 1, then the trait is stable if a4 1
4. Hence, for

1
4oao 2

5 there is bi-stability (see also Hauert et al., 2006). The
dynamics for different values of assortativity parameter a are
given in Fig. 4.

If we now take for instance a ¼ 0:22o 1
4, then we know that

at p ¼ 1 the population can be invaded and will be replaced by
N-players. Yet, if we would take an inclusive fitness approach and
compute the benefit that players confer on their partners (which
is R � S, because all carriers of the trait meet individuals that also
carry the trait), the net costs they make (which is T� R for the
same reason), and relatedness, then we get

r � b� c ¼ 0:22 � 2:5� 0:5 ¼ 0:0540 (7)
suggesting, incorrectly, that this behaviour is stable. This indicates
that, when fitnesses no longer fit (1), computing inclusive
fitnesses no longer correctly indicate the direction of selection
correctly. The intuition is provided below.

The values chosen for ðR � SÞ; ðT� PÞ and ðS� PÞ can also be
replaced with w � ðR � SÞ;w � ðT� PÞ and w � ðS� PÞ, respectively.
Letting w be small would then imply w-weak selection (small
fitness contribution of the game; see Wild and Traulsen, 2007),
but the results above would still hold; the direction of selection in
(6) and the sign of the inclusive fitness in (7) remain unchanged.
In Section 7 we will also discuss d-weak selection (small distance
in phenotype; see again Wild and Traulsen, 2007).
5. Intuition

The fact that linearity of the public goods game is needed in
Theorem 1 can at first sight be perceived as counterintuitive. In
order to get an intuition why linearity is indeed needed, we can
think of how Hamilton (1975) motivated the rb part of his rule.
The idea is that there is a fixed benefit to be gained from an
individual that has the trait, and that it is received, in expectation,
for a ð1� rÞ share by a random sample from the population, and
for an r share by carriers of the trait other than the individual
itself. However, when the payoffs of individuals no longer fit
within (1), then the benefit that one individual receives from
another individual having the trait depends on the composition of
the remainder of the group, including the receiving individual
itself. In the simple counterexample given in the appendix, with
groups of size 2, this means that what phenotype the receiver is
determines the size of costs and benefits. This is pictured in Fig. 5;
the fitness transfer if the receiver is a carrier of the trait is not the
same as the fitness transfer if the receiver is not a carrier. This
implies that one can no longer characterize the fitness effect of the
trait as a fitness transfer that is fixed—b—or that is fixed for a
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Fig. 6. Another way to describe the payoffs of the counterexample is to say that

marginal effects of deviations do not add up.
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given frequency in the population. Hence one can also no longer
break down a fixed benefit into a part that goes to other carriers
and a part that goes to non-carriers of the trait, because these two
do not receive the same benefits from it.

Another way of forming an intuition for this result can be to
realize that marginal fitness transfers, in a situation where all
group members are carriers of the trait, measure the effects of
one-step deviations. These, however, do not add up to the true
combined effect of deviations (in the grey circle in Fig. 6). With a
positive value for PðTjTÞ �PðTjNÞ inclusive fitness therefore
underestimates how well a mutant non-carrier does for this
particular payoffs.

From a close reading of the proof of Theorem 1 and the
derivations for the counterexample we have also learned that this
cannot be mended by (sophisticated) averaging of cost and
benefits, nor by assuming w-weak selection. The sign of inclusive
fitness as well as the direction of selection remains what they are
when pðT ; i; f Þ is scaled down, and hence the divergence between
them does not disappear with w-weak selection. If we allow for a
continuum of strategies, and assume population states to be
monomorphous and moving according to the derivative taken
with respect to player’s deviations—that is, we examine d-weak
selection—then Hamilton’s rule will be restored for this two-
player example (see Grafen, 1979; Day and Taylor, 1998; Wild and
Traulsen, 2007. In Grafen, 1979 the analysis is done for the
Hawk–Dove game; see Appendix C for how this carries over to
more general 2-player games). The counterexample in Section 6.1
shows that for three or more players, this is in general not possible
anymore.
6. Relatedness

Above we have defined relatedness as a difference in condi-
tional probabilities: PðTjTÞ �PðTjNÞ. It should be stressed though
that it only summarizes the state of the population, because it is
defined as a difference in probabilities in a hypothetical chance
experiment; if we would randomly choose a carrier of the trait
from the whole population, with all carriers of the trait having
equal probability, and then compute the probability that a
randomly chosen other group member, with all other group
members having equal probability, is a carrier too, then that can
be written as PðTjTÞ. The second term, PðTjNÞ, is found in an
analogous way. These probabilities then still are only a character-
istic of a population; they are functions of the distribution of
carriers over the groups. This difference is therefore only a
measure for the unevenness of the distribution of carriers of the
trait over groups (doing the calculations of the bounds on
relatedness in Appendix A really helps to form an intuition).

We can think of many evolutionary processes as Markov
chains, where states are populations, and transition probabilities
between states reflect a combination of population structure and
fitnesses (see for instance Chapters 6–8 in Nowak, 2006, or Van
Veelen and Hopfensitz, 2007, for a Markov chain where states
indeed are subdivided populations). For a Markov process, one can
first compute PðTjTÞ �PðTjNÞ for every state in the support of the
invariant distribution. Then we can weight these measures by
their probability in the invariant distribution. For this Markov
chain, we can think of a new chance experiment. Suppose the
population follows this model, and we can assume that looking at
it today is like taking a draw from the invariant distribution (i.e., it
has been running for a long time). Then we take a random group,
and from that group we pick two random group members,
without replacement. The difference in conditional probabilities
with which the second group member is a carrier—that is, the
difference between the conditional probability for carriers and the
conditional probability for non-carriers—equals this weighted
average.

Luckily, this matches our general idea of what relatedness
should be. In Appendix B we show that indeed

PðTjTÞ ¼ r þ ð1� rÞp (8)

where r ¼ PðTjTÞ �PðTjNÞ, and p is the frequency of carriers in the
overall population. That is, the probability of someone in my
group being a carrier, conditional on me being one, is r plus ð1� rÞ

times the frequency of carriers in the overall population. This
matches for instance the geometrical view of relatedness from
Grafen (1985). We should be aware though that if we write
relatedness as a regression with error terms, then that suggests
that we are doing statistics. Statistics is meant to estimate values
or test hypotheses concerning the true model. Doing statistics
therefore would imply that we do not know the real value, and
that we actually carry out this hypothetical chance experiment on
an unknown Markov chain in order to find out more about the true
model. Our definition of relatedness on the other hand implies
that relatedness simply is to follow from model assumptions. We
should therefore realize that an assumed model—or the true
underlying model—can have many interesting properties other
than just PðTjTÞ �PðTjNÞ. The variance of this PðTjTÞ �PðTjNÞ

across states might for instance differ a lot. But it is also possible,
as we will see in the counterexample below, that there are models
for which relatedness is the wrong population characteristic to
look at.

6.1. Counterexample II

Two players: We begin with the following two player stag-hunt
game (following the parable by Rousseau, 1973), which does not
satisfy linearity, but where relatedness still helps finding the
dynamics:

N T

N 0;0 0;�1

T �1;0 1;1

This game is depicted in Fig. 7.
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Fig. 7. A stag-hunt game with two players. Without players being related, this is a

coordination game with two symmetric pure equilibria.
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Fig. 8. A stag-hunt game with three players. With random matching, this is again a

coordination game with two symmetric pure equilibria.
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It is not too hard to see that the whole population playing N

and the whole population playing T are the two candidates for
stability. In order to find their basins of attraction, we compute
the (unstable) mixed equilibrium in between, that is, we look for a
frequency p of carriers of the trait for which the payoffs of both
coincide:

PðTjTÞ � 1þPðNjTÞ � �1 ¼ PðTjNÞ � 0þPðNjNÞ � 03

PðTjTÞ � 1þ 1�PðTjTÞ
� �

� �1 ¼ 03

PðTjTÞ � 2 ¼ 13

PðTjTÞ ¼ 1
2

By (8) we can rewrite that as

r þ ð1� rÞp ¼ 1
2

p ¼
1� 2r

2� 2r

For frequencies lower than ð1� 2rÞ=ð2� 2rÞ, the dynamics will
take the population to p ¼ 0, and for frequencies that are higher,
the dynamics will take the population to p ¼ 0. Please note that,
even though the game is not a linear public goods game, and
indeed the prediction does not follow Hamilton’s rule, the
prediction still uses a formula in which r features. The same
applies to the first counterexample, where we have shown that
the parameter that matters—a—equals relatedness. When we go
to games with more than two players, we will see that this no
longer holds.

Three players: With three players, we can define a stag-hunt
game as pictured above. Again, the candidates for stability are all
playing N, with payoffs ð0;0;0Þ and all playing T , with payoffs
ð1;1;1Þ (Fig. 8).

In order to find their basins of attraction, we again compute the
(unstable) mixed equilibrium in between, that is, we look for a
frequency p of carriers of the trait for which the payoffs of both
types coincide. We now denote the probability of facing two more
carriers in the group of three, given that an individual is a carrier
itself, as PðTTjTÞ. If we realize that the payoff is 0 regardless of the
others in the group, if an individual itself is not a carrier, we can
write that as follows:

PðTTjTÞ � 1þ 1�PðTTjTÞ
� �

� �1 ¼ 03

PðTTjTÞ � 2 ¼ 13

PðTTjTÞ ¼ 1
2

The last probability can generally not be expressed in terms of p

and r. In order to see why, we should realize that for groups of 2,
choosing of f NN ; f NT and f TT (or, alternatively, f 0; f 1 and f 2) gives us
two degrees of freedom; because f NN ; f NT and f TT have to add up to
one, choosing two of them determines the third. This implies that
a distribution of carriers over groups—that is, a choice for f NN ; f NT

and f TT —is completely determined by a choice of p and r. In other
words, any combination of p and r allows for only one
combination of group-frequencies such that r ¼ PðTjTÞ �PðTjNÞ

and p ¼ 1
2 ðf NT þ 2f TT Þ. With groups of three players, the choice of

f 0; f 1; f 2 and f 3 gives us three degrees of freedom. One combina-
tion of values of p and r therefore can summarize different

underlying distributions of carriers over the groups. For our
example, this means that the same combination of values for p

and r can come with different values for f 3, and hence with
different values of PðTTjTÞ ¼ f 3=p.

For this game, relatedness would therefore not be the accurate
population characteristic to look at. What matters is not r ¼

PðTjTÞ �PðTjNÞ but PðTTjTÞ, and there is no one-to-one mapping
between the two of them. We should also realize that PðTTjTÞ also
in no way reflects an alternative definition of relatedness in the
literature. For groups larger than 3, the degrees of freedom for
choosing f 0; . . . ; f n obviously only increase with n.

For 2-player games, we know that Hamilton’s rule does make
the correct prediction if the players can choose from a continuum
of actions, rather than from a finite set (see Grafen, 1979; Day and
Taylor, 1998). For the three player stag-hunt game, however, filling
up the interval between 0 and 1 and examining d-weak selection
does not do the same. This is shown in Appendix C, but it is not
hard to imagine that this indeed is unavoidable, since also there
what matters is how an individual’s change in strategy changes
PðTTjTÞ, and knowing r is not enough to determine that.
7. Relation to existing results

As mentioned before, the first counterexample is similar to
examples given in Wenseleers (2006) and Gardner et al. (2007).
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The difference found between models with a discrete strategy
space (cooperate or not cooperate) and possibly heterogeneous,
mixed populations on the one hand and a continuous strategy
space and monomorphic populations on the other hand is
documented in Grafen (1979)—who responds to Hines and
Smith (1979)—and also in Day and Taylor (1998) and, slightly
differently, in Wild and Traulsen (2007). What is different
though is that those results all concern 2-player games. When
we think of group selection, we naturally want to consider
groups of any size, and when we think of cooperation, we also
want to implicate cooperative efforts done with three individuals
or more. So while the 2-player counterexample is not new,
the formal result that Hamilton’s rule does work for groups of any
size when the game is a linear public goods game is. What is
also new is the 3-player counterexample, and its two implications.
When the game is not a linear public goods game, one can,
for groups of size two, still make a prediction for the direction
of selection in which relatedness features. This allows for
an adjusted version of Hamilton’s rule, with alternative b and c,
for invasion (at p ¼ 0). The counterexample shows that
with groups of sizes larger than 2, this is not possible. Also, in
the 2-player case, changing from a binary to a continuous strategy
space guarantees that Hamilton’s rule works, even when the
game is not a linear public goods game (or, since it is a 2-player
game: when it is not a prisoners dilemma with equal gains
from switching). This also is no longer true with groups larger
than 2.

Another recent article is Traulsen et al. (2008), where
analytical results are derived for fixation probabilities in a Moran
process where fitness is an exponential function of payoff. These
can be seen as to imply something similar, in the sense that also
there, the ratio of fixation probabilities in a kin selection
framework only coincides with the ratio of fixation probabilities
in their setting when there are equal gains from switching. Their
model, however, and thereby also the model in Traulsen and
Nowak (2006), is different from the model here. In their model,
pairs of individuals are matched within their group to play a 2� 2
game, while here the entire group plays an n player game, which,
again, is what one can imagine is an appropriate model for
collective action within human groups or for cells within multi-
cellular organisms, for instance. Theorem 1, the central result in
this paper, can furthermore be understood without reference to
the Moran process—which could be a good or a bad thing—and
gives a formal proof of a general result that remains relatively
close to basic game theory as well as to Hamilton (1964, 1975)
justification for his rule.

The framework is also different than most. Everything is exact
here; there are no first order approximations involved. It also does
not use the Price equation, the limitations of which I have
discussed in Van Veelen (2005). That does not mean there are no
great similarities with the existing literature. Section 6 for
instance derives that this setting also justifies the geometrical
view of relatedness by Grafen (1985). This similarity, I think, is a
good thing. But the way relatedness is built up in this framework
from a population characteristic is not superfluous; it gives the
geometrical view a proper fundament. Generally, this definition
for relatedness gives the statistical idea we tend to have about
relatedness its proper probabilistic basis.

Furthermore Fig. 1 looks similar to Fig. 7.2 in Rousset (2004).
Again, this similarity is not at all a bad thing. We should
realize, however, that the model setup here is so basic and
simple that everything in Fig. 1 gets a geometric meaning.
Again, this formalism does not use approximations, everything
is exact, and the setup allows for formal proofs of exact
statements about the validity, and the limits to the validity of
inclusive fitness.
8. Discussion

Although Theorem 1 shows that the representation in Fig. 1
only applies to models that translate to linear public goods games,
one of its main insights nonetheless does carry over to the general
model. Also with more general functions pðT; i; f Þ and pðN; i; f Þ
there is merit in two ways of looking at the same models. On the
one hand there is a whole continuum of models that are similar in
the sense that within groups, bearers of the trait do worse, while
between groups, groups with many bearers do better. On the other
hand these same models can also be distinguished into two
fundamentally different types, namely models that do and models
that do not need assortative group formation in order to get
selection of the group beneficial trait. The reasons why (similar)
group selection models can work, can therefore be quite different;
they can work, because individuals in groups have shared genes or
because they have shared interests (or both, see Van Veelen and
Hopfensitz, 2007).

The theorem formally shows that deriving the direction of
selection in a group selection model by computing inclusive
fitness does work if a model translates to a linear public goods
game. This linearity is needed; when a model translates to a non-
linear public goods game, it is no longer true that inclusive fitness
gives the direction of selection. It should also be stressed that the
class of models that translate to non-linear public goods games is
large and contains realistic models from the existing literature, as
well as models that have potential for explaining phenomena
ranging from the evolution of multi-cellular life to human
sociality. Counterexamples also show that the size of the group
makes a qualitative difference. While for groups of size two, or in
2-player games, the prediction of the direction of selection can be
given with a formula that uses relatedness, this is not possible for
groups of three or more individuals. Something similar is also true
for the alternative model with a continuous action space;
Hamilton’s rule does hold there for 2-player games, but not for
games with more than two players, unless, of course, the game is a
linear public goods game.
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Appendix A. Bounds on PðTjTÞ � PðTjNÞ

Suppose there are m groups each consisting of n individuals,
adding up to a total of n �m individuals, K of which have the trait.
In group i, ki individuals have the trait. This naturally implies that
0 � ki � n and

Pm
i¼1ki ¼ K , which makes K the total number of

carriers. Now consider the following expression:

Xm
i¼1

ki

K

ki � 1

n� 1
�
Xm

i¼1

n� ki

nm� K

ki

n� 1
(9)

This expression is a measure for the unevenness of the
distribution of carriers the trait over groups. In order to see
how, it can help to read this expression, for a given composition of
the groups, as a difference between two probabilities that follow
from a hypothetical chance experiment. If we randomly choose a
carrier of the trait from the whole population, with all carriers of
the trait having equal probability, then the first term in expression
(9) is the probability that a randomly chosen other group member,
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with all other group members having equal probability, is a carrier
too, of course conditional on the first one being a carrier. This can
be written shortly as PðTjTÞ. The second term can, in an analogous
way, be written as PðTjNÞ. This makes expression (9) equal
PðTjTÞ �PðTjNÞ. It should be stressed though that this only
summarizes the state of the population, and writing it as a
difference in probabilities in a hypothetical chance experiment is
for the moment only done for practical reasons (see also Van
Veelen, 2005).

We can rewrite this expression as follows:

Xm

i¼1

ki �
K

m
K

ki � 1

n� 1
þ
Xm

i¼1

K

m
K

ki � 1

n� 1

0
B@

1
CA

�
Xm

i¼1

ðn� kiÞ �
nm� K

m
nm� K

ki

n� 1
þ
Xm
i¼1

nm� K

m
nm� K

ki

n� 1

0
B@

1
CA
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Because
Pm

i¼1ðki � K=mÞ=K ¼ 0 and
Pm

i¼1ðn� kiÞ � ðnm� KÞ=m=

ðnm� KÞ ¼ 0, we can add any constant to the terms ki � 1=n� 1
and ki=n� 1, respectively, and hence rewrite this as
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It is clear that the above calculations imply that this measure for
the unevenness of the distribution of carriers the trait over groups
should be bounded from below by �1=ðn� 1Þ. An obvious upper
bound is 1, because PðTjTÞ cannot be larger than 1 and PðTjNÞ

cannot be smaller than 0. We can, however, also think of a process
of selection as a Markov chain, with transition probabilities
between states. These transition probabilities then reflect a
combination of population structure and fitnesses. For this
Markov process, one can first compute PðTjTÞ �PðTjNÞ for every
state in the support of the invariant distribution, and then weight
these measures by their probability in the invariant distribution.
The resulting weighted average can then properly be interpreted
as a generalized measure of relatedness for the population or
interaction structure; if one observes a population that indeed
follows the model, and we compare the probability with which a
random other group member is a carrier between carriers and
non-carriers, the weighted average tells us how large the
difference is between them. Also �1=ðn� 1Þ would again be the
lower bound and 1 would be the upper bound, as they are lower
and upper bound, respectively, for all states over which the
weighted average is taken.

Please note that PðTjTÞ �PðTjNÞ ¼ ½PðTjTÞ � 1� � ½PðTjNÞ � 1� ¼
PðNjNÞ �PðNjTÞ which is a symmetry that we would expect.
Appendix B. Relatedness

Before doing the actual computations, it is useful to introduce
some notation. The hypothetical chance experiment involves
drawing two individuals from the same group, without replace-
ment. The probability with which the second is a T , conditional on
that the first one is a N, is written as PðTjNÞ. The probabilities
PðTjTÞ, PðNjNÞ and PðNjTÞ are defined in an analogous way. Also,
obviously, PðNjTÞ ¼ 1�PðTjTÞ and PðNjNÞ ¼ 1�PðTjNÞ.

The probability that first an N is drawn, and then a T is PðNTÞ.
Analogously we define PðTNÞ, PðNNÞ and PðTTÞ. Obviously,
PðTTÞ þPðTNÞ ¼ p and PðNTÞ þPðNNÞ ¼ 1� p. By Bayes rule we
also know that for instance PðTjNÞ equals PðNTÞ=ðPðNTÞ þ PðNNÞÞ.
Note that drawing without replacement implies that PðNTÞ ¼

PðTNÞ—or, to put it differently, PðNÞPðTjNÞ ¼ PðTÞPðNjTÞ—as we
can see using the formula’s from the proof of Theorem 1:

PðNTÞ ¼ PðNÞ �PðTjNÞ ¼ ð1� pÞ

Pn
i¼0ðn� iÞ � f i �

i

n� 1
nð1� pÞ

¼ p �

Pn
i¼0i � f i �

n� i

n� 1
np

¼ PðTÞ �PðNjTÞ ¼ PðTNÞ

This, together with PðNÞ ¼ 1�PðTÞ, implies the following:2

PðNÞPðTjNÞ ¼ PðTÞPðNjTÞ3

ð1�PðTÞÞPðTjNÞ ¼ PðTÞPðNjTÞ3

PðTjNÞ ¼ PðTÞðPðNjTÞ þPðTjNÞÞ

which prepares us for the proof of Eq. (8), which states that
PðTjTÞ ¼ r þ ð1� rÞp, with r ¼ PðTjTÞ �PðTjNÞ

PðTjTÞ ¼ PðTjTÞ �PðTjNÞ þPðTjNÞ

¼ r þPðTÞðPðNjTÞ þPðTjNÞÞ

¼ r þPðTÞð1�PðTjTÞ þPðTjNÞÞ

¼ r þ pð1� rÞ

Appendix C. d-weak selection with a continuum of
phenotypes

Two players: Following Grafen (1979), we first consider the
fitness function Fðt; sÞ, where t and s are mixed strategies that play
T with probability t and s, respectively. The definition of
relatedness naturally carries over to r being a difference in
probabilities concerning what type of player—a t or an s—one is
matched with. In slightly abusive, but short notation, that is,
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r ¼ PðtjtÞ �PðtjsÞ. The function F now evaluates the fitness of a
mutant t in a monomorphic population of incumbent s. Because
playing N always gives 0, we have

Fðt; sÞ ¼ PðtjtÞ t2 � 1þ tð1� tÞ � �1
� �

þPðsjtÞ ts � 1þ tð1� sÞ � �1
� �

¼ PðtjtÞ 2t2 � t
� �

þPðsjtÞ 2ts� tf g

Examining the success of a mutant t implies that it starts at
frequency p ¼ 0, which by (8) implies that at an invasion PðtjtÞ ¼ r

and PðsjtÞ ¼ 1� r (or, rephrased directly; assuming that the
frequency is very small implies that PðtjsÞ ¼ 0). Therefore, taking
the derivative with respect to t, we get

dFðt; sÞ

dt
¼ rð4t � 1Þ þ ð1� rÞð2s� 1Þ

and hence

dFðt; sÞ

dt

����
t¼s

¼ ð2s� 1Þ þ 2rs ¼ 2sð1þ rÞ � 1

so that

dFðt; sÞ

dt

����
t¼s

¼ 03s ¼
1

2ð1þ rÞ

Looking at the derivative again, we note that s41=ð2ð1þ rÞÞ

implies that ðdFðt; sÞ=dtÞjt¼s40, while so1=ð2ð1þ rÞÞ implies that
ðdFðt; sÞ=dtÞjt¼so0. This s ¼ 1=ð2ð1þ rÞÞ therefore separates the
basins of attraction of the two pure equilibria. It is understood
that the larger the r, the smaller 1=ð2ð1þ rÞÞ, so the larger the
basin of attraction of playing T with probability 1.

Three players: Again we consider the fitness function, which
now equals

Fðt; sÞ ¼ PðttjtÞ t3 � 1þ tð1� t2Þ � �1
� �

þPðstjtÞ t2s � 1þ tð1� stÞ � �1
� �

þPðssjtÞ ts2 � 1þ tð1� s2Þ � �1
� �

¼ PðttjtÞ 2t3 � t
� �

þPðstjtÞ 2t2s� t
� �

þPðssjtÞ 2ts2 � t
� �

¼ � t þ 2t3PðttjtÞ þ 2t2sPðstjtÞ þ 2ts2PðssjtÞ

Taking the derivative with respect to t we get

dFðt; sÞ

dt
¼ �1þ 6t2PðttjtÞ þ 4tsPðstjtÞ þ 2s2PðssjtÞ

and hence

dFðt; sÞ

dt

����
t¼s

¼ �1þ 6s2PðttjtÞ þ 4s2PðstjtÞ þ 2s2PðssjtÞ

Note first that PðtjtÞ ¼ ðf 2 þ 3 � f 3Þ=3p and PðtjsÞ ¼ ðf 1 þ f 2Þ=

ð3ð1� pÞÞ. If p goes to 0, then f 1; f 2 and f 3 must go to 0 too, and so
must PðtjsÞ. Relatedness at lim p # 0 is therefore r ¼ limp#0PðtjtÞ�

PðtjsÞ ¼ limp#0ðf 2 þ 3 � f 3Þ=ð3pÞ � 0 ¼ limp#0ðf 2 þ 3 � f 3Þ=3p. If we
realize that PðttjtÞ ¼ f 3=p, PðtsjtÞ ¼ 2

3 f 2=p and PðssjtÞ ¼ 1
3 f 1=p,

then it is clear that being able to choose these three variables,
being restricted by only two equations—that is, ðdFðt; sÞ=dtÞjt¼s ¼ 0
for finding the value s that separates the basins of attractions and
r ¼ ðf 2 þ 3 � f 3Þ=3p for relatedness—allows us to shift the point
that separates the basins of attraction, without affecting the r.
This implies that in order to determine whether or not s ¼ 0 can
be invaded, it will typically not be enough to know r.
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